Principal Bundles over Valued Fields

Laurent Moret-Bailly

IRMAR, Université de Rennes 1

The Arithmetic of Fields,
Mathematisches Forschungsinstitut Oberwolfach
June 2013

Joint work with

Ofer Gabber
(CNRS, IHES)

and

Philippe Gille
(CNRS)
Introduction

We start with:

- a topological field k,
- an algebraic k-group G,
- a k-variety Y, and
- a G-torsor (principal G-bundle) $f : X \to Y$ over Y.
Introduction

Taking rational points, we get

- a topological group $G(k)$,
- a continuous free action of $G(k)$ on the space $X(k)$,
- a continuous map $X(k) \to Y(k)$, invariant for this action.

This map is not surjective in general.

We will consider the following questions, in the case of a henselian valued field:

- What does the image I of this map look like, as a subspace of $Y(k)$?
- Is the induced map $X(k) \to I$ a principal $G(k)$-bundle?

Remark: the answers are easy and well known in characteristic zero (and more generally if G is smooth).

Principal bundles in topology

Let G be a topological group. A (left) G-bundle consists of the following data:

- a continuous map $f : X \to Y$,
- a (left) action $G \times X \to X$ commuting with f (i.e. $f(g.x) = f(x)$).

A G-bundle is trivial if it is isomorphic (in the obvious sense) to $G \times Y \xrightarrow{pr_2} Y$ with the action of G on itself by left translation.

It is principal if it is locally trivial (on Y), in the obvious sense.
Principal bundles in algebraic geometry: torsors

Let k be a field, G an algebraic group over k, and Y a k-variety.

A (left) G-bundle over Y consists of:

- a k-morphism $f : X \to Y$,
- a (left) action of G on X, compatible with f,

We call it a (left) G-torsor if it is locally trivial for the fppf (or flat) topology, i.e. there is a k-morphism $h : Y' \to Y$ such that:

- h is flat and surjective,
- h trivializes f, i.e. the pullback G-bundle $X \times_Y Y' \to Y'$ is trivial.

A simple example

Let n be a positive integer. Consider the n-th power map

$$f : \mathbb{G}_{m,k} \to \mathbb{G}_{m,k} \quad x \mapsto x^n.$$

This is a μ_n-torsor (with the obvious action of $\mu_n = \ker(f)$ on $\mathbb{G}_{m,k}$).

If n is invertible in k, then f is even locally trivial for the étale topology, i.e. trivialized by an étale surjective map (e.g. f itself).

More generally, if G is a smooth k-group, any G-torsor $f : X \to Y$ is a smooth morphism, hence locally trivial for the étale topology. This holds in particular if $\text{char}(k) = 0$.

But in our example, if $n = \text{char}(k) > 0$, then f is just the Frobenius map on $\mathbb{G}_{m,k}$.
Characterization of torsors

A G-bundle $f : X \to Y$ in topology (resp. in algebraic geometry) is a G-torsor if and only if:

- it is “formally principal” (or a “pseudo-torsor”), i.e. the natural morphism
 \[G \times X \to X \times_Y X \]

 \[(g, x) \mapsto (g \cdot x, x) \]

 is an isomorphism,

- f has local sections on Y, in the obvious sense (resp. in the flat topology sense).

Characterization of torsors

The “pseudo-torsor” property

\[G \times X \sim\to X \times_Y X \]

is completely “categorical”, and is preserved by any functor on k-varieties that commutes with fiber products, such as the functor of rational points $R : Z \to Z(k)$.

It follows that if $f : X \to Y$ is a G-torsor over k, then the induced map of sets (or discrete spaces)

\[R(f) : X(k) \to Y(k) \]

(which may not be surjective) induces a principal $G(k)$-bundle over its image.
Torsors over topological fields

From now assume that k is a topological field, e.g. a valued field. For every k-variety Z, the set $Z(k)$ has a natural topology. The resulting topological space will be denoted by Z_{top} (or $Z(k)_{\text{top}}$).

In particular, for a G-torsor $f : X \rightarrow Y$:

- G_{top} is a topological group, and
- $f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}$ is a G_{top}-bundle, in fact automatically a pseudo-torsor.

