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1 Introduction

Let �g denote a closed oriented surface of genus g. The mapping class group of �g ,
denoted by Mg , is the group of isotopy classes of orientation preserving diffeomor-
phisms of�g . This group has been investigated from various points of view for many
years.

First of all, this group has been one of the main objects in the combinatorial group
theory, the other one being the automorphism group of a finitely generated free group.
Secondly, Mg acts on the Teichmüller space and the quotient space is the moduli
space of genus g Riemann surfaces which is a very important space in both algebraic
geometry and complex analysis. Thirdly, this group has been playing crucial roles
in the theory of 3-manifolds in relation to Heegaard decompositions as well as the
geometry of surface bundles over the circle.

Reflecting this situation, there exist already many survey papers concerning various
aspects of the mapping class group. We have the famous book by Birman [7] and
several survey papers such as [8], [9], [27], [10]. Ivanov’s paper [34] gives a very nice
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introduction to the present state of the study of the mapping class group (see also [32],
[33]). Also we have the survey paper [37] by Johnson on the structure of the Torelli
group which is a very important subgroup of the mapping class group.

There are also survey papers on the cohomological structure of the mapping class
group or the moduli space of Riemann surfaces such as Harer [26], Hain–Looijenga
[24] and the author [69], [71].

The purpose of this chapter is to describe somewhat different points of view in the
study of the mapping class group and to suggest possible new directions for future
research. More precisely, we would like to consider this as a special case of the study
of the structure of the diffeomorphism group as well as the diffeotopy group of general
C∞ manifolds. We also would like to seek for similarity and difference between the
structures of the mapping class group and some of its closely related groups such as the
automorphism groups of free groups and the symplectomorphism groups of surfaces.
We refer to Vogtmann [84] for a survey of the study of the automorphism groups of
free groups.

This work was partially supported by JSPS Grant No. 16204005.

2 Diffeomorphism groups and diffeotopy groups of
differentiable manifolds

Let M be a closed C∞ manifold. Then it is a very important problem to determine
the set of all the isomorphism classes of differentiable M-bundles

π : E −→ X

over a given C∞ manifold X. By a standard technique in topology, this problem can
be translated into the following one in homotopy theory. We denote by Diff M the
diffeomorphism group of M equipped with the C∞ topology and let BDiff M be its
classifying space. Then we have a natural identification

{isomorphism classes of smooth M-bundles over X} ∼= [X,BDiff M]
where the right hand side denotes the set of all the homotopy classes of continuous
mappings from X to BDiff M . Hence we meet with the problem of determining
the homotopy type of Diff M , in particular the computation of the homotopy groups
πi(Diff M). However this is an extremely difficult problem for a general differentiable
manifold M .

Let us consider the simplest case where X = S1. Any smooth M-bundle

π : E −→ S1

over S1 can be described as follows. Choose a point x ∈ S1 and cut the total space E
along the fiber π−1(x) over x. Then we obtain an M-bundle over the interval I so
that it is diffeomorphic to the product I ×M . Observe here that we have chosen a



Chapter 7. Introduction to mapping class groups of surfaces and related groups 355

diffeomorphism π−1(x) ∼= M . Now the given bundle E can be recovered as

E = I ×M/(1, p) ∼ (0, ϕ(p)) (p ∈ M)
for a certain element ϕ ∈ Diff M . Namely E is obtained from I × M by pasting
{1}×M to {0}×M by the diffeomorphism ϕ. Note that the element ϕ is well-defined
up to isotopy and also note that, if we change the identification π−1(x) ∼= M , then the
element ϕ changes into its conjugate element ψϕψ−1. Thus we obtain

{isomorphism classes of smooth M-bundles over S1}
∼= [S1,BDiff M]
∼= {isotopy classes of elements of Diff M}/conjugacy.

From the above consideration, it is natural to introduce the group consisting of all
the isotopy classes of elements of Diff M which we denote by D(M) and call it the
diffeotopy group of M . It can also be described as the group of path components of
the topological group Diff M , namely

D(M) = π0(Diff M).

Alternatively, we can also write

D(M) = Diff M/Diff0M

where Diff0M denotes the identity component of Diff M . Thus we have an extension

1 −→ Diff0M −→ Diff M −→D(M) −→ 1.

