
Supersymmetric Grand Unification

Sander Mooij
Master’s Thesis in Theoretical Physics

Institute for Theoretical Physics
University of Amsterdam

Supervisor: Prof. Dr. Jan Smit

August 18, 2008



Contents

1 The Standard Model 6
1.1 Introduction to the Standard Model . . . . . . . . . . . . . . . . . . 6

1.1.1 Fundaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Contents of the Standard Model . . . . . . . . . . . . . . . . 10
1.1.3 Writing down the SM Lagrangian . . . . . . . . . . . . . . . . 12

1.2 Troubles and shortcomings of the Standard Model . . . . . . . . . . 18
1.2.1 Reasons to go beyond the SM . . . . . . . . . . . . . . . . . . 18
1.2.2 Righthanded neutrinos . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Renormalization and the hierarchy problem in the SM . . . . 20

1.3 Running of Coupling Constants: a first clue for Grand Unification . 21
1.3.1 Renormalized Perturbation Theory . . . . . . . . . . . . . . . 22
1.3.2 Calculation of counterterms . . . . . . . . . . . . . . . . . . . 23
1.3.3 Callan-Symanzik equation and renormalization equation . . . 25
1.3.4 Running Coupling Constants . . . . . . . . . . . . . . . . . . 26

2 Group Theoretical Backgrounds 31
2.1 Roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Simple roots . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Dynkin labels . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Weights and representations . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.1 Casimir operators . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2 Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.3 Decomposition of tensor products . . . . . . . . . . . . . . . . 36
2.3.4 Branching rules and projection matrices . . . . . . . . . . . . 38

3 Grand Unification 40
3.1 Embedding the SM fields in SU(5) . . . . . . . . . . . . . . . . . . . 40
3.2 Writing down the SU(5) Lagrangian . . . . . . . . . . . . . . . . . . 45

3.2.1 Fermion kinetic terms . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Fermion mass terms . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.3 Gauge kinetic terms . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 The Higgs mechanism in SU(5) . . . . . . . . . . . . . . . . . . . . . 48
3.4 Consequences of SU(5) unification . . . . . . . . . . . . . . . . . . . 50
3.5 SO(10) unification: embedding of SM fields . . . . . . . . . . . . . . 51

3.5.1 Exploring the 16 rep . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.2 Branching to the SM . . . . . . . . . . . . . . . . . . . . . . . 52

1



3.5.3 Ordering of generators and fields . . . . . . . . . . . . . . . . 55
3.6 The SO(10) Higgs mechanism . . . . . . . . . . . . . . . . . . . . . . 57
3.7 SO(10): a short summary . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Supersymmetry and the Minimal Supersymmetric Standard Model 60
4.1 Introduction to supersymmetry . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 A new symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1.2 Superfields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Construction of the MSSM . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.1 The rules of the game . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 Matter kinetic terms . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 Higgs kinetic terms . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.4 Gauge kinetic terms . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.5 Superpotential terms . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 How sparticles solve the hierarchy problem . . . . . . . . . . . . . . 70
4.4 Breaking of Supersymmetry . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Running of the Coupling Constants in the MSSM: a true clue for

Grand Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 SUSY SO(10) 76
5.1 The situation at the GUT-scale . . . . . . . . . . . . . . . . . . . . . 76
5.2 Down from the GUT scale to the electroweak scale . . . . . . . . . . 77

6 Yukawa unification in SUSY SO(10) 79
6.1 Experimental input at the electroweak scale . . . . . . . . . . . . . . 79

6.1.1 No mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.1.2 Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Standard Model Yukawa running . . . . . . . . . . . . . . . . . . . . 82
6.2.1 SM Renormalization Group Equations . . . . . . . . . . . . . 82
6.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 MSSM Yukawa running . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.1 MSSM Renormalization Group Equations . . . . . . . . . . . 86
6.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Dermisek and Raby’s family symmetric approach 92
7.1 Construction of DR GUT-scale Yukawa matrices . . . . . . . . . . . 92

7.1.1 D3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.1.2 The DR superpotential . . . . . . . . . . . . . . . . . . . . . 94
7.1.3 DR Dirac Yukawa matrices . . . . . . . . . . . . . . . . . . . 95
7.1.4 χ2 analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.2 Analysis of DR Yukawa matrices . . . . . . . . . . . . . . . . . . . . 96

8 Conclusions 98
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2



A Conventions 102
A.1 Essentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2 SU(2) and SU(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B Associating LH fields to RH fields 105

C Additional SM symmetries 107

3



Abstract

At an energy scale around 1016 GeV the Standard Model (SM) is assumed to give
way to a theory in which all scalar, spinor and boson fields are in one universal
gauge group, a so-called Grand Unified Theory (GUT). In this thesis we review
the construction of supersymmetric GUTs and check in Mathematica how well its
predictions, gauge coupling unification and Yukawa coupling unification, are met.
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Thesis Outline

To provide a solid background we first review the Standard Model and its prob-
lematic features, especially the hierarchy problem. In the second chapter some
necessary group theory, mainly weight vector analysis, is studied. Then, in the
third chapter, we construct the two most popular GUTs, SU(5) and SO(10). We
show that in these theories the SM hierarchy problem is still unresolved and see that
gauge couplings do not meet well enough to fit low-energy measurements. There-
fore, we are led to study supersymmetric GUTs. In the fourth chapter we introduce
supersymmetry (SUSY). We review the minimal supersymmetric extension of the
Standard Model (MSSM) and see how it solves the aforementioned problems. The
theoretical part of the thesis is concluded by the construction of the most simple
(elegant) SUSY GUT.
In the phenomenological part we convert electroweak scale observables, particle
masses and quark and lepton mixing matrices to Yukawa matrices. Two-loop
Yukawa Renormalisation Group Equations are solved in Mathematica. This en-
ables us to check whether the SUSY GUT promise of Yukawa unification is met.
In the last chapter a recent model by Dermisek and Raby that connects to the
results of this Yukawa analysis is studied.
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Chapter 1

The Standard Model

Dramatic progress in (special) relativity, quantum mechanics, quantum field the-
ory and quantumchromodynamics has led us to the Standard Model of Elementary
Particle Physics, or SM. It emerged in the early seventies and has been proven right
in numerous experiments afterwards.
The SM lists all elementary particles and describes their interactions via the strong,
weak interaction and U(1) “hyper” interaction. After spontaneous symmetry break-
ing, caused by the so-called Higgs boson taking a nonzero vacuum expectation
value, the weak and U(1) hyperforce combine into the electromagnetic interaction.
In a minute we will see how exactly this comes to be.

1.1 Introduction to the Standard Model

In this first section we will construct the full Standard Model Lagrangian.

1.1.1 Fundaments

The SM Lagrangian rests on the fundamental assumptions that it should be gauge
invariant, Lorentz invariant and renormalizable.

SU(3)× SU(2)× U(1) gauge invariance

To every field f appearing in the SM we associate a gauge transformation:

f → eiα
aTa

s eiβ
bT b

weiγY f. (1.1)

The first part eiα
aTa

s is the SU(3) part. By definition, SU(3) has 8 generators.
These are the 8 matrices T as . We can choose (infinitely) many representations for
these generators, as long as they obey the commutation relations [T as , T

b
s ] = ifabcT cs .

(All over this work, a sum over repeated indices is assumed.) The structure con-
stants are typical for SU(3), they define the group. They can be looked up in
appendix A.2.
The 8 αa are infinitesimal displacement vectors specifying the gauge transforma-
tion.
Interesting possibilities are the so-called fundamental representation, where we take
(1/2 times) the 8 traceless 3 × 3 Gell-Mann matrices λa to represent the T as , the
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trivial representation where we set all T as to 0 so that this whole part disappears
from the gauge transformation, and the adjoint representation where we have 8
8× 8 matrices (Ti)jk = −ifijk that represent the T as .
The connection with physics now is that the strong force is mediated by the 8 gauge
bosons (gluons) Gaµ that transform in the adjoint representation of SU(3). Every
fermion that is sensitive to the strong force (that is, every quark) is represented by
a field that transforms in the fundamental representation of SU(3), while to the
antiquarks we associate a field that transforms in the antifundamental representa-
tion: T as = −(λ

a

2 )? ≡ λa

2
1. Fields representing particles that do not feel the strong

interaction (particles that cannot couple to a gluon, leptons, that is) transform in
the trivial representation of SU(3).
The second part eiβ

bT b
w is the SU(2) part. Everything works out in essentially the

same way as in the SU(3) case. The main difference is that SU(2) has only 3 gen-
erators T bw, so there will be only 3 gauge bosons Abµ. These three bosons mediate
the weak force. The fundamental representation is given by T bw = σb

2 , where the σb

are the well-known Pauli matrices. As we have σ2σbσ2 = σb, the antifundamental
representation of SU(2) is equivalent to its fundamental representation. Such a
representation is called real.
The third part, eiγY , that contains the U(1) part is different in the sense that
there is just one (one-dimensional) generator Y involved. Y is just a number and
is called hypercharge. Such a gauge theory with just one generator (and, therefore,
just one gauge boson Bµ) is called Abelian while a gauge theory with several non-
commuting generators is non-Abelian.

Reps of non-Abelian groups are labeled by their dimension: the fundamental rep of
SU(3) for example, where generators are 3× 3 matrices) for example is denoted as
3, the antifundamental rep as 3 and the trivial rep as 1. The reps of the Abelian
group U(1) are simply denoted by the value of the one dimensional generator Y ,
the hypercharge.

Now for gauge invariance. Of each particle we know what forces it is subject
to. So, for each of the associated fields we know the representation, the form of
the matrices T as , T bw, Y , in which it transforms. We can then try to write down
those products of fields that as a whole are gauge invariant. Technically we want
the decomposition of the tensor product to contain a 1 singlet. We will come back
to this later, for the moment we just state that the tensor product of a rep and its
conjugate always contain such a singlet:

r⊗ r = 1⊕ . . . (1.2)

Of course the next question is how to project out such a singlet. We will settle
that when actually writing down the SM Lagrangian.
In the Abelian case gauge invariance is equivalent to a vanishing sum of U(1)
charges.

One last comment is that to write gauge invariant quantities including derivatives
1The concept of antimatter, or charge conjugation is reviewed in appendix A.1.
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we had better replace the ordinary derivative operator ∂µ by the gauge-covariant
operator

Dµ = ∂µ − igsGaµT as − igwAaµT aw − ig′BµY. (1.3)

It is easy to check that now Dµf gets the same gauge transformation as f itself.
The coupling constants gs, gw and g′ indicate the strength of the strong force, weak
force and U(1) force respectively.

Lorentz invariance

The fields needed to describe all elementary particles come in different representa-
tions of the Lorentzgroup. We have fields of spin 0, 1/2, and 1, or scalar, spinor
and vector fields. We look for combinations that are as a whole invariant under a
Lorentz transformation.

Scalar fields φ(x) are in the trivial representation of the Lorentz group. A Lorentz
transformation has a most simple effect: the transformed field, evaluated at the
boosted point, has the same value as the original field at the point before boosting:

φ(x)→ φ′(x) = φ(Λ−1x). (1.4)

So, a scalar field is a Lorentz invariant quantity in itself.

Spinor fields ψ(x) are four-dimensional anticommuting objects. The effect of a
Lorentz transformation on a four-spinor is

ψ(x)→ ψ′(x) = e
i
2
ωµνSµν

ψ(Λ−1x). (1.5)

Here ωµν specify the Lorentz tranformation. The rotation- and boost generators
are contained in the antisymmetric Sµν : the boost generators Ki are on positions
S0i, the rotation generators are in the Sij part. We now choose to represent Sµν

in the following way:

Sµν =
i

4
[γµ, γν ]. (1.6)

(In this thesis we will exclusively use the Weyl representation, which can be looked
up in Appendix A.1.)
Now we can figure out how to write down Lorentz invariant quantities. It is easy
to verify that in this representation we have rotation terms that commute with
γ0 while the boost terms anticommute with γ0. Furthermore we have that the
rotation terms are hermitian and the boosts are antihermitian, as should be true
in every representation. With all this in mind, we define

ψ = ψ†γ0. (1.7)

Under a Lorentz transformation this quantity transforms as

ψ →ψ†(e
i
2
ωµν(Sµν)†)γ0 (1.8)

=ψ†γ0(e
i
2
ωµνSµν

), (1.9)
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so we conclude that the quantity ψψ transforms as a Lorentz scalar. In exactly
the same way one can prove that ψγµψ transforms a a Lorentz vector. To have a
Lorentz invariant quantity it should be contracted with another Lorentz vector.

Very often spinor fields ψ(x) are decomposed in two two-dimensional parts, which
are referred to as the lefthanded part ψL(x) and the righthanded part ψR(x):

ψ =
(
ψL
ψR

)
, ψL = PLψ, ψR = PRψ. (1.10)

Here PL and PR are projection operators, defined in appendix A.1.
This decomposition does not change the above statements about Lorentz invari-
ance. But let us see how this decomposition actually comes about.
The Lorentz group SO(3, 1) is similar to SU(2)×SU(2). This becomes clear when
we re-order the 3 rotation generators J i and the 3 boost generators Ki in the new
generators Ci = 1

2(J i + iKi) and Di = 1
2(J i − iKi). We then have

[Ci, Cj ] = iεijkC
k, [Di, Dj ] = iεijkD

k, [Ci, Dj ] = 0, (1.11)

two separate copies of SU(2).
We can now take J i = iKi by taking J i = σi

2 ,K
i = −iσi

2 . We then have Di = 0.
Such a field, in which the C-generators are in the fundamental SU(2) representation
and the D-generators are in the trivial representation is called lefthanded.
The other possibility is of course to take J i = σi

2 ,K
i = iσ

i

2 to have J i = −iKi so
that now Ci = 0. These are righthanded fields.
In the two-spinor formalism a Lorentz transformation takes the form

ψL(x)→(1− iθiσ
i

2
− βiσ

i

2
)ψL(Λ−1x), (1.12)

ψR(x)→(1− iθiσ
i

2
+ βi

σi

2
)ψR(Λ−1x). (1.13)

We have written this so explicitly because now, on using the identity σ2
(
σi
)? =

−σiσ2, it is easy to check that σ2ψ?R transforms as a lefthanded spinor. Therefore
we can safely represent righthanded fields by lefthanded antifields. This will prove
to be very useful later on. Details are worked out in Appendix B.
Next we turn to vector fields V µ(x), fields that are in the four-dimensional vector
representation of the Lorentzgroup. These have transformation

V µ(x)→ V ′µ(x) = ΛµνV
ν(Λ−1x). (1.14)

Here Λµν is an element of the Lorentz group. V µ(x) transforms as a four-vector up
to gauge transformations (∂µω(x)). For gauge fields we define

Fµν =∂µV ν(x)− ∂νV µ(x) (1.15)

F aµν =∂µV a
ν (x)− ∂νV a

µ (x) + gfabcV b
µ (x)V c

ν (x), (1.16)

for the Abelian and non-Abelian case respectively.
To build a Lorentz scalar out of vector fields the crucial demand is that all indices
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should be contracted. A Lorentz invariant quantity from which equations of motion
can be deduced is FµνFµν or F aµνF

aµν .

Renormalizability

We will treat this third fundament under the SM in a much quicker way. We want
the Standard Model action not to blow up when we move to higher and higher
energies. As the action is just the spacetime integral over the Lagrangian,

SSM =
∫
d4xLSM (1.17)

no term in the Lagrangian should have mass dimension larger than 4. Scalar and
vector fields have mass dimension 1, spinor fields have mass dimension 3

2 . See for
instance [14, chap. 4].

This ends the discussion on the fundamental Standard Model symmetries. Ad-
ditional symmetries are described in C.

1.1.2 Contents of the Standard Model

As stated before, the Standard Model describes how the strong force, the weak
force and the hyperforce affect all elementary particles. (The electromagnetic force
is not one of the three fundamental forces,in the next section we will see how it
results from the breaking of the weak force and the hyperforce.) The 8 + 3 + 1
gauge bosons that mediate these forces all have spin 1. Gravity (and the graviton)
are not described.
Fermions that are sensitive to the strong force are called quarks. The strong force
is described by a SU(3) gauge theory (QCD). That is why every quark q should
be thought of as a “color triplet”, it has a so-called “red”, “blue” and “green”
component q = (qr, qb, qg). The SU(3) gauge transformation acts on this “color
space”.
Quarks come with two different electric charges, the “up quark” u has charge +2

3 ,
the “down quark” d has charge −1

3 . The same is true for the leptons (particles
that are not subject to the strong force): the massless neutrino νe has charge 0,
the electron e has charge −1.
All particles described so far are spin 1

2 fermions. They come in lefthanded and
righthanded versions. The only exception is that, at least at the time the SM was
made up, a righthanded neutrino had never been detected. (Now there is strong
evidence that righthanded neutrinos do exist, but we will settle that issue later.)
A crucial observation now is that lefthanded particles have weak interactions but
righthanded particles do not. This has led to the idea of putting the lefthanded
quarks and leptons in weak SU(2) doublets while keeping the righthanded particles
in SU(2) singlets.
The u, d, νe and e (up quark, down quark, neutrino and electron) together form the
so-called “first generation” of SM particles. There two more generations, c, s, νµ,
µ (charm quark, strange quark, µ-neutrino and muon) and t, b, ντ , τ (top-quark,
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bottom quark, τ -neutrino and tau). The second and third generation are exactly
like the first one except for the increasing masses.
The last, most mysterious, SM particle is the Higgs boson, which is needed to write
down gauge invariant mass terms. A mass term for a field ψ should be bi-linear
in ψ and ψ. From the gauge transformations of the SM fields we can see that
any potential mass term like mψψLψR or mψψLψL can never be gauge invariant.
To overcome these troubles a new spin 0 particle has been postulated: the Higgs
boson. The associated Higgs field φ(x) transforms as a SU(2) doublet, thus render-
ing the combination mψψLφψR gauge invariant. When φ takes a non-zero vacuum
expectation value we are left with an effective mass term. The Higgs boson has
never been detected (it has been excluded up to 114 GeV) but this situation may
change within a few months from now when the LHC starts working. Without the
Higgs particle the Standard Model is a sick theory.

So let us now write down all fields we have in the Standard Model and their
SU(3)×SU(2)×U(1) representations. At this stage the hypercharge assignments
may seem strange, but in the next section we will see how after symmetry breaking
these values lead to the correct electric charges.
In the first generation we have a lefthanded

(
3,2, 1

6

)
SU(2) doublet of quark SU(3)

triplets:

QL(x) =
(
urL(x) ugL(x) ubL(x)
drL(x) dgL(x) ubL(x)

)
,

a righthanded
(
3,1, 2

3

)
up quark triplet (SU(2) singlet):

uR(x) =
(
urR(x) ugR(x) ubR(x)

)
,

a righthanded
(
3,1,−1

3

)
down quark triplet:

dR(x) =
(
drR(x) dgR(x) dbR(x)

)
,

a lefthanded
(
1,2,−1

2

)
lepton doublet (SU(3) singlet):

LL(x) =
(
νL(x)
eL(x)

)
and a righthanded (1,1,−1) electron singlet

eR(x).

The second and third generation fields have exactly the same structure.
Finally we have the

(
1,2, 1

2

)
Higgs doublet

φ(x) =
(
h1(x)
h2(x)

)
. (1.18)
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1.1.3 Writing down the SM Lagrangian

Let us start with the Higgs kinetic part:

LHK =(Dµφ)†Dµφ (1.19)

=
[
(∂µ + igwτ

aAaµ(x) + ig′
1
2
Bµ(x))φ?(x)

]T
(∂µ − igwτaAaµ(x)− ig′ 1

2
Bµ(x))φ(x). (1.20)

We directly see that all fundamental demands are met. φ is in SU(2) rep 2 and has
hypercharge 1

2 , while φ† transforms in the 2 (which is equivalent to 2) and carries
hypercharge −1

2 ; henceforth the existence of a gauge invariance in the product is
guaranteed 2. From a Lorentz point of view we have two vectors that are contracted.
The mass dimension of the whole expression equals 1 + 1 + 1 + 1 = 4.
Let us elaborate a bit on gauge properties. The corresponding transformation is

φ(x)→ eiβ
bτb
eiγ

1
2φ(x). (1.21)

We thus have four massless vector bosons (A1
µ, A

2
µ, A

3
µ, Bµ). One now assumes

spontaneous symmetry breaking: φ takes a nonzero vacuum expectation value
(vev):

< φ(x) >=
1√
2

(
0
v

)
. (1.22)

It can be checked that now the particular gauge transformation β1 = β2 = 0, β3 =
γ leaves the vacuum invariant while all others do not. We thus have only one
symmetry left, with generator T 3 +Y , in this case τ3 + 1

2 . Goldstone’s theorem now
predicts that we are going to find three massive gauge boson fields that correspond
with the “broken” generators and one that is still massless. Let us check that this
is indeed the case.
Concentrating on the terms quadratic in vector boson fields we have

∆LHK =
1
2
(

0 v
) (
gwA

aµ(x)τa +
g′

2
Bµ(x)

)(
gwA

a
µ(x)τa +

g′

2
Bµ(x)

)( 0
v

)
,

(1.23)
which yields, after inserting all Pauli matrices,

∆LHK =
1
2
v2

4

[
g2
w

(
A1µ(x)A1

µ(x) +A2µ(x)A2
µ(x) +A3µ(x)A3

µ(x)
)

− 2gwg′A3µ(x)Bµ(x) + 2(g′)2Bµ(x)Bµ(x)
]
. (1.24)

Now we change variables:
2We can project out this singlet term by using a Kronecker delta: δij(φ†)iφj .
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W+
µ =

1√
2

(A1
µ − iA2

µ) (1.25)

W−
µ =

1√
2

(A1
µ + iA2

µ) (1.26)

Z0
µ =

1√
g2
w + g′2

(gwA3
µ − g′Bµ) ≡ cos θwA3

µ − sin θwBµ (1.27)

Aµ =
1√

g2
w + g′2

(g′A3
µ + gwBµ) ≡ sin θwA3

µ + cos θwBµ, (1.28)

where θw is the so-called Weinberg angle. It sort of parametrizes the amount of
mixing between the SU(2) and the U(1) part of the theory.
Inserting (the inverses) of these expressions we finally arrive at

∆LHK =
1
2
v2

4

[
2g2
wW

+µ(x)W−
µ (x) + (g2

w + g′2)Z0µ(x)Z0
µ(x)

]
. (1.29)

Note the absence of a Aµ(x)Aµ(x) term. Bearing in mind that a mass term for a
field f looks like 1

2m
2ff we thus conclude that the breaking of the SU(2) × U(1)

symmetry has led us to a decription of the W+
µ and W−

µ bosons (with mass gwv
2 ),

the Z0
µ boson (with mass

√
g2
w + g′2 v2 ) and the massless Aµ boson.

(Right from the start it has been clear that we are not going to have any term
quadratic in gluon fields Gaµ as the Higgs is in the trivial rep of SU(3). This is how
the masslessness of gluons is described.)
It is very instructive to check what the covariant derivative 1.3 looks like after this
change of variables:

Dµ =∂µ − i
gw√

2

(
W+
µ T

+ +W−
µ T

−)− i√
g2
w + g′2

Z0
µ

(
g2
wT

3 − g′2Y
)

− i gwg
′√

g2
w + g′2

Aµ
(
T 3 + Y

)
. (1.30)

Here T± = T 1 ± iT 2 and we have for a moment switched back to write general
generators T 3 and Y , although we know that for the Higgs boson these are repre-
sented by τ3 and 1

2 respectively because the Higgs is in the
(
1,2, 1

2

)
rep.

Because of its masslessness we should identify Aµ with the photon. Its coupling
strength, e, equals gwg′√

g2w+g′2
. Its generator, Q, is seen to equal T 3 + Y . We now

have a full description of the so-called electroweak breaking, caused by the Higgs
mechanism, of SU(2) weak symmetry and U(1) symmetry to the electromagnetic
U(1) symmetry we observe in nature3.

3Note that now we can check that we took the right hypercharge assignments in the preceding
section, because for every field we have that T 3 + Y equals their electric charge. For uL we
find, for example, T 3 + Y = 1

2
+ 1

6
= 2

3
, for uR we have T 3 + Y = 0 + 2

3
= 2

3
, for dL it is

T 3 + Y = − 1
2

+ 1
6

= − 1
3

etc.
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Next fermion kinetic terms are considered:

LFK =QL(iγµDµ)QL + uR(iγµDµ)uR + dR(iγµDµ)dR
+ LL(iγµDµ)LL + eR(iγµDµ)eR. (1.31)

Gauge invariance is, again, easily observable. If a field ψ is in a rep r , then ψ
transforms in the conjugate r rep (this is shown in appendix A.1). Hypercharges
trivially add to their conjugates to zero. Lorentz invariance is also ensured, fermion
fields ψ are paired with ψ and no indices remain uncontracted. The mass dimension
is 3

2 + 1 + 3
2 = 4.

Knowing the reps these fermions fields are in, we write out (for the last time!) the
covariant derivatives:

LFK =QLiγµ
(
∂µ − igsGaµ(

λa

2
)− igwAaµτa − ig′

1
6
Bµ
)
QL

+ uRiγ
µ
(
∂µ − igsGaµ(

λa

2
)− ig′ 2

3
Bµ
)
uR

+ dRiγ
µ
(
∂µ − igsGaµ(

λa

2
)− ig′(−1

3
)Bµ

)
dR

+ LLiγ
µ
(
∂µ − igwAaµτa − ig′(−

1
2

)Bµ
)
LL

+ eRiγ
µ
(
∂µ − igwAaµτa − ig′(−1)Bµ

)
eR. (1.32)

The partial derivative in each term is just the normal kinetic term (connected to
the Dirac equation) we expect to appear for every fermion field.
The two SU(3) terms (active in colour space) could be worked out by inserting the
numerical values of the Gell-Mann matrices and thus render all kind of interactions
between gluons and coloured quarks. At the moment this is not in our interest.
We choose to focus on the SU(2) × U(1) terms because they reveal some physics
that will be of phenomenological importance in this work. On inserting the Pauli
matrices and changing variables from (Aaµ, Bµ) to (W+

µ ,W
−
µ , Z

0
µ, Aµ) once again,

we find
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∆LFK =gwW+
µ

[
1√
2

(
uLγ

µdL + νLγ
µeL
)]

+gwW−
µ

[
1√
2

(
dLγ

µuL + eLγ
µνL
)]

+gwZ0
µ

[
1

cos θw

(
(
1
2
− 2

3
sin2 θw)uLγµuL + (−1

2
+

1
3

sin2 θw)dLγµdL

+ (−1
2

+ sin2 θw)eLγµeL +
1
2
νLγ

µνL

− 2
3

sin2 θwuRγ
µuR +

1
3

sin2 θwdrγ
µdR + sin2 θwerγ

µeR
)]

+eAµ

[
2
3

(uLγµuL + uRγ
µuR)− 1

3
(dLγµdL + dRγ

µdR)

− (eLγµeL + eRγ
µeR)

]
(1.33)

≡gwW+
µ J

µ+ + gwW
−
µ J

µ− + gwZµJ
µZ + eAµJ

µEM . (1.34)

Here we can identify the two charged weak currents, the neutral weak current and
the electromagnetic current. We could use this Lagrangian to describe weak decay.
Note that weak currents discriminate between left- and righthanded fields, but the
electromagnetic current does not. The charged weak currents connect the two states
of the SU(2) doublets. This will be important when we come to generation mixing.

