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There are a number of results of group theory presented in Herstein [1] (the counting

principles in Sections 2.5 and 2.11, Cayley’s theorem in Section 2.9 and the Sylow theorems

of Section 2.12, among others) whose proofs follow similar ideas. However, it is not apparent

that this is so. This handout covers the ideas necessary to tie these results together. The

important idea is that of an action of a group on a set.

Definition 1 Let G be a group and S a nonempty set. Then G is said to act on S if there

is a function from G × S to S, usually denoted (g, s) 7→ gs, such that es = s for all s ∈ S,

and for all g, h ∈ G and s ∈ S, that (gh)s = g(hs).

There can be different ways for a group to act on a set. The notation gs for the image

of (g, s) is ambiguous, but won’t cause problems since we will not consider two different

actions of a group on a set at a time. Before we get into properties of group actions, we give

many examples. Most of these examples will lead to a theorem in group theory. Note that

you have seen examples where you multiply one type of object by another, such as scalar

multiplication of vectors. In fact, this will lead off our examples.

Example 2 Let G be the group of nonzero real numbers under multiplication, and let S

be the set of all vectors in 3–space. Thus S = {(a, b, c) | a, b, c ∈ R}. Then G acts on S via

scalar multiplication. That is, g(a, b, c) = (ga, gb, gc) if g is a nonzero real number. Then for

any vector −→v , we have 1−→v = −→v , and if g, h ∈ G then (gh)−→v = g(h−→v ), since if −→v = (a, b, c)

then (gh)−→v = (gha, ghb, ghc) = g(ha, hb, hc) = g(h−→v ).

Example 3 Let G be a group and S = G. Then G acts on S by left multiplication. That

is, gs is defined to be the ordinary product of g and s in G. Associativity of multiplication

in G and properties of the identity then show this is an action of G on S. This example will

lead to a proof of Cayley’s theorem [1, Thm. 2.9.1].

Example 4 Let G be a group and S = G. Let us define an action of G on S by conjugation.

That is, if g ∈ G and s ∈ S (so s ∈ G), then we define the function by (g, s) 7→ gsg−1. To see

that this is an action of G on S, we check the definition. If s ∈ S then (e, s) 7→ ese−1 = s, so

the first property is satisfied. Second, if g, h ∈ G and s ∈ S then ((gh), s) 7→ (gh)s(gh)−1 =

ghsh−1g−1, and (g, (h, s)) 7→ g(hsh−1)g−1 = g(hsh−1)g−1. These are then equal, so this is

an action. This example will yield a proof of the counting principle in Section 2.11 of [1].
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Example 5 Let G be a group and H a subgroup of G. Let S be the set of all left cosets of H

in G. So S = {aH | a ∈ G}. Then G acts on S by g(aH) = gaH. That this definition is well

defined is left to the reader. To check that this is an action, we see that e(aH) = eaH = aH,

and if g, h ∈ G, then (gh)(aH) = ghaH = g(haH). Therefore this is an action of G on the

set of left cosets of H. The two results in Section 2.9 of [1] after Cayley’s theorem can and

will be proved by using this example.

Example 6 Let G be a group and S the set of all subsets of G with n elements (here n can

be any positive integer with n ≤ |G|). Then G acts on S via (g, X) 7→ gX = {gx | x ∈ X}.
Note that gX is a subset of G with n elements. To verify this is an action, we see that

eX = {ex | x ∈ X} = X, and if g, h ∈ G then (gh)X = {ghx | x ∈ X} = g(hX). This

example will be used in the proof of the first Sylow theorem.

Example 7 Let H and K be subgroups of a group G, and let S = {aK | a ∈ G}, the set of

left cosets of K in G. Then H acts on S by left multiplication, as in Example 4. That is, H

acts on S via (h, aK) 7→ haK. That this is a group action follows from the same reasons as

in Example 4. This example will lead us to a proof of the counting principle of 2.5.