This simplest case, namely the determination of D(M) is already a very difficult
problem in general. In fact, the case whereM is an n-dimensional sphere Sn was one
of the most important subjects during the early years of differential topology. By virtue
of the foundational work of Cerf [13], [14] as well as the solution of the generalized
Poincaré conjecture due to Smale [81], there is a natural isomorphism

D+(Sn) ∼= θn+1 (n ≥ 5)

where D+(Sn) = π0(Diff+Sn) denotes the orientation preserving diffeotopy group
of Sn and θn denotes the group of homotopy n-spheres introduced and studied by
Kervaire and Milnor [44].

Since D(M) is the quotient group of the diffeomorphism group D(M) divided by
the equivalence relation of isotopy which is stronger than (or sometimes equal to) that
of homotopy, D(M) acts on any homotopy invariants of M such as the fundamental
group π1M and the homology group H∗(M;Z). We first consider the case of π1M .
For any abstract group Γ , let Aut Γ denote the automorphism group of Γ . Any
element γ ∈ Γ defines that of Aut Γ which represents the inner automorphism of Γ
by the element γ . This induces a homomorphism Γ → Aut Γ . Let InnΓ denote the
image of this homomorphism. Clearly the group Γ is abelian if and only if InnΓ
is the trivial subgroup of Aut Γ . It is easy to see that InnΓ is a normal subgroup
of Aut Γ . The quotient group Aut Γ/InnΓ is denoted by Out Γ and it is called the
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outer automorphism group of Γ . In these terminologies, we can say that the action of
D(M) on π1M induces a homomorphism

ρπ : D(M) −→ Out π1M.

Also the action of D(M) on the homology group H ∗(M;Z) induces another homo-
morphism

ρH : D(M) −→ AutH∗(M;Z).
Then there arise natural questions about these homomorphisms. For example we
could ask whether the homomorphisms ρπ, ρH are surjective or not. We could also
ask whether they are injective or not. In the cases where these questions are answered
negatively, the problem of describing the images as well as the kernels of these ho-
momorphisms arise. It turns out that these questions depend on the global topology
of the manifold M and the above problems are often very difficult to be settled.

If there is given a geometric structure on M , then the automorphism group of this
structure, which is considered to be a subgroup of Diff M , is one of the basic objects
to be studied. Here we would like to mention a few examples.

The first obvious example is the case where there is given a Riemannian metric
onM . Then the corresponding automorphism group is nothing but the isometry group
IsomM . IfM is compact, then this group is known to be a compact Lie group sitting
inside Diff M . For example, for the n-sphere Sn with the standard metric, we have
Isom Sn = O(n + 1) ⊂ Diff Sn. It has been one of the main problems in the theory
of differentiable transformation groups to study possible subgroups of Diff M which
are Lie transformation groups for a given manifold M .

The second example is the case where there is given a volume form υ on M .
Then we can consider the subgroup of Diff M , denoted by DiffυM , which consists
of those diffeomorphisms which preserve the form υ. It is usually called the volume
preserving diffeomorphism group of M . Moser’s theorem in [72] implies that the
inclusion DiffυM ⊂ Diff+M is a homotopy equivalence. Hence the classifying
spaces BDiffυM and BDiff+M have the same homotopy type. In particular, we have
a bijection

π0(DiffυM) ∼= π0(Diff+M) = D+M.

However the two groups DiffυM and Diff+M seem to have considerably different
properties as abstract groups and there should be many interesting problems here.

The third example is the case where there is given a symplectic form ω on a 2n
dimensional manifoldM . A symplectic form is, by definition, a closed 2-form ω such
thatωn is a volume form onM . The pair (M,ω) is called a symplectic manifold and the
subgroup Symp(M,ω) ⊂ Diff M consisting of those diffeomorphisms which preserve
the form ω is called the symplectomorphism group of (M,ω). Recently there have
been obtained many interesting deep results in geometry and topology of symplectic
manifolds as well as those of symplectomorphism groups (see the book [61] by McDuff
and Salamon which gives an excellent introduction to this field). Let Symp0(M,ω)

be the identity component of Symp(M,ω) which is a normal subgroup. The quotient
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group SD(M,ω) = Symp(M,ω)/Symp0(M,ω) is called the symplectic mapping
class group of (M,ω). Thus we have the following extension.

1 −→ Symp0(M,ω) −→ Symp(M,ω) −→ SD(M,ω) −→ 1.