We now turn to the fermion mass terms. As noted before, we need the Higgs
field φ(x) here to maintain gauge invariance. If there would be just one generation,
we would have

LFM = −yuεabQLaφbuR − ydQL · φdR − yeLL · φeR + h.c.. (1.35)

The y are called Yukawa couplings. We have

εab =
(

0 1
−1 0

)
. (1.36)

(Technically speaking, there are two ways to project out the gauge invariant part
of the product ψLφ: by using a Kronecker delta or a Levi-Civita epsilon.)
Furthermore we see that hypercharges again add to zero, that Lorentz invariance
is obvious as we only have ψψ combinations, and that the mass dimension is seen
to equal 3

2 + 1 + 3
2 = 4.

Inserting the Higgs vev 1.22 yields

LFM = − v√
2

(
yuuLuR + yddLdR + yeeLeR + h.c.

)
(1.37)

which leads to mu = yuv√
2

, md = ydv√
2

, me = yev√
2

.
Let us now deal with the three generations we observe in nature. This implies

that we should think of the Yukawa couplings as 3× 3 matrices. So we rather have
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LFM = − v√
2

(
(yu)ijuLiuRj + (yd)ijdLidRj + (ye)ijeLieRj + h.c.

)
(1.38)

where i, j are generation indices.
So now the masses (apart from this factor v√

2
) should follow from the 3×3 Yukawa

matrices. We do not know anything about their form, but to extract masses we
can of course diagonalize them. This wil affect other parts of the Lagrangian.
To diagonalize, say, yu we start by constructing the Hermitian quantities yuy

†
u and

y†uyu. As any Hermitian matrix H can be decomposed in a unitary matrix U ,
containing H’s (normalized) eigenvectors in its columns, and a diagonal matrix D
wearing H’s (real) eigenvalues as H = UDU−1 we can write

yuy
†
u = UuD

2
uU

†
u y†uyu = WuD

2
uW

†
u. (1.39)

We then see that we can decompose yu as

yu = UuDuW
†
u, (1.40)

where Du is given by the positive square roots of D2
u, that is, by the positive square

roots of the eigenvalues of yuy
†
u.

The next step is to redefine the up-quark field in the following way:

uLi → (Uu)ijuLj uRi → (Wu)ijuRj (1.41)

The “up-part” of the mass terms in the Lagrangian now reads

LFM = −
∑
i

v√
2

(Du)ii︸ ︷︷ ︸
(mu)i

uLiuRi, (1.42)

so we can read off the up, charm and top masses (mu)1,(mu)2 and (mu)3.
yd and ye can be treated in exactly the same way: the eigenvalues of ydy

†
d and yey

†
e

yield (up to this same factor of v√
2
) the remaining six fermion masses.

Now let us investigate the price we pay for switching to mass eigenstates. We go
back to the currents we encountered in writing out LFK (see 1.33). The fermion
fields used there have been redefined. In the quark sector we now have

uLiγ
µuLi →uLi(Uu)†ijγ

µ(Uu)jkuLk = uLiγ
µuLi (1.43)

uLiγ
µdLi →uLi(Uu)†ijγ

µ(Ud)jkdLk = uLiγ
µ
(
U †
uUd

)
ij
dLj . (1.44)

In the lepton sector there will not be any new effect because there is just one type
of U matrix (as long as we do not include righthanded neutrinos).
Comparing this with 1.33 we conclude that the quark sector of the charged weak
interactions is affected by a factor(

U †
uUd

)
ij
≡ Vij . (1.45)

16



This Vij thus describes so-called generation transitions, weak interactions between
members of different generations. It is known as the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. By doing U(1) phase rotations we can eliminate 5 of the 9 degrees
of freedom in V. The remainders can be thought of as 3 rotation angles (between
the 3 generations, the one between the first and second generation is called Cabibbo
angle) and one phase factor.
Let us, for a moment, consider this Yukawa-analysis from a phenomenological point
of view, as will be done intensively in chapter 6. Yukawa matrices describe the way
in which fields couple to each other and thus induce masses, but they cannot be
exactly determined. Physical observables are particle masses and primarily the
absolute values of the CKM matrix elements4. That is, we can only deduce the
eigenvalues of yy† and the absolute value of the matrix product U †

uUd, where Uu(d)
contain the eigenvalues of yu(d)y

†
u(d). So, if we find expressions for Yukawa matrices

that reproduce correct masses and CKM matrix elements, we can as well rotate
these Yukawa-matrices by a unitary matrix without spoiling physical implications.
This ambiguity in Yukawa matrices should disappear from every physical observ-
able.
Now let us write down the kinetic terms for the gauge boson fields. Looking back
at 1.15 and 1.16 we easily write down

LGK = −1
4
(
GaµνG

aµν + F aµνF
aµν +BµνB

µν
)
. (1.46)

In the SU(3) (a = 1...8) Gaµν is constructed out of gluon fields Gaµ, in the SU(2)
(a = 1, 2, 3) F aµν is constructed out of gluon fields Aaµ and in the Abelian U(1) part
Bµν contains the U(1) gauge boson field Bµ. Gauge invariance is trivial now and
Lorentz invariance is ensured as there are no uncontracted indices and the mass
dimension of the whole expression equals 4 as it should do.

Finally we add a piece to our Lagrangian that should explain why the Higgs field
tends to the vev 1.22. This is of course a rather speculative business, as we only
have indirect clues for the nature of the Higss particle. But it looks promising to
write

LHP = µ2φ†φ− λ(φ†φ)2. (1.47)

This potential is seen to have a minimum that can be defined to be5 at 1√
2

(
0
v

)
with v =

√
µ2

λ . According to the discussion around 1.29 we could define the Higgs

mass as
√

2µ =
√

2λv.

4Recently the relative phases of CKM elements have been determined in terms of the so-called
Jarlskog parameter J .

5in the “unitary gauge”
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1.2 Troubles and shortcomings of the Standard Model

1.2.1 Reasons to go beyond the SM

The Standard Model works. It is a perfect example of how a new scientific idea
should be: it unifies several ideas, builds much more structure in the theoretical
framework of particle physics and above all it is falsifiable. The Standard Model
has been tested in numerous experiments and has survived all of them. But it
cannot be the end of the story.
There is one issue in which the SM is just wrong: experiments have shown that
neutrinos are not massless and there should be righthanded neutrinos as well.
The SM also has some features that are theoretically unsatisfying but nevertheless
technically allowed. The first issue that comes to mind is the plethora of 19 arbi-
trarily free parameters the theory contains. (15 of the free parameters come from
interactions involving the Higgs field. It is argued that the Higgs sector is nothing
more than a “parametrization of our ignorance”.) Anyhow, some more explanation
or connections between the various coupling strengths, particle masses and electric
charges would be very welcome. The alternative, invoking the anthropic princi-
ple (the parameters had to be tuned the way they are because if not, we had not
been able to observe them because life would not have existed) seems a very weak
statement, to me at least, and I really hope physics can come up with something
better6.
Then we have the so-called hierarchy or fine tuning problem. Below we will show
that the Higgs mass is given by the difference of two O(1036)GeV terms. To arrive
at the O(102) GeV prediction we indeed need an incredible lot of fine tuning.

We will now elaborate on two reasons to look for physics beyond the SM that
will be reconsidered in next chapters: the righthanded neutrino and the hierarchy
problem.

1.2.2 Righthanded neutrinos

Only in the nineties of the previous century neutrino oscillation experiments (see
below) have indicated that neutrinos are not massless. We thus need to add new
mass terms to LSM . As we can not build a mass term out of lefthanded neutrino
fields, the most logical (less exotic) approach then is to postulate the existence of
(three generations of) righthanded neutrinos. We assume the righthanded neutrino
field to be in the SU(3)×SU(2)×U(1) representation (1,1, 0). This actually gives
a very promising explanation for the very small observed neutrino masses. So far
we have only encountered fermion mass terms of the Dirac type, coupling two fields
of different handedness. But there actually is another way of writing mass terms:
Majorana7 mass terms. Here a field is coupled to its own transpose rather than to

6Or shall we believe Lee Smolin who argues that new universes are born in black holes and
there is some Darwinesque evolution in the parameters that make up the SM that has eventually
culminated in the successful values that allow our existence today?

7After Ettore Majorana, the most promising physicist of the “ragazzi della via Panisperna”
(the guys from Panisperna Street, where the Rome physics department was in the 1920s) until he
disappeared without a trace in 1938.
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a field of opposite handedness:

L =
1
2
mψTLCψL + h.c.. (1.48)

(Appendix B explains why this expression is Lorentz invariant.)
We immediately understand that only νR, transforming trivially under all three
SM gauge symmetries, can form such a mass term. We thus add to the SM a Dirac
and a Majorana mass term:

∆LFM = −(λν)ijεab(νLa)i(φb)jνR −
1
2

(λ)ij(νTR)iC(νR)j . (1.49)

If we now give the Higgs field its usual vev and perform the usual switch to mass
eigenstates we find

∆LFM = −
∑
i

(mDIR
ν )iνLiνRi − (mMAJ

ν )iνTRiCνRj + h.c.. (1.50)

Writing everything in terms of lefthanded fields (see again appendix B we then end
up with

∆LFM = −1
2
(
νT (νc)T

)
L
C

(
0 MDIR

MDIR MMAJ

)(
ν
νc

)
L

+ h.c. (1.51)

To find two true mass eigenstates we look for the eigenvalues of this mass matrix
8. These are 1

2(mMAJ ±
√

(mMAJ)2 + 4(MDIR)2. On the assumption MMAJ �
MDIR we find a very light eigenstate and a very massive eigenstate:

m− ≈= −(MDIR)2

MMAJ
, m+ ≈MMAJ . (1.52)

This is a beautiful “seesaw” mechanism: the larger the one eigenstate, the smaller
the other one. In this way we give a powerful explanation for neutrino measure-
ments: light mass eigenstates have hardly been detected because they are so light
while the heavy ones are far too heavy to be observed in any experiment.
One cannot overemphasize the importance of the detection of righthanded neutri-
nos. It is the first clue we encounter in this thesis for new physics well above the
SM scale.
Now that we assume the existence of righthanded neutrinos we expect generation
mixing in the lepton sector of the charged weak currents as well. This indeed is
the case. We here have the PMNS (Pontecorvo, Maki, Nakagawa, Sakata) matrix
that does the same job as the CKM matrix in the quark sector. Actually, leptonic
mixing lies at the basis of neutrino oscillations: neutrinos that are emitted in the
one eigenstate are after a several hundred kilometres’ trip detected in the other
eigenstate. The probability of a neutrino switching from the one eigenstate to
the other involves the PMNS matrix element describing this transition times (the
exponent of) the difference in mass (squared) between the two states.

8In the Dirac cases we have encountered so far these mass matrices only carried two equal
off-diagonal terms, which led to two eigenstates of equal mass.
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1.2.3 Renormalization and the hierarchy problem in the SM

The hierarchy problem has to do with the renormalization of SM physics.
The basic idea of quantum field theory is quite easy: one is interested in transition
amplitudes which are obtained by calculating the contributions from all Feynman
diagrams that describe the transition.
If we take for example, two incoming particles with four-momenta p1 and p2 and,
after interaction, two outgoing particles with four momenta k1 and k2 we have

〈k1k2|iT |p1p2〉 =(2π)4δ(4)(p1 + p2 − k1 − k2)iM(p1, p2 → k1, k2) (1.53)

where the righthandside is given by the sum of all Feynman diagrams with incom-
ing p1, p2 and outgoing k1 and k2.
Feynman diagrams are written down easily once all Feynman rules have been ob-
tained and these follow from the Lagrangian of the theory governing the process.
So far so good.
Troubles arise when we go beyond tree level, that is, when we start studying pro-
cesses that involve intermediate states (virtual particles). These processes are sup-
pressed because they involve higher powers of coupling constants, but that is not
going to save us when the momenta of these virtual particles can become arbitrar-
ily large. And why would they not, being virtual particles that we cannot control
at all. It is common use then to define a maximum allowed momentum Λ, the so
called cut-off. The cut-off can be thought of as the maximal energy (or, invoking
Heisenberg’s uncertainty principle, the minimum distance) up to which the theory
makes sense.
In some cases Λ cancels out from all observable quantities. Such a theory is called
super-renormalizable. This is not the case in the SM, but it is at least a renormal-
izable theory: Λ shows up in just a small number of parameters, like the fermion
mass for example. But as we can measure a fermion mass, we can in the end elim-
inate Λ from physical predictions.
Let us, for example, have a look at the calculation of the electron mass in QED
(which is essentially the same in the SM). At tree level the electron propagator is
given by

i(6p+m0)
p2 −m2

0

. (1.54)

The electron mass is given by the pole of the propagator so we conclude me = m0.
However, if we add higher order diagrams a long calculation reveals that the pole
gets shifted by a divergent amount

δme =
3α
4π
m0 log(

Λ2

m2
0

). (1.55)

(As always α = g2

4π .)
We thus find me = m0 + δm ≡ m.
The crucial insight now is that any measurement is to return the “physical” mass
m, and not m0. Nature does not know about perturbation theory, it is just our
approach to describe her. Therefore, m0 should be thought of as a “bare mass”.
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We should express measurable quantities in renormalized or “dressed” quantities
like m. In a way we are just removing infinities from observables by putting them
into abstract undetectable “bare” quantities. It may seem a very strange proce-
dure but it certainly makes sense: after all an infinite electron mass has never been
measured. The energy range in which we can perform measurements is bounded
from above.
This is what renormalization is about, switching from bare to physical quantities.
As long as we work at tree level there is no difference, but beyond the relation
between bare and physical becomes non-trivial.

The hierarchy problem shows up once we calculate the one loop correction to the
scalar field two point function, which is of course to give us the Higgs mass. We
then find

δmφ = c
√
αΛ2 (1.56)

where c is a dimensionless constant.
Now we are in trouble. Not only is the first order scalar mass contribution far
more divergent than in the case of the electron (or any other fermion), but it is
also independent from mφ. Elaborating on this we mention that if we would set
me to 0 the resulting theory would be more symmetric (we would gain an U(1)
symmetry between lefthanded and righthanded states). Therefore, the electron
mass is a “natural” small parameter: putting it to zero increases the symmetry.
The Higgs mass however is an “unnatural” parameter: putting it to zero does not
yield any more symmetry (one could think of a scaling symmetry φ(x) → lφ(lx))
because the first order correction does not vanish.
In short, we do not have any control over the Higgs mass. If we set Λ = mPlanck =
O(1018) GeV, the highest scale known in physics, we have an O(1036) contribution
that should be subtracted from the naked Higgs mass to return a physical mass
µ of O(102) GeV. Now we clearly see how much fine tuning is needed to have a
reasonable Higgs mass. Of course nothing really forbids as much fine tuning as
necessary but... who does all this tuning? It certainly is a very unsatisfying way
of stabilizing the Higgs scale (and, in fact, the whole electroweak scale because we
have seen that µ enters in the vev v of the Higgs field).

1.3 Running of Coupling Constants: a first clue for
Grand Unification

By now we have a clear picture of the Standard Model. Three gauge groups, three
forces, three coupling constants gs, gw and g′. After symmetry breaking we are
left with gs and gEM ≡ e = gwg′√

g2w+g′2
. Nothing signals that we might look for more

unification.
But let us go back to the discussion on renormalization. We have seen that phys-
ical, observable quantities can depend on the cut-off scale Λ. Let us instead of
the electron mass think of its charge. Stating that its physical electric charge de-
pends on the maximum allowed energy scale implies that this charge depends on
the minimum probing distance. And why would it not. If we think of an electron
as a naked point particle with a cloud of electron-positron pairs around it, the
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positron pointing to the electron of course, we understand that, as we get closer
to the naked kernel, the shielding effect of the positrons decreases which renders
the actual charge we observe larger and larger. We thus conclude that we can
expect observables like coupling constants to depend on the actual energy scale (or
distance scale) at which they are measured: coupling constants can run!
The remainder of this section is devoted to calculate this running. The goal of this
thesis being Grand Unification, we hope to see the three coupling constants meet
somewhere.
One last remark before we set off: gw and g′ are of course already connected by the
Weinberg angle. We have g′ = tan θwgw, as can be checked from (1.27) or (1.28).
So we in fact have two options: either we check for what value of θw the three
coupling constants meet (two lines and a third adjustable line will of course always
meet as long as they are not parallel), or we borrow from the next chapter the
general GUT result tan2 θw = 3

5 and check how well coupling constants meet now9.
We choose to follow the latter approach. We are thus to investigate the behaviour

of gs, gw and
√

5
3g

′ that from now on will be labeled g3, g2 and g1 respectively.

1.3.1 Renormalized Perturbation Theory

The running of coupling constants could be summarized in two or three equations
but I would like to provide some more framework. First we have to elaborate a
bit on our description of renormalization. “Renormalized perturbation theory” is
based on the same logic I described before, but deals with divergences in a better
organised way. The central idea is to (after having established the relations be-
tween bare and physical quantities) write the Lagrangian in terms of these physical
quantities. Leftover bare quantities are collected in so-called “counterterms”.
For example, a fermion - fermion - gauge boson vertex has Feynman rule ig0T aγµψψAaµ
(see for example [14]). After switching to physical quantities we have ig(1 +
δg)T aγµψrψrAaµr. The term with δg is the counterterm, the other is the bare
term.
In a general non-Abelian gauge theory we need three counterterms: δ1 describes
the aformentioned fermion-gauge boson vertex correction, δ2 fixes the fermion self-
energy (its two point function) and δ3 takes care of the gauge boson self-energy.
So far we have only been doing bookkeeping: we have swept all the unknown, all
divergences in our counterterms.
Now we state renormalization conditions: we define the theory at a certain scale
M (high enough that we canneglect particle masses). At this scale we want to re-
move all divergences. (This is a very reasonable demand because we have already
switched from bare to physical quantities.)
Let us start with the fermion-gauge boson vertex. If we work up to one loop order
we have three contributing diagrams. A fourth one involves δ1 and is to cancel all
divergences.

9This value of θw of course only applies at the GUT energy scale!
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Figure 1.1: Vertex diagrams

The first diagram describes the tree level process and does not contain any diver-
gence. The second and third ones do contain an internal loop momentum p that
will blow up. But now we can require that at p = M the divergent parts of these
diagrams cancel against the fourth diagram that corresponds to the counterterm
igT aγµδ1. (If the gauge boson is a gluon, T a will be a SU(3) generator, in case of
a W-boson T a is a SU(2) generator and so forth.)

Now for the fermion self-energy. Up to first order we have a tree-level diagram, a
potentially divergent diagram (internal loop momentum p again) and a third one
with Feynman rule i6kδ2 that is to save the situation at p = M (see 1.3 2).
The renormalization of the gauge boson self energy involves more diagrams. Apart

Figure 1.2: Fermion self-energy

from the tree level diagram there is a diagram with an internal fermionic loop, one
with an internal (scalar) bosonic loop, two diagrams with a (vector) bosonic loop,
one with a Faddeev-Popov 10 ghost loop and then finally a diagram involving δ3.
See 1.3.

The last diagram has Feynman rule −i(k2gµν − kµkν)δabδ3. (The tensorial struc-
ture is dictated by the Ward identity.)
In an Abelian gauge theory the three one loop pure gauge diagrams are all zero.

1.3.2 Calculation of counterterms

The strategy is very simple. To calculate δ1 for example we compute the second and
third diagram of figure 1, isolate the divergent part, set p = M , peel off a factor

10Faddeev Popov ghosts are treated in, for example, Peskin and Schroeder ([14]). In this work
we take their existence for granted, let them participate in 1.3 and that is it.
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Figure 1.3: Gauge boson self-energy. The second diagram contains a fermionic loop.
In the third one there is the Higgs boson in the loop. The whole pure gauge sector,
that is, vector bosonic loops and Faddeev Popov loops is informally summarized in
the fourth diagram.

igT aγµ, and add a minus sign so that the fourth term cancels this divergence
instead of doubling it. This yields

δ1 = − g2

16π2

Γ(2− d
2)

(M2)2−
d
2

[
C2(r) + C2(G)

]
(1.57)

Here d denotes the number of spacetime dimensions we are working in, it will be
put to 4 later on. Γ is the factorial function: Γ(n) = (n− 1)! so nΓ(n) = Γ(n+ 1).
Depending on which gauge theory we are working on, g equals gs, gw or g′.
The Casimir operator C2 can be calculated for every rep r of every Lie group: if in
this rep generators are given by T a then T aT a = C2(r)1. If we are in the adjoint
representation G we can write an equivalent definition invoking the structure con-
stants: facdf bcd = C2(G)δab. For SU(N) we have C2 = N2−1

2N for the fundamental
rep and C2 = N for the adjoint rep.
Without doing the actual calculation we can thus understand where these factors of
C2 stem from. Both one loop diagrams contain three gauge boson-fermion-fermion
vertices. From the SM-Lagrangian (part LFK) we read off that such a vertex yields
a factor T a. a is a vectorboson index. Vectorbosons are all in the adjoint rep. We
thus have a product of three generators of the adjoint representation that can be
manipulated into the form we have in 1.57.
In the same way we calculate δ2. From figure 2 we see that now we have two factors
of T a, both with the same index a because they come from vertices at the two ends
of the same vectorboson. We thus find a factor of C2(r). The exact answer is

δ2 = − g2

16π2

Γ(2− d
2)

(M2)2−
d
2

× C2(r). (1.58)

Now for δ3. The second and third diagram of figure 3 are the most interesting ones,
for reasons that will become clear later. In the second diagram every fermion that
is in the fundamental rep of the gauge group we are interested in can take part in
the loop diagram. In SU(3) for example we thus have four (up, down, left, right)
quark triplets that enter the loop. We thus expect a sum over fermion multiplets
(triplets or doublets). In the same way the third diagram should generate a sum
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over scalar boson multiplets. (But as there is no SU(3) scalar boson in the SM
we only expect such a bosonic sum in the SU(2) part.) In both cases we have a
vectorboson with index a from the left and one with index b from the right so there
will be a factor T aT b in every diagram. After many cancellations (we really need
all five divergent diagrams) we find

δ3 =
g2

16π2

Γ(2− d
2)

(M2)2−
d
2

[
5
3
C2(G)− 4

3

∑
f

C(rf )− 1
3

∑
b

C(rb)
]
. (1.59)

Here C(r)δab =Tr[T aT b]. In the fundamental rep we have C = 1
2 , in the adjoint

rep C = N (for SU(N)).
We should also calculate δ3 for the U(1) part of the SM. This is very similar to
QED, we only have to replace the QED coupling constant e by g′Y . However, QED
does not know any scalar boson loop diagram. But we can read off its Feynman
rules from the SM Lagrangian (part L1). We clearly expect two factors of the
hypercharge in every diagram. The result is

δ3 =
g2

16π2

Γ(2− d
2)

(M2)2−
d
2

[
− 4

3

∑
f

Y 2
f −

1
3

∑
b

Y 2
b

]
(1.60)

We now have found all necessary counterterms. In the next section we will
see how to use them in order to calculate the running of the three SM coupling
constants.

1.3.3 Callan-Symanzik equation and renormalization equation

The renormalization scale M is of course totally arbitrary. We thus do not want
physical quantities to depend on it. The Callan-Symanzik equation states that if
we shift M , in φ4-theory for example, we should also shift (“re-renormalize”) the
coupling constant g and the scalar field φ in such a way that the bare n-point
function G(n)(x1, . . . xn) remains fixed:[

M
∂

∂M
+ β

∂

∂g
+ nγ

]
G(n)(x1, . . . xn,M, g) = 0. (1.61)

Here we have defined dimensionless parameters β and γ:

β ≡ M
δM δg, γ ≡ − M

δM δη. (1.62)

(The parameter η has to do with the rescaling of φ, see [14, chap.12].)
From this definition it is a small step towards the renormalization equation:

M
∂gi
∂M

= βi(g). (1.63)

We thus see that once we have the three betafunctions βi in hand, we can solve the
renormalization equation to find the three running coupling constants gi(M).
To find these betafunctions we solve CS equations. That is, we write down the
n-point function, including counterterms, and apply derivatives with respect to M

25



and λ on it.
For non-Abelian gauge theories the result can be written in the form

β(g) = gM
∂

∂M

(
−δ1 + δ2 +

1
2
δ3

)
. (1.64)

In the Abelian case we have δ1 = δ2 (in QED this in fact is a direct consequence
the Ward-Takahashi identity) so then

β(g) = gM
∂

∂M

(
1
2
δ3

)
. (1.65)

1.3.4 Running Coupling Constants

We now insert our expressions for counterterms in 1.65, perform the derivative and
take the limit d→ 4. If we set

βi = − g3
i

16π2
bi (1.66)

we can summarize our results as

b1 =− 2
3

∑
f

3
5
Y 2
f −

1
3

∑
b

3
5
Y 2
b (1.67)

b2,3 =
11
3
C2(G)− 2

3

∑
f

C(rf )− 1
3

∑
b

C(rb). (1.68)

Note that M has dropped out of these equations.
The factors of 3

5 in 1.67 come from the rescaling of the U(1) force described earlier
this section. In 1.68 the ratio between the fermionic and the bosonic contribution
has decreased from 4 (as in 1.59) to 2 because we are discussing two-spinors, not
four-spinors.
Collecting hypercharges of each Standard Model field we conclude that for Ng

generations and Nh Higgs doublets we have

b1 =− 2
5

[
3× 2× (

1
6

)2 + 3× (
2
3

)2 + 3× (−1
3

)2 + 2× (−1
2

)2 + (−1)2
]
×Ng

− 1
5
× 2× (

1
2

)2 ×Nh

=− 4
3
Ng −

1
10
Nh. (1.69)

Now for b2. In the adjoint representation of SU(2) we have C2 = 2. We have four
lefthanded fermion doublets (three in the quark sector and one in the lepton sector)
and one scalar boson doublet (the Higgs field). All fields are in the fundamental
representation, that is, C(rf ) = C(rb) = 1

2 . We find

b2 =
11
3
× 2− 2

3
× 4× 1

2
×Ng −

1
3
× 1

2
×Nh

=
22
3
− 4

3
Ng −

1
6
Nh. (1.70)
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Note that now the sum runs over doublets rather than over fields as in the U(1) case.