Example of the squaring map:

$$f : \mathbb{G}_m, k \rightarrow \mathbb{G}_m, k$$

$$x \mapsto x^2.$$

If $k = \mathbb{R}$, the image of f_{top} is $\mathbb{R}_{>0}$ (open and closed in \mathbb{R}^\times), and f_{top} induces a trivial $\{\pm 1\}$-bundle over this image.

If $k = \mathbb{C}$, then f_{top} is surjective and induces a nontrivial principal $\{\pm 1\}$-bundle over \mathbb{C}^\times.

If $k = \mathbb{F}_2((t))$, then f_{top} is a homeomorphism onto its image, which is closed in k^\times.
Torsors over topological fields

Back to a general G-torsor $f : X \to Y$ over a topological field k:

We can factor $f_{\text{top}} : X_{\text{top}} \to Y_{\text{top}}$ as

\[
X_{\text{top}} \quad \longrightarrow \quad X_{\text{top}}/G_{\text{top}} \quad \longrightarrow \quad \text{Im}(f_{\text{top}}) \quad \longrightarrow \quad Y_{\text{top}}
\]

which gives rise to natural questions:

1. Is the image of f_{top} closed (open, locally closed) in Y_{top}?
2. Is the middle bijection a homeomorphism? (In other words, is f_{top} a strict map?)
3. Is $X_{\text{top}} \to X_{\text{top}}/G_{\text{top}}$ a principal G_{top}-bundle?
 Equivalently, does this map have continuous local sections everywhere?

Note that a positive answer to both Questions 2 and 3 is equivalent to a positive answer to

4. Is $X_{\text{top}} \to \text{Im}(f_{\text{top}})$ a principal G_{top}-bundle?
The main result

Definition

A valued field (K, v) is **admissible** if

- (K, v) is henselian;
- the completion \hat{K} of K is a separable extension of K.

Main Theorem

Let (K, v) be an admissible valued field, G an algebraic K-group, and $f : X \rightarrow Y$ a G-torsor. Then:

1. $\text{Im}(f_{\text{top}})$ is locally closed in Y_{top}.
2. The induced map $X_{\text{top}} \rightarrow \text{Im}(f_{\text{top}})$ is a principal G_{top}-bundle.

Remark. In some cases, we can say more about $\text{Im}(f_{\text{top}})$:

- it is open and closed in Y_{top} if G is smooth, or if K is perfect;
- it is closed in Y_{top} if G_{red}^o is smooth, or if G is commutative.

The case of homogeneous spaces

As an example, we can take for X an algebraic group and for G a subgroup of X, and consider $f : X \rightarrow Y := X/G$.

Then the image of f_{top} is the orbit $X_{\text{top}}.y$ ($y=$origin of Y). The theorem says that

- this orbit is locally closed in Y_{top}, and
- the induced map $X_{\text{top}} \rightarrow X_{\text{top}}.y$ is a principal G_{top}-bundle (in particular, $X_{\text{top}}/G_{\text{top}} \rightarrow X_{\text{top}}.y$ is a homeomorphism).

When K is a local field, this is due to Bernstein and Zelevinsky (1976).
An example of a non-closed orbit

Assume \(\text{char} (K) = p > 0 \). Let \(S = \mathbb{G}_a \times \mathbb{G}_m \) be the affine group in dimension 1, acting on \(X = \mathbb{A}^1_K \) transitively “via Frobenius on \(S \)”,

\[
S \times \mathbb{A}^1 \longrightarrow \mathbb{A}^1 \\
((x, y), u) \mapsto (x, y).u := x^p + y^p u
\]

For \(u \in K \), consider the orbit morphism

\[
f_u : S \rightarrow \mathbb{A}^1, \quad s \mapsto s.u.
\]

This is a torsor under the stabilizer \(S_u \) of \(u \).

The image of \(f_{u,\text{top}} \) is the orbit \(S(K).u = K^p + (K^\times)^p u \subset K \). In particular:

- if \(u \in K^p \), the orbit is \(K^p \), which is closed in \(K \) if \(K \) is admissible;
- for any choice of \(u \), the orbit has 0 in its closure (consider the action of \(\mathbb{G}_m \)).

Hence, if \(u \notin K^p \), then \(\text{Im}(f_{u,\text{top}}) \) is not closed in \(K \).