We have an obvious natural homomorphism SD(M,ω)→D+(M) and there are
many interesting problems concerning it. For example, we can ask about the structure
of the image as well as the kernel of this homomorphism. See Banyaga [3] and McDuff
[60] for basic results concerning the structures of the groups DiffυM and Symp(M,ω).

Recall that anyC∞manifoldM admits a real analytic structure (see Whitney [86]).
Our final example here is the subgroup DiffωM ⊂ Diff M consisting of real analytic
diffeomorphisms of M (with respect to a fixed real analytic structure). It seems to
be an interesting problem to investigate whether there exist differences in algebraic
structures between the two groups DiffωM and Diff M .

3 Mapping class groups of surfaces

The mapping class group of a closed oriented surface�g of genus g, which we denote
by Mg , is by definition the oriented diffeotopy group of �g . Namely it is the group
consisting of all the isotopy classes of orientation preserving diffeomorphisms of�g .
If we denote by Diff+�g the group of orientation preserving diffeomorphisms of �g
equipped with the C∞ topology, then we have

Mg = π0(Diff+�g).

It is easy to see that we have an extension

1 −→Mg −→D(�g) −→ Z/2 −→ 1

where the homomorphism D(�g)→ Z/2 is induced by the action of D(�g) on the
set of orientations on �g or equivalently on the group H2(�g;Z) ∼= Z.

As is well known, the topology and also the geometry of surfaces�g can be roughly
divided into three classes, namely the cases where g = 0, g = 1 and g ≥ 2. From
the topological point of view, the fundamental group π1�g is trivial for g = 0, rank 2
abelian for g = 1 and non-abelian for g ≥ 2. On the other hand, from the geometrical
point of view, each surface �g admits a Riemannian metric of constant Gaussian
curvature K where K ≡ 1, 0,−1 for g = 0, g = 1, g ≥ 2 respectively. Furthermore
for the latter two cases, there exist plenty of such metrics up to isotopy and they fit
together to make a nice topological space called the Teichmüller space. It turns out
that the structure of the mapping class group Mg reflects this rough classification of
surfaces rather closely as follows.

First of all, we consider the case where g = 0, namely the case of the sphere S2.
Then a theorem of Smale [80] implies that the inclusion

O(3) ⊂ Diff S2
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is a homotopy equivalence. It follows, in particular, that the subgroup Diff+S2 is
connected. Therefore any orientation preserving diffeomorphism of S2 is isotopic to
the identity. Hence the genus 0 mapping class group M0 is the trivial group.

Next we assume that g ≥ 1 and consider the action of Mg on π1�g as in §2 where
we considered the case of a general manifold M . It is known that the surface �g for
g ≥ 1 is an Eilenberg–MacLane spaceK(π1�g, 1)meaning that the higher homotopy
groups πi�g vanish for all i ≥ 2. Here for a given (abstract) group π and a positive
integer n, any topological space X with the property that

πi X ∼=
{
π (i = n)
0 (i 
= n)

is called an Eilenberg–MacLane spaceK(π, n) (we assume that π is an abelian group
in the cases where n ≥ 2).

In fact, in the genus 1 case, the torus T 2 is expressed as R
2/Z2 so that its universal

covering manifold is the plane R
2. Hence all the higher homotopy groups of T 2 vanish

and T 2 is a K(Z2, 1). In the cases where g ≥ 2, there exist Riemannian metrics on
�g which have constant negative curvature −1. It follows that its universal covering
manifold is isometric to the upper half plane H = {(x, y) ∈ R

2; y > 0} equipped with
the Poincaré metric. Hence�g is aK(π1�g, 1). Here recall the standard presentation
of the fundamental group π1�g which is expressed as

π1�g = 〈α1, . . . αg, β1, . . . , βg; ζ 〉 (2g generators),

ζ = [α1, β1] . . . [αg, βg] (defining relation).

Now we state a classical theorem which is usually called theDehn–Nielsen theorem.

Theorem 3.1 (Dehn–Nielsen, Baer). The natural action of Mg on π1�g induces an
isomorphism

Mg
∼= Out+π1�g.

Since π1T
2 ∼= Z

2 is an abelian group, Aut Z
2 = Out Z

2 ∼= GL(2,Z). The
subscript+ in Out+Z

2 means, in this case, that we consider only matrices with deter-
minant 1. Thus we can write

M1 ∼= SL(2,Z).