Example 8 Let G be a group and H a subgroup of G. Let S = {aHa−1 | a ∈ G}, a

collection of subgroups of G. Then G acts on S via conjugation: (g, K) 7→ gKg−1. If K ∈ S

then K = aHa−1for some a ∈ G, so (g, K) 7→ gaHa−1g−1 = (ga)H(ga)−1, so the result

lands in S. That this is an action can be verified by similar arguments to those given in

Example 4. This example will be used in the proof of the third Sylow theorem.

Example 9 The group Sn acts on S = {1, 2, . . . , n} by σn = σ(n). This is an action since

for any r ∈ {1, 2, . . . , n}, then er = e(r) = r, and if σ, τ ∈ Sn then (στ)r = (στ)(r) =

σ(τ(r)) = σ(τr). Therefore Sn acts on {1, 2, . . . , r}. This example can yield the unique cycle

decomposition of a permutation.

Now that we have a bunch of examples, let us develop the theory of group actions.

Applying the theory to these special cases will lead to some theorems, such as Cayley’s

theorem and the counting principles of Sections 2.5 and 2.11 of [1].

Definition 10 Suppose G is a group which acts on a set S. If s ∈ S, let O(s) = {gs | g ∈ G}.
The set O(s) is called the orbit of s. The stabilizer of s is the subset Gs = {g ∈ G | gs = s}
of G.

Let us record the basic properties of these concepts. One small point to start with. If

gs = t then s = es = (g−1g)s = g−1(gs) = g−1t. We now consider the stabilizer of an

element.

Lemma 11 Let G act on a set S. If s ∈ S, then the stabilizer Gs of s is a subgroup of G.
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Proof. Note that Gs is nonempty since e ∈ Gs. Furthermore, if g, h ∈ Gs then

gs = hs = s, so (gh)s = g(hs) = gs = s, so gh ∈ Gs. Finally, if g ∈ Gs then g−1s =

g−1(gs) = (g−1g)s = es = s. Thus g−1 ∈ Gs. Therefore Gs is a subgroup of G.

The orbits O(s) are subsets of S. The significant fact about these subsets is they form a

partition of S, which is proved in the next lemma.

Lemma 12 Let G act on a set S. If the relation ∼ on S is defined by s ∼ t if s = gt for

some g ∈ G, then ∼ is an equivalence relation. Furthermore, the equivalence class of any

s ∈ S is the orbit O(s).

Proof. We need to verify the three properties of an equivalence relation. If s ∈ S then

s ∼ s since s = es. If s ∼ t then s = gt for some g. It then follows that t = g−1s, so

t ∼ s. Finally, if s ∼ t and t ∼ r then s = gt and t = hr for some g, h ∈ G. Then

s = g(hr) = (gh)r, so g ∼ r. Thus ∼ is an equivalence relation on S. For any s ∈ S, the

equivalence class of s is the set {t ∈ S | t ∼ s} = {t ∈ S | t = gs} = O(s).

We will use group actions primarily to obtain information about finite groups. The

following result gives the basic numerical information about group actions of finite groups.

Lemma 13 Let G be a finite group acting on a set S. If s ∈ S then |O(s)| = [G : Gs], the

index of Gs in G.

Proof. We prove this by producing a 1–1 correspondence between O(s) and the set of

left cosets of Gs. Given a coset gGs, we associate this coset to the element gs of O(s). Is this

a function? We must show this correspondence is well defined. If gGs = hGs then g−1h ∈ Gs,

so (g−1h)s = s. Then hs = gs, so this is indeed well defined. To see this function is 1–1,

suppose gs = hs. Then g−1(hs) = s, so (g−1h)s = s. Hence g−1h ∈ Gs, so gGs = hGs.

Therefore our function is 1–1. As for onto, if t ∈ O(s) then t = gs for some g, and so t is

the image of gGs. Therefore our function is indeed a 1–1 correspondence between O(s) and

the set of left cosets of Gs. Since these two sets are finite, this means they have the same

number of elements.