Notation and conventions

- \(R \): a valuation ring,
- \(K = \text{Frac} \,(R) \),
- \(v \): the valuation,
- \(\hat{K} \): completion of \(K \),
- \(K \)-variety = \(K \)-scheme of finite type,
- algebraic \(K \)-group = \(K \)-group scheme of finite type,
- \(R \) (or \((K, v) \)) is admissible if \(R \) is henselian and the extension \(\hat{K}/K \) is separable.
Properties of admissible valued fields

Assume \((K, v)\) is admissible. Then:

- \(K\) is algebraically closed in \(\hat{K}\).
- If \(L\) is a finite extension of \(K\), then:
 - \(L\) is admissible (for the unique extension of \(v\)),
 - as a topological \(K\)-vector space, \(L\) is free (isomorphic to \(K^{[L:K]}\)),
 - \(\hat{K} \otimes_K L \sim \hat{L}\).
- If \(\text{char}(K) > 0\), the Frobenius map \(K \rightarrow K\) is a closed topological embedding.
- \(R\) has the strong approximation property (à la Greenberg).

Admissible valuations: topological properties of morphisms

Proposition 1

Assume \((K, v)\) is admissible, and let \(f : X \rightarrow Y\) be a morphism of \(K\)-varieties. Consider the induced continuous map \(f_{\text{top}} : X_{\text{top}} \rightarrow Y_{\text{top}}\).

1. “Implicit function theorem”: If \(f\) is étale, then \(f_{\text{top}}\) is a local homeomorphism.
2. If \(f\) is smooth, then \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\). (In particular, it is an open map).
3. “Continuity of roots”: If \(f\) is finite, then \(f_{\text{top}}\) is a closed map (hence proper, since it has finite fibers).

Warning! If \(f\) is proper, \(f_{\text{top}}\) is not a closed map in general. But its image is closed in \(Y_{\text{top}}\).
Now let us return to the main result:

Main Theorem

Let \((K, v)\) be an admissible valued field, \(G\) an algebraic \(K\)-group, and \(f : X \to Y\) a \(G\)-torsor. Then:

1. \(\text{Im}(f_{\text{top}})\) is locally closed in \(Y_{\text{top}}\).

2. The induced map \(X_{\text{top}} \to \text{Im}(f_{\text{top}})\) is a principal \(G_{\text{top}}\)-bundle.

The smooth case

Let us explain the smooth case. If \(G\) is smooth, then:

- \(f : X \to Y\) is a smooth morphism,
- hence \(f_{\text{top}}\) has local sections at each point of \(X_{\text{top}}\).
- This proves that
 - \(\text{Im}(f_{\text{top}})\) is open, and
 - \(X_{\text{top}} \to \text{Im}(f_{\text{top}})\) is a principal \(G_{\text{top}}\)-bundle.

Next, a standard “twisting argument” shows that \(Y_{\text{top}} \setminus \text{Im}(f_{\text{top}})\) is a union of subsets similar to \(\text{Im}(f_{\text{top}})\). Hence \(\text{Im}(f_{\text{top}})\) is also closed.
Strategy for general G

Let K_s be a separable closure of K. G has a largest smooth subgroup G^\dagger, which can be defined as the Zariski closure of $G(K_s)$ in G.

This construction is functorial in G and commutes with separable ground field extensions.

Strategy for general G

It is easy to check that $(G/G^\dagger)(K_s) = \{e\}$ (in particular $(G/G^\dagger)(K) = \{e\}$).

More generally, if T is a G-torsor over K, then T/G^\dagger has at most one rational point.

Now let $f : X \to Y$ be a G-torsor. We factor it as

$$X \xrightarrow{\pi} Z := X/G^\dagger \xrightarrow{h} Y.$$

The corresponding factorization of f_{top} looks like

$$X_{\text{top}} \xrightarrow{\pi_{\text{top}}} \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}$$

G^\dagger_{top}-bundle

open, closed

injective
Strategy for general G

$$X_{\text{top}} \xrightarrow{G^\dagger_{\text{top}}\text{-bundle}} \text{Im}(\pi_{\text{top}}) \subset Z_{\text{top}} \xrightarrow{h_{\text{top}}} Y_{\text{top}}$$

open, closed \hspace{1cm} injective

The hard part of the proof is to show that h_{top} is in fact a topological embedding, with locally closed image.

This uses:

- strong approximation,
- the construction (due to Gabber) of a remarkable G-equivariant compactification of G/G^\dagger.