In order to interpret the subscript+ for the general case, we briefly recall the definition
of the homology group as well as the cohomology group of an abstract group π (see
Brown’s book [12] for details). It is known that, there exists aK(π, 1) which is a CW
complex. Furthermore it is uniquely defined up to homotopy equivalences. Hence
for any π -module M (namely M is a module and there is given a homomorphism
π → AutM), we can define the (co)homology group of π with coefficients in M by
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setting

H∗(π;M) = H∗(K(π, 1);M),
H ∗(π;M) = H ∗(K(π, 1);M)

where M on the right hand sides denotes the local system over K(π, 1) induced by
the given π action on the moduleM . Any group homomorphism ρ : π → π ′ induces
a homomorphism ρ∗ : H∗(π)→ H∗(π ′) and similarly for the homology with twisted
coefficients as well as the cohomology group. In particular, we have a homomorphism

Aut π −→ AutH∗(π;M).
It is well known (and not so difficult to see) that the inner automorphisms induce the
trivial action on the homology group so that we obtain a homomorphism

Out π −→ AutH∗(π;M).
Now for any g ≥ 1, �g is a K(π1�g, 1) as mentioned above. Hence we have
H∗(π1�g;Z) = H∗(�g;Z). In particular H2(π1�g;Z) ∼= Z and we have a homo-
morphism

Out π1�g −→ AutH2(π1�g;Z) ∼= Aut Z ∼= Z/2.

The group Out+π1�g in Theorem 3.1 is defined to be the kernel of the above homo-
morphism. Sometimes this group is called the orientation preserving outer automor-
phism group of π1�g because it is the subgroup of the whole group consisting of those
outer automorphisms which are induced from orientation preserving diffeomorphisms
of �g .

Now we would like to mention the methods of proving Theorem 3.1 somewhat
historically.

First of all, for any topological spaceX, let E(X) denote the set of all the homotopy
classes of self homotopy equivalences of X. The composition of mappings induces a
natural group structure on E(X). Next for any topological manifoldM , let HomeoM
denote the group of all the homeomorphisms of M equipped with the compact open
topology and let H(M) = HomeoM/Homeo0M denote the quotient group divided
by the identity component Homeo0M of HomeoM . It is called the homeotopy group
of M . Now if M is a C∞ manifold, then there is a natural sequence of forgetful
homomorphisms

D(M) −→H(M) −→ E(M).

One can also introduce the equivalence relation on Diff M,HomeoM induced by the
homotopy of mappings to obtain variants of diffeotopy or homeotopy groups.

In general, these groups are all different from each other and they have their own
meanings and properties. However, a very important and characteristic phenomenon
occurs in dimension 2 and that is the fact that they are all equal for surfaces. Namely
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we have isomorphisms

D(�g) ∼= H(�g) ∼= E(�g),

Mg = D+(�g) ∼= H+(�g) ∼= E+(�g)

where the subscripts + means appropriate subgroups of index 2 consisting of orien-
tation preserving elements. Now elementary homotopy theory implies that there are
canonical isomorphisms

E(�g) ∼= Out π1�g, E+(�g) ∼= Out+π1�g.

In fact the isomorphism E(X) ∼= Out π1X holds for any K(π, 1) space X.
Dehn and then Nielsen [77] proved that the natural map

H+(�g) −→ Out+π1�g

is surjective. The injectivity of the same map was proved by Baer [2] and, much later,
reproved by Epstein [19]. It may be said that Dehn and Nielsen essentially proved
that the natural map

D+(�g) −→ Out+π1�g

is surjective, although it is unclear how they recognized the concept of diffeomor-
phisms as well as homeomorphisms which are now strictly distinguished. The injec-
tivity of the above map can be obtained by adapting the proofs of Baer and Epstein
from the context of homeomorphisms to that of diffeomorphisms which are known to
be possible in this low dimensional case.

There are variants of the mapping class group and analogues of Theorem 3.1 for
them as follows. First, if we choose a base point ∗ ∈ �g , then we can consider
the subgroup Diff+(�g, ∗) ⊂ Diff+�g consisting of all the orientation preserving
diffeomorphisms of �g which fix the base point ∗. Then we set

Mg,∗ = π0(Diff+(�g, ∗))
and call it the mapping class group of �g relative to the base point. There is the
forgetful homomorphism Mg,∗ →Mg which is an isomorphism for g = 0, 1 and
in the cases g ≥ 2, the kernel of this homomorphism is known to be canonically
isomorphic to π1�g . Thus we have an extension

1 −→ π1�g −→Mg,∗ −→Mg −→ 1 (g ≥ 2).