In the SU(3) sector we have C2 = 3 for the adjoint representation. In each gen-
eration there are four triplets (up and down, LH and RH) that contribute to the
betafunction and no scalar boson fields, just because the Higgs field is a SU(3)
singlet. So we simply have

b3 =
11
3
× 3− 2

3
× 4× 1

2
×Ng

=11− 4
3
Ng. (1.71)

If we now plug in the general expression 1.66 into the renormalization equation
1.63 and solve for αi(≡

g2i
4π ) we finally have what we were actually looking for:

1
αi(M)

=
1

α(MGUT )
− bi

2π
log (

MGUT

M
). (1.72)

Here 1
α(MGUT ) has entered the story as a universal integration constant.

In these equations we read the beautiful idea of Grand Unification. They suggest
that at a certain energy scale MGUT all three coupling constants are equal. It
might very well be, then, that at this scale there is just one gauge group. Below,
this symmetry gets broken to the SU(3) × SU(2) × U(1) symmetry we observe
in the SM. The difference that we observe at SM energy scales between the three
coupling constants would be due to their different behaviour when dialing down to
SM energies, that is, to their different betafunctions.

This idea of merging coupling constants, of Grand Unification, looks tempting
and fascinating. But we had better look for numerical evidence first instead of
already trumpeting nature’s beauty. After all, it has been our choice to take three
equal integration constants and we need to justify this assumption.
Here is our strategy. Assuming that the three coupling constants indeed meet at
some energy scale MGUT and have universal value α there, we use our betafunc-
tions (with Ng = 3 and Nh = 1) to predict their values at energy scale MZ = 91.19
GeV. There we can compare with the experimental values (obtained from [13]) for
αEXPi (MZ):

1
αEXP

1 (MZ)
= 59.00± 0.02, 1

αEXP
2 (MZ)

= 29.57± 0.02, 1
αEXP

3 (MZ)
= 8.50± 0.14.

(1.73)
Note that from these values we easily infer the value of the Weinberg angle at
M = MZ :

sin2 θw(MZ) =
α′(MZ)

α′(MZ) + αw(MZ)
=

3
5α1(MZ)

3
5α1(MZ) + α2(MZ)

= 0.23119 (1.74)

The relative errors will be denoted γi from now. So

γ1 = 0.02
59 , γ2 = 0.02

29.57 , γ3 = 0.14
8.50 . (1.75)
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We now define a χ2-function that measures the error in this approach. That is,
at M = MZ we take a weighted sum over the three relative differences between
experimental values of coupling constants αEXPi and the GUT-predicted values αi.
This still is a function of α and MGUT . So we have

f(α,MGUT ) =
∑
i

1
(γi)2

1
(αEXPi (MZ))2

(
1

αi(MZ)
− 1
αEXPi (MZ)

)2

(1.76)

=
∑
i

1
(γi)2

1
(αEXPi (MZ))2

(
1
α
− bi

2π
ln
MGUT

MZ
− 1
αEXPi (MZ)

)2

.

(1.77)

This function can be minimized with respect to α and MGUT . This yields

1
α = 42.39, MGUT = 1.246× 1013GeV↔ log(MGUT ) = 30.15. (1.78)

(All calculations for this thesis were done in Mathematica.)
But now we can finally put the GUT assumption to the test: inserting this α and
MGUT we obtain the “best fit predictions” for the αi at scale M = MZ :

1
α1(MZ) = 59.06, 1

α2(MZ) = 29.41, 1
α3(MZ) = 13.75, (1.79)

which implies sin2 θw = 0.2300.
Thus, (cf 1.73), the coupling constants do not meet well enough to have them all
within their error bars at M = MZ . The strong coupling constant is most off, but
that of course results from the large relative error in its measured value at MZ .
Another way to express this failure in the meeting of the coupling constants, is to
choose, when solving the renormalization group equation, three different integration
constants in such a way that the running couplings αi exactly meet the experimental
values at M = MZ .

1
αi(M)

=
1

αEXP (MZ)
− bi

2π
log (

MZ

M
). (1.80)

Now we can just plot the three running coupling constants and see how well they
meet in the region around our proposed MGUT : see figure 1.4.
We conclude, anyhow, that the meeting of the running coupling constants is far
from perfect. A cynical approach now would be to reject the Grand Unifying hy-
pothesis. But let us view the glass as half full: coupling constants surely converge,
even if they do not exactly meet. This is the second clue for new physics at a
very high energy scale, after the discovery of righthanded neutrinos in the previous
section. So let us start exploring Grand Unifying Theories. After that we will
investigate in what way we can improve on the result obtained in this section.

Threshold effects

One final remark before we leave this section: in order to not interrupt last section’s
discussion I have omitted threshold effects, although they were taken into account
in the Mathematica calculation. Including threshold effects means realizing that
below Mtop the top quark does not contribute to the various sums in 1.69, 1.70 and
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Figure 1.4: One-loop evaluation of the coupling constants αi from MZ to 1020 GeV.
The horizontal scale is logarithmic: t = logM . At MZ we have 1
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1.71. The same goes for the Higgs boson (which was put at 120 GeV).
The expression 1.72 should be modified to

1
αi(M)

=
1

α(MGUT )
− bia

2π
log (

MGUT

M
) (M > Mtop)

=
1

α(MGUT )
− bia

2π
log (

MGUT

Mtop)
− bib

2π
log (

Mtop

M
)

(MHiggs < M < Mtop)

=
1

α(MGUT )
− bia

2π
log (

MGUT

Mtop)
− bib

2π
log (

Mtop

MHiggs
)− bic

2π
log (

MHiggs

M
)

(MZ < M < MHiggs), (1.81)

where we have full betafunctions on the a-trajectory down to Mtop (NG = 3,
NH = 1),

b1a =− 4
3
× 3− 1

10
× 1

b2a =
22
3
− 4

3
× 3− 1

6
× 1

b3a =11− 4
3
× 3, (1.82)

betafunctions without top contribution on the b-trajectory betweenMtop andMHiggs,

b1b =− 4
3
× 2− 23

30
× 1− 1

10
× 1

b2b =
22
3
− 4

3
× 2− 5

6
× 1− 1

6
× 1

b3b =11− 4
3
× 2− 2

3
× 1, (1.83)
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and betafunctions without top and Higgs contribution between MHiggs and MZ

b1c =− 4
3
× 2− 23

30
× 1

b2c =
22
3
− 4

3
× 2− 5

6
× 1

b3c =11− 4
3
× 2− 2

3
× 1. (1.84)

In this SM analysis the threshold effects are very small. But we will encounter
more severe threshold effects in a next chapter.
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Chapter 2

Group Theoretical Backgrounds

Before we dive into Grand Unification we had better organise our equipment.
Group theory is the essential tool for building the SM structure into a bigger
underlying framework. Therefore, this chapter offers an overview of useful group
theoretical results. We do not bother too much with exactly proving all statements,
our aim is to gain an understanding of how we might use them.
The reader already familiar with group theory might want to skip this chapter.
However, as we wish to study material beyond master courses in physics, which
is of fundamental importance in building unified theories, putting all this in a
Appendix would too much cut the story we want to bring up.

2.1 Roots

Every Lie algebra has a fixed number of generators. A certain number of them can
be diagonalized simultaneously. This number, the rank, is also characteristic for a
Lie algebra. For SU(N) for example we have N2 − 1 generators, N − 1 of them
can be diagonalized simultaneously. If we call these generators Hi, we have

[Hi,Hj ] = 0 i, j = 1 . . . l, (2.1)

where l equals the rank of the group. We then write linear combinations of the
remaining generators in such a way that these Eα satisfy

[Hi, Eα] = αiEα. (2.2)

This basis of a Lie algebra, with generators Hi and Eα is called Cartan-Weyl basis.
We now see that to every generator Eα we can associate an l-dimensional vector
αi. These vectors are the root vectors of the algebra, they live in l-dimensional root
space.
Let us briefly apply this Cartan-Weyl approach to SU(3). In the usual basis,
consisting of (1

2 times) Gell-Mann matrices λa, we have two diagonal generators λ3

and λ8. As the rank of SU(3) is 2, we have already found the diagonal part of the
algebra. So, writing T i = λi

2 , we pick

H1 = T 3 H2 = T 8, (2.3)

Eα(β) =
T 1 + (−)iT 2

√
2

Eγ(δ) =
T 4 + (−)iT 5

√
2

Eε(ζ) =
T 6 + (−)iT 7

√
2

. (2.4)
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Let us calculate the root vector associated to Eα. From commutation relations or
direct computation we get that

[H1, Eα] = Eα [H2, Eα] = 0, (2.5)

so this root α equals (1, 0). In the same way we calculate the other five roots and
depict them in a root diagram.

ss

s s

s s

H1

H2

α = (1, 0)β = (−1, 0)

γ = (1
2 ,

1
2

√
3)

δ = (−1
2 ,−

1
2

√
3)

ε = (−1
2 ,

1
2

√
3)

ζ = (1
2 ,−

1
2

√
3)

Roots of SU(3)

2.1.1 Simple roots

We now choose l of these roots to span this two dimensional root space. These are
called simple roots. In SU(3) it is common use to pick α and ε1.
Different coordinate systems lead to different simple roots, but the angles between
them and their relative lengths are always the same. They determine the complete
root system and thus the whole algebra. Therefore some clever ways have been
invented to write them down. One method is to write down the Cartan matrix Aij ,
with

Aij =
2(αi, αj)
(αj , αj)

. (2.6)

Here αi and αj denote the ith and jth simple root (i and j are no component
indices). The (, ) inner product is just Euclidian. The Cartan matrix is a group
character, different choices for generators Hi and Eα yield the same result. For

1One takes “positive” roots that cannot be written as linear combinations with positive coef-
ficients of the other positive roots. In this case, positive roots are defined as root vectors with a
positive second coordinate (or zero second coordinate and positive first coordinate), but the choice
of the “positivity defining coordinate’ is arbitrary.

32



SU(3) we easily obtain

Aij =
(

2 −1
−1 2

)
. (2.7)

2.1.2 Dynkin labels

Just having established our root coordinates a minute ago, we already switch to
new ones, called Dynkin labels. At first hand this may seem just a waste of time,
all these new coordinate systems, but the use of Dynkin labels is going to simplify
many calculations a lot because of its great property that all root coordinates are
integers now. For any root vector a we obtain its Dynkin labels a1 and a2 by

a1 =
2(a, α1)
(α1, α1)

a2 =
2(a, α2)
(α2, α2)

, (2.8)

where α1 and α2 are still the simple roots of SU(3). It is easy to check that the
Dynkin labels of the simple roots themselves are given, by definition, by the rows
(or columns) of the Cartan matrix A. From now on we will distinguish between
“H-roots”, roots written in the original H-basis and “D-roots”, roots expressed in
Dynkin labels.
As we can easily observe that simple roots are in general not orthogonal, the inner
product between D-roots cannot be Euclidian as before. Instead we have that the
inner product between two D-roots α and β is given by

(α, β) =
1
2
αiGijβj , (2.9)

where G is the inverse of the Cartan matrix A.
Instead of giving a rigorous proof of this result, which is not that hard but involves
more new coordinate systems, let us check explicitly that it works by using the
coordinate independence of the inner product. As an example we again take SU(3).
We take two arbitrary H-roots aH and bH :

aH =
[
a1 a2

]
, bH =

[
b1 b2

]
. (2.10)

Their inner product obviously equals a1b1 + a2b2.
Now we express these same roots in Dynkin labels, we write them as D-roots. This
yields

aD =
[

2([ a1 a2 ], [ 1 0 ])
([ 1 0 ], [ 1 0 ])

2([ a1 a2 ], [ −1
2

1
2

√
3 ])

([ −1
2

1
2

√
3 ], [ −1

2
1
2

√
3 ])

]
, (2.11)

and the same for bD. All inner products are still Euclidean. We thus conclude

aD =
[

2a1 −a1 + a2

√
3
]

bD =
[

2b1 −b1 + b2
√

3
]
. (2.12)

The inverse of A is given by

Gij =
1
3

(
2 1
1 2

)
. (2.13)

33



So now we can check our prescription for the inner product between D-roots:

(aD, bD) =
1
2
aiGijbj

=
1
2
[

2a1 −a1 + a2

√
3
] 1

3

(
2 1
1 2

)[
2b1

−b1 + b2
√

3

]
=a1b1 + a2b2. (2.14)

.

2.2 Weights and representations

We now apply our framework of roots and root space to representation theory. In
the first chapter it was mentioned already that there are infinitely many repre-
sentations for every Lie-group. Every choice of generators that obeys the group-
characteristic commutation relations is allowed. Every representation has the same
number of generators, but there is no restriction to their dimensionality. Taking
SU(3) as our familiar example, we have that in the fundamental representation
the generators are given by 3 × 3 matrices. These generators (or better, the Lie
group elements derived from them) act on three dimensional states. The fundamen-
tal represention thus acts on a triplet of states, while the adjoint representation,
whose generators are 8× 8 matrices, acts on an octet of states. In this section we
find out how to identify these states, these representation vectors.
The key idea is that every state, no matter to which representation it belongs, can
be characterized by the l eigenvalues of the diagonal operators Hi:

Hi|λ〉 = λi|λ〉. (2.15)

The l-dimensional vector λi is called the weight of the representation vector |λ〉.
Thus, we use the H-eigenvalues to label representation vectors.
Weight vectors live in the same space as root vectors. The most important notion
of this whole chapter is that if a generator Eα acts on a state with weight λ, we
get a state with weight λ+ α. (α is the root associated to the generator Eα.)

Hi(Eα|λ〉) =EαHi|λ〉+ [Hi, Eα]|λ〉
=Eαλi|λ〉+ αiEα|λ〉
=(λi + αi)Eα|λ〉 (2.16)

We now state that by applying operators Eα we move through root space (or weight
space) from one representation vector to another. As the simple roots suffice to
span the whole root space, we can restrict ourselves to simple roots.
So here is the way, pointed out by Dynkin, to explore the various states in an irrep.
Every irrep is uniquely identified by its state of highest weight Λ. These have been
listed for many irreps of many groups. When working in the Dynkin basis (which
is highly recommended) all components of Λ are non-negative integers. To get to
the other states we subtract the simple roots. The number of times a simple root
can be subtracted from a given state is given by its weight component. That is, if
the ith component of the weight of a state equals n, we can subtract the ith simple
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root n times. This process continues until we reach a state without any positive
weight component, this is the “lowest state” of the irrep.
For example, the highest weight of the fundamental rep of SU(3) is (1 0). We thus
subtract the first simple root α1 = [2 −1] once. This gives (−1 1). Now we can
subtract the second simple root α2 = [−1 2]. No simple root can be subtracted
from the resulting state (0 − 1), so we are at the end already. We found three
states, which is exactly what we expected for this three dimensional representation.
Later on we will have more complicated irreps, like the 16 dimensional irrep of
SO(10), but the approach to explore all states is always as it is in this example.
Some tools are useful to check the correctness of the pattern of states obtained in
this procedure. The level of a state in an irrep is the number of simple roots that
should be subtracted from the state of highest weight to get that state. In the
preceding example the level of the state (−1 1) equals 1. The level of the lowest
state of an irrep is called the height T (Λ) of that irrep. (It depends on the state
of highest weight Λ of that irrep, as the whole pattern of the irrep depends on Λ.)
We have

T (Λ) =
∑
i

Riai, (2.17)

where Ri = 2
∑

j Gij , the so called level vector and a is the state of highest weight
written in Dynkin coordinates.
In cases more complicated than SU(3) we will see that there can be several states
on the same level of an irrep. This naturally comes about when a certain state
has several positive Dynkin labels, so that we can subtract several simple roots.
Another check of the obtained weight diagram is then that it should be “spindle
shaped”: on every level k there should be as many states as on level T (Λ)− k.
It is even possible that certain states are degenerate. Degenerate states are always
on the same level. Degeneracies can be checked with the Freudenthal recursion
formula. The degeneracy of a state λ is defined in terms of the degeneracies of all
states λ′ that are above this one, up to the state of highest weight Λ:

nλ = 2
∑

λ′ nλ′(λ
′, α)

(Λ + δ,Λ + δ)− (λ+ δ, λ+ δ)
. (2.18)

Here δ = (1, 1...1) (as long as we work in a Dynkin basis) and α is that root that
we should add (several times sometimes) to λ to get to λ′.

2.3 Applications

2.3.1 Casimir operators

In the previous chapter we already introduced the quadratic Casimir operator C2(r)
and the related invariant C(r). These can now be given for every irrep in terms of
the state of highest weight of that irrep Λ:

C2(Λ) =(Λ,Λ + 2δ) (2.19)

C(Λ) =
N(Λ)
N(adj)

C2(Λ), (2.20)
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where N denotes the number of states in the considered irrep.
So let us check these formulae for the fundamental rep of SU(3), with Λ = (1 0).

C2(1 0) =
1
2

( 1 0 )
1
3

(
2 1
1 2

)(
3
2

)
=

4
3

(2.21)

C(1 0) =
3
8
× 4

3
=

1
2

(2.22)

in accordance with the results in chapter 1.

2.3.2 Eigenstates

The diagonal generators Hi form the axes of root space. In our SU(3) example we
have, working in H-coordinates for a moment, that the H1 eigenvalue of a weight
vector (a b) is simply given by a and the H2 eigenvalue by b. We are just taking
inner products between the H1 axis [1 0], or the H2 axis [0 1], and the weight
vector (a b).
We could as well consider linear combinations of H1 and H2. If we define Q =
αH1 +βH2 the Q eigenvalue of weight vector (a b) equals aα+ bβ. In the SM we
have that the electric charge of a state is given by T 3 +Y , which are both diagonal
generators. So we already understand how weight vectors can give eigenvalues of
physical interest.
Things get more cumbersome when we use Dynkin labels. We then have to express
the H axes in Dynkin coordinates and use the Dynkin inner product 2.9. Con-
ceptually that is not such a big deal. The problem is that in general the Dynkin
labels of simple roots are listed in many tables (in the form of Cartan matrices)
but the H coordinates are not. So instead of finding H coordinates of simple roots
of complicated groups like SU(5) or SO(10) I propose to calculate eigenvalues of
any diagonal generator Q of a weight vector λ by applying

Q(λ) = qiλi, (2.23)

where q is an as yet undefined axis and λi are the Dynkin labels of λ. If we then
know the Q eigenvalues of some weight vectors we can find an expression for the q
axis. From there we calculate the Q eigenvalues of all other weight vectors.

2.3.3 Decomposition of tensor products

To build gauge invariant quantities in GUT Lagrangians we have to be able to
identify the various parts of a tensor product between two irreps. One quick way
to do this is with the use of Young tableaux. This works especially well for SU(N).
To every irrep of SU(N) we associate a diagram of boxes. For such a diagram we
can calculate two useful numbers, the Ferrers factor F and the Hooks factor H.
Every box has a F value and an H value, the values of the whole diagram are just
products of the values of all boxes. F values are assigned in the following way: the
top left box gets N and from there the values increase by 1 when moving to the
right and decrease by 1 when moving downwards. The H factor of a box is just 1
plus the number of boxes to the right and below that one. The dimensionality of
the irrep is then given by F

H .
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To multiply two diagrams we follow an easy algorithm. The boxes in the first row
of the right diagram are filled with αs, the boxes in the second row get βs, and
so forth. First we paste the α boxes to the left diagram. We can only add boxes
to the right or to the bottom of a diagram, and the number of boxes in rows and
columns should never increase when moving from the top left to the bottom right
corner of the resulting diagram. Next we add the βs, the γs, all in the same way.
In the end we write down the sequence of αs, βs when reading from right to left
and from top to bottom. We only keep diagrams with sequences that never contain
more βs than αs left of any symbol, or more γs than βs.
So let us construct. We have for example

⊗ = ⊕ . (2.24)

In SU(3) F factors are 12, 3, 24 and 60 respectively while the Hooks factors yield
2, 1, 3 and 6. We thus conclude that the tensor product of the sixdimensional and
the three dimensional irrep of SU(3) can be decomposed in an eight dimensional
irrep and a ten dimensional irrep:

6⊗ 3 = 8⊕ 10. (2.25)

The construction 2.24 is legitimate in every special unitary group, but the dimen-
sions of the irreps represented by the diagrams can change. In SU(5) 2.24 denotes

15⊗ 5 = 40⊕ 35. (2.26)

Now let us investigate what the structure of roots and weights has to say about
these matters.
Working in SU(3) we already found the weight system of the fundamental repre-
sentation. The state of highest weight of the six dimensional represention is (2 0)
(as we can check from the literature). Applying the simple roots a1 = [2 − 1]
and a2 = [−1 2] we easily find the other five states. We have

3 : (1 0) (−1 1) (0 − 1)

6 : (2 0) (0 1) (−2 2) (1 − 1) (−1 0) (0 − 2) . (2.27)

Now we perform the tensor multiplication by adding Dynkin labels of all combi-
nations of one state from the 3 and one state from the 6. We thus find 18 new
states:

(3 0) (1 1) (−1 2) (2 − 1) (0 0) (1 − 2)
(1 1) (−1 2) (−3 3) (0 0) (−2 1) (−1 1)

(2 − 1) (0 0) (−2 1) (1 − 2) (−1 − 1) (0 − 3).

To decompose this product we first look for the state of highest weight. The SU(3)
level vector R is [22]. The maximum value of Riai is 6, for the state a = (3 0). We
thus conclude that this a is (the weight of) the state of highest weight. Subtracting
simple roots from this state should yield an irrep of height 6 (which means that we
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should have to subtract 6 simple roots from the state of highest weight to get to
the lowest state). So let us try to construct this irrep.

(3 0)
↓ a1

(1 1)
↙ a1 ↘ a2

(−1 2) (2 − 1)
↓ a1 ↘ a2 ↓ a1

(−3 3) (0 0)
↓ a2 ↙ a1 ↓ a2

(−2 1) (1 − 2)
↘ a2 ↙ a1

(−1 − 1)
↓ a2

(0 − 3)

Well, that certainly looks like a perfectly spindle shaped weight diagram of height
6!
In the same way we can organize the 8 remaining states. That is going to give the
adjoint representation with highest weight (1 1).
N.B. We have to subtract both roots from (−1 2), as can be seen from the weight
diagram: we should subtract root a2 because the second weight component of
(−1 2) is positive and root a1 because that one should be subtracted three times
from the top state (3 0).

2.3.4 Branching rules and projection matrices

The first step in Grand Unification is to find a group in which the SM SU(3) ×
SU(2)×U(1) gauge group can be embedded. Therefore we want to study a method
of classifying (maximal) subalgebras of simple algebras in this section.
Subalgebras can be found by looking for subsets of generators of the overlying
algebra. For example, in SU(3) we have that the generators T 1, T 2, T 3 and T 8

form a subalgebra. (This means that all Lie products (commutators) between
T 1, T 2, T 3 and T 8 can be written as linear combinations of T 1, T 2, T 3 and T 8.)
These four generators can form an algebra of SU(2)× U(1). Another subalgebra,
consisting of T 3, T 4 and T 5 is an algebra of SO(3).
Once we know a possible subgroup of a Lie group, we can study the breaking of
the original group to this subgroup. We want to find out to which state of which
irrep of that subgroup an arbitrary state of the original group “branches to”. To
this end, we construct a projection matrix that transforms weight vectors.
As an example we take the SU(3) × SU(2) subgroup of SU(5)2. We need some
reasonable assumptions to define the projection matrix. The fundamental rep of
SU(5) contains five states. The biggest SU(3)×SU(2) rep it can thus contain is a
SU(3) singlet, SU(2) doublet. We then demand that the highest weight of the 5 of
SU(5), which is (1 0 0 0), branches to the highest weight of the fundamental

2The existence of this subgroup follows from an analysis of SU(5) generators that will be done
in the next chapter.
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3 rep of SU(3), (1 0), and to the (0) weight of the trivial one dimensional rep of
SU(2). Thus, denoting SU(3) × SU(2) weight vectors by SU(3) weights between
first parentheses and SU(2) weights between second parentheses, we demand

(1 0 0 0)→ (1 0)(0). (2.28)

Now it seems very reasonable that the highest state in the 5 branches to the highest
state in the SU(3) antitriplet 3 and SU(2) singlet:

(0 0 0 1)→ (0 1)(0). (2.29)

We are proceeding well but we do not have enough constraints yet. After having
exploited the five dimensional rep of SU(5) we turn to the next simplest irrep of
SU(5), the 10. In these 10 states there is room to embed a SU(3) triplet, SU(2)
doublet. The highest weight of 10 is (0 1 0 0). The 10 has highest weight
(0 0 1 0). The SU(2) doublet has weights (1) and (−1). We thus demand

(0 1 0 0)→(1 0)(1) (2.30)
(0 0 1 0)→(0 1)(1). (2.31)

Now we have fixed all parameters of the projection matrix P . We conclude

P (SU(5)) ⊂ SU(3)× SU(2) =
( 1 1 0 0

0 0 1 1
0 1 1 0

)
. (2.32)

With the projection matrix we can now derive every SU(5) → SU(3) × SU(2)
branching rule of every irrep we are interested in.
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Chapter 3

Grand Unification

After investigating in the first chapter what exactly we are trying to “grand unify”
and getting used to our tools to do this in the second, we are ready to launch our
first try.
If we are to embed the whole SM in one gauge group, then the most obvious
demand is of course that there should be enough room in this group to accomodate
all the SM contents. The ranks of SU(3), SU(2) and U(1) are two, one and one
respectively, so the unifying group should at least have rank four. The smallest Lie
group with rank four is SU(5). It thus seems a well suited starting point.