The final property of group actions will be to relate a group acting on a set with the

group of permutations on a set. Let G be a group acting on a set S. Let A(S) be the group

of all permutations of S. Then we can define a function from G to A(S) with the use of the

action. Let f : G → A(S) be given by f(a) is the permutation that sends s to as. Let us

denote this function by fa. First, let’s show this function exists, i.e., show fa is in fact a

permutation of S. That fa is a function from S to S is clear, so we need to check that it is

1–1 and onto. For 1–1, suppose s and t are elements of S with fa(s) = fa(t). So as = at.

Then

s = es = (a−1a)s = a−1(as) = a−1(at) = (a−1a)t = et = t.
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Therefore fa is 1–1. For onto, suppose t ∈ S. Let s = a−1t. Then

fa(s) = as = a(a−1t) = (aa−1)t = et = t.

Thus fa is also onto. Hence fa is a permutation of S, so lies in A(S). Therefore f is a

function from G to A(S).

Lemma 14 Let G act on a set S. Define f : G → A(S) as above by f(a) = fa, where

fa(s) = as. Then f is a group homomorphism. The kernel of f consists of all g ∈ G with

gs = s for all s ∈ S. Therefore {g ∈ G | gs = s for all s ∈ S} is a normal subgroup of G.

Proof. We have verified that f is indeed a function from G to A(S). To show f is a

homomorphism, we need to show f(ab) = f(a) ◦ f(b) for all a, b ∈ G. That is, we need to

show fab = fa ◦ fb. To show these functions are equal we check that they have the same

function value at each s ∈ S. Given s ∈ S, we have

fab(s) = (ab)s = a(bs) = fa(bs) = fa(fb(s))

= (fa ◦ fb)(s).

Therefore these two functions are indeed equal. Thus f is a homomorphism. An element

g ∈ G is in the kernel of f iff fg is the identity function. This is true iff fg(s) = s for all

s ∈ S. But since fg(s) = gs, this means g ∈ ker(f) iff gs = s for all s ∈ S. The kernel of

a group homomorphism is a normal subgroup of G, which proves the final statement of the

lemma.

The function in the proposition above will be useful to us for a couple different reasons

which we will see below. But first, let us notice that the existence of a group action is in fact

equivalent to the existence of a homomorphism from G to A(S). One direction we have seen;

given a group action of G on S we obtain a homomorphism from G to A(S). Conversely,

suppose S is a set such that there is a homomorphism f : G → A(S). We define a group

action of G on S by gs := f(g)(s). To verify that this is indeed an action, if s ∈ S then

es = f(e)(s) = s, since f(e) is the identity function (since f is a group homomorphism,

it takes the identity of G to the identity of A(S)). Second, if g, h ∈ G, we want to show

(gh)s = g(hs). Let us denote f(a) by fa for a ∈ G. Then fgh = fg ◦ fh since f is a

homomorphism. Therefore

(gh)(s) = fgh(s) = (fg ◦ fh)(s) = fg(fh(s)) = fg(hs) = g(hs).

This definition is then an action on S. It is not hard to see that given this action, f is then

the function obtained in Lemma 14.

We now utilize the theory of group actions to obtain results about groups. The first of

these is Cayley’s theorem [1, Thm. 2.9.1].
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Proposition 15 (Cayley) Let G be a group. Then G is isomorphic to a subgroup of A(G).

In particular, if G is a finite group of order n, then G is isomorphic to a subgroup of Sn.

Proof. Let G act on itself by left multiplication as in Example 3. Then by Lemma 14,

there is a homomorphism f : G → A(G), where f(g) is the permutation of G that sends

h to gh for any h ∈ G. Let us determine ker(f). We have that a ∈ ker(f) iff ah = h for

all h ∈ G, from the description of the kernel in Lemma 14, together with the description of

the action. But if ah = h, cancellation gives a = e. Thus the kernel is trivial, so f is 1–1.

Therefore f is an isomorphism from G to the image f(G), a subgroup of A(G). If |G| = n

then A(G) is isomorphic to Sn, so G is isomorphic to a subgroup of Sn.

A counting principle (Section 2.5). Let H and K be subgroups of a group G. Let

HK = {hk | h ∈ H, k ∈ K}. In general HK is not a subgroup of G (see [1, Lemma 2.5.1]).