Next if we choose an embedded diskD2 ⊂ �g , then we can consider the subgroup
Diff(�g,D2) ⊂ Diff+�g consisting of all the diffeomorphisms of �g which restrict
to the identity of D2. Then we set

Mg,1 = π0(Diff(�g,D
2))

and call it the mapping class group of�g relative toD2. Alternatively, we can consider
the compact surface�0

g = �g \ IntD2 and the diffeomorphism group Diff(�0
g, ∂�

0
g)

consisting of all diffeomorphisms of�0
g which restrict to the identity on the boundary.
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Then we can also define

Mg,1 = π0(Diff(�0
g, ∂�

0
g)).

If we choose a base point ∗ in D2 ⊂ �g , then we have the forgetful homomorphism
Mg,1→Mg,∗, and in the case g ≥ 1 the kernel of this homomorphism is known to
be isomorphic to Z so that we have an extension

1 −→ Z −→Mg,1 −→Mg,∗ −→ 1 (g ≥ 1). (3.1)

Now we can state the analogue of Theorem 3.1 for the mapping class groups Mg,∗ and
Mg,1 as follows. This should also be considered as a classical theorem going back to
Magnus [54] and Zieschang [87].

Theorem 3.2. There are natural isomorphisms

Mg,∗ ∼= Aut+π1�g,

Mg,1 ∼= {ϕ ∈ Aut π1�
0
g;ϕ(ζ ) = ζ }

where ζ = [α1, β1] . . . [αg, βg] denotes the single defining relation of π1�g with
respect to a standard generating system α1, . . . , αg, β1, . . . βg .

We can also consider the mapping class groups of �g relative to finitely many
distinguished points as well as finitely many embedded disks on �g . However here
we omit them.

4 Automorphism groups of free groups and IA automorphism
groups

Let Fn be a free group of rank n. We denote by Aut Fn the automorphism group of
the free group Fn. If n = 1, then clearly Aut Z ∼= Z/2. Henceforth we assume that
n ≥ 2. Then the homomorphism ι : Fn→ Aut Fn defined by

ι(α)γ = αγα−1 (α, γ ∈ Fn)
is easily seen to be injective. As was already mentioned in §2 in a general setting, the
image Im ι is denoted by InnFn and called the inner automorphism group of Fn. It
can be checked that InnFn is a normal subgroup of Aut Fn so that we can consider
the quotient group

Out Fn = Aut Fn/InnFn

which is called the outer automorphism group of the free group Fn.
These groups Aut Fn and Out Fn have been one of the main objects of combinatorial

group theory going back to the works of Nielsen and then Magnus from the late 1910s
to the 1930s.
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Aut Fn acts naturally on the abelianization of Fn, which is a free abelian group
of rank n. If we choose a system γ1, . . . , γn of generators for Fn, then we obtain a
homomorphism

ρ0 : Aut Fn −→ GL(n,Z). (4.1)

It is easy to see that ρ0 is trivial on the subgroup InnFn. Hence we obtain a homo-
morphism

ρ0 : Out Fn −→ GL(n,Z). (4.2)

Nielsen [74] proved that the above homomorphism is an isomorphism for n = 2 so
that

Out F2 ∼= GL(2,Z).

However for n ≥ 3, Nielsen [75] also observed that ρ0 is not injective and in [76] he
proved that the following four elements

(i) γ1 → γ2, γ2 → γ1, γi → γi (i = 3, . . . , n),

(ii) γ1 → γ−1
1 , γi → γi (i = 2, . . . , n),

(iii) γ1 → γ1γ2, γi → γi (i = 2, . . . , n),

(iv) γ1 → γ2, γ2 → γ3, . . . , γn→ γ1

generate Aut Fn and hence Out Fn. By this he was able to prove that the homomor-
phims ρ0 (4.1), (4.2) above are surjective. He also gave a finite complete set of defining
relations in terms of the above generators, for both of Aut Fn and Out Fn. Later Mc-
Cool [58] gave a simpler finite presentation for Aut Fn. Also Gersten [21] gave a finite
presentation for the subgroup Aut+Fn which is the full inverse image under ρ0 of the
subgroup GL+(n,Z) ⊂ GL(n,Z) consisting of matrices with determinant 1.