3.1 Embedding the SM fields in SU(5)

Let us first try to place all matter fields. We thus assume that at the GUT scale
of 1013 GeV all fields are in SU(5) reps. Due to spontaneous symmetry breaking
that we still have to explain but that is described already by branching rules we
only observe an SU(3)× SU(2)× U(1) symmetry at the SM scale (or weak scale)
of around 100 GeV.
We choose to work with only lefthanded fields, so we express all righthanded fields
f as lefthanded antifields f c (see Appendix B). For the moment we will take care
of just one generation. To embrace the whole SM we should just copy thrice.
The simplest non-trivial reps of SU(5) are the fivedimensional fundamental and
antifundamental reps 5 and 5. As we stated in the preceding chapter, we thus
find room to accomodate one SU(3) triplet, SU(2) singlet and one SU(3) sin-
glet, SU(2) doublet. We are thus uniquely led to postulate that this fivedimen-
sional rep should contain an antiquark triplet (in the language of chapter 1: a
righthanded quark triplet) and a lepton doublet. But as we have already built our
SU(5)→ SU(3)× SU(2) projection matrix in such a way that the highest weight
of the 5 rep branches to the highest weight of the 3 rep, which is a very reasonable
demand, it is seems clear that we should sweep these five states in a 5 rep rather
than in a 5 rep.
We now have ten fields left. The next simplest SU(5) irrep is actually the tendi-
mensional one. That is a wonderful match. 1 It has lost much of its glance since the

1It even led Georgi and Glashow to state that “we are led inescapably to the conclusion that
SU(5) is the gauge group of the world.”
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discovery of righthanded neutrinos though. OK, we could always couple an SU(5)
singlet to the other reps, but we had better forget about righthanded neutrinos at
all for the moment and explore SU(5) further as a useful toy model. Note, by the
way, that we cannot put these ten remaining states in two more fivedimensional
reps because the SU(3) triplet, SU(2) doublet of lefthanded quarks does not fit in
such a rep. Moreover, the assumptions on which we built the projection matrix
force us to use the 10 rep and not its complex conjugate.
So let us explore these two reps and check whether we can see them branching to
the known SM fields. To this end we need to know the weight diagrams of the
relevant reps of SU(2), SU(3) and SU(5).
In SU(2) there is just one root, a = 2. The fundamental twodimensional rep
consists of states with onedimensional weight vectors (1) and (-1). The threedi-
mensional rep consists of (2), (0) and (-2). Such a rep, where the weights on level
T (Λ)−k are the negatives of the weights on level k is called selfconjugate. If, more-
over, T (Λ) is even, the rep is real : it is equivalent to its complex conjugate rep. So
2 ≡ 2, just as we saw in the first chapter when we focused on the generators. If
the height of a selfconjugate rep is odd, it is pseudoreal.
We have already seen the fundamental rep of SU(3): it consists of (10), (-1 1) and
(0 -1)). Similarly, the antifundamental rep contains states with weight vectors (0
1), (1 -1) and (-1 0). These are both complex reps, the weights on level T (Λ) − k
are not the negatives of the ones on the kth level.
Now we have to construct the weight diagrams of the 5 and 10 rep of SU(5). First
we need the four simple roots of SU(5). These follow from its Cartan matrix that
we look up in the literature:

ASU(5) =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 . (3.1)

Now we could calculate the level vector and use some more tricks to calculate the
state of highest weight of the 5 rep, but states of highest weight have also been
extensively listed so let us not go too deep into the mathematics and just state
that the highest weight is (0 0 0 1).
So here we go:

(0 0 0 1)
↓ a4

(0 0 1 − 1)
↓ a3

(0 1 − 1 0)
↓ a2

(1 − 1 0 1)
↓ a1

(−1 0 0 0).

(3.2)
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The highest weight in the 10 is given by (0 1 0 0). Its weight diagram is a bit more
complicated:

(0 1 0 0)
↓ a2

(1 − 1 1 0)
↙ a1 ↘ a3

(−1 0 1 0) (1 0 − 1 1)
↓ a3 ↙ a1 ↓ a4

(−1 1 − 1 1) (1 0 0 − 1)
↓ a2 ↘ a4 ↓ a1

(0 − 1 0 1) (−1 1 0 − 1)
↘ a4 ↙ a2

(0 − 1 1 − 1)
↓ a3

(0 0 − 1 0).

Next we want to check whether these fifteen states really branch to the full particle
content of the SM. Applying our projection matrix 2.32 we find

SU(5) weight SU(3)× SU(2) weight SM multiplet
(0001) (010) (3, 1,13)
(001-1) (001) (1, 2,−1

2)
(01-10) (1-10) (3, 1,13)
(1-100) (00-1) (1, 2,−1

2)
(-1000) (-100) (3, 1,13)
(0100) (101) (3, 2,16)
(1-110) (010) (3,1,−2

3
(-1010) (-111) (3, 2,16)
(10-11) (10-1) (3, 2,16)
(-11-11) (000) (1, 1,1)
(100-1) (1-10) (3,1,−2

3
(0-101) (-11-1) (3, 2,16)
(-110-1) (0-11) (3, 2,16)
(0-11-1) (-100) (3,1,−2

3
(00-10) (0-1-1) (3, 2,16).

(3.3)

The hypercharge assignments follow from stating that the hypercharge axis should
be 1

6 [−21−12]. (We could for example demand that the lefthanded quark fields have
hypercharge 1

6 . This uniquely defines the hypercharge axis.) We now understand
that the triplet of antifields in the 5 describes anti-down quarks. The anti-up
quarks are in the 10.
In passing by we note that it is equally easy to define an electric charge axis:
Q = 1

3 [−1211].
We now turn to gauge boson fields. They should, as always, follow from the adjoint
representation. In SU(5) the adjoint contains 24 states. Subtracting many simple
roots (the height of this irrep is 8) from the state of highest weight (1001) we find
these 24 weight vectors. On applying the projection matrix we find back a 8,1 gluon
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octet, a 1,3 weak boson triplet, a 1,1 U(1) boson singlet and twelve more states: a
3,2 doublet of colour triplets, one with electric charge −1

3 , one with electric charge
−4

3 , and a 3,2 doublet of colour antitriplets with electric charges 4
3 and 1

3 . We
choose to call the colour antitriplets X and Y bosons, the two fundamental triplets
will be X and Y antibosons. As X and Y bosons have never been detected, we
should look for a way to extend the Higgs mechanism to put their masses on the
GUT-scale.
We now propose to organise the fivedimensional state vector (transforming in the
5 rep) as

ψ =


(d1)c

(d2)c

(d3)c

e
ν

 . (3.4)

Something very funny is going on here: now that we have three down quarks, an
electron and a neutrino in the same multiplet, we are naturally led to Q(d) =
−1

3Q(e). If not, a traceless electric charge generator Q could never be defined.
This SU(5) GUT therefore naturally explains the fractional charges of the quarks!
This particular choice 3.4 allows for a convenient representation of generators. Let
us check immediately how that comes to be. We will organise the tendimensional
state vector χ (transforming in the 10 rep) afterwards.
The SU(5) covariant derivative reads

Dµ = ∂µ − i
g

2
V a
µ T

a
µ , a = 1 . . . 24. (3.5)

Here g denotes the one and only universal SU(5) GUT coupling constant. We
thus have to write down representations for the 24 Hermitian 5 × 5 generators
T a that define the 5 rep of SU(5). We could of course look up some standard
generators from the literature, as we did for SU(3) and SU(2) for example, or try
to construct them ourselves from the SU(5) commutation relations, but there is
a more convenient way. We will combine our knowledge of the SU(3) and SU(2)
fundamental reps with the fact, obtained from weight vector analysis, that the 5
of SU(5) can accomodate a 3 of SU(3) and a 2 of SU(2).
First we take

T 1...8 =


0 0

λ1...8 0 0
0 0

0 0 0 0 0
0 0 0 0 0

 , (3.6)

The gauge fields V 1...8
µ are now identified with the 8 gluons.

Note that here we once and for all have defined the normalization of our SU(5)
generators to be (see Appendix A.2)

Tr(T aT b) = 2δab. (3.7)
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As the Pauli matrices have the same normalization, we can place the SU(2) gen-
erators in the bottom right corner:

T 9,10,11 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 σ1,2,3

0 0 0

 . (3.8)

Thus, V 9,10,11
µ will be the weak boson fields after symmetry breaking on the GUT

scale. (After symmetry breaking on the electroweak scale V 9 and V 10 will combine
to charged W boson fields while V 11 and V 12 form the Z boson and photon.) The
twelfth generator should therefore act as a U(1) generator. As hypercharges are
the same for all triplet and doublet members it must necessarily be of the form
Diag(a, a, a, b, b). Normalization then requires

T 12 =
1√
15

Diag(−2,−2,−2, 3, 3). (3.9)

Now for the remaining generators, that are to correspond to the X and Y bosons.
From their weight vectors we saw that these form “six-plets”, or “tridoublets” :
SU(3) triplets, SU(2) doublets, just like the quark fields. They should thus have
nonzero entries outside the pure SU(3) 3 × 3 box in the top left corner and the
pure SU(2) 2× 2 box in the bottom left corner. So let us try the easiest solution
that respects the demanded normalization condition:

T 13 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0

 , T 14 =


0 0 0 i 0
0 0 0 0 0
0 0 0 0 0
−i 0 0 0 0
0 0 0 0 0

 , (3.10)

T 15 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 (3.11)

and so forth.
We now want to find out the connection between the 12 gauge fields V 13...24

µ and
the X and Y bosons. From our group-theoretical analysis we have already found
that these are charged bosons. In the first chapter we found that we have to take
linear combinations of the SU(2) gauge fields to describe charged W-bosons. Here
we are in the same situation. The most common definition is to denote

X1
µ =

1√
2

(V 13
µ + iV 14

µ )

X1
µ =

1√
2

(V 13
µ − iV 14

µ ) (3.12)
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and so forth. V 15...18 provide X2 and X3 boson fields and antifields while V 19...24

yield all Y bosons.
In the last part of this embedding operation we assign the ten remaining SM fields to
χ, a tendimensional irrep of SU(5). We could compose a tendimensional row vector
χ but then we are forced to write out representations of the 24 SU(5) generators.
In principle that can be done straightforwardly, using the decomposition of the 10
rep, but the result, 24 10× 10 matrices, might not prove that illuminating.
Instead we choose to accomodate these 10 states in a 5× 5 antisymmetric matrix
(having 10 degrees of freedom). This is a reasonable choice because it arises in the
decomposition of the simplest SU(5) tensor product:

⊗ = ⊕ , (3.13)

or
5⊗ 5 = 15⊕ 10 (3.14)

or even (
(3,1⊕ 1,2)⊗ (3,1⊕ 1,2)

)
AS

= 3,1⊕ 3,2⊕ 1,1 (3.15)

where the subscript AS indicates that we focus on the antisymmetric parts of the
tensor product. On the righthandside of 3.15 we recognise a doublet of quark
triplets (in the language of the first chapter: the lefthanded quark fields), another
quark triplet (these must be anti-up fields as the anti-downs are already contained
in the 5 rep) and a singlet (the neutrino field).
So it seems quite reasonable to denote the tendimensional rep as

χ =


0 (ub)c −(ug)c −ur −dr

−(ub)c 0 (ur)c −ug −dg
(ug)c −(ur)c 0 −ub −db
ur ug ub 0 −ec
dr dg db ec 0

 . (3.16)

3.2 Writing down the SU(5) Lagrangian

Now that all the embedding is done we can write down the SU(5) generalization
of the Standard Model Lagrangian.

3.2.1 Fermion kinetic terms

The 5 part has almost the same structure as 1.31 in the SM:

L5
FK = ψ(iγµD5

µ)ψ, D5
µψ =[∂µ +

ig

2
V a
µ (T a)?]ψ. (3.17)

Here T a denote the 5× 5 SU(5) generators we have just composed. We take their
conjugates T a = −(T a)? because we are working in the 5 rep rather than the 5
rep.
In the gauge boson part of Dµ there is, as compared to the SM structure, an extra
factor of 1

2 . It compensates the fact that whereas we had λa

2 and σa

2 matrices in
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our SM generators, we have chosen the SU(5) generators to contain λa and σa

matrices.
The 10 part of the SU(5) kinetic term looks different because we have chosen to
represent χ10 as an antisymmetric 5 × 5 tensor instead of a 10-dimensional row
vector. We have

L10
FK = −1

2
Tr
[
χiγµ

(
∂µ1− igV a

µ T
a
)
χ
]
, (3.18)

where again T a denote the SU(5) generators in the fundamental rep 5, matrix
multiplication is implied and extra factors of −1 and 1

2 were included to compensate
for the antisymmetry of χ and the double counting of kinetic terms that this matrix
multiplication implies.

3.2.2 Fermion mass terms

To recover all SM mass terms we need a term like ψTCχH + h.c. (for down and
electron masses) and a term like Tr

(
χTCχH + h.c.

)
(for up masses). Building

mass terms from LH fields only is reviewed in Appendix B.
To check a Lagrangian on renormalizablility and Lorentz invariance is as straight-
forward as in the SM case, but building a gauge invariant term is a bit less trivial
now. First we use Young tableaux to check how we can decompose these products
between ψ(5) and χ(10):

⊗ = ⊕ (3.19)

5⊗ 10 = 5⊕ 45 (3.20)

and

⊗ = ⊕ ⊕ (3.21)

10⊗ 10 = 5⊕ 45⊕ 50. (3.22)

In minimal SU(5) one keeps only the fivedimensional Higgs multiplet but we can
as well maintain the 45. The 50 is useless because it does not contain a colour
singlet after electroweak (SM) symmetry breaking. (Which means that it will lead
to SU(3) breaking mass terms, discriminating between quark colours)
So let us write down gauge invariant mass terms:

LψχFM = (ψαi )T (5)Cχklβ(10)
[
(y5
de)

αβ

(
δikHl(5)− δilHk(5)

)
⊕ (y45

de)
αβH i

kl(45)
]

+ h.c.

(3.23)
and

LχχFM = (χklα)T (10)Cχpqβ(10)
[
(y5
u)αβεklpqrHr(5)⊕ (y45

u )αβεklpstHst
q (45)

]
+ h.c..

(3.24)
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Here we have used α and β as generation indices. As before, the gauge singlet
terms are projected out using Kronecker deltas and Levi-Civita epsilons. Roman
indices denote ψ and χ multiplet members.
We see that we have lost one Yukawa matrix. In the SM we had yu, yd and ye,
now there are only two: yde couples ψ to χ and will thus yield down and electron
masses, yu couples χ to χ and will therefore give rise to up mass terms. The
fact that down quarks and charged leptons are in the same SU(5) multiplet means
that there can be no differences between their Yukawa matrices anymore. However,
mass differences are still possible, because the various Higgs fields can still take vevs
discriminating between multiplet members. (Remember that masses are eventually
given by yv√

2
.)

A natural extension of the Higgs vev 1.22 is

< H >=


0
0
0
0
v5

 . (3.25)

We then easily find mass terms for down quarks and electrons from 3.23 and a
mass term for up quarks from 3.24. The values of these masses can be manipulated
by changing the diagonal terms of the y matrices and by adjusting v5 of course
but, as this Higgs vev treats downquarks and electrons in an equal way, there is no
freedom left to distinguish between their masses: me = md in all generations2.
This is why we consider Higgs fields in the 45 rep as well. To give the field H i

kl its
45 degrees of freedom we demand that it should be antisymmetric in k and l and
that the sum H i

il vanishes. If the 45 dimensional Higgs field develops a vev

< Ha
b5 >= v45(δab − 4δa4δ

4
b ) (3.26)

we conclude (omitting the H(5) contributions for a moment) me = 3md and the
same for the other generations. If we allow both reps of the H field we can in
principle achieve any ratio between these masses.
In the “up” mass term 3.24 we basically take the same vevs. There is one subtlety:
y45
u should be antisymmetric because it multiplies the antisymmetric ε-tensor. (We

do not have this problem for y5
u: in that term antisymmetry is guaranteed by the

presence of all χ-indices in the ε-tensor.) As eigenvalues of antisymmetric matrices
always come in opposite pairs the best fitting possibility would bemu = 0,mc = mt.
Finally we want to report very briefly on generation mixing in minimal SU(5). In
the SM we redefined all quark and lepton fields in order to have mass terms diagonal
in generation space. This switching to mass eigenstates led to generation mixing
in the charged currents (see 1.44). The difference in SU(5) is that there are just
two fermion fields left to redefine: ψ and χ. This is still enough to reproduce the
CKM matrix. A detailed analysis (from [17]) yields that these rotations of ψ and
χ lead to two more CP violating phases for the anti-up fields (righthanded fields
in the language of chapter 1). These will be observable in nucleon decay processes
only.

2These relations apply at the GUT scale of course. One needs renormalisation group equations
to extrapolate to lower energies. We will come to that later.
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3.2.3 Gauge kinetic terms

Writing out the gauge kinetic term is quite straightforward.

LGK = −1
4
F aµνF

aµν . (3.27)

Now F aµν is composed from the 24 vector fields V a
µ .

We have not fully completed the SU(5) Lagrangian. The SU(5) generalizations of
the Higgs kinetic term and the Higgs mass term will be treated in the next section
however, when we study GUT-symmetry breaking.

3.3 The Higgs mechanism in SU(5)

In SU(5) the Higgs mechanism is more delicate than in the SM. It should not only
repeat the Standard Model trick of providing masses to weak bosons, the breaking
of the SU(5) GUT-symmetry should also be described by it. The Higgs mechanism
should act as a prism, breaking almost3 perfect white light at the GUT-scale (the
unified multiplets) to the variety of colours (the different SM multiplets) that blind
our eyes at the electroweak scale.

SU(5)→1013GeV SU(3)× SU(2)× U(1)→102GeV SU(3)× U(1). (3.28)

That is, the SM gauge symmetry is recovered at 1013 GeV already. The difference
with the SM is that the various fields are in different reps of a different gauge
group now. But effectively no difference can be seen: no non-SM like interaction
can occur below MGUT because the gauge bosons responsible for these interactions
are too heavy. The first stage of symmetry breaking, at the GUT scale, should
therefore provide GUT masses for the twelve new gauge bosons while the twelve
SM-like gauge fields should remain massless. To this end we introduce a field Σ
that is in the adjoint rep of SU(5). Thus, it is a 24-plet. On combining the usual
form of the covariant derivative Dµ = ∂µ− igV a

µ T
a, where T a are arbitrary reps of

the generators of the gauge group, and the definition of the adjoint representation,
(T a)kj = −ifajk we infer

DµΣp = ∂µΣp − gV a
µ faqpΣq. (3.29)

Now we introduce
Σ =

1√
2

ΣaT a. (3.30)

We then have
DµΣ = ∂µΣ− gV a

µ [T a,Σ]. (3.31)

From this last expression we can understand how to write a SU(5) generalisation
of the SM term 1.19. We take

LHK = (DµΣp)?DµΣp (3.32)

3We still have two distinct multiplets.
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Now we assume that at the GUT scale this Σ takes a nonzero vev < Σ >. Following
the same strategy as in the SM we then find that the mass squared of the gauge
boson V a

µ will be given by
2g2Tr[T a, < Σ >]2. (3.33)

We pick

< Σ >= v24Diag(1, 1, 1,−3
2
,−3

2
), (3.34)

which yields m2
X = m2

Y = 25g2v2
24 while the first twelve bosons remain massless.

Note that this mechanism of symmetry breaking can also be described by a more
group theoretical analysis. We can just write out all the weights in the adjoint
24 rep of SU(5). Then we can find a “Σ Higgs axis”, that does the same job
as for example the hypercharge axes described before. That is, the (Euclidean)
inner product squared between a weight vector and this axis yields the mass of
the corresponding gauge boson (up to a factor g2v2

24 after symmetry breaking. I
calculated this axis to be [−2, 1,−1, 2].
The second stage of symmetry breaking takes place at the electroweak scale. We
already wrote out mass terms. We understand that in minimal SU(5) we need a 5
Higgs field H. Then the term

LHK = (DµH)?DµH (3.35)

will generate masses for the W and Z bosons, just as 1.19 did in the SM.
Finally, we have to write down generalizations of the LHM term in the SM. We
need a scalar potential that can generate the vevs 3.34 as well as 3.25. We write

LHP = −V (Σ)− V (H)− V (Σ,H), (3.36)

where

V (Σ) =ν2Tr(Σ)2 + a[Tr(Σ2)]2 + bTr(Σ4) (3.37)

V (H) =µ2H†H − λ(H†H)2. (3.38)

I have not written down the exact calculation because I want to stress another,
more conceptual problem. After GUT symmetry breaking the Higgs field will de-
couple in a colour triplet and a weak doublet. The weak doublet is just the SM
Higgs boson field. But in the electroweak regime there certainly is no place for this
new Higgs triplet. Moreover, on examining the mass terms in the next section we
can see that this triplet will mediate proton decay. To have a consistent theory
its mass should be around the GUT scale. The potential 3.38 can of course only
generate matrices on the weak scale. So we are forced to introduce a third part of
the potential, one that contains terms connecting Σ and H.

V (Σ,H) = αH†HTrΣ2 + βH†Σ2H. (3.39)

This potential lifts the triplet mass as it should but it contributes to the doublet
mass as well. One can calculate this new contribution to be (15

2 α+ 9
2β

2)v2
24. We are

thus back to the hierarchy problem, in a more concrete way this time: we need an
extreme amount of fine tuning between α and β to prevent that the Higgs doublet
gets GUT-like heavy.
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3.4 Consequences of SU(5) unification

A true unification in theoretical physics should not only show that entities that
were thought to be completely different are in fact manifestations of the same
phenomenon, it should also do new predictions. It is fascinating to regard quarks
and leptons as parts of the same multiplet and to connect the third integral quark
charges with the fact that there are three quark colours. But what new physics
does this embedding predict?
First, unifying gw and g′ on the GUT scale must of course yield a prediction for
the Weinberg angle, because this is just a number describing the proportionality
between these coupling constants. From the field assignment 3.4 we deduce that
the electromagnetic charge generator should be given by

Q = Diag(
1
3
,
1
3
,
1
3
,−1, 0) = −1

2
(T 11 +

√
5
3
T 12). (3.40)

On the other hand we know from the first chapter that the field that couples to Q
is

Aµ = sin θwA3
µ + cos θwBµ. (3.41)

Thus, in SU(5) generator language we have

Q = sin θwT 11 + cos θwT 12. (3.42)

Now we understand that tan θw equals the ratio of the T 11 coefficient and T 12

coefficient. Therefore we conclude, on equating 3.40 and 3.42

tan θw =

√
3
5

(3.43)

or
sin2 θw =

3
8
. (3.44)

Does this result reveal new physics? I am tempted to say that it only provides
a better formulation for the SU(5) GUT hypothesis. We assume that an energy
scale MGUT exists where there is just one force with coupling constant g that is
related to the SM coupling constants as:

g = gs = gw =

√
5
3
g′. (3.45)

Now for a real prediction. The generators T 13...24 have nonzero entries outside
the “pure” SU(3) and SU(2) parts. So, in the Lagrangian terms ψiγµDµψ and
χiγµDµχ we will have that the X and Y bosons connect these parts, thus describ-
ing processes like uu → de+. That is, GUTs predict baryon and lepton number
(see Appendix C) violating processes, proton decay for example. Omitting some
more technical details on renormalization and complications in the calculation of
the proton decay width [17] we simply state that the SU(5) GUT predicts an up-
per limit on the proton lifetime of 1033 years. This prediction has been checked
extensively. Instead of waiting 1033 years to see a proton decay, the Kamiokande
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experiment in Japan has been monitoring an ensemble of 1033 protons but in sev-
eral years no decay was observed. This mismatch between theory and experiment
has ruled out the SU(5) GUT as candidate “GUT of the world”. However, we go
on, by considering SO(10).

3.5 SO(10) unification: embedding of SM fields

The analysis of SU(5) has provided much more connection between fields that are
distinct in the SM. The third integral quark charges have emerged in a natural way
and in the first chapter we already saw that the predicted value sin2 θw = 3

8 yields
not a perfect, but a very encouraging convergence of the three SM coupling con-
stants. The fields are still in two different representations though. We also have not
included a righthanded neutrino. The best next step would be considering a gauge
group in which all 16 fermion fields fit in one representation. SO(10) is the most el-
egant option. It contains a desired 16 dimensional rep and it has a SU(5) subgroup.

3.5.1 Exploring the 16 rep

Most textbooks (for example, [17]) use a spinor representation of SO(10). I prefer
trying a more straightforward group-theoretical approach. Let us first construct
the weight diagram of this 16 rep. SO(10) has rank 5. Its simple roots are con-
ventionally given by

α1 = (2 −1 0 0 0)
α2 = (−1 2 −1 0 0
α3 = (0 −1 2 −1 −1)
α4 = (0 0 −1 2 0)
α5 = (0 0 −1 0 2),

(3.46)
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while the state of highest weight is (0 0 0 0 1).
So let us construct:

(0 0 0 0 1)
↓ α5

(0 0 1 0 − 1)
↓ α3

(0 1 − 1 1 0)
↙ α2 ↘ α4

(1 − 1 0 1 0) (0 1 0 − 1 0)
↓ α1 ↘ α4 ↓ α2

(−1 0 0 1 0) (1 − 1 1 − 1 0)
↓ α4 ↙ α1 ↓ α3

(−1 0 1 − 1 0) (1 0 − 1 0 1)
↓ α3 ↙ α1 ↓ α5

(−1 1 − 1 0 1) (1 0 0 0 − 1)
↓ α2 ↙ α5 ↓ α1

(0 − 1 0 0 1) (−1 1 0 0 − 1)
↘ α5 ↙ α2

(0 − 1 1 0 − 1)
↓ α3

(0 0 − 1 1 0)
↓ α4

(0 0 0 − 1 0) .

3.5.2 Branching to the SM

We now have various routes from SO(10) to the SM. I want to briefly discuss two
of these.
A first, very natural breaking scheme is

SO(10)→M1
GUT SU(5)×U(1)→M2

GUT SU(3)×SU(2)×U(1)→MZ SU(3)×U(1).
(3.47)

In this scheme there are two GUT-symmetry breaking scales. Let us just try to find
out how the states in the 16 branch to SU(5) states. From there we could simply
repeat our analysis (see 3.3) from the preceding sections. Following the approaches
explained in the second chapter we infer the SO(10) → SU(5) projection matrix
from branching rules4:

P (S0(10) ⊂ SU(5)) =


1 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 1 1 0 0

 . (3.48)

4For simplicity we omit U(1) charges. These can easily be achieved by writing out suitable
hypercharge axes.
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So there we go:

SO(10) weight SU(5) weight SU(5) multiplet
(00001) (0100) 10
(0010-1) (0001) 5
(01-110) (1-110) 10
(1-1010) (001-1) 5
(010-10) (10-11) 10
(-10010) (-1010) 10
(1-11-10) (01-10) 5
(-101-10) (-11-11) 10
(10-101) (100-1) 10
(-11-101) (0000) 1
(1000-1) (1-100) 5
(0-1001) (-110-1) 10
(-1100-1) (0-101) 10
(0-110-1) (-1000) 5
(00-110) (0-11-1) 10
(000-10) (0001) 10.