However, knowing the size of HK can be useful in working with finite groups. We will use

the group action of Example 7 to prove the following theorem.

Theorem 16 Let H and K be finite subgroups of a group G. Then

|HK| = |H| |K|
|H ∩K| .

Proof. Let us consider the group action of Example 7. In that example, H acts on the

set of left cosets {gK | g ∈ G}. We prove the result by analyzing the orbit of K = eK under

this action of H. We have O(eK) = {h(eK) = hK | h ∈ H}. Notice that the union of the

distinct cosets in O(eK) is precisely HK. Since |hK| = |K| for each h ∈ H, that these cosets

are pairwise disjoint implies |HK| = |K| · |O(eK)|. By Lemma 13, O(eK) = [H : HeK ].

(Note that the group that is acting on S is H, therefore the notation HeK instead of GeK .)

The stabilizer HeK is equal to the set

{h ∈ H | heK = eK = K} = {h ∈ H | h ∈ K} = H ∩K.

Therefore |O(eK)| = |H| / |H ∩K|. But this gives |HK| = |K| |H| / |H ∩K|.

Another counting principle (Section 2.11). This next counting principle will be used

to help determine the structure of groups of prime power order. These groups arise in the

Sylow theorems, and in the description of finite abelian groups, and so are worth studying. A

few of the most important results of groups of prime power order fall out from this counting

principle. Recall [1, p. 47, problem 13] that the normalizer N(a) of an element a ∈ G is the

set N(a) = {g ∈ G | ga = ag}. This is a subgroup of G. Consider the action of Example 4.

That is, if G is a group then G acts on itself by conjugation. If a ∈ G then the stabilizer Ga

is given by Ga = {g ∈ G | gag−1 = a}. But gag−1 = a iff ga = ag. thus Ga = N(a). Recall

that the center Z(G) of G is the subgroup {x ∈ G | xg = gx for all g ∈ G}. The elements of

Z(G) can be characterized in the following way: x ∈ Z(G) iff N(x) = G.
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Theorem 17 (Class Equation) Let G be a finite group. Then

|G| =
∑ |G|

|N(a)| ,

where this sum runs over one element a from each conjugacy class. In particular,

|G| = |Z(G)|+
∑

N(a)6=G

|G|
|N(a)| ,

where the sum runs over one element a from each conjugacy class with N(a) 6= G.

Proof. Let O(a1), . . . ,O(ar) be the distinct orbits of G under the conjugation action of

G on itself. Since these orbits form the equivalence classes of an equivalence relation on G

by Lemma 12, we have |G| = |O(a1)| + · · · + |O(ar)|. By Lemma 13, |O(ai)| = [G : N(ai)],

since N(ai) is the stabilizer of ai. But by Lagrange’s theorem, [G : N(ai)] = |G| / |N(ai)|.
Therefore the first formula of the theorem is proved.

Let us now look a little more closely at the formula we just proved. If x ∈ G then

O(x) = {gxg−1 | g ∈ G}. But if x ∈ Z(G) then gxg−1 = x for all g. Therefore O(x) = {x}
for any x ∈ Z(G). Note that the converse is also true: if O(x) = {x} then x ∈ Z(G). The

ai are then subdivided into two parts. The first part is those ai which O(ai) = {ai}. This

consists of all elements of Z(G). The second part is all other ai, so all ai with N(ai) 6= G.

By breaking the sum above into two pieces, once piece for those ai in Z(G) and another

piece for those ai with N(ai) 6= G, we see that the second formula is true.

Two results from Section 2.9. The group action of Example 5 will be used to prove

Theorem 2.9.2 and Lemma 2.9.1 in [1]. In fact, he uses group actions without explicitly

saying so. Let H be a subgroup of a group G, and let S be the set of all left cosets of H.

Let us consider the function f defined by this group action. Then the function f is defined

by f(g) : aH 7→ gaH. We will obtain these two results by considering the kernel of f .