The kernels of the homomorphisms ρ0 are called IA (outer) automorphism groups
of Fn which we denote by IAutn and IOutn respectively. Thus we have group exten-
sions

1 −→ IAutn −→ Aut Fn
ρ0−→ GL(n,Z) −→ 1,

1 −→ IOutn −→ Out Fn
ρ0−→ GL(n,Z) −→ 1.

Magnus [53] proved that the group IAutn is finitely generated. On the other hand,
Baumslag–Taylor [4] proved that IAutn is torsion free.

There is a close connection between the mapping class group and the automorphism
groups of free groups. More precisely, we have the following two explicit relations.
One is the realization of the mapping class group Mg,1 of�g relative to an embedded
disk D ⊂ �g as a subgroup of Aut F2g described as

Mg,1 = {ϕ ∈ Aut F2g;ϕ(ζ ) = ζ } ⊂ Aut F2g (4.3)

where ζ = [γ1, γ2] . . . [γ2g−1, γ2g] ∈ F2g . This follows from Theorem 3.2 because
π1�

0
g is isomorphic to F2g . The other is given as follows. The subgroup Z =

Ker(Mg,1→Mg,∗) described in (3.1) is generated by the Dehn twist (see the next
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section §5) along a simple closed curve parallel to the boundary of the embedded disk
D2 ⊂ �g and its action on π1�

0
g is the conjugation by the element ζ above. Since

Mg,1/Z is canonically isomorphic to Mg,∗, we obtain a representation

Mg,∗ −→ Aut F2g/InnF2g = Out F2g.

It is known that this representation is injective so that we can consider Mg,∗ as a
subgroup of Out F2g

Mg,∗ ⊂ Out F2g.

The comparison of various group theoretical properties between the mapping class
groups Mg,∗, Mg and automorphism groups of free groups Aut Fn, Out Fn have been
an important subject since the very beginning of combinatorial group theory. Recently,
this tendency is strengthened in a wider framework including geometric viewpoints.

Finally we mention the following result of Laudenbach [50] which shows that, up
to a certain finite group, the (outer) automorphism groups of free groups are naturally
isomorphic to the diffeotopy groups of certain 3-manifolds. Let n S1 × S2 denote the
connected sum of n-copies of S1 × S2. Then there are the following exact sequences

1 −→ (Z/2)n −→ Out Fn −→D(n S1 × S2) −→ 1,

1 −→ (Z/2)n −→ Aut Fn −→D(n S1 × S2, rel D3) −→ 1

where D(n S1 × S2, rel D3) denotes the group of path components of those diffeo-
morphisms of n S1×S2 which are the identity on an embedded diskD3 ⊂ n S1×S2.

5 Dehn twists

So far we have not mentioned explicit examples of elements of the mapping class
group Mg . Here we describe the most important construction of such elements which
is called the Dehn twist because it was introduced by Dehn.

Suppose that there is given a simple closed curveC on�g and also recall that there
is specified an orientation on �g . Then we can define an element τC ∈Mg , which is
called the (right handed) Dehn twist alongC, as follows. Let us choose an embedding

i : S1 × [−1, 1] −→ �g

of an annulus into �g such that

(i) i(S1 × {0}) = C and

(ii) i preserves the orientations

where we give S1 and [−1, 1] the standard orientations and the annulus S1 × [−1, 1]
the product orientation of them. Then we define a diffeomorphism ϕ0 of the annulus
by

ϕ0(θ, t) = (θ + f (t), t)
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where 0 ≤ θ ≤ 2π and−1 ≤ t ≤ 1 are the coordinates of S1 and [−1, 1] respectively,
and f : [−1, 1] → R is a C∞ function such that

f (t) =
{

0 (−1 ≤ t ≤ − 1
2

2π
( 1

2 ≤ t ≤ 1
)

