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§I. Introduction

Forty years ago Quillen created modern algebraic K-theory by proposing a
new foundation for the subject, in which (i ≥ 1)

K2i(Fq) = 0, K2i−1(Fq) = Z/(qi − 1)Z .

The revolutionary ideas behind this calculation, more than the calculation
itself, have had continuously growing impact, leading us out of the Wilder-
ness of Algebra into the Promised Land of Topology – or, more precisely, of
homotopy theory. I’ll try to justify that claim in this talk.

The techniques Quillen pioneered generalize those of classical homologi-
cal algebra; in his language a resolution can be interpreted as a kind of
homotopy-equivalent replacement with better properties. This has deep
roots in earlier work of Dold, Kan, and others on non-abelian homological
algebra, which Quillen first applied to Grothendieck’s program for the con-
struction of a cotangent complex for morphisms of commutative rings; but
his theory of (what are now called) model categories1 does not require the
categories of interest to be additive.

Using Kan’s theory of (semi)simplicial sets, he took seriously the idea that
categories should be treated as concrete things, like groups or spaces. This
led to the idea that (higher) K-theory should be definable for a broad class
of symmetric monoidal categories, not just that of (projective) modules over
a ring. This has been immensely productive, resulting in an evolutionary
chain

Kan & Grothendieck→ Quillen→ Segal→Waldhausen→ Lurie . . .

which continues to develop and thrive.

1I have not tried to define model categories here; roughly, they are nice categories with
special classes of morphisms called fibrations, cofibrations, and weak equivalences, related
by suitable axioms. Inverting the weak equivalence defines an associated homotopy
category. Algebraists seem very comfortable in such contexts; model categories are in
many ways like rigidified versions of derived categories (which they generalize).
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{ This commentary was added as an afterthought. I apologize for the rather
polemic tone of this talk: it’s a little heavy on the rhetoric. But I wanted
to emphasize that many constructions of classical algebra (eg, the theory of
modular forms) are beginning to be seen to have deep homotopy-theoretic
foundations. That story arguably began with Quillen’s work.

I should have included the work of Boardman-Vogt and Joyal, and probably
many others, in this line of descent. }

§II. Symmetric monoidal categories

These are categories C with a product operation C ⊗ C → C which is com-
mutative and associative up to canonical isomorphisms. Here are some
examples:

• (k−Vectfg),∼=,⊕ : finite-dimensional k-vector spaces up to isomorphism;

• (Projfg/R),∼=,⊕ : finitely-generated projective R-modules up to isomor-
phism;

• ((finite) Sets),∼=,
∐

: finite sets up to bijection, with disjoint union as
composition;

• ((finite CW) Spaces),∼=,∨ : finite cell complexes, under wedge sum.

{ These examples emphasize algebra at the expense of topology: there is a
nice K-theory of piecewise linear bundles, for example, and recent work of
Madsen-Tillmann-Weiss on the Mumford conjecture work with categories of
Riemann surfaces under glueing. }

We want to generalize Grothendieck’s original set-theoretic construction

K : (commutative monoids)→ (abelian groups)

to this categorical context. Segal, following Grothendieck, understood that
any category C can be presented as the simplicial set with strings

V0 → V1 → · · · → Vn

of composable morphisms as its collection C[n] of n-simplices; alternately

C[n] := Func(Ord(n), C)
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(where Ord(n) = {0 < 1 · · · < n} regarded as a category). Monotone maps
between ordered sets define functors between such categories, defining face
and degeneracy maps on the sets {C[n]}.

{ NB, C[n] is not a set of isomorphism classes. This can seriously strain
one’s set theory, but it is generally agreed that the resulting size issues are
rarely serious. }

Such a simplicial object in the category of sets has a geometrical realization
(or nerve, or classifying space)

C 7→ |C| =
∐
n≥0

C[n]×∆n/(face & deg rel′ns) ,

defining a product-preserving functor from categories to spaces.

Remarks and examples:

i) π0(|C|) is the set of isomorphism classes of objects of C.

ii) A group G defines a category G with one object and set G[1] = G of
morphisms; its geometrical realization |G| = BG is a classifying space for
G-bundles2, and

H∗(BG) ∼= H∗
alg(G) .

iii) It will important later that there is a similar geometrical realization con-
struction for simplicial spaces – though this may involve working in some
category of compactly generated spaces, and requires more care. For exam-
ple, a topological group defines a topological category, whose realization is
the classifying space for the topological group.

iv) When C is a symmetric monoidal category, |C| is up to homotopy a
commutative monoid in the category of spaces. In the first example above,
the classifying space is

|(k −Vectfg)| =
∐

n≥0BGln(k) ;

in the second,

2At the beginning of the twentieth century, the logician Frege defined the cardinal number
of a set S to the the class of all classes in bijection with S. In modern terms this is not
a set, but a category, whose nerve is the classifying space for symmetric group ΣS . This
seems to confirm one’s intuition that Frege’s notion of cardinal number is a very subtle
object
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|(Projfg/R)| =
∐

π0
BAut(P ) ;

the third has

|((finite) Sets)| =
∐

n≥0BΣn ,

while the fourth is a little too complicated to write down without a distract-
ing digression; it involves the study of an analog of the group ring for the
monoid of stable self-maps of the sphere.