Theorem 18 Let H be a subgroup of a group G, and let S be the set of left cosets of H in

G. Let f be the homomorphism from G to A(S) obtained from the action of G on S as in

Example 5. Then ker(f) =
⋂

a∈G aHa−1. Moreover, this is the largest normal subgroup of G

which is contained in H. Furthermore, if G is a finite group such that |G| does not divide

[G : H]! then ker(f) 6= {e}. When this occurs, H contains a nontrivial normal subgroup of

G.

Proof. Let us determine ker(f). We have g ∈ ker(f) iff f(g) is the identity function

on S iff gaH = aH for all a ∈ G. But gaH = aH iff a−1ga ∈ H (recall that left cosets

are equivalence classes for the congruence relation a ∼ b iff a−1b ∈ H). Thus g ∈ ker(f)

iff g ∈ aHa−1 for all a. Therefore ker(f) =
⋂

a∈G aHa−1. To see that ker(f) is the largest
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normal subgroup of G contained in H, suppose K ⊆ H is a normal subgroup. Then K =

aKa−1 ⊆ aHa−1 for all a, so K ⊆ ker(f).

For the last part of the theorem, suppose G is finite, and let n be the index of H in G.

Then we can view f as a homomorphism from G to Sn. If ker(f) = {e} then f is 1–1, so G

is isomorphic to a subgroup of Sn. By Lagrange’s theorem, |G| divides |Sn| = n!. If |G| does

not divide n! then ker(f) is necessarily nontrivial. Therefore there is a nontrivial normal

subgroup of G which is contained in H, namely ker(f) =
⋂

a∈G aHa−1.

The final application we will give of group actions is to prove the Sylow theorems. Let

G be a finite group. If p is a prime number dividing |G|, say |G| = pnq with p not dividing

q. A subgroup of G of order pn is called a p–Sylow subgroup of G. By Lagrange’s theorem,

the largest possible size of a subgroup of G of order a power of p is pn. The Sylow theorems

give the existence of, and properties of p–Sylow subgroups of G.

Theorem 19 (First Sylow Theorem) Let G be a finite group. If p is a prime divisor of

|G| then there exists a p–Sylow subgroup of G.

Proof. Let |G| = pnq with p not dividing q. Let S be the set of all subsets of G of size

pn. Then G acts on S via Example 6. That is, G acts on S via (g, A) 7→ gA = {ga | a ∈ A},
if A is a subset of G of size pn. The number of elements of S is equal to the number of ways

of choosing pn elements out of a set of size pnq = |G|. Therefore

|S| =
(

pnq

pn

)
.

What is significant about this binomial coefficient is that it is not divisible by p. For a proof

of this, see [1, p. 92]. Therefore the number of elements of S is not divisible by p. Since S is

the union of the distinct orbits, there is some orbit whose size is not divisible by p. Suppose

A is an element of S with |O(A)| not divisible by p. Let P be the stabilizer GA of A. We

claim that P is our desired p–Sylow subgroup. To verify this we need to show |P | = pn.

By Lemma 13, |O(A)| = [G : P ] = |G| / |P |. Since |G| = pnq, the only way for p not to

divide [G : P ] is for |P | to be a multiple of pn. Now, P = {g ∈ G | gA = A}. So if x ∈ P

and a ∈ A then xa ∈ A. This says the right coset Pa consists of elements of A. Therefore

|Pa| ≤ |A| = pn. Since |Pa| = |P |, we obtain |P | ≤ pn. Since we have already seen that pn

divides |P |, we conclude that |P | = pn. Therefore P is a p–Sylow subgroup of G.

The second and third Sylow theorems are concerned with the structure of and number

of Sylow subgroups. We shall see that the formula for the number of Sylow subgroups will

allow us to characterize finite groups of some particular sizes. Note that if P is a p–Sylow

subgroup of a group G and x ∈ G then xPx−1 is a subgroup of G with |xPx−1| = |P |.
Therefore xPx−1 is also a p–Sylow subgroup of G. We prove the second Sylow theorem by

applying the group action of Example 7. We need a preliminary lemma. If G acts on a set

S, then an element s ∈ S is called G–stable if gs = s for all g ∈ G. That is, s is G–stable if

O(s) = {s}.