(3.49)

We thus see the full SU(5) spectrum emerge from the 16 rep of SO(10). We also
recognise a new state: the (0000) weight represents the non-interacting righthanded
neutrino.
Now we turn to the second breaking scheme:

SO(10)→M1
GUTSU(4)× SU(2)× SU(2)

→M2
GUTSU(3)× SU(2)× SU(2)× U(1)

→M3
GUTSU(3)× SU(2)× U(1)× U(1)

→M4
GUTSU(3)× SU(2)× U(1)

→MZSU(3)× U(1). (3.50)

This unification model has been considered by Pati and Salam [12] even before
SU(5) unification came into fashion. Working out its breaking scheme takes some
time but nevertheless we want to show the details. The only new weight systems
we need are those of the 4 and the 4 of SU(4):

4 :


(100)

(−110)
(0− 11)
(00− 1)

 , 4 :


(001)

(01− 1)
(1− 10)
(−100)

 . (3.51)

From these reps and the easiest branching rules we find projection matrices:

P (S0(10) ⊂ SU(4)× SU(2)× SU(2)) =


0 0 1 0 1
1 1 0 0 0
0 0 1 1 0
0 1 1 1 1
0 1 1 0 0

 (3.52)
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and

P (SU(4) ⊂ SU(3)) =
(

1 1 0
0 0 1

)
. (3.53)

So we are ready to branch:

SO(10) SU(4)× SU(2)× SU(2) SU(3)× SU(2)× SU(2) SU(3)× SU(2)× U(1)
(00001) (10010) (1010) (101)1

6
(0010-1) (00101) (0101) (010)1

3
(01-110) (-11010) (0010) (001)−1

2
(1-1010) (0010-1) (010-1) (010)−2

3
(010-10) (01-101) (1-101) (1-10)1

3
(-10010) (0-1110) (-1110) (-111)1

6
(1-11-10) (100-10) (10-10) (10-1)1

6
(-101-10) (1-1001) (0001) (000)1
(10-101) (01-10-1) (1-10-1) (1-10)−2

3
(-11-101) (00-110) (0-110) (0-11)1

6
(1000-1) (-110-10) (00-10) (00-1)−1

2
(0-1001) (1-100-1) (000-1) (000)0
(-1100-1) (-10001) (-1001) (-100)1

3
(0-110-1) (0-11-10) (-11-10) (-11-1)1

6
(00-110) (-1000-1) (-100-1) (-100)−2

3
(000-10) (00-1-10) (0-1-10) (0-1-1)1

6

.

(3.54)
In the first rows we have omitted the U(1) charges. The first one emerges in the
breaking from SU(4) to SU(3)⊕U(1), the second one is the result from SU(2)→
U(1), as can be checked from 3.50. In the final step, U(1) ⊗ U(1) → U(1) the
charges simply add. We have listed these resulting charges because we need them
to discriminate between states with identical SU(3)× SU(2) weight vectors.
So what can we learn from this exercise? One thing is that it depends on the
breaking scheme to which SM state a SO(10) state branches to. In both schemes we
find back the complete SM including a righthanded neutrino (in the first approach
it comes from the state (−11− 101), in the second one from (0− 1001).
Another interesting feature is that in the second approach left-right symmetry only
breaks at the third stage of symmetry breaking.
In the second column we can identify two SU(4)×SU(2)×SU(2) octets: (4,2,1)
(that is to branch to all lefthanded states) and (4,1,2) (righthanded states). So,
we have colour “quartets” now, the leptons are on the same level as the quarks. In
the next step these respectively branch to (3,2,1)⊕(1,2,1) and (3,1,2)⊕(1,1,2).
Only in the third step lefthanded fields remain SU(2) doublets while righthanded
fields (or lefthanded antifields) become singlets under SU(2).
Let us now have a look at gauge bosons. As SO(10) has 45 generators, we have 45
gauge bosons now. They are in the adjoint rep of course. How do they branch to
the SM scale? A direct calculation would be straightforward but rather lengthy so
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we will just give the result at the most illuminating breaking moment (M2
GUT ):

SO(10)→ SU(3)× SU(2)× SU(2)
45→ (3,2,2)⊕ (3,2,2)⊕ (8,1,1)⊕ (3,1,1)⊕ (3,1,1))

⊕ (1,3,1)⊕ (1,1,3)⊕ (1,1,1). (3.55)

The first two terms together contain eight colour triplets. They can be thought of
as Xα, X ′α, Y α and Y ′α gauge boson fields plus antifields. These are exactly two
copies of the SU(5) heavy gauge bosons. The next term will eventually branch
to the gluon fields. Then we have two more new triplets called Xs and Xs boson
fields. In the next two terms we recognise SU(2) bosons: we have twice more than
in the SM. They both can be rewritten in two charged and one chargeless boson,
just as we did in the SM. The last term can be identified with the chargeless U(1)
boson of the SM.
In both schemes we need Higgs fields that give GUT-scale masses to all new, non
SM like gauge fields but leave the SM gauge bosons massless. That is, we need
fields like the Σ field in the SU(5) theory. This is most easily done in terms of
weight vectors. We can just write down all 45 weight vectors corresponding to the
gauge fields. For every state of symmetry breaking we can then find its defining
axis, that is, the axis whose inner product with a weight vector gives the mass of
the field corresponding to that weight vector after symmetry breaking (MX or 0).

3.5.3 Ordering of generators and fields

A clear disadvantage of SO(10) is that it is very hard to write down exactly where
all fields end up in its unified fermion multiplet and, consequently, how to organize
the 45 generators. All textbooks and articles we have studied ([17], [18], [9]) simply
omit this job, stating that it is hard and not very illuminating work. In the preced-
ing subsection it was already shown that we can describe the breaking of SO(10)
symmetry to SM symmetry without matrix representations for the SO(10) gener-
ators. As long as we are not after exact descriptions of proton decay processes this
will suffice. But trying to write out explicitly the field contents of the fundamental
16 rep (from which we can at least find expressions for twelve of the generators)
could be useful.
Inspired by the SU(4)-colour breaking scheme we propose to organise the 16 rep
quartet by quartet. We let the “up” part of the quartet fields occupy the first four
entries, the “down” part take the next four entries and in the second half we do the
same with the quartet antifields. In SM language the 16 dimensional state vector
then reads

ψ16 =
((

urugubν
)(

drdgdbe
)(

(ur)c(ug)c(ub)c(ν)c
)(

(dr)c(dg)c(db)cec
))T

,

(3.56)
or

ψ16 =
((

urLu
g
Lu

b
LνL

)(
drLd

g
Ld

b
LeL

)(
urRu

g
Ru

b
RνR

)(
d
r
Rd

g
Rd

b
ReR

))T
(3.57)

Now we can at least write down the first twelve, SM-like, generators in the same
way as we did in section 3.1.
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The first 8 generators should be generalizations of the SU(3) Gell-Mann matrices.
They have to act on the quark triplets. So for a = 1 . . . 8 we propose

T a =



0
λa 0

0
0 0 0 0

0
λa 0

0
0 0 0 0

0
−λa? 0

0
0 0 0 0

0
−λa? 0

0
0 0 0 0



. (3.58)

Next we come to T 9,10,11, the weak SU(2) generators. They act on lefthanded
doublets and are therefore only expected in the upper left corner of the generator
matrices. All three are on the same four entries. The thing is, there are four
doublets they act on. We thus need four copies of σ1 in T 9, four copies of σ2

in T 10 and four σ3 copies in T 11. We will always have that the first copy takes
entries (11), (15), (51) and (55), the second one (22), (26), (62) and (66), the third
one (33), (37), (73) and (77) and the last one (44), (48), (84) and (88).
Now we are on the right way to extract a value for sin2 θw. In the discussion in
section 3.4 we stated that this depends on the ratio of T 11 and T 12. Well, this time
we have

T 11 =
1
2

Diag
(

1 1 1 1 −1 −1 −1 −1 0 0 0 0 0 0 0 0
)

(3.59)
and

T 12 =

√
3
5

Diag
(

1
6

1
6

1
6 −1

2
1
6

1
6

1
6 −1

2 −2
3 −2

3 −2
3 0 1

3
1
3

1
3 1

)
.

(3.60)
(This last expression follows from simply inserting hypercharges and maintaining
SU(5) normalisation.)
By inserting charges we obtain the electromagnetic charge generator:

Q = Diag
(

2
3

2
3

2
3 0 −1

3 −1
3 −1

3 −1 −2
3 −2

3 −2
3 0 1

3
1
3

1
3 1

)
.

(3.61)
We now conclude

Q = T 11 +

√
5
3
T 12 (3.62)

which explicitly shows that the prediction obtained in SU(5) sin2 θw = 3
8 also holds

in SO(10).
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Finally we mention that now, even if we have not specified the remaining 33 gen-
erators, we can be sure that the term

LFK = iψT16(Dµγ
µ)ψ16 (3.63)

will return all SM kinetic terms plus many new baryon and lepton number violating
processes like proton decay. But let us not plunge any deeper into these details.

3.6 The SO(10) Higgs mechanism

Again we have two stages of breaking (one of which, at the high scale, may consist
of several sub-stages).
This high-scale breaking is done by a new field Σ that is in the adjoint rep 45, the
idea is just the same as in the SM. After getting a vev the term

LHK = (DµΣp)?DµΣp (3.64)

yields mass terms for 33 gauge boson fields.
Now for the electroweak symmetry breaking. Let us first consider just one genera-
tion. All mass terms should follow from

LFM ∝ ψT16CHψ16. (3.65)

We thus have to find suitable reps (and vevs) for the Higgs field H. From Young
tableaux (or very non straightforward weight vector analysis) we find

16⊗ 16 = 10⊕ 120⊕ 126. (3.66)

Thus, to build gauge invariant mass terms we have to use Higgs fields that are in
the 10, 120 or 126. Assigning vevs to these large irreps and tracing back mass
terms seems quite complicated. Fortunately, there is a way out. Whether SO(10)
branches to the SM via SU(5) or via any other route, the fact remains that SU(5)
is a subgroup of SO(10) and we know how to write down mass terms in SU(5). So
let us break these Higgs fields to SU(5) as well:

10→5 + 5

120→5 + 5 + 10 + 10 + 45 + 45

126→1 + 5 + 10 + 15 + 45 + 50. (3.67)

As before, we only keep reps that can break to a SU(3) singlet and a SU(2) non-
singlet, that is, the five and forty-five dimensional ones. (Just because the fields
that should be coupled in mass terms are in the same SU(3) rep but in a different
SU(2) rep.) Majorana mass terms for neutrinos form an exception to this rule.
In SU(5) matter fields are in the reps 1 (RH neutrino), 5 and 10. So we investigate
what mass terms we can build:

1⊗ 1 = 1→ψT1 CH126
1 ψ1 (3.68)

5⊗ 5 = 10 + 15→ψT
5
CH126

15 ψ5 (3.69)

10⊗ 10 = 5 + 45 + 50→ψT10C
(
H10

5 +H120
5 +H126

5 +H120
45

+H120
45

)
ψ10 (3.70)

1⊗ 5 = 5→ψT1 C
(
H10

5 +H120
5 +H126

5

)
ψ5 (3.71)

5⊗ 10 = 5 + 45→ψT
5
C
(
H10

5
+H120

5
+H120

45

)
ψ10. (3.72)
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Here we just state that vevs could be chosen such that gauge singlets are projected
out. We do not give precise prescriptions.
The first term 3.68 can be used for a Majorana mass term for the righthanded
neutrino field. 3.69 is not needed. The next term 3.70 provides the same Dirac
masses for the up quark as we had in the original SU(5) case, but with much more
freedom as they arise now from linear combinations of five Higgs terms instead of
two. A Dirac mass for neutrinos can arise from 3.71. Finally, 3.72 provides SU(5)-
like mass terms for down quarks and electrons, with three Higgs fields involved
instead of the usual two.
From these mass terms we see that we can also define some “minimal” variant of
SO(10): with only a 10 Higgs field we can obtain all minimal SU(5) relations plus
a Dirac neutrino mass term. The 10 can be chosen such that all 16-plet members
acquire the same vev (unlike the 45 case in SU(5) for example that made down
quarks and leptons differ by a factor of three). If we then add a singlet Higgs field
we have a Majorana mass term for righthanded neutrinos as well, which is enough
for the seesaw mechanism.
Now we include all three families. In the minimal scenario we have just one Yukawa
coupling, rendering Dirac masses as well as a righthanded neutrino Majorana mass:

LFM = yαβ(ψα16)TCH10+1ψ
β
16.+ h.c. (3.73)

Within a generation, differences in particle masses can only rise from asymmetric
Higgs vevs. A direct consequence is that the CKM matrix equals the unit matrix
now: flavour changing processes are predicted to disappear at the GUT-scale.
In SU(5) we found that the H5 coupling should be family symmetric and the H45

coupling antisymmetric. This followed from the tensor structure of the mass terms.
Now we have that the H10 and H126 couplings are symmetric and the H120 coupling
is antisymmetric. (We could find this result by explicitly writing out all mass terms
3.68 - 3.72 but actually it follows already from 3.66: a 16×16 matrix can be split in
a symmetric part with 136 degrees of freedom and a antisymmetric part with 120
free parameters.) The complete Lagrangian should be symmetric under exchange
of ψT and ψ, so the terms with antisymmetric Higgs term should be multiplied by
an antisymmetric Yukawa matrix and vice versa.

Finally we mention that the gauge kinetic term looks exactly as in SU(5) and
in the SM, but now the index a runs up to 45. When constructing Higgs potential
terms we meet the same hierarchy problem as in SU(5): the GUT-like masses for
the heavy Higgs bosons Σ should be kept away from the field H “by hand” as to
provide all fermions and light bosons from taking GUT-like masses.

3.7 SO(10): a short summary

So what picture do we have of the minimal SO(10) GUT?
At the GUT scale we find three perfect 16-plets, one for each generation. All plet-
members are on exactly the same footing. There is a tendimensional Higgs plet.
These fields interact in kinetic terms 3.63 and mass terms 3.73. To mediate the
unified SU(5) force between the 16-plet members there are 45 gauge boson fields
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V a
µ . These matter kinetic terms are contained in 3.63. Gauge kinetic terms are

simply V a
µ V

aµ

Below MGUT , perfect symmetry breaks. Whatever the intermediate steps are, we
are left with an effective SU(3)×SU(2)×U(1) symmetry. Due to this spontaneous
symmetry breakdown, 33 of the 45 gauge bosons acquire GUT-like masses. This
process is most easily described in terms of weight vectors and symmetry breaking
axes. Fields are still in a 16-plet, but only the 12 SM gauge bosons are still inter-
acting. This breaks the symmetry between the 16-plet members, effectively we are
left with the same division in doublets and triplets as in the SM.
Now we start running down from MGUT . Yukawa unification breaks, the ma-
trix entries evaluate in different ways. As we pass its (Majorana) rest mass, the
righthanded neutrino is integrated out from the theory (the Higgs singlet takes its
vev.).
Around 250 GeV, we reach the second stage of spontaneous symmetry breakdown.
The Higgsfield 10 (or, equivalently, 5 and 5) takes its vev. Only now we can really
speak of “masses” for the various fermion fields.
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Chapter 4

Supersymmetry and the
Minimal Supersymmetric
Standard Model

So far our investigation of the possibility of Grand Unification has been encourag-
ing but far from complete. Although Grand Unification could provide a powerful
explanation of all SM physics while reducing the number of free parameters, the
main proof, exactly meeting coupling constants, has not been achieved yet. More-
over, the hierarchy problem seems even more urgent than in the SM. We are clearly
missing something.

4.1 Introduction to supersymmetry

Supersymmetry, or SUSY, promises to solve both of these problems by yet a new
unification, far more revolutionary than all others we have seen so far. It suggests
a certain equality between bosons and fermions or, following chapter 1, an equality
of force and matter. It certainly meets all criteria on “elegance in unification”
we might hope for. However, this thesis is about physics, not arts, so caution is
needed. The “Minimal Supersymmetric Standard Model” (MSSM) predicts twice
as many particles and many more degrees of freedom than we have in the Standard
Model. In this way it thus seems to contradict the idea of Grand Unification. A
more realistic objection is that up to today none of these predicted new particles
have been detected.
Our hopes not affected by these two problems, we will explore SUSY and the
MSSM in this chapter. In the next chapter we will find some clues to solve the
first (aesthetic) problem, the plethora of free parameters. The second (very serious)
problem could only be solved at the CERN laboratories in Geneva in the next year.

4.1.1 A new symmetry

In 1967 Coleman and Mandula stated that the four translation operators Pµ and
the operators Mµν , that contains boosts and rotations, together generating the
Poincare group, cannot be combined with internal symmetries other than in a
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trivial way. The Poincare Lie algebra reads [8, chap. 3]

[Pµ, Pν ] =0
[Mµν , Pρ] =i(ηνρPµ − ηµρPν)

[Mµν ,Mρσ] =− i(ηµρMνσ − ηνρMνρ − ηνρMµσ + ηνσMµρ), (4.1)

and that is about it: for a generator Ta of an internal symmetry we will always
have

[Ta, Pµ] = [Ta,Mµν ] = 0. (4.2)

Eight years later Haag,  Lopuszanski and Sohnius found an ingenious loophole
in this no-go theorem: what if we also consider anticommuting (odd) symmetry
generators instead of only commuting (even) ones? And well, at first it may seem
a very odd assumption, but given the fact that we already study commuting and
anticommuting fields, why would we not consider antisymmetric coordinates and
generators as well? The concept of a Lie algebra is then generalized to that of a
Lie superalgebra, or graded Lie algebra. To 4.1 we add

[Qa, Pµ] =0
[Qa,Mµν ] =(Σµν)abQb
{Qa, Qb} =− 2(γµC)abPµ. (4.3)

(Σµν is defined in appendix A.)
Here Qa is the fourdimensional spinorial generator of a SUSY transformation. It
does exactly what seemed forbidden by Coleman and Mandula: it mixes the par-
ticle content of the Poincare group, that is, fermions and bosons. From the last
anticommutator we see that Q can be thought of as a “square root of a transla-
tion”, just as i that is the square root of −1.
To connect a fermionic, anticommuting spinor field ξ(x) and a bosonic, commuting
field φ(x) (scalar) or V (x) (vector) we need to extend the bosonic coordinate x
with a fermionic coordinate θ. Only then we can build symmetric quantities out of
all these antisymmetric variables, like ξ(x)θ, that are on the same footing as φ(x)
for example. Note that we are in no way postulating new spacetime dimensions:
the four component spinorial coordinate θa only serves as a “parametrization of
the anti-commutative part of space” and will be integrated out from every physical
prediction, just in the same way in which complex numbers are used in physics.
As four dimensional spinor reps of the Lorentz group come in two twodimensional
types, lefthanded and righthanded, or (0, 1

2) and (1
2 , 0) (see section 1.1.1), we also

need two kinds of twodimensional anticommuting coordinates, θA and θȦ, and two

kinds of twodimensional anticommuting variables, ξA(x) and ξȦ(x). As usual, left-
handed and righthanded spinors can be combined in a Dirac four-spinor.
We can formally write down the extension of spacetime:

xµ → (xµ, θA, θ
Ȧ). (4.4)

We could also have more anticommuting coordinates but in this thesis N = 1
supersymmetry will suffice.
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Now we define a SUSY transformation. We postulate that its effect should be

xµ →xµ − iθσµε+ iεσµθ

θ →θ + ε

θ →θ + ε (4.5)

where ε and ε are infinitesimal spinorial parameters. We have suppressed spinor
indices.
Now we are in the position to find expressions for the SUSY transformation gen-

erators QA and Q
Ȧ. (We prefer working in the two component spinor formalism.)

A SUSY transformation on a function f of supercoordinates (x, θ, θ) should bring
it to f + δf with

δf = δxµ∂µf + δθA∂Af + δθȦ∂
Ȧ
f ≡ i(εQ+ εQ)f. (4.6)

So on equating 4.5 and 4.6 we find what we were looking for

QA =− i(∂A + iσµ
AḂ
θ
Ḃ
∂µ)

QȦ =− i(∂Ȧ + iθBσµ
BḂ
εḂȦ∂µ). (4.7)

To conclude this section we write down expressions for supersymmetric covariant
derivatives. Just as gauge covariant derivatives are constructed in such a way that
maintains covariance under a gauge transformation, SUSY covariant derivatives
are covariant under a SUSY transformation. Working out this requirement yields

DA =∂A − iσµAḂθ
Ḃ
∂µ

DȦ =∂Ȧ − iσµȦBθB∂µ. (4.8)

4.1.2 Superfields

In the SUSY formalism ordinary fields that are functions of x are generalized to
superfields that are functions of x, θ and θ. However, the fact that θ and θ are
anticommuting variables strongly constrains the form of a superfield. For example,
if we would consider just one onedimensional spinorial coordinate θ we would have
θ2 = 0 and we could decompose a general superfield as follows

f(x, θ) = f1(x) + f2(x)θ. (4.9)

In our case we have two twodimensional anticommuting coordinates so a general
superfield will be a bit more complicated, but it still has a finite number (9) of
terms.
To connect to SM physics we will demand one more restriction. The generalization
of a lefthanded SM fermion field will be a superfield Φ that satisfies DȦ = 0. Work-
ing in the lefthanded representation, the LH antifields that denote the abandoned
RH fields are generalized to superfields Φ† that are subject to DAΦ† = 0. Φ and
Φ† will be referred to as left and right chiral superfields respectively.
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Chiral superfields can now be parametrized in terms of just three x-dependent fields
φ, ξ and F that have spin 0, 1

2 and 1 respectively:

Φ(x, θ, θ) =φ(x)− iθσµθ∂µφ(x)− 1
4
θθθθ∂µ∂µφ(x) +

√
2θξ(x)

+
i√
2
θθ∂µξ(x)σµθ + θθF (x) (4.10)

Φ†(x, θ, θ) =φ?(x) + iθσµθ∂µφ
?(x)− 1

4
θθθθ∂µ∂µφ

?(x) +
√

2θξ(x)

− i√
2
θθθσµ∂µξ(x) + θθF ?(x). (4.11)

Here we can understand the bottom line of the SUSY formalism. In the SM a
fermion field is described by a spinor field ξ(x) and a scalar field by a field φ(x).
In SUSY these fields are just components of a more fundamental quantity, a chiral
superfield. So, to every SM scalar and spinor field we associate a chiral superfield
now. One of its physical components is the original SM field, the other component is
totally new. It is the “superpartner” of the original SM field. SUSY thus postulates
that there are twice as many elementary fields than in the SM: every SM fermion
field has a scalar partner, (a “sfermion” field) and every SM scalar field has a
fermionic partner (a “bosino” field). The field F (x) is auxiliary, we will integrate
it out later.
There is one more type of fields in the SM: vector fields. To describe them we need
a new kind of superfields that are, not that surprisingly, called vector superfields
V (x, θ, θ). Their main property is that they should satisfy

V = V †. (4.12)

This already restricts the number of free parameters in the expansion of a vector
superfield, but we can also exploit its “supergauge” freedom. That is, if V is a
vector superfield, then V + iΛ − iΛ†, with Λ an arbitrary left chiral superfield, is
too. In the so-called Wess-Zumino gauge that we will use throughout this thesis a
vector superfield is maximally restricted to

VWZ(x, θ, θ) = θσµθAµ(x) + θθθλ(x) + θθθλ(x) +
1
2
θθθθD(x). (4.13)

The component Aµ(x) is a vector field. In this expansion of a vector superfield it
is accompanied by a superpartner λ(x), a “gaugino” field of spin 1

2 . The field D(x)
is auxiliary.

4.2 Construction of the MSSM

In this section we build the SUSY Lagrangian density that leads to the MSSM.

4.2.1 The rules of the game

A SUSY Lagrangian density built out of superfields should be Lorentz invariant,
SU(3)×SU(2)×U(1) supergauge invariant, renormalizable and also supersymmet-
ric invariant. We will focus on supergauge and supersymmetric invariance, as the

63



concept of Lorentz invariance in SUSY is unchanged from the SM and can easily be
checked once we have written down the SUSY action and renormalizability is still
guaranteed as long as the mass dimensions of all terms in the SUSY Lagrangian
density do not exceed four1.
To reproduce the non-Abelian gauge symmetric structure we have in the SM (with
coupling strength g and generators T a) we introduce a two-component chiral su-
perfield Φi with gauge transformation

Φi →
[
e−2igTaΛa]

ij
Φj

Φ†
i → Φ†

j

[
e2igT

aΛa†
]
ji

(4.14)

Here Λa is a left chiral superfield specifying the gauge transformation.
Next we turn to vector superfields. Their aforementioned gauge freedom yields a
simple gauge transformation:

eV → e−iΛ
†
eV eiΛ, (4.15)

which in the non-Abelian case generalizes to2

e2gV
aTa → e−2igTaΛa†

e2gV
aTa

e2igT
aΛa

. (4.16)

Exponentiating vector superfields is not as cumbersome as it may seem: in WZ
gauge we have that V n = 0 for every n ≥ 2 so we easily find

eV = 1+θσµθAµ(x)+θθθλ(x)+θθθλ(x)+
1
2
θθθθ

(
D(x) +

1
2
Aµ(x)Aµ(x)

)
. (4.17)

Now that we understand the behaviour under gauge transformations of our super-
fields, we investigate how to build supersymmetric invariant actions.
Let us first consider a chiral superfield (4.10). Performing a supersymmetric trans-
formation (4.7) yields new expressions for components φ, ξ and F . For example,
if θ transforms to θ + ε the term

√
2θξ will yield a contribution

√
2εξ to the θ-

independent component φ.
So, we can write out transformation rules for all three components of the chiral
superfield. We then find that the new contribution to the F -term can be written as
a total spacetime derivative. If we can discard surface terms, which we assume to
be the case, we conclude that the F -term of a chiral superfield is a supersymmetric
invariant.
If we move from chiral superfields Φ to arbitrary superfields F we find, reasoning
along the same lines, that the only the term multiplying θθθθ is a SUSY invariant.
This term is usually called D(x). So we conclude that the terms [Φ]F and [F ]D are
suitable for SUSY invariant actions.
How do we find these D- and F terms? A practical answer would be: they are just
the expressions that multiply θθθθ and θθ respectively. A more formal approach is

1That is, once that all factors of θ and θ have been integrated out
2This yields quite a complicated transformation rule for the superfield V a itself but we will not

worry about that here.
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to project them out:

F (x) =
1
4
DDΦ(x, θ, θ)|θ=θ=0 (4.18)

D(x) =
1
16
DDDDF(x, θ, θ)|θ=θ=0. (4.19)

We can also write these last expressions as

F (x) =
1
4

∫
d2θΦ(x, θ, θ) =

1
16

∫
d4θΦ(x, θ, θ)δ(2)(θ) (4.20)

D(x) =
1
16

∫
d4θF(x, θ, θ). (4.21)

Now that we understand what a SUSY Lagrangian density should look like we are
ready to build the MSSM.