§III. Commutative group objects in the homotopy category

It is important that these objects are commutative and associative only up
to homotopy; they are not topological monoids in the strict sense. However,
a delicate argument (which can be swept under the rug by astute construc-
tions)3 implies that if the isomorphisms in the underlying category are co-
herent in the sense of MacLane, then the classifying space construction
can be iterated, yielding an ‘infinite loop-spectrum’

Bk|C| ∼= ΩBk+1|C| ∼= · · · ∼= ΩnBk+n|C| ∼= · · ·

(k ≥ 1). The construction

C 7→ ΩB|C| := K(C) ∈ Spectra

is the homotopy-theoretic analog of Grothendieck’s functor (which replaces
a set-theoretic monoid with its best approximation by an abelian group). In
particular,

π0K(C) = π0ΩB|C| ∼= K(π0|C|)

is the ‘group completion’ of the monoid of isomorphism classes of objects in
C. This generalizes to an isomorphism

H∗(ΩB|C|) ∼= H∗(|C|)⊗Z[π0|C|] Z[K0(C)] .

{ Ω and B are adjoint in some sense, and BΩX ∼ X. }

3Segal’s idea is, very roughly, to replace a system of composite maps from Am to An which
might commute only modulo a highly nontrivial system of coherent isomorphisms, with
a related system of strictly commutative diagrams of maps between objects A{m} and
A{n} which are homotopy-equivalent to those of the original system. In fact this idea
has a long history in homotopy theory, and I won’t try to do it justice here.
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We obtain a K-theory for symmetric monoidal categories which takes values
in the (additive) category of infinite loop-spectra. For example,

ΩB(
∐

BGln(k)) ∼= Z×BGl+∞(k) := K(k) ,

{ NB the composition comes from ‘Whitney sum’ ⊕, corresponding to block
sum of matrices. }

while
ΩB(

∐
BΣn) = lim ΩnSn := Q(S0)

produces the infinite loop-spectrum S representing stable homotopy theory:

πi(Q(S0)) = limπn+i(Sn) = πS
i (pt) .

Digression:

Group multiplication G × G → G is a group homomorphism iff G = A is
abelian. It follows that the category A defined by an abelian group has a
strictly commutative and associative monoidal structure, so for such spaces
the naive classifying space construction can be iterated, yielding the infinite
loop-spectrum Bk|A| = H(A, k) of Eilenberg-MacLane spaces, with

πiH(A, k) = A, if i = k; = 0 otherwise.

If X is a (connected, pointed) space, then the infinite symmetric product

SP∞X =
⋃
n≥0

Xn/Σn

is the free commutative monoid generated by X; it is a generalized EM space
[π∗SP∞X ∼= H∗(X,Z)] by a theorem of Dold and Thom.

On the other hand
Q(X) =

⋃
n≥0

ΩnSnX

is the free homotopy-commutative monoid generated by X.

These constructions are related through a diagram4

Xn/Σn ← Confign(Rk)×Σn X
n → Maps(Rk

+, X ∧ Rk
+) = ΩnSnX ;

4The right-hand arrow generalizes the construction which sends an n-tuple {zk ∈ C} of
distinct points to the polynomial p(z) =

∏
(z−zk), regarded as a map from the Riemann

sphere to itself.
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where Confign(Rk) is the space of n-tuples of distinct points in Rk: it admits
a free action of the symmetric group, and becomes contractible as n goes
to ∞. In (co)homology with rational coefficients the distinction between
the left and right objects is lost. They differ over Z because the homotopy-
theoretic object sees the subtleties in allowing indexing sets for compositions
which wander around at will in the universe of discourse.

Abelian group objects in the homotopy category of spaces (ie, spectra) are
thus richer and more subtle objects than abelian groups in the category of
sets. Taking homotopy groups maps them to the category of graded abelian
groups, but that loses a great deal of information (encoded in classical terms
by their Postnikov invariants).

Quillen’s approach to K-theory was the beginning of a great mathematical
migration in algebra, from the world of set-theory to the homotopy-theoretic
world of spectra. { More propaganda, but intended seriously: for exam-
ple, noncommutative motives will probably require nontrivial homotopy-
theoretic techniques . . . }

Waldhausen, motivated by questions from geometric topology, later seized
on these ideas and reworked them further, extending them to a very general
class of categories with a significant weakening of Quillen’s model structures.
In particular, he showed that ring objects in the category of spectra (the
things that represent cohomology theories with good multiplicative struc-
tures) have a reasonable K-theory of their own. Similarly, spectra asso-
ciated to categories of well-behaved functors between symmetric monoidal
categories can be used to construct bivariant versions of K-theory.