7



Lemma 20 Let G be a group with |G| = pr for some prime p. If G acts on a set S and X

is the set of all G–stable elements in S then |X| ≡ |S|mod p.

Proof. Let s1, . . . , sm be representatives of the disjoint orbits under G containing more

than one element. Then S is the disjoint union S = X ∪ O(s1) ∪ · · · ∪ O(sm), and so

|S| = |X| + ∑
i |O(si)|. By Lemma 13, |O(si)| = [G : Gsi

], which by Lagrange’s theorem is

a divisor of |G|. Therefore, since O(si) contains more than one element, |O(si)| is divisible

by p. Therefore |S| ≡ |X|mod p.

Theorem 21 (Second Sylow Theorem) Let G be a group of order pnq, where p is a

prime and p does not divide q. If P is a p–Sylow subgroup of G and H is any subgroup of

G of order a power of p then H ⊆ xPx−1 for some x ∈ G. In particular, any two p–Sylow

subgroups of G are conjugate

Proof. Let S be the set of left cosets of P in G and let H act on S as in Example 7.

Let X be the set of all H–stable elements of S. By Lemma 20, |S| ≡ |X| mod p. Since

|S| = |G| / |P | = q is not divisible by p, |X| 6≡ 0 mod p, so X is not the empty set. Suppose

aP ∈ X. The orbit of aP is the set {haP | h ∈ H}. Since this orbit has only one element,

haP = aP for each h ∈ H. So ha ∈ aP , or h ∈ aPa−1 for each h. Therefore H ⊆ aPa−1.

This proves the first statement of the theorem. For the second statement, suppose P ′ is

another p–Sylow subgroup of G. Then by the first part of the theorem, P ′ ⊆ aPa−1 for some

a ∈ G. But |P ′| = pn = |P | = |aPa−1|. Therefore P ′ = aPa−1.

A consequence of the second Sylow theorem, which we will use in the proof of the third

Sylow theorem, is that a p–Sylow subgroup P of G is a normal subgroup of G iff P is the

unique p–Sylow subgroup of G. For, P is normal in G iff xPx−1 = P for each x ∈ G.

Therefore P is normal in G iff P is the unique p–Sylow subgroup of G, by the second Sylow

theorem. We will prove the third Sylow theorem by using some of the ideas in the proof of

the second Sylow theorem.

Theorem 22 (Third Sylow Theorem) The number of p–Sylow subgroups of G divides

|G| and is of the form 1 + kp for some nonnegative integer k.

Proof. Let P be a p–Sylow subgroup of G. Then by the second Sylow theorem, the

set S of all p–Sylow subgroups of G is S = {gPg−1 | g ∈ G}. The group G acts on S by

conjugation. That is, G acts on S via (g,Q) 7→ gQg−1 for Q = aPa−1 ∈ S, as in Example 8.

The orbit of P is S, and the stabilizer of P is {g ∈ G | gPg−1 = P} = N(P ), the normalizer

of P . Therefore by Lemma 13, |S| = [G : (N(P )] = |G| / |N(P )|. Therefore the number of

p–Sylow subgroups of G divides |G|, and this number is not divisible by p since |G| / |N(P )|
divides |G| / |P | = q by Lagrange’s theorem (applied to P ⊆ N(P )). Let us now let P act

on S by conjugation. If X is the set of P–stable elements of S, then |S| ≡ |X| mod p by

Lemma 20. Since |S| is not divisible by p, the set X is nonempty. Thus there is a p–Sylow

subgroup Q ∈ S such that under the action of P , the orbit of Q consists of only Q itself.

This means xQx−1 = Q for all x ∈ P . Then P ⊆ N(Q). Therefore P and Q are subgroups
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of N(Q). But in fact, P and Q are both p–Sylow subgroups of N(Q), since |N(Q)| = pnq′

for some divisor q′ of q. However, since Q is normal in N(Q), there is a unique p–Sylow

subgroup of N(Q). Thus Q = P . This says X has only one element. But since |X| ≡ |S|
mod p, we obtain |S| ≡ 1 mod p. Therefore |S| = 1 + kp for some k. This completes the

proof of the third Sylow theorem.
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