4.2.2 Matter kinetic terms

We look for a supersymmetric Lagrangian that, after integrating out all factors of
θ and θ reproduces, among new other terms, the kinetic part of the SM Lagrangian
1.31.
We introduce five left chiral superfields and specify their SU(3) × SU(2) × U(1)
gauge transformations:

ΦLq → e−2igsTaΛa
s e−2igwτaΛa

z e−2ig′YLqΛy ΦLq

ΦRu → e−2igsT
a
Λa

s e−2ig′YRuΛy ΦRu

ΦRd → e−2igsT
a
Λa

s e−2ig′YRdΛy ΦRd

ΦLl → e−2igwτaΛa
s e−2ig′YLlΛy ΦLl

ΦRe → e−2ig′YReΛy ΦRe

(4.22)

Here T a (T a) are the generators of the fundamental (antifundamental) rep of SU(3),
τa are generators of SU(2) (fundamental and antifundamental rep) and every chiral
superfield i carries its own hypercharge Yi which generates its U(1) transformation.
(We are working in the lefthanded representation again.)
For notational clarity we have suppressed multiplet indices. The quark superfields
are color triplets while the lefthanded superfields are weak doublets. So in the first
equation ΦLq on the LHS carries a color index i and a weak index k, T a has indices
ij, τa has indices kl and ΦLq on the RHS has indices jl. The hypercharge YLq is
multiplied by δijδkl.
Note furthermore that we are labeling chiral superfields by their fermionic contents.
We do so just to maintain a clear connection with the SM. But every superfield Φi

has a bosonic component φi as well as a fermionic component ξi.
Now we define our 8 + 3 + 1 vector superfields V a

s , V b
w and Vy. V a

s , for example,
has components (Aas)µ (gluon vectorboson field), λas and λas (gluino, or gaugino in
general, fermion field) and Da

s (auxiliary field).
We combine them in five new vector superfields that connect with the five chiral
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superfields we have defined before:

VLq =2gsV a
s T

a + 2gwV b
wτ

b + 2g′VyYLq (4.23)

VRu =2gsV a
s T

a + 2g′VyYRu (4.24)

VRd =2gsV a
s T

a + 2g′VyYRd (4.25)

VLl =2gwV b
wτ

b + 2g′VyYLl (4.26)
VRe =2g′VyYRe. (4.27)

All terms in 4.23 - 4.27 transform as in 4.16.
From now on we will contract our notation even more: equations 4.22 and 4.23

- 4.27 are summarized in

Φi → e−2igs(T 3
i )aΛa

s e−2igw(T 2
i )aΛa

ze−2ig′YiΛyΦi (4.28)

and
Vi = 2gsV a

s (T 3
i )a + 2gzV b

w(T 2
i )b + 2g′VyYi. (4.29)

The label i takes values Lq, Ru, Rd, Ll and Re and we have

i Lq Ru Rd Ll Re

(T 3
i )a T a T

a
T
a 0 0

(T 2
i )a τa 0 0 τa 0
Yi YLq YRu YRd YLl YRe

. (4.30)

We can now write out the MSSM kinetic term:

LK =
∑
i

[
Φ†
ie
ViΦi

]
D

(4.31)

Working out this term is quite non-trivial. When the smoke finally clears we find

LK = 2
∑
i

∆µ†
i φ

?
i (x)∆µiφi(x) (4.32)

+ iξi(x)σµ [∂µ] ξi(x) (4.33)

−
√

2φ?i (x)
(
gs(T 3

i )aλas(x) + gw(T 2
i )bλbw(x) + g′Yiλy(x)

)
ξ(x) (4.34)

−
√

2ξi(x)
(
gs(T 3

i )aλas(x) + gw(T 2
i )bλbw(x) + g′Yiλy(x)

)
φi(x) (4.35)

− ξi(x)σµξi(x)
(
gs(T 3

i )a(Aas)µ(x) + gw(T 2
i )b(Abw)µ(x) + g′Yi(Ay)µ(x)

)
(4.36)

+ φ?i (x)
(
gs(T 3

i )aDa
s (x) + gw(T 2

i )bDb
w(x) + g′YiDy(x)

)
φi(x) (4.37)

+ F ?i (x)Fi(x). (4.38)

Here we have used ∆µi = ∂µ+igs(T 3
i )a(Aas)µ(x)+igw(T 2

i )b(Abw)µ(x)+ig′Yi(Ay)µ(x).
In 4.33 A[∂µ]B denotes 1

2(A∂µB −B∂µA).
On combining 4.33 and 4.36 we recover the SM kinetic term 1.31.

66



4.2.3 Higgs kinetic terms

One MSSM novelty is that we introduce two Higgs chiral superfields ΦH1 and ΦH2

instead of one. (Later in this chapter we will see that with just one Higgs field we
cannot obtain all SM mass terms.) Both are color singlets and SU(2) doublets.
They carry hypercharge YH1 = 1

2 and YH2 = −1
2 .

SUSY connects fermion fields and boson fields, so it is very easy to generalize all
discussions from the previous subsection to these Higgs chiral superfields. We just
have to add two more labels, i = H1 and i = H2 to 4.30.

i H1 H2

(T 3
i )a 0 0

(T 2
i )a τa τa

Yi YH1 YH2

. (4.39)

Working out 4.31 for i = H1 and i = H2 yields the same result of course. In 4.32
we now recognise the SM Higgs kinetic term 1.20. So, for the first time we can
make out some of the unifying beauty in this supersymmetric approach: we have
combined the SM Higgs and fermion kinetic terms.

4.2.4 Gauge kinetic terms

In this section we try to supersymmetrically reproduce the gauge kinetic terms
1.46. To this end we construct left and right spinorial field strengths out of our
vector superfields.
In the Abelian part of the MSSM we construct

WyA =− 1
4
DDDAVy (4.40)

W
Ȧ
y =

1
4
DDDȦVy. (4.41)

Their left (right) chirality is manifest: acting with a third D(D) on them automat-
ically yields 0. Moreover, both terms are invariant under a supergauge transfor-
mation V → V + iΛ− iΛ†.
In non-Abelian super gauge theory things are a bit more complicated. Generalizing
4.40 and 4.41 gives

WA =− 1
4
DDe−VDAeV (4.42)

W
Ȧ =

1
4
DDeVDȦe−V . (4.43)

Using the chiral properties of Λ and Λ† we find that under a supergauge transfor-
mation (4.15) we have

WA →e−iΛWAe
iΛ (4.44)

W
Ȧ →eiΛ†

W
Ȧ
e−iΛ† (4.45)

so we conclude that Tr
[
WAWA +W ȦW

Ȧ
]

is supergauge invariant.

In this notation the connection with the non-Abelian MSSM vector superfields V a
s
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and V b
W is not very clear. We had better decompose the general vector superfield

in 2gsV a
s T

a and 2gwV b
wτ

b. That means that we are in fact decomposing WA in
2gsW a

s T
a and 2gwW b

wτ
b. If we then expand e−VDeV we arrive at the SU(3) chiral

field strengths

W a
sA =− 1

4
DD

[
DAV a

s + igsf
abc
s

(
DAV

b
s

)
V c
s

]
(4.46)

W
aȦ
s =− 1

4
DD

[
−DȦV a

s + igsf
abc
s

(
DȦV b

s

)
V c
s

]
(4.47)

and the SU(2) chiral field strengths

W a
wA =− 1

4
DD

[
DAV a

w + igwf
abc
w

(
DAV

b
w

)
V c
w

]
(4.48)

W
aȦ
w =− 1

4
DD

[
−DȦV a

w + igwf
abc
w

(
DȦV b

w

)
V c
w

]
. (4.49)

Here fabcs and fabcw denote SU(3) and SU(2) structure constants respectively. We
see that every single W a depends on all 8 (3) V a

s (V a
w ).

Finally we are in a position to write down a supersymmetric super gauge invariant
gauge kinetic term:

1
4

[
W aA
s W a

sA+W a
sȦW

aȦ
s +W aA

w W a
wA+W a

wȦW
aȦ
w +WA

Y WY A+W Y ȦW
Ȧ
Y

]
F

. (4.50)

This eventually leads to

LGK =
1
2
Da
s (x)Da

s (x)− 1
4
F asµν(x)Fµνas (x) + iλas(x)σµ[∆µ]λas(x) (4.51)

+
1
2
Db
z(x)Db

z(x)− 1
4
F awµν(x)Fµνaw (x) + iλaw(x)σµ[∆µ]λaw(x) (4.52)

+
1
2
Dy(x)Dy(x)− 1

4
F ayµν(x)Fµνay (x) + iλay(x)σµ[∂µ]λay(x). (4.53)

Here the SU(3), SU(2) and U(1) parts have been ordered line by line, as can be seen
from the labels s, w and y of the vector superfield components. This implies that
∆µ denotes a SU(3) covariant derivative in 4.51 and a SU(2) covariant derivative
in 4.52. Identifying Aasµ with the gluon fields Gaµ, Aazµ with the weak boson fields
W a
µ and Ayµ with the U(1) boson field Bµ yields the SM gauge kinetic terms 1.46.

4.2.5 Superpotential terms

We still need to recover the fermion mass terms of the SM 1.35. To this end we
construct a superpotential. To ensure supersymmetric invariance superpotential
terms cannot contain both lefthanded and righthanded chiral superfields. In the
SM the Higgs field takes a vev 1.22 which easily generates mass terms for down
quarks and electrons but to have an up quark mass term we needed a tensor εab.
This is just a technical way of taking the conjugate of the Higgs field. That will
not be allowed in the MSSM Lagrangian. We are therefore led to introduce two
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Higgs chiral superfields, ΦH1 and ΦH2
3. They take vevs

< ΦH1 >=
1√
2

(
0
v1

)
, < ΦH2 >=

1√
2

(
v2
0

)
. (4.54)

Now that we have two Higgs fields, the ratio between their vevs becomes a new
free parameter:

v2
v1
≡ tanβ. (4.55)

The contribution to the MSSM Lagrangian can now be written[
WMSSM +W†

MSSM

]
F
, (4.56)

with

WMSSM = µΦH1 ·ΦH2+yeij(ΦLl)iΦH1(ΦRe)j+ydij(ΦLq)iΦH1(ΦRd)j+yuij(ΦLq)iΦH2(ΦRu)j
(4.57)

In the first RHS term a SU(2) inproduct is assumed, the other terms contain just
ordinary Euclidean inproducts.
In this case projecting out the SUSY invariant F-component is rather easy. We
find

LFM =µ
[
φH1(x) · FH2(x) + FH1(x) · φH2(x)− ξH1(x) · ξH2(x)

]
(4.58)

+ yeij

[
(φLl)i(x)φH1(x)(FRe)j(x)− (φLl)i(x)ξH1(x)(ξRe)j(x)

+ (φLl)i(x)FH1(x)(φRe)j(x)− (ξLl)i(x)φH1(x)(ξRe)j(x)

− (ξLl)i(x)ξH1(x)(φRe)j(x) + (FLl)i(x)φH1(x)(φRe)j(x)
]

(4.59)

+ ydij

[
(φLq)i(x)φH1(x)(FRd)j(x)− (φLq)i(x)ξH1(x)(ξRd)j(x)

+ (φLq)i(x)FH1(x)(φRd)j(x)− (ξLq)i(x)φH1(x)(ξRd)j(x)

− (ξLq)i(x)ξH1(x)(φRd)j(x) + (FLq)i(x)φH1(x)(φRd)j(x)
]

(4.60)

+ yuij

[
(φLq)i(x)φH2(x)(FRu)j(x)− (φLq)i(x)ξH2(x)(ξRu)j(x)

+ (φLq)i(x)FH2(x)(φRu)j(x)− (ξLq)i(x)φH2(x)(ξRu)j(x)

− (ξLq)i(x)ξH2(x)(φRu)j(x) + (FLq)i(x)φH2(x)(φRu)j(x)
]

+ h.c.

(4.61)

Every fourth term between brackets corresponds to one of the three SM mass terms
1.35. Now that we have two Higgs fields, we should repeat the SM calculation that
yields the mass of the W and Z bosons. It turns out that we only have to replace

3Another important aspect of this is that only with two chiral Higgs superfields the MSSM is
anomaly free.
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v, the SM Higgs vev, by
√
v2
1 + v2

2.
At this point we are almost done with the supersymmetric part of the MSSM. We
have seen that the supersymmetric Lagrangian that consists of 4.31, 4.50 and 4.56
can be written in terms of superfields components which was done in 4.32 - 4.38,
4.51 - 4.53 and in 4.58 - 4.61.
Finally we want to get rid of the auxiliary F - and D fields. This is rather easy.
As they never appear in any derivative, the Euler-Lagrange equations dictate that
the derivative of the MSSM component Lagrangian to any of these fields vanishes.
For the SU(3) D-fields Da

s (x) for example this yields

δ

δDa
s (x)

[
φ?i (x)gs(T 3

i )aDa
s (x)φi(x) +

1
2
Da
s (x)Da

s (x)
]

= 0, (4.62)

which enables to eliminate Da
s (x):

Da
s (x) = gsφ

?
i (x)(T 3

i )aφi(x). (4.63)

All other auxiliary fields can be eliminated in this same way.

4.3 How sparticles solve the hierarchy problem

In the first chapter we found that in the framework of the SM the Higgs mass
is “unprotected”. The first order correction to the Higgs propagator contains a
fermionic loop (two Higgs-fermion-antifermion couplings) that can raise the Higgs
mass squared to O(1036 GeV2). We then need an incredible amount of fine tuning
between the bare Higgs mass and this first order correction to have a physical Higgs
mass of O(102 GeV).
Supersymmetry was originally invented to get rid of these quadratic divergences.
Now that we have sparticles around there are new contributions to the Higgs prop-
agator. From the superpotential terms 4.58 - 4.61 we read that now we have Higgs
- sfermion - sfermion and Higgs - Higgs - sfermion - sfermion couplings. The two
sfermions can only be both lefthanded or both righthanded.
In exact, unbroken supersymmetry the Higgs propagator receives only one new
sfermion loop contribution, the one with a quartic Higgs - sfermion coupling. (The
one with two cubic Higgs - sfermion couplings gives a zero contribution as long
as sparticles have the same mass as their superpartners, which is the case in ex-
act supersymmetry.) The non-vanishing contribution is quadratic and cancels the
quadratic divergence from the fermionic loop contribution. This cancellation (non-
renormalization) is the essence of the use of supersymmetry. If supersymmetry is
exact, scalar masses do not receive any correction at all.
Next, we consider what happens when supersymmetry does break. If, in one way
or another, a particle and its corresponding sparticle acquire different masses and
if we allow Higgs - LH sfermion - RH sfermion couplings as well, quadratic di-
vergences still cancel. We now have two sfermion loop diagrams with two cubic
couplings that do induce a divergence but only a logarithmic one. That is why this
kind of supersymmetry breaking is called soft supersymmetry breaking and we will
need it right away.
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4.4 Breaking of Supersymmetry

So far we have been telling a beautiful story in this chapter. Unfortunately, nature
is not supersymmetric. That is, we do not observe unbroken supersymmetry, no
superpartners have been found. To describe nature we should look for a way to
break supersymmetry in such a way that connects to experiment but maintains the
advantage of solving the hierarchy problem.
The most elegant way to explain the mass asymmetry between particles and sparti-
cles would be postulating that supersymmetry gets broken spontaneously. However,
detailed analysis [8, chap. 7] then leads to

STrM2
e + STrM2

ν = STrM2
u + STrM2

d = 0. (4.64)

Here we have introduced the supertrace, the spin weighted graded trace of the
squared mass matrix of a chiral multiplet:

STrM2
i =

J= 1
2∑

J=0

(−1)2J(2J + 1)m2
J . (4.65)

If for every chiral supermultiplet the bosonic component is far heavier than the
fermionic component, which is, to use an understatement, clearly observed, each
of these four supertraces is positive. Spontaneously broken supersymmetry can be
in accordance with experiment because of 4.64.
We are thus forced to raise sparticle masses out of experimental reach “by hand”,
by introducing (soft) supersymmetry breaking terms. There is no overlying chiral
superfield, we insert bare component fields. To comfort themselves, people like
to view these terms as an effective theory, resulting from complicated interactions
somewhere between MGUT and MPLANCK. Well, that can be, of course, but let us
postpone this “hidden sector physics” until we have a working SUSY GUT. As long
as they do not ruin the solution of the hierarchy problem, that is, as long as they
do not cause new quadratic (or quartic) divergencies, they are more than welcome
to save the theory.
The most general soft SUSY breaking terms that meet these criteria are gaugino
mass terms, scalar mass terms and scalar quadratic and cubic interaction terms.
Thus, the scalar component φ(x)i of every chiral superfield Φi(x) and the gaugino
components λi(x), λ(x) of every vector superfield Vi(x) receive an additional mass
term, and every quadratic and cubic interaction between scalar components will
receive a new contribution that adds to the one present in the supersymmetric part
of the MSSM.
We have

−LSOFT =
∑
i

m2
iφ

2
i +

( ∑
i=1,2,3

Miλiλi −BµφH1φH2

+
∑
i,j

[
Aeiky

e
kj(φLl)iφH1(φRe)j +Adiky

d
kj(φLq)iφH1(φRd)j

+Auiky
u
kj(φLq)iφH2(φRu)j

]
+ h.c.

)
. (4.66)

71



Here the first sum is over all chiral superfields. The second sum is over all gaugi-
nos, introducing a SU(3) gaugino mass, a SU(2) gaugino mass and a U(1) gaugino
mass. The last sums are just over generation indices.
The introduction of these soft breaking terms induces drastic changes in the SUSY
spectrum. Most are purely in the as yet unexplored SUSY energy region above
200 GeV and therefore impossible to detect directly. (Although they might induce
new contributions to flavour changing neutral currents.) Without soft breaking
the sfermion mass matrices, written in the L-R basis, had only two equal off-
diagonal terms, just like the fermion mass matrices. Now there are many new
terms, thus leading to complicated mass eigenstates. The charged4 Higgsinos form
new, “chargino” eigenstates with the charged gauginos (the λ-superparters of the
SU(2) gauge bosons W+

µ en W−
µ . Neutral Higgsinos and gauginos mix into “neu-

tralino” eigenstates.
The only directly observable implications of the soft breaking terms are the contri-
butions to the Higgs boson masses. With the inclusion of soft breaking the situation
is as follows. Before the electroweak SU(2) × U(1) breaking we have two Higgs
doublets, that is, eight real fields. Just as in the SM, three of them get “eaten”
by the weak W and Z bosons in the breaking process. We are then left with four
heavy mass eigenstates and one light eigenstate, which is assumed to be around 127
GeV [8, chap. 10]. As soon the LHC starts working, this last statement actually
makes SUSY falsifiable.
A clear disadvantage of the soft SUSY breaking terms is the huge number of freely
adjustable parameters they bring in. Therefore [4] some constraints are assumed
at the GUT scale:

−LSOFT |MGUT =m2
0

∑
i

φ2
i +

(
M 1

2

∑
i=1,2,3

λiλi −BµφH1φH2

+A0

∑
i,j

[
yeij(φLl)iφH1(φRe)j + ydij(φLq)iφH1(φRd)j

+ yuij(φLq)iφH2(φRu)j
]

+ h.c.
)
. (4.67)

The gaugino unification (the introduction of one universal gaugino mass M 1
2
) is

motivated by the fact that the ratios of gauge couplings to gaugino masses are
scale invariant [8, chap. 11]. Therefore, if gauge couplings meet, gaugino masses
should do so as well. The other assumptions have no such solid bases of origin.
Most motivations come from “hidden sector arguments”
Much more could be said and calculated about these soft SUSY breaking analysis,
but that would take us to far out of our Grand Unification theme. So let us just take
home the bottom line: SUSY implies equal masses for members of the same SUSY
multiplet. Observations clearly rule out this scenario. Therefore we assume soft
SUSY breaking: we add new terms to the SUSY Lagrangian that lift sfermion and
gaugino masses while only producing logarithmic divergencies. In the remainder
of this thesis we will mainly concentrate on that SUSY-fields that were already
present in the SM (that is, no superpartners). We will assume a universal gaugino

4The charged Higgs field is that part of the doublet that gets vev v. That is, in our notation,
the lower entry of ΦH1 and the upper entry of ΦH2.
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and Higgsino mass of 200 GeV, a Higgs boson mass of 700 GeV (except for the
light Higgs) and a universal sfermion mass of 4500 GeV 5.

4.5 Running of the Coupling Constants in the MSSM:
a true clue for Grand Unification

In the first chapter we have investigated the possibility of meeting coupling con-
stants. The result was rather poor: assuming that there is an energy scale, some-
where around 1013 GeV, where they indeed meet, we can never fit all three within
their error bars at M = MZ .
Now that we have brought supersymmetry into play this situation improves a lot.
Sparticles contribute significantly to the betafunctions that dictate the running of
the coupling constants. Equation 1.69 now reads

b1 =− 2
5
(120

36
Ng + 2× 1

4
Nh

)
− 1

5
(
2× 1

4
×Nh +

120
36

Ng

)
=− 2Ng −

3
10
Nh. (4.68)

Here the first term 120
36 Ng is the sum of squared hypercharges of all SM fermionic

fields, nothing new. The second term stems from the fact that for every Higgs
doublet we now have two Higgsinos with hypercharge ±1

2 . Their bosonic part-
ners, present in the SM as well, are in the third term. The last term contains all
sfermions, all having the same hypercharge as their superpartners.
Meanwhile the supersymmetric version of the SU(2) betafunction 1.70 is

b2 =
11
3
× 2− 2

3
(
4× 1

2
×Ng +Nh ×

1
2

+ 2
)
− 1

3
(
4× 1

2
×Ng +Nh ×

1
2
)

=6− 2Ng −
1
2
Nh. (4.69)

In the fermionic part we have new contributions from Higgsinos (no factor 2, the
sum is over SU(2) multiplets) and from the SU(2) gauginos (“Winos and Zino”)
that are in the adjoint rep. The bosonic part receives a contribution coming from
sfermions.
For the SU(3) betafunction we now have, instead of 1.71

b3 =
11
3
× 3− 2

3
(
4× 1

2
×Ng + 3

)
− 1

3
(
4× 1

2
×Ng

)
=9− 2Ng. (4.70)

Here we recognise a new gluino contribution and a new sfermion contribution.
We now repeat the analysis of the first chapter, taking a supersymmetric approach
this time. That is, above a universal sfermion mass (4500 GeV), we work with the
full superysmmetric betafunctions 4.68, 4.69 and 4.70. Below this sfermion mass
scale we use betafunctions without sfermionic contributions. Below 700 GeV we
freeze out the contribution of the second Higgs boson doublet. At 200 GeV we also

5These choices were taken from the article [5] reviewed in chapter 7.
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Figure 4.1: One-loop evaluation of the SUSY coupling constants αi from MZ to 1020
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do away with gaugino and Higgsino contributions. That means that we are left
with the SM betafunctions.
Again we assume the existence of a universal coupling constant α at energy scale
MGUT . We check for which values (α,MGUT ) we obtain the best fit with the
measured αEXPi (MZ) once we run down from MGUT to MZ with our supersym-
metrically modified betafunctions.
In this supersymmetric case the result is quite spectacular. We obtain best fits

1
α = 24.3, MGUT = 1.5849× 1016GeV,↔ log(MGUT ) = 37.30. (4.71)

So, in SUSY Grand Unification the GUT scale is 3 orders of magnitude higher.
This may explain the failure of the quest for proton decay at Kamiokande.
What we see now is that at M = MZ the discrepancy between predicted and
measured values of the αi has almost vanished. We find (cf 1.73 and 1.79)

1
α1(MZ) = 59.0007, 1

α2(MZ) = 29.5684, 1
α3(MZ) = 8.54538, (4.72)

which implies sin2 θ = 0.23113.
As we did in the SM analysis, another way to picture this greatly improved meeting
of coupling constants is to solve the RGE in such a way that the three couplings
exactly fit the experimental values at the weak scale. This yields a very encour-
aging plot: see figure 4.1. We actually need to zoom in a lot more to see that the
coupling constants do not precisely meet: see figure 4.2.
Note that from the plots we see that these results do not depend crucially on the
choice of mass scales for superpartners that we discussed before. The “winning
ingredients”, so to speak, are the slopes in the very long traject where all super-
partners are present.
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Figure 4.2: A closer look at the SUSY coupling constants around MGUT .

We thus conclude that once we assume supersymmetry the hypothesis of Grand
Unification around 1016 GeV is compatible with experimental values of coupling
constants at the weak scale.
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Chapter 5

SUSY SO(10)

Let us now “supersymmetrize” the SO(10) results from chapter 3 as to have, at an
energy level of about 1.6×1016 GeV, a Grand Unifying Theory that does not suffer
from the hierarchy problem. We naively try to keep things as simple (as elegant)
as possible, in the next chapter we will see to what extent our assumptions are
phenonemenologically viable.

5.1 The situation at the GUT-scale

At the GUT scale we assume to have three 16-plets of chiral superfields Φ16, a
45-plet of vector superfields V45 and a 10-plet if Higgs chiral superfields ΦH10.
The fermion kinetic term is given by

LFK =
(
Φ16e

VM Φ16

)
D

; VM = 2gV aT a (5.1)

where T a are the 45 SO(10) generators written as 16×16 matrices. This expression
should be integrated over d4θ as well as over d4x. Writing out this action in
component form yields an expression equivalent to 4.32-4.38. In this GUT case
there is no sum over i anymore as there is just one type of chiral supermultiplet
and there are not three different T a generators anymore as there is just one gauge
group. The terms 4.33 and 4.36 become precisely equal to the SO(10) kinetic term
3.63.
Then there is the Higgs kinetic term:

LHK =
(
Φ10e

VM Φ10

)
D

; VH = 2gV aT a. (5.2)

Here the generators T a are written as 45 10 × 10 matrices. Now it is the bosonic
part of the component action (the GUT version of 4.32 and 4.37) that looks like
the kinetic Higgs term from SO(10).
To build gauge kinetic terms, we first construct SUSY GUT field strengths

W a
A =− 1

4
DD

[
DAV a + igfabc

(
DAV

b
)
V c
]

(5.3)

W
aȦ
s =− 1

4
DD

[
−DȦV a + igfabc

(
DȦV b

)
V c

]
. (5.4)
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Here fabc are SO(10 structure constants. The gauge kinetic term is now given by

LGK =
1
4

[
W aAW a

A +W
a
ȦW

aȦ+
]
F

. (5.5)

Now we write down a mass term. The simplest option is to supersymmetrize 3.73:

−LFM =
[
yαβ(Φα

16)TCH10+1Φβ
16 + h.c.