The K-theory of the category of finite spaces (example iv in §2) is deeply
related to manifold topology; it can also be described as the K-theory of
a category of modules over the sphere spectrum S representing stable ho-
motopy theory. Waldhausen and his school also worked out computational
methods for studying such theories, based on generalizations of Hochschild
and cyclic homology to the world of spectra.

IV. Finite fields

1 The most natural route to Quillen’s calculations uses the étale homotopy
theory of Artin and Mazur, which provides an isomorphism

K̂(Fp) ∼= K̂top(C)¬p

of the profinite completion of Quillen’s groups with that of the complex
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topological K-spectrum, away from the prime p. [Such isomorphisms have
been vastly extended by Suslin, to general algebraically closed fields.] How-
ever, in his Annals paper Quillen avoided this by reinterpreting classical
(and more elementary) work of Brauer on representations of finite groups.

He showed that the isomorphism above can be constructed by lifting modular
characters to complex-valued ones, providing a homotopy-theoretic analog
for an honest complex representation of Gln(Fp). It’s a beautiful argument,
but I won’t try to reproduce it here.

The next step is to realize that the classifying space |Fq − Vectfg| is the
fixed-points of the Frobenius endomorphism

x 7→ σn(x) = xq, q = pn

acting on the classifying space |Fp−Vectfg|. More precisely, Lang’s fibration

BGln(Fq)→ BGln(Fp)→ BGln(Fp)

(the second map sends X to X−1σn(X), with σ applied elementwise to the
matrix) leads to a fibration

K(Fq)→ K(Fp)→ K(Fp)

of spectra.

The Frobenius endomorphism can be calculated on the model of K(Fp)
provided by topological K-theory: its action is determined on characters, or
equivalently on line bundles, where it can be identified with the representation-
theoretic operation ψq defined by Adams’ (and Newton’s) formula5

λ′t(V )
λt(V )

=
∑
k≥0

ψk(V ) tk .

Adams showed that
ψk : K2i(C)→ K2i(C)

is multiplication by ki, from which it follows that

K2i−1(Fq) ∼= π2i−1(fiber of ψq − 1)

equals
coker(qi − 1 : Ẑ¬p → Ẑ¬p) .

5ψq(L) = L⊗q for line bundles L.
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2 The vector space
k〈S〉 = Maps(S, k)∗

generated by S satisfies

k〈S
∐

S′〉 ∼= k〈S〉 ⊕ k〈S′〉

and thus defines a monoidal functor from finite sets to k-vector spaces.
According to the philosophy above, this gives us a map

Q(S0)→ ΩB|k −Vectfg| : S0 → K(k)

of (commutative ring) spectra.

This map is very interesting when k is finite, but the construction makes
sense for k = Z, and the maps to K(Fq) factor through this ‘universal’
example: see Quillen’s letter [6 §2] to Milnor. The image of this Hurewicz
homomorphism6 is cyclic, isomorphic to

〈ζ(1− 2n)〉 ⊂ Q/Z ;

a theorem of von Staudt-Clausen (and Atiyah) identifies its p(6= 2)-component
with a cohomology group

H1
c (Z×p ,Zp(n))

of Galois type (with Zp(n) a kind of p-adic Tate representation

u, v 7→ unv : Z×p × Zp → Zp).

This cyclic subgroup is the image of Whitehead’s J-homomorphism

Z ∼= π4n(BO) ∼= π4n−1(O)→ πS
4n−1(pt) ,

induced by the inclusion

O = lim O(n)→ lim Ωn−1Sn−1 = Q(S0) .

There is thus a deep and intimate relation between the algebraic K-theory
of finite fields and stable homotopy theory; but there is more to the stable
homotopy ring than the elements (now said to be of chromatic level one)
constructed in this way.

6ignoring its 2-component
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3 To get some sense of what’s at issue, note that a set of cardinality n
defines an Fq-vector space of cardinality qn; this construction is monoidal,
since qn+m = qn · qm. To go backwards, however, is more difficult. An
Fq-vector space of dimension n defines a projective space of cardinality

#(Pn) =
qn − 1
q − 1

= 1 + q + . . .+ qn−1 ;

this function is not monoidal, but it becomes so as q → 1. It appears that,
to see the rest of stable homotopy from this viewpoint, we’ll have to look
for some higher corrections to l’Hopital’s rule.

This highlights the apparent fact that the spectrum S× defined by the sym-
metric monoidal category of finite pointed sets under Cartesian product
has not been systematically studied. The functor which sends an Fq-vector
space to its underlying set, with the origin as basepoint, defines a very in-
teresting composition

S→ K(Fq)→ S×

of maps of spectra. Note that π0S× ∼= Q×
+ is the free abelian group generated

by the primes. It is not at all clear if or how π∗S× might be related to the
(graded) multiplicative group

(1 + tπS
∗ (pt)[[t]])× ,

but it seems interesting that the homomorphism n 7→ (1 + t)n specializes,
for t = q− 1, to the function n 7→ qn. It would be interesting to understand
its relation, if any, to K(Z).
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