]
F
. (5.6)

Again, the GUT hypothesis dictates that there is just one Yukawa coupling y.
There is no constraint on the actual values of the entries. The positive square
roots of the eigenvalues of yy† (that lead to particle masses) could be anything,
but for every generation there is just one universal value. Note, however, that we
do not predict equal (particle and sparticle) masses within one generation, as the
bosonic components of Φ16 receive additional mass terms from soft SUSY breaking
terms and because, even with a Higgs superfield in the 10, the 16 components do
not receive equal vevs as long as tanβ 6= 1. But we will come to this.
So much for the supersymmetric part of our SUSY GUT. As we have argued before,
if we want to connect with the very basic observation “There are no sparticles
at the electroweak scale” we have to invoke a SUSY-breaking mechanism that
provides additional mass constraints for sfermions, sleptons and gauginos. These
soft breaking are postulated to result from some “higher scale physics”, the GUT
scale is not the highest scale in the theory. At this higher scale it might be possible
to describe this soft breaking in terms of interactions between unified superfields,
but at the GUT scale we can only write component terms. For our convenience, to
have a complete overview, we will just repeat them.

−LSOFT =m2
0

∑
i

φ2
i +

(
M 1

2

∑
i=1,2,3

λiλi −BµφH1φH2

+A0

∑
i,j

[
yeij(φLl)iφH1(φRe)j + ydij(φLq)iφH1(φRd)j

+ yuij(φLq)iφH2(φRu)j
]

+ h.c.
)
. (5.7)

We furthermore have a Majorana mass term for neutrinos and a Higgs mass term.

5.2 Down from the GUT scale to the electroweak scale

Below MGUT SO(10) symmetry breaks to SU(3)× SU(2)×U(1). The vector and
gaugino components of 33 of the 45 vector superfields acquire GUT-like masses.
Therefore, their interactions are frozen out. The chiral superfields are still in one
multiplet but this is statement does not have any physical implications: on check-
ing the generator matrices corresponding with the still massless vector superfields
(just like T 1 − T 12 in the SU(5) case) one understands that effectively the chiral
superfields are in SM multiplets already. The 10 Higgs chiral superfield first breaks
in a 5 and a 5. The triplet parts of both 5-plets become GUT-like heavy, the dou-
blet parts are still massless.
Around 1010 GeV the Higgs singlet gets a vev, providing a Majorana mass term
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for righthanded neutrinos. (This Majorana mass term could also be formed with-
out the inclusion of a Higgs field, but that would not be in accordance with the
GUT-picture we have of mass terms.)
Due to the soft SUSY breaking all sfermions, sleptons, gauginos, Higgsinos and
four out of the five Higgs bosons acquire masses in the region between the TeV
scale and, say, 200 GeV. Below that , we have only SM fields and interactions left.
In the SM regime fermions, the remaining Higgs boson and the weak bosons be-
come massive. A subtle inheritance from SUSY physics applies here: up quarks
and neutrinos get a Higgs vev v1, down quarks and electrons get a Higgs vev v2.
So, again, Yukawa eigenvalue unification does not necessarily imply particle mass
unification. As the two Higgs SUSY vevs v1 and v2 are related to the Higgs SM
vev v as √

v2
1 + v2

2 = v, (5.8)

we will set
v1 = sinβ, v2 = cosβ. (5.9)

β is a free parameter. In this notation, there is a factor tanβ difference between
the (Dirac) mass value for up quarks and neutrinos and the mass value for downs
and charged leptons resulting from the same Yukawa eigenvalue.
One concluding remark: in fact it only makes physical sense to refer to particle
masses at an energy scale low enough for the Higgs fields to take their vacuum
expectation value configurations. Above this scale, by “mass” we technically mean
“product of actual Yukawa eigenvalue and Higgs vev” (times 1√

2
, see the discussion

around 1.37).
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Chapter 6

Yukawa unification in SUSY
SO(10)

After having constructed our minimal SO(10) SUSY GUT, in the phenomenologi-
cal part of this thesis we want check how well these GUT-scale assumptions match
low-energy observables. Just like the coupling constants, the running of all relevant
parameters is described by appropiate renormalization group equations (RGE). We
will focus on the RGE evaluation of Yukawa matrices yu, yd, ye and yn. We want
to investigate to what extent the postulated Yukawa unification is phenomenolog-
ically viable.
We do so because we consider this Yukawa unification, after the gauge coupling
unification perhaps, the most appealing prediction made by supersymmetric Grand
Unification Theories. Once we have expressions for GUT-scale Yukawa matrices,
we can immediately calculate the quark and lepton (Dirac) mass spectrum. (To
actually predict squark and slepton masses, we would also need the RGE evalu-
ated mass parameters of all soft SUSY breaking parameters. That seems a much
harder job, beyond this thesis: as these soft parameters start running outside phe-
nomenological reach, we do not have any boundary conditions to put into their
RGE.)

6.1 Experimental input at the electroweak scale

First we need our feet put firmly on the ground. At MZ = 91.19 GeV the Particle
Data Group [3] can provide us with all SM fermion masses (except for neutrinos of
course) and parametrizations of the CKM quark mixing matrix and PMNS lepton
mixing matrix.
Throughout this chapter we will always present masses in matrix notation. In
the rows we have the up quark mass, down quark mass, electron mass and Dirac
neutrino mass. There are three columns, one for each generation.

mu mc mt

md ms mb

me mµ mτ

mD
νe

mD
νµ

mD
ντ

 (6.1)
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All masses will be denoted in MeV.
The Particle Data Group gives

m(MZ)PDG =

 1.27 619 171700
2.9 55 2890

0.48657 102.718 1746.24

 . (6.2)

In the neutrino sector assigning initial values is quite problematic. We believe in the
seesaw mechanism, an electron-sized Dirac mass state and a very heavy Majorana
mass state together result in very light and very heavy eigenstates. However, as
there have only been (rather unprecise) observations of these light eigenstates,
nothing could be said. One option now is to leave out the neutrinos out altogether.
The other option is to invent “reasonable” (that is, electron-scale and increasing
through the three generations) Dirac masses:

mD
ν (MZ) =

(
10 100 1000

)
. (6.3)

We will investigate both. The worth of the second approach will not be in its
predictions for Dirac neutrino masses, but it might show to what extent the high-
scale evaluation of the other nine fermions is affected by the neutrino presence.
Now for the mixing matrices. The CKM matrix V (and the PMNS matrix P too)
can be parametrized in terms of three angles and a phase factor:

V =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 (6.4)

Here cij ≡ cos θij , sij ≡ sin θij . In defining the CKM matrix, it is common use to
parametrize even further:

sin θ12 = λ, sin θ13 = Aλ2, θ13 =
Aλ3η

sin δ
, tan δ =

η

ρ
. (6.5)

The most recent PDG fit that we will work with has

λ = 0.2272, A = 0.818, ρ = 0.221, η = 0.34. (6.6)

The PMNS matrix is not as well known as its quarklike equivalent. The most
recent Particle Data Group fit has (in rad)

θ12 = 0.589921, θ23 =
π

4
, θ13 = δ = 0. (6.7)

The only observables are the absolute values of the matrix entries. Using these
parametrisations, they read

|V | =

 0.973841 0.227198 0.003890
0.227085 0.972959 0.042225
0.008172 0.041609 0.999101

 (6.8)

and

|P | =

 0.830984 0.556296 0
0.393360 0.587595 0.707107
0.393360 0.587595 0.707107

 . (6.9)
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We realize that given the uncertainty in fit parameters we do not have any control
over the fifth and sixth digits in these expressions. We only write these down as to
be able to observe tiny changes after renormalization group evolution.
In the first chapter we already saw how to get from Yukawa mass eigenvalues y
(the entries of the diagonalized Yukawa matrices) to masses m:

m = y × v√
2
. (6.10)

Again, v is the vacuum expectation value of the Higgs field. Anticipating a bit on
the next section, we mention that, in order to get rid of some factors of 4π, we have
solved the RGE for a new variable y′ that is related to y as y = 4πy′. There is no
harm at all in this renaming, we just mention it to state clearly that (dropping the
primes already), in all calculations we have used

y = m× s, s =
1

4π
×
√

2
v
. (6.11)

So let us convert the PDG observables to initial values for our Yukawa matrices.
To investigate the effect of quark and lepton mixing we will write down a set of
Yukawa boundary conditions ignoring mixing effects and another one that does
take CKM and PMNS effects into account.

6.1.1 No mixing

In this case Yukawa matrices start out diagonal and remain so all the way up.
Therefore, boundary conditions are quite innocent:

yu(MZ) = Diag(1.27× s, 619× s, 171700× s), (6.12)

and the same for the other Yukawas.

6.1.2 Mixing

At the electroweak scale we have twelve Dirac masses. These are the square roots
of the eigenvalues of the matrices yuy

†
u, ydy

†
d, yey

†
e and yνy

†
ν . In the first chapter,

in 1.39, we saw how to decompose these matrixproducts:

yy† = UD2U †. (6.13)

The U matrices are connected to the quark and lepton mixing matrices:

V = U †
uUd P = U †

nUe. (6.14)

Now we are ready to write down initial weak scale values for the Yukawa matrices.
We are, however, faced with some ambiguity. Rewriting 6.13 we could end up with

U †
uyuy

†
uUu = D2

u, U †
uydy

†
dUu = V D2

dV
†, (6.15)

or
U †
dyuy

†
uUd,= V †D2

uV U †
dydy

†
dUd = D2

d. (6.16)
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Expressed either way, the RHS contains only observables. At the LHS we still have
the freedom to design Uu and Ud the way we like, only U †

uUd is fixed. The first
expression, 6.15 suggests taking Uu = 1 (which implies Ud = V ), that is, to work
in a basis where the up Yukawa matrix is diagonal. The second expression, 6.16
invites us to take Ud as the unit matrix and thus work in a down Yukawa diago-
nal basis. In the lepton sector we have exactly the same ambiguity. This is just
a reflection of the fact that whereas the Yukawa eigenvalues and (the rephasing
invariants of) the quark and lepton mixing matrices are physical observables, the
Yukawa matrices are not. We have checked extensively that all four approaches
(up or down diagonal, electron or neutrino diagonal) lead to different solutions for
Yukawa matrices at the GUT scale but that the aforementioned observables do end
up at the same values, precisely as we expected.
Having chosen one of these four routes, we see that there are even more choices to
be made. We still only know the products yy†. Every solution for a Yukawa matrix
can be right multiplied by a unitary matrix, thus rendering a new solution. Again,
just for checking the robustness of the equation framework, several routes were
explored. Using the “FindRoot” commando we had Mathematica suggest three
different sets of initial Yukawa values leading to correct eigenvalues and (absolute)
mixing elements at the weak scale. A fourth one, the easiest approach in fact,
yielded taking yu = Du, yd = V DdV

† (or, in the basis where downs start out diag-
onal, yu = V †DuV , yd = Dd). A fifth approach consisted of rewriting the RGEs in
such a way that only combinations yy† remain while all single y’s disappear. This
is done by right multypling 6.18 by y†d and left multiplying the hermitian conjugate
of 6.18 by yd. The LHS of this equation equals the time (log M) derivative of ydy

†
d.

We are rather relieved to report that, after solving the RGE, Mathematica ev-
ery time coughed up the same twelve physically meaningful eigenvalues, just as it
should. (From now, all “mixed” calculations will be done following the aforemen-
tioned fourth approach.)
Once the RGE have been solved, the GUT-scale Yukawa matrices are reconverted
into mass values and mixing matrices.

6.2 Standard Model Yukawa running

To warm ourselves up, we first study Yukawa evolution in the framework of the
Standard Model. In the first chapter we computed that, if it would exist at all, the
evaluation of coupling constants does not suggest so, such a non supersymmetric
GUT would live at a scale around 1.2×1013 GeV (see 1.78), so that is where we will
evaluate the RGE solutions. In the SM we have v = 246000 MeV. As SUSY GUT
addicts, we again (after the coupling constants analysis) hope to see some slight
tendencies to unification that will be hugely improved on in the supersymmetric
case.

6.2.1 SM Renormalization Group Equations

We get our Yukawa RGEs from the literature, from [10]. After converting to our
own notation (in [10] y† multiplies ψLψR whereas we have yψLψR in our Lagrangian
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1.35), these RGEs read as follows:

ẏu =
(
Cduydy

†
d + Cuuyuy

†
u + αu

)
yu (6.17)

ẏd =
(
Cddydy

†
d + Cud yuy

†
u + αd

)
yd (6.18)

ẏe =
(
Ceeyey

†
e + Cνe yνy

†
ν + αe

)
ye (6.19)

ẏν =
(
Ceνyey

†
e + Cνν yνy

†
ν + αν

)
yν . (6.20)

The derivative is with respect to t = logM .
We have

Cdu = −3
2 Cuu = 3

2 Cdd = 3
2 Cud = −3

2
Cee = 3

2 Cνe = −3
2 Ceν = −3

2 Cνν = 3
2

(6.21)

and
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†
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†
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(6.22)

Note that in these equations the ambiguity in Yukawa matrices we found before
is reflected: we can freely right multiply a Yukawa matrix without changing the
physical contents of these RGE.
We have used the prescriptions for the coupling constants that exactly fit experi-
mental values at the electroweak scale (recall the discussion around 1.80). Thresh-
old effects at 120 GeV (Higgs boson) and 171.7 GeV (top quark) were included.

6.2.2 Results

No mixing, no neutrino contribution

At the GUT scale, the nine fermion masses have run to

m(MGUT ) =

 0.588194 286.687 89279.5
1.37626 26.1014 1221.61
0.492252 103.918 1766.68

 . (6.23)

No mixing, neutrino contribution

Now we have twelve running fermions masses, that at MGUT are found at

m(MGUT ) =


0.588198 286.689 89280.3
1.37627 26.1016 1221.62
0.492256 103.918 1766.68
10.8843 108.843 1088.41

 . (6.24)
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Figure 6.1: One-loop running of the top quark mass.

Mixing, no neutrino contribution

We find

m(MGUT ) =

 0.588194 286.687 89279.5
1.37624 26.0955 1221.9
0.492252 103.918 1766.68

 . (6.25)

Mixing, neutrino contributions

In this ultimate case we find

m(MGUT ) =


0.588198 286.689 89280.3
1.37625 26.0957 1221.91
0.492255 103.918 1766.68
10.8843 108.841 1088.42

 . (6.26)

The absolute values of the CKM matrix have run, (or better, have crept) to

|V |(MGUT ) =

 0.973832 0.227226 0.004367
0.227083 0.972721 0.047402
0.009175 0.046710 0.998866

 , (6.27)

while the PMNS matrix now reads

|P |(MGUT ) =

 0.830983 0.556297 1.5× 10−8

0.393355 0.587583 0.707119
0.393369 0.587604 0.707094

 . (6.28)

We also plot the running of the top mass (6.1) and combine the bottom and tau
evolution in one graph (6.2). (Recall that in the SM case logMGUT = 30.15.)

6.2.3 Conclusions

Three conclusions can be made.
First, the inclusion of Dirac masses for neutrinos (as compared to not taking neu-
trinos into account at all) affects the running of other observables only in a very
small way: the relative effect is always smaller than 10−6.

84



5 10 15 20 25 30 35
logHML

500

1000

1500

2000

2500

Mass MeV

Figure 6.2: One-loop running of the bottom quark and the tau lepton mass. (The
bottom quark starts out highest.)

Second, mixing effects are very tiny as well. This is reflected in the fact that the
CKM matrix has hardly run (compare 6.8 and 6.27). The same goes for the PMNS
matrix. The most significant effect of mixing inclusion is in the down quark sector.
As the top quark mass is by far the largest number around, it has the biggest effect
on the running of other fermion masses. On examing the RGE we see that the top
quark is most closely related to the bottom quark. So, once we allow for quark
mixing, the down sector is affected by the large value of mt, while the up sector is
much more insensitive to bottom quark contributions.
Third, hardly a hint for Grand Unification can be found in the running of particle
masses. A very optimistic look at the running of the bottom quark and the tau
lepton might yield small hope... could these be connected? Well, at least we can
be sure that there is much room for improvement in a supersymmetric Yukawa
analysis.

6.3 MSSM Yukawa running

Here we are. In a SUSY treatment of Yukawa evolution the RGE look different.
However, the most striking new effect is the presence of two Higgs fields now. As
we have seen in subsection 4.2.5, the masses of down quarks and electrons result
from interactions with the Higgs field H1 that takes a vev v1 while up quark and
neutrino masses invoke the Higgs field H2 with its vev v2. Their ratio, commonly
denoted as

tanβ =
v2
v1
, (6.29)

is a new free parameter. So, the mass difference between, say, the top and bottom
quark mass can now be explained by the ratio of their vevs instead of by “Yukawa
non-unification”. We will solve RGE for tanβ = 1 (which may seem most natural),
tanβ = 10 and tanβ = 50 (which is quite popular in the literature, it will come
back in the next chapter).
As we have

√
v2
1 + v2

2 = v, with v the SM Higgs vev of 246 GeV, we will work with

v1 = v cosβ, v2 = v sinβ. (6.30)
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6.3.1 MSSM Renormalization Group Equations

At the one loop level the SUSY RGE have the same structure as the SM ones
(6.17-6.20). The coefficients now read:

Cuu = 3 Cud = 1 Cdu = 1 Cdd = 3
Cee = 3 Cνe = 1 Ceν = 1 Cνν = 3.

(6.31)

Moreover, we now have
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+ Tr
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3yuy†u + yνy

†
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]
. (6.32)

We also wrote a Mathematica program that solves two-loop Renormalization Group
Equations. Its essentials can be found in the Appendix. The equations were taken
from a very recent article by Martin and Vaughn [11]. These are quite lengthy ex-
pressions 1. The parts in parentheses in 6.17-6.20 now contain additional products
of four Yukawa matrices. The same goes for the traces.

6.3.2 Results

RGE were solved for three different values of tanβ, mixed and non-mixed intial
values, with or without neutrino contributions and at one-loop or two-loop level,
thus making up for 24 different solutions. As their complete ensemble might not
too much increase the readibility of this thesis, we will present the most interesting
sample. Let us just start off with the one we, from a GUT-point of view, look most
forward to (two-loop, mixing, neutrinos). After that we can investigate the effects
of these assumptions.

Two-loop, mixing, neutrino contributions

First we take tanβ = 1. This turns out to be a unfortunate choice. Around 1010

GeV a fixed point (Landau pole) is reached, where yu blows up and nothing can
be said anymore. The problem is in the up quark sector. As the Higgs vevs v1 and
v2 are equal now, the ratio between yu and yd eigenvalues is as big as the ratio of
their masses.
We quickly turn to the case tanβ = 10. Now the masses behave well all the way
up to MGUT . At the GUT scale we find the following masses:

m(MGUT ) =


0.624838 304.549 132527
0.930383 17.649 1082.4
0.333333 70.37 1201.82
11.5123 115.211 1152.14

 . (6.33)

1Martin and Vaughn did not include neutrino RGE. They (neutrino RGE) actually seem to be
quite impopular, hardly any author mentions them, and only up to one-loop. Therefore we only
included one-loop neutrino RGE.
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Figure 6.3: Two-loop bottom-tau running for tanβ = 10. The bottom starts out
highest.
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Figure 6.4: Two-loop top quark running for tanβ = 50.

(Recall that in the supersymmetric approach MGUT = 1.58 × 1016 GeV, and
logMGUT = 37.30.)
The bottom mass seems to have come pretty close to the tau mass (it has passed
it). At the other hand, for complete third generation Yukawa unification we would
require mt

mb
= 10, while we find a ratio of 122. In other generations we again do not

observe any unifying tendencies at all. But let us plot the bottom-tau evolution in
figure 6.3. This yields quite a thrill: that looks a lot more like unification than the
result in the SM case!
We also plot the running of the top quark mass (figure 6.4), just to check its be-
haviour. We see it neatly decreasing all the way up to MGUT .
Now for tanβ = 50. We curiously calculate the GUT-scale masses:

m(MGUT ) =


0.683217 333.055 173973
1.33216 25.2726 2128.2
0.47728 100.813 2079.14
12.6186 130.222 1305.06

 . (6.34)

Now the bottom quark and tau lepton end up even closer! Moreover, they have
not crossed (yet). We instantly plot their running and acquire, in figure 6.5, this
chapter’s most illuminating, GUT-allowing plot. There seems to be a convincing
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Figure 6.5: Two-loop bottom-tau running for tanβ = 50.
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Figure 6.6: Two-loop top quark running for tanβ = 50.

unification, at a scale a bit higher perhaps than the GUT-scale we work with. The
situation concerning full third generation Yukawa unification has also improved:
now we find mt

mb
= 82 instead of 50.

We also plot the running of the top quark in this framework, in figure 6.6. It
curiously endsup at almost the same scale as where it started, after having made
a dip however.

One-loop versus two-loop

To investigate the effect of two-loop RGE (for quarks and charged leptons), we
solve the one-loop version (still taking into account mixing effects and neutrino
running) and compare results.
For tanβ = 1 the troubles are the same. Now the fixed point is reached at 106

GeV already. The up quark blows up and takes the other fields with it. To show
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Figure 6.7: One-loop top quark running for tanβ = 1.
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Figure 6.8: One-loop bottom quark running for tanβ = 1.

this effect for once, we plot the runnning of the top and bottom quark in figures
6.7 and 6.8.
Now for tanβ = 10. At the GUT-scale we find the following masses (that should
be compared with 6.33):

m(MGUT ) =


0.614689 299.603 130646
0.925745 17.5611 1078.94
0.331925 70.0727 1196.69
11.4596 114.684 1146.87

 . (6.35)

That is quite a small effect2. Let us see what we get for tanβ = 50:

m(MGUT ) =


0.677924 330.475 175124
1.32054 25.0523 2129.12
0.473478 100.01 2062.4
12.6392 130.401 1306.81

 . (6.36)

On comparing with 6.34 we see that the corrections are a bit larger than in the
case tanβ = 10, about 1% at most. The most notorious change is achieved for
the tau lepton, and points right into the direction of bottom-tau unification. We

2especially when considering all the efforts made in the two-loop battle with Mathematica!
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understand why two-loop corrections are more significant now: due to the larger
ratio of v2 and v1 the Yukawa eigenvalues differ less and therefore the tau lepton
mass is more heavily influenced by the top quark mass.

Mixing effects

In the SM we saw there was hardly any mixing at all. Let us investigate what is
the case now.
For tanβ = 10 (by now we have understood that tanβ = 1 simply does not yield
any physically relevant result at all) we compare GUT-scale masses acquired under
diagonal Yukawa assumptions with 6.33. We find

m(MGUT ) =


0.62484 304.55 132529
0.930376 17.6451 1082.66
0.333333 70.3699 1201.82
11.5123 115.124 1153.02

 . (6.37)

Again, hardly any change at all. No mass has changed more than 1
1000 We thus

expect to find GUT-scale CKM and PMNS mixing matrices almost unaffected. We
find

|V |(MGUT ) =

 0.973852, 0.227165 0.003023
0.227086 0.973197 0.0363322

0.00703068 0.0358022 0.999334

 (6.38)

and

|P |(MGUT ) =

 0.830987 0.556292 3.76× 10−8

0.393365 0.588055 0.706554
0.393050 0.587137 0.707659

 . (6.39)

which are to be compared with 6.8 and 6.9 respectively. The most influential
diagonal terms have hardly changed, but small off-diagonal terms are recieving sig-
nificant effects, about 15%. In an article by Allanach et.al. [1], very similar results
were found. (Recall from 6.6 that we did include the CP violating phase in our
CKM parametrization.)

We repeat this analysis for tanβ = 50. This yields (compare with 6.34)

m(MGUT ) =


0.683377 333.088 174085
1.33232 25.2699 2129.4
0.477339 100.826 2079.45
12.6209 126.233 1347.05

 , (6.40)

which is, again, an indication for the smallness of quark and lepton mixing effects.
For completeness we plot the GUT-scale versions of the CKM and PMNS matrix
for this tanβ = 50 case:

|V |(MGUT ) =

 0.973852 0.227164 0.00296113
0.227098 0.973341 0.0321457

0.00622026 0.0316769 0.999479

 (6.41)
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and

|P |(MGUT ) =

 0.831034 0.556221 8.21× 10−7

0.406118 0.60677 0.683299
0.380066 0.567845 0.730138

 . (6.42)

We conclude that mixing effects are small, also in this case, but a bit more signifi-
cant than for tanβ = 10.

Dirac neutrino influences

Here we compare (two-loop, mixing included) GUT scale masses calculated without
any neutrino contribution with 6.33 (for tanβ = 10) and 6.34 tanβ = 50).
Taking tanβ = 10 now yields

m(MGUT ) =

 0.624828 304.545 132524
0.930383 17.649 1082.4
0.333333 70.3698 1201.81

 , (6.43)

while tanβ = 50 results in

m(MGUT ) =

 0.683204 333.048 173967
1.33216 25.2726 2128.19
0.47728 100.813 2079.12

 . (6.44)

So, the neutrino corrections on other masses are tiny: all relative effects are smaller
than 10−4.

6.3.3 Conclusions

We have solved Renormalization Group equations under a variety of assumptions.
We have seen beautiful plots suggesting bottom-tau unification, for tanβ = 10 as
well as for tanβ = 50. The latter case yields the most illuminating plot, but in the
former case the running of the GUT scale appears less close to the Landau pole.
There are no indications for other unifications.
The case tanβ = 1 should not be taken under consideration at all, it inescapably
leads to fixed points which induce exploding masses for all fermion fields.
The difference between one-loop and two-loop results is small, but not negligible.
It actually improves a lot on bottom-tau unification for the case tanβ = 50.
Quark and lepton mixing matrices are only slightly affected by the running. There-
fore, solutions obtained under initial diagonal Yukawa assumptions are as suitable
to work with as solutions resulting from the more complicated mixed case.
Many authors do not write down RGE for neutrinos. As long as we do not know
its light and heavy mass eigenstates and, therefore, their Dirac masses, this indeed
makes sense. We showed that lepton-sized neutrino Dirac masses do run consid-
erably, just like all other masses, but their effects on other Yukawa couplings can
safely be discarded.
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Chapter 7

Dermisek and Raby’s family
symmetric approach

If we understand one thing from our Yukawa analysis, it is that we can never arrive
at complete Yukawa unification at the GUT scale. There is some hope in the third
generation: the third (largest) eigenvalues of yuy

†
u, ydy

†
d and yey

†
e seem to end up

at pretty much the same level. (This would induce mt
tan[β] = mb = mτ .) In the first

and second generation such a unification seems impossible.
From 2002 Radovan Dermisek and Stuart Raby (DR) have been constructing real-
istic SUSY GUT models ([5], [6], [7]). In this last chapter we want to discuss and
slightly check their ideas. We mainly follow their 2006 article [5].

7.1 Construction of DR GUT-scale Yukawa matrices

DR assume that at the GUT level there is an additional D3 symmetry. The third
generation is in a singlet rep of this discrete group, the first and second generation
are in a doublet rep. By assuming interactions with a 45 adjoint rep of SO(10)
and several “flavon” fields (SO(10) singlets, but non-trivial in D3), they are able
to construct Yukawa matrices yu, yd, ye and yν that can be parametrized with
just 11 real parameters (Yukawa textures). These Yukawa matrices discriminate
between SO(10) 16-plet members and therefore Dermisek and Raby state that
after RGE evolution back to the electroweak scale (this is a “top-down” approach)
their Yukawa matrices can connect with experimental values. So let us investigate
how this comes about.

7.1.1 D3

The group D3 is formed by all possible rotations in three dimensions that leave an
equilateral triangle abc invariant. It has six elements, divided in three classes: the
first class contains the identity operation (denoted as E), the second class has two
rotations (C 2π

3
and C 4π

3
) and three mirroring operations (Ca, Cb, Cc) are in the

third class. As there are three classes, there should be three non-equivalent irreps.
From (finite) group theory we have a relation between the number of elements g of
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a group and the dimensionality dν of its irreps ν:∑
ν

d2
ν = g. (7.1)

So there is just one possibility: we have two one dimensional irreps, 1A and 1B,
and one two-dimensional irrep 2. As we are interested in D3 invariant objects, we
want to find out how we can decompose the tensor products of these reps.
To this end we first look, in each of the three reps 1A, 1B and 2, for representations
of the elements E, C 2π

3
and Ca1 by examining the products of all six group elements.

This yields
D3 E C3 Ca
1A 1 1 1
1B 1 1 −1

2
(

1 0
0 1

) (
ε 0
0 ε−1

) (
0 1
1 0

) (7.2)

where ε = e
2πi
3 . From these reps we find characters (the trace of the reps, these are

class invariant objects) and from there we find the decompositions we were looking
for. We get

1A ⊗ 1A = 1A, 1A ⊗ 1B = 1B, 1B ⊗ 1B = 1A (7.3)
1A ⊗ 2A = 2A, 1B ⊗ 2A = 2A (7.4)

2A ⊗ 2A = 1A ⊕ 1B ⊕ 2A. (7.5)

Let us try to find an actual prescription for finding the two singlets and the doublet

in the decomposition 7.5. If we take ψ1 =
(
x1

y1

)
and ψ2 =

(
x2

y2

)
we have2

(ψ1 ⊗ ψ2)1A
=x1y2 + y1x2 (7.6)

(ψ1 ⊗ ψ2)1B
=x1y2 − y1x2 (7.7)

(ψ1 ⊗ ψ2)2 =
(
y1y2

x1x2

)
. (7.8)

These are the decompositions we were looking for. We now know how to extract
an D3 invariant (1A) quantity from the product of two D3 doublets. The product
of three D3 doublets ψ1 ⊗ ψ2 ⊗ ψ3 is also seen to possess a 1A part: using 7.6 we
take the 1A part of the product of the 2A (using 7.8) part of ψ1 ⊗ ψ2 and ψ3:

(ψ1 ⊗ ψ2 ⊗ ψ3)1A
= x1x2x3 + y1y2y3. (7.9)

1Once we have reps for these three elements we can construct the other element’s reps by
C 4π

3
= C2

2π
3

, Cb = CaC 2π
3

and Cc = CaC
2
2π
3

2To check these statements one can multiply ψ1 and ψ2 by E, C 2π
3

and Ca. The quantity

x1y2 + y1x2 is then seen to transform under these operations in the same way as does the 1A rep
(it does not change at all), the quantity x1y2 − y1x2 transforms as the 1B etcetera.
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7.1.2 The DR superpotential

Although we are more interested in the final expressions for the four Dirac Yukawa
matrices proposed by DR, we will provide some basic motivation in this section.
DR get their Dirac Yukawa matrices from the following superpotential:

WDIRAC =(Φ16)3Φ10(Φ16)3 + (Φ16)aΦ10χa

+ χa

(
Mχχa + Φ45

φa

M̂
(Φ16)3 + Φ45

φ̃a

M̂
(Φ16)a + A(Φ16)a

)
. (7.10)

The third generation SUSY 16-plet is in a D3 1A singlet. Therefore it can combine
with a Higgs 10-plet (1A as well) in the simplest form of a mass term. This is the
first term of 7.10, leading to Yukawa unification in the third generation (all four
Yukawa matrices will have equal (33)-elements).
The 16-plets carrying chiral superfields of the first and second generation are to-
gether in a D3 2 multiplet (Φ16)a. To form SO(10) and D3 invariant mass terms
interactions with non-trivial D3 fields are needed.
The fields χa (16, 2) and χa (16,2) (Froggatt-Nielsen states) are supposed to have
an Mχ mass eigenvalue even above the GUT scale. Below, we can integrate these
fields out. Using the identity∫

DχDχe−
R
ωχ+ωχ+χMχ = detMeωM

−1ω (7.11)

(which follows from completing the exponent and using translation invariance) we
arrive at an effective superpotential

Weff =
1
Mχ

(
(Φ16)aΦ10

[
Φ45

φa

M̂
(Φ16)3 + Φ45

φ̃a

M̂
(Φ16)a + A(Φ16)a

])
. (7.12)

Now all fields except for the Φ16 multiplets take vevs. The vev of Mχ is supposed
to discriminate between 16-plet members:

< Mχ >= M0 (1 + αX + βY ) . (7.13)

Here X denotes the U(1) charge of a superfield in the symmetry breaking process
SO(10)→ SU(5)×U(1), Y is the standard hypercharge. The parameters α and β
can be adjusted to fit. This is the crucial point in the analysis, right here DR explain
for the differences between up, down, electron and neutrino Yukawa matrices that
from our phenomenological approach seem impossible to evade.

The flavon superfields φa and φ̃a take vevs
(
φ1

φ2

)
and

(
0
φ̃2

)
respectively. A is

a 1B singlet taking a vev A.
Now we should look for D3 invariants. For example, the leading term of the last
part of 7.12 reads 1

M0
(Φ16)aΦ10A(Φ16)a, which has D3 transformation

2⊗ 1A ⊗ 1B ⊗ 2 = 2⊗ 2. (7.14)

So, on examining 7.6 we expect that this term will contribute to the (12) and (21)
entries of the four Yukawa matrices. DR actually have a parameter ε′ = A

M0
on
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that entry.
This has only been a very hand-waving picture of the analysis that brings DR to
their postulated Yukawa matrices. The precise calculation is very complicated. I
propose to take out the bottom line: by assuming GUT symmetry breaking vevs like
7.13 and a D3 family symmetry that treats generations in different ways Dermisek
and Raby argue that in their SUSY GUT model there can be differences between
the Yukawa matrices yu, yd, ye and yν .

7.1.3 DR Dirac Yukawa matrices

When the smoke around their superpotential clears, Dermisek and Raby come up
with their Yukawa matrices depending on just 7 parameters, four of which are
complex, making up for a total of 11 adjustable real Yukawa textures:

yu =

 0 ε′ρ −εξ
−ε′ρ ε̃ρ −ε
εξ ε 1

λ (7.15)

yd =

 0 ε′ −εξσ
−ε′ ε̃ −εσ
εξ ε 1

λ (7.16)

ye =

 0 −ε′ 3εξ
ε′ 3ε̃ 3ε

−3εξσ −3εσ 1

λ (7.17)

yν =

 0 −ε′ω 3
2εξω

ε′ω 3ε̃ω 3
2εω

−3εξσ −3εσ 1

λ. (7.18)

Just for the record, we mention the connection between these Yukawa textures and
the vevs of the fields in 7.12:

ξ = φ2

φ1
ε ∝ φ1

M̂
σ = 1+α

1−3α

ε̃ ∝ φ̃2

M̂
ε′ ∼ A

M0
ρ ∼ β.

(7.19)

7.1.4 χ2 analysis

Dermisek and Raby have succeeded to write a complete SUSY GUT in terms of
just 23 parameters. First we have three parameters that set the scale of Grand
Unification: MGUT , αGUT and a third parameter that describes a small correction
of α3 as to make coupling constants really unify3. Then we have the 11 Yukawa
textures. In the sparticle region we have universal sfermion and gaugino masses m16

3In other words: DR define the GUT scale at the exact meeting of α1 and α2 and manipulate
α3 a bit. This yields MGUT = 1.5646 × 1016 GeV, instead of our all-three-compromis value of
1.5849× 1016 GeV
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and M 1
2
, the soft SUSY breaking parameter A0 and the Higgs mass parameter µ.

In the Higgs sector we furthermore have the two Higgsino masses and tanβ. Finally
we have the three Majorana neutrino masses that provide the seesaw mechanism.
Using a (not published) two-loop SUSY RGE framework that runs from MGUT

down to the electroweak scale (or even lower, including three loop QCD effects,
for light fermion masses) Dermisek and Raby are able to connect their 23 GUT-
scale parameters to 23 low-scale observables such as quark and lepton masses,
their ratios, low-energy values of coupling constants and CKM and PMNS matrix
elements. They then perform a χ2 analysis as to determine the best fitting values of
the GUT-scale parameters and manage to find a surprisingly low χ2 value. Having
these best fitting GUT-scale parameter values in hand, they use them to predict
SUSY and Higgs spectra, neutrino masses (light eigenstates), remaining CKM and
PMNS elements, a leptogenesis governing parameter ε1, leptonic dipole moments
and branching ratios for lepton flavor violating decays.
At the moment more research to the connction between DR’s fitted GUT-scale
variables and new low energy variables like branching ratios from B-physics is
being done [2]. It is not clear whether the DR model will survive all these new
tests, but the composition of a predictive SUSY GUT is a major achievement in
itself.
In the last bit of this thesis we will try to connect our own results from Yukawa
RGE evolution with the DR Yukawa matrices 7.15-7.19.

7.2 Analysis of DR Yukawa matrices

DR fit tanβ = 50.34. So let us take our working two-loop solution, including quark
and lepton mixing, and neutrinos, and check what we get.
DR use the following fit:

(λ, λε, σ, λε̃, ρ, λε′, λεξ) =(0.62, 0.03, 0.87, 0.0063,−0.0059,−0.0021, 0.04)
(Φσ,Φε̃,ΦρΦξ) =(0.637, 0.453, 0.709, 3.609), (7.20)

where the complex phases are in rad.
On constructing the DR Yukawa matrices and calculating its associated mass eigen-
states (taking care of that factor 1

4π we once relieved our Yukawa matrices from),
we arrive at the following mass spectrum:

m(MGUT ) =


1.24449 240.58 108083
1.85628 27.9108 2146.4
0.499149 103.085 2180.51
43.794 6651.63 109324

 . (7.21)

That is quite a bit off from our fit 6.34. All quark masses have run in the same
direction, but in some cases (the up quark, most notably) the distance covered is
calculated much smaller by DR than by us. A positive point is that bottom-tau
unification, resulting from the GUT-scale DR Yukawa matrices in this case, takes
place at almost the same mass and with the same accuracy as we calculated, al-
though in the DR case the bottom mass has already crossed the tau mass.
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The most severe troubles are in the up sector. Therefore we have thought of consid-
erably raising the Dirac tau neutrino mass which is, after all, still an unobserved,
and therefore adjustable, parameter. We hoped that a huge neutrino contribution
could tame the top running. Perhaps they could even meet at a reasonable mass,
thus fulfilling DR’s top - tau neutrino unification.
However, this turned out to be an unrealizable hypothesis. As we raise the tau neu-
trino mass, the top mass increases as well. We can actually make these masses meet,
but at an absurd mass level. (Remember that DR’s top-bottom-tau-tauneutrino
unification predicts mt = mντ = 50mb = 50mτ ). Taking electroweak Dirac neu-
trino masses of 10, 1000 and 100000 MeV for example yields

m(MGUT ) =


1.0809 526.92 361345
1.34274 25.4754 2380.81
0.494205 108.4 2414.65
20.1524 2080.18 396049

 . (7.22)

We can safely conclude that heavy Dirac neutrinos are not going to close the
gap between our analysis and DR’s. Differences are much more likely to result
from different input values or, most probably, from the DR calculation taking into
account more effects in their Yukawa running. It would be great to have a look at
their code.
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Chapter 8

Conclusions

We have come at the end of our trip from the electroweak to the exotic... and while
understanding the one issue, the next one would already pop up, leaving us with
more insight in Supersymmetric Grand Unification and many more questions. Let
us try to make up our mind in this concluding chapter.
We started off by studying the Standard Model. Floating on the fundamental
assumptions of gauge invariance, Lorentz invariance and renormalizibility it very
accurately describes interactions of all known particles and forces at and around
the electroweak scale of 91 GeV. However, apart from the unpleasant arbitrariness
in SM parameters, we saw a potential danger: scalar boson masses are unpro-
tected, and should be kept “by hand” from acquiring immense masses. When also
the understanding came that parameters such as masses and coupling “constants”
actually are functions of the energy probing scale M , we had found a way and a
reason to look for physics beyond the Standard Model.
Even if in the SM framework the coupling constants could not be made to fit, (the
best fit implied MGUT = 1013 GeV), we started exploring a SU(5) GUT, where all
fermion fields are in two different multiplets. In the more compact SO(10) frame-
work all fermion fields are embedded in just one irrep. Armed with a great deal
of representation theory, we investigated how to compose these unified multiplets,
gauge group generators and GUT-Lagrangians. When writing gauge invariant mass
terms, we saw how minimal SU(5) predicts partial Yukawa unification, yd = ye.
Full Yukawa unification, yu = yd = ye = yν is promised by SO(10) (the righthanded
neutrino can still form a Majorana mass term). We predicted the value of sin2θw
and connected the third integral quark charges to the fact that quarks come in
three colors. However, we found that the hierarchy problem is still present in a
GUT.
Then we included supersymmetry. The very elegant SUSY framework, that starts
off from extending the Poincare group by anticommuting supergenerators predicts
the existence of superpartners (of equal mass) for each known SM field. As these
have never been observed, we have to add some SUSY breaking effects. However,
these can be chosen such that they lift superpartner masses into regions still to
explore while not too much damaging SUSY’s greatest prediction: the solution of
the hierarchy problem by protecting scalar boson masses by Higgs-sparticle interac-
tions. From the GUT-point of view, these new sparticles were very welcome, their
inclusion makes coupling constants really meet, at an energy scale of 1016 GeV.
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From then, we studied SUSY GUTs. Composing a minimal SUSY GUT was not
that hard after having studied non-SUSY GUTs and the SUSY extension of the SM,
the Minimal Supersymmetric Standard Model, as long as we focused on the fields
already present in the SM rather then the results of all new SUSY interactions. It
was proved quite a technical job, however, to investigate whether we could as well
make particle masses meet at the GUT-scale. After reviewing how exactly masses
are related to Yukawa and mixing matrices, we had Mathematica solve two-loop
Renormalization Group Equations. We concluded that, for the case tanβ = 10
as well as tanβ = 50, there is strong evidence for partial Yukawa unification in
the third generation: at the GUT-scale the bottom quark tends to unify with the
tau lepton mass. Full third generation Yukawa unification was not observed: the
best result was obtained for tanβ = 50 where we found mt

mb
= 82 instead of 50. In

other generations tendencies towards unification were not seen. We furthermore
observed that corrections due to two loop corrections are very small, at most 1%.
Corrections resulting from the running of quark and lepton mixing matrices were
seen to be even smaller, about 1

1000 .
Led by the observation of some Yukawa unification in the third generation and the
absence of any in the first two generations we finally studied the family symmetric
model by Dermisek and Raby. Assuming complex interactions, and discriminating
between generations, they write down expressions for Yukawa matrices that bear
third generation unification. They claim that starting from these Yukawa matrices
they can solve RGEs as to very accurately fit and predict low-energy variables.
However, there are serious discrepancies between their results and ours. From our
point of view, it seems impossible to unify the top mass with the tau neutrino mass
at a value only 50 times higher than the bottom-tau mass.

We will conclude these conclusions by again stating that the running of MSSM
coupling constants and bottom and tau masses strongly suggest Superysmmetric
Grand Unification.

We also look ahead. At the one hand we would like to study the running
behaviour of the supersymmetric MSSM parameters as to build a tighter, more
sophisticated RGE framework that eventually should be able to do the same as
Dermisek and Raby’s: connecting a Supersymmetric Grand Unified Theory to an
accurate description of low-energy observables. At the other hand we should, once
we have properly arrived at the GUT-scale, continue to look up. We still need
an explanation for the nature of soft SUSY breaking terms as well as the GUT-
scale form of the Yukawas that even in the DR case contain eleven real parameters.
Mechanisms at an even higher scale (strings? non-commutative spacetime?) should
be studied as to set the next step in the ongoing quest for unification.
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Appendix A

Conventions

A.1 Essentials

Throughout this thesis we use +−−− metric:

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

We thus have γ0 = γ0, γi = −γi.
Next we actually define our gamma-matrices. We choose to employ the Weyl
representation:

γ0 =
(

0 1
1 0

)
γi =

(
0 σi

−σi 0

)
(A.2)

(NB: We are using a shorthand notation: these are four-by-four matrices! Every 1
denotes a two-dimensional unit-matrix.)
We see that in Weyl representation we have

γ0 =
(
γ0
)? =

(
γ0
)† =

(
γ0
)T =

(
γ0
)−1

. (A.3)

Next we define the γ5 operator:

γ5 = iγ0γ1γ2γ3 =


−1

−1
1

1

 (A.4)

We have {γ5, γµ} = 0 and (γ5)2 = 1. From the matrix representation of γ5 we
understand its use in the construction of projection operators. We define

PL =
1− γ5

2
PR =

1 + γ5

2
, (A.5)

102



which, when working on ψ =
(
ψL
ψR

)
, project out the left- and righthanded com-

ponents:

PLψ = ψL PRψ = ψR. (A.6)

Next we define the charge conjugation matrix C:

C = iγ2γ0 =
(
iσ2 0
0 −iσ2

)
. (A.7)

We have C = C? = −CT = −C† = −C−1.
C’s meaning in life is to define ψc, the charge conjugated spinor of ψ:

ψc ≡CψT (A.8)

=Cγ0ψ?. (A.9)

Now we want to check the behaviour of ψc under gauge transformations. In the first
chapter we have seen that the gauge transformation of a quantity f can generally be
written as f → eiT

aαa
f , where T a are the generators of the gauge transformation

and αa specify the gauge transformation.
So, if this is the way in which ψ transforms, ψc behaves like:

ψc → e−i(T
a)?αa

ψc =ei(−T
a)?αa

ψc

≡eiTaαa
ψc. (A.10)

We thus conclude that charge conjugated spinors transform in a way “opposite”
(or “conjugated”) to the transformation of the spinor fields they stem from. For
example, up quark fields are in the 3 rep of SU(3), so their charge conjugates,
“anti-up” fields, are in the 3 rep.
(Note that A.10 also goes for fields ψ.)

Additional useful objects (still working in shorthand notation) are

σµ =(1, σi) (A.11)

σµ =(1,−σi). (A.12)

From there we define

σµν =
i

4
(σµσν − σνσµ) (A.13)

σµν =
i

4
(σµσν − σνσµ) (A.14)

and

Σµν =
(
σµν 0
0 σµν

)
(A.15)
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A.2 SU(2) and SU(3)

A Lie group is fully characterized by the commutation relations between its gener-
ators T i which are summarized in structure constants f ijk:

[T a, T b] = fabcT c. (A.16)

SU(2) has structure constants f ijk = iεijk, where εijk is the antisymmetric Levi-
Civita tensor with ε123 = 1.
The fundamental rep 2 is chosen T i = σi

2 . σi are the Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ1 =

(
1 0
0 −1

)
. (A.17)

The normalization of the Pauli matrices is Tr
(
σaσb

)
= 2δab.

The structure constants of SU(3) are given by

f123 = 1, f147 = f516 = f246 = f257 = f345 = f637 =
1
2
, f458 = f678 =

1
2

√
3

(A.18)

plus all even and odd (minus sign) permutations. The fundamental rep 3 is com-
monly chosen T i = λi

2 . λi are the Gell-Mann matrices:

λ1 =

 0 1 0
1 0 0
0 0 0

 λ2 =

 0 −i 0
i 0 0
0 0 0

 λ3 =

 1 0 0
0 −1 0
0 0 0


λ4 =

 0 0 1
0 0 0
1 0 0

 λ5 =

 0 0 −i
0 0 0
i 0 0

 λ6 =

 0 0 0
0 0 1
0 1 0


λ7 =

 0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

 1 0 0
0 1 0
0 0 2

 . (A.19)

The Gell-Mann matrices have the same normalization as the Pauli matrices: Tr
(
λaλb

)
=

2δab.
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Appendix B

Associating LH fields to RH
fields

In 1.1.1 it was shown that σ2ψ?R transforms as a lefthanded spinor and vice versa.
This allows us to switch from a representation with LH and RH fields to one with
only LH fields, which is very useful when we want to combine several SM multiplets
in one GUT-multiplet.
I hope it is clear that we are in no way stating that σ2ψ?R is ψL, we just remark that
σ2ψ?R (or 5σ2ψ?R, or −iσ2ψ?R), has the same Lorentz transformation as a lefthanded
spinor χL.
We are thus free to associate to each RH field ψR a LH field χL in the following
way:

χL = iσ2ψ?R ⇔ ψR = −iσ2χ?L, (B.1)

which reads in four-spinor notation

χL = Cγ0ψ?R ⇔ ψR = −γ0Cχ?L. (B.2)

From this last expression we see that this relation between χ and ψ is just charge
conjugation.
Now we can ask ourselves how the structure of a kinetic term that involves righthanded
fields in the Lagrangian changes under this transformation. We have, in four-spinor
notation,

ψRi6DψR →
(
−γ0Cχ?L

)
i6D
(
−γ0Cχ?L

)
=− χTLC†γ0Tγ0i6D

(
−γ0

)
Cχ?L

=− χTLCi
(
∂µ − igT aAaµ

)
γµγ0Cχ?L;

where in the last step we have explicitly written out 6D.
As the object under consideration is a scalar after all , we can freely transpose it.
One minus sign however does slip in because we are interchanging two fermionic
quantities. The T a are Hermitian.

=χ†LC
Tγ0T

(
i[
←−
∂µ − igT aAaµ]

)T
CTχL

=χ†LCγ
0iγµT [

←−
∂µ − ig(T a)?Aaµ]CχL
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Now we partially integrate this whole expression as to have the derivative operator
work to the right again:

=− χ†LCγ
0iγµT

(
∂µ + ig(T a)?Aaµ

)
CχL

=χ†LCγ
0C−1CiγµT

(
∂µ − igT aAaµ

)
C−1χL.

Here we use the relation CγµTC−1 = −γµ twice:

=χ†Lγ
0i6DχL

=χLi6DχL. (B.3)

We thus conclude that the form of the kinetic term does not change. The co-
variant derivative does change, but we expected that: if we replace, for example,
dR fields that are in the 3 rep of SU(3) to dcL fields, we expect these fields to trans-
form in the 3 rep and that is exactly what the new form of the covariant derivative
implies.

Finally we investigate what a mass term looks like after a ψR → χL transformation.
Writing out, for once, the hermitian conjugate term as well, we have

ψLMψR − ψRM †ψL →− ψ†Lγ
0Mγ0Cχ?L + γ0Cχ?LM

†ψL

=− ψ†LMCχ?L + χTLC
†γ0†γ0M †ψL

=− ψ†LMCχ?L − χTLCM †ψL.

Again, we are free to transpose because we have two scalars here. We choose to
transpose the second term.

=− ψ†LMCχ?L − ψTLM?CχL (B.4)

We thus conclude that we can rewrite a theory containing left- and righthanded
spinors ψL and ψR to a new one that contains only lefthanded fields ψL and χL and
their conjugates, with the connection between ψR and χL given by B.2, without
spoiling Lorentz invariance. As the new fields χL are the charge conjugates of the
replaced fields ψR, they transform in the opposite rep. The old theory’s kinetic
and mass terms get replaced by ψLi6DψL plus B.3 plus B.4.
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Appendix C

Additional SM symmetries

We now shortly mention some additional symmetries that have not been postulated
but are nevertheless observed in the SM. At first sight it may seem strange that the
SM does not explicity demand baryon numberB and lepton number L conservation,
concepts that seem very natural. (B(q) = 1

3 for all quarks q, B(q) = −1
3 for all

antiquarks q and B = 0 for all others. L = 1 for all leptons, L = −1 for all
antileptons.) As long as we do not have righthanded neutrinos we even observe
conservation of the “family specific” lepton numbers and Le, Lµ and Lτ . These
symmetries are not crucial building blocks of the SM, they just follow from the
postulated fundamental symmetries Lorentz invariance, gauge invariance and the
demand for renormalizability. Thus, an eventual breakdown would not damage the
SM.
Apart from charge conjugation there are two other basic operations we can apply
on a Lorentz rep which are denoted P and T .
P describes a parity inverting operation:

φ(x)→φP (x) = ηPφ(x̃)

ψ(x)→ψP (x) = ηPγ
0ψ(x̃)

T aV a
µ (x)→Diag(1,−1,−1,−1)[T aV a

µ (x̃)], (C.1)

where x̃ denotes (t,−−→x ) and ηC are phases.
We also have the operation T of time inversion:

φ(x)→φT (x) = ηTφ(−x̃)

ψ(x)→ψT (x) = ηTγ5Cψ(−x̃)
T aV a

µ (x)→Diag(−1, 1, 1, 1)[T aV a
µ (−x̃)]. (C.2)

These are important (but still accidental) symmetries, as can be seen for example
from the fact that if ψ(x) obeys the Dirac equation, so do its three C,P and T
conjugates.
The Lagrangian of the SM is not invariant under each of these symmetries sepa-
rately. For example, P converts a left handed fermion field in a right handed one,
that is, a field that couples to SU(2) gauge bosons to one that does not.
Troubles arise from the question whether the SM is invariant under the combined
operation of C and P . In nature CP violating processes do occur (as was observed
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in K0 meson decays) but its origin is still an open question. The only CP violating
term in the SM is the one phase factor in the CKM-matrix. (If the CKM matrix
would be 2× 2 instead of 3× 3 there would not be such a factor. This is why the
existence of a third generation was actually proposed to explain CP violation.) But
it is not clear whether just this one phase factor can account for all CP violation
that is observed. We might even have to turn to a more complicated form of the
Higgs sector to solve the situation.
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