and f is strictly increasing on the interval
[ − 1

2 ,
1
2

]
. Now recall that for any diffeo-

morphism ψ of a C∞ manifold M , the closed set

supp(ψ) = {p ∈ M;ψ(p) 
= p} ⊂ M
is called the support of ϕ. By the definition of ϕ0, it is clear that supp(ϕ0) is contained
in Int (S1×[−1, 1]). Hence we can define a diffeomorphism ϕ ∈ Diff+�g by setting
ϕ = ϕ0 on i(S1 × [−1, 1]) and extend it by the identity over the whole of �g . It can
be checked that the isotopy class of ϕ does not depend on the choice of the function f
nor the orientation preserving embedding i (observe here that the opposite embedding
ī : S1 × [−1, 1] → �g defined by ī(θ, t) = i(−θ,−t) does not change the isotopy
class of ϕ). Furthermore it depends only on the isotopy class of the simple closed
curve C. We denote the resulting mapping class by τC ∈ Mg and call it the right
handed Dehn twist along C. This is because a path, which crosses the simple closed
curve C transversely at a point, will be transferred by ϕ to a path which, after getting
near to C, goes around C once to the right direction (with respect to the orientation of
�g) and then goes on as before. The inverse τ−1

C is called the left handed Dehn twist
alongC. Note here that if we reverse the orientation of�g , then the right handed Dehn
twist is changed into the left handed one and vice versa. Also note that the orientation
of the simple closed curve C itself has nothing to do with the definition of the Dehn
twist.

If a simple closed curve C on �g bounds a disk, then it is easy to see that the
corresponding Dehn twist is the identity in Mg . A simple closed curve on�g is called
essential if it does not bound a disk. We define

S(�g) = {isotopy classes of essential simple closed curves on �g}.

In summary, we obtain a mapping

S(�g) � [C] �−→ τC ∈Mg.

One simple but important property of the Dehn twists is that the equality

τϕ(C) = ϕ � τ ε(ϕ)C � ϕ−1 (5.1)

holds for any simple closed curve C and any element ϕ ∈ Diff �g , where ε(ϕ) = 1
or −1 if ϕ preserves (or reverses) the orientation of �g .

It may appear first that the definition of the Dehn twists is so simple that they will
cover a relatively small part of the mapping class group. However, if one observes
that there are enormously many simple closed curves on�g and two (or more) simple
closed curves can meet each other in a very complicated way, one can easily understand
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that products of Dehn twists along various simple closed curves can express very
complicated elements in Mg . In fact, Dehn [17] proved that finitely many Dehn twists
generate Mg . Later Lickorish [51] proved that a certain system of 3g−1 Dehn twists,
which are now called the Lickorish generators, generates Mg . Then Humphries [30]
proved that 2g + 1 members among the Lickorish generators already generate Mg .
He also proved that this number 2g+ 1 is the minimum of the number of Dehn twists
which can generate Mg .

As for the presentation of the mapping class group, McCool [59] proved that Mg

is finitely presentable without giving an explicit presentation. Hatcher and Thurston
[28] gave a method of obtaining a finite presentation and it was finally completed by
the work of Wajnryb [85].

6 Mapping class groups acting on the homology of surfaces
and the Torelli groups

The mapping class group Mg acts on the first homology group of �g naturally. As-
sume here that g ≥ 1 and we denote simply by H the first integral homology group
H1(�g;Z) of �g . As an abstract group, H is a free abelian group of rank 2g. How-
ever, there exists an important additional structure onH coming from the geometry of
�g . More precisely, the intersection numbers of elements of H give rise to a bilinear
mapping

μ : H ×H −→ Z.

We denote by u · v (u, v ∈ H) the intersection number μ(u, v). Then v · u =
−u · v so that μ is skew symmetric. The natural action of Mg on H comes from
orientation preserving diffeomorphisms of the surface �g . Hence it clearly preserves
the intersection pairing μ so that we obtain a homomorphism

ρ0 : Mg −→ Aut(H,μ) (6.1)

where Aut(H,μ) denotes the automorphism group of H preserving μ. Namely

Aut(H,μ) = {f ∈ AutH ; f (u) · f (v) = u · v for any u, v ∈ H }.
Let us study how this condition can be expressed in terms of that of matrices repre-
senting elements of Aut(H,μ). For this, choose a basis x1, . . . , xg, y1, . . . , yg of H
such that

xi · yj = δij ,
xi · xj = yi · yj = 0 (i, j = 1, . . . , g).
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A basis with this property is called a symplectic basis. It is easy to see that there exist
infinitely many such bases because

〈x1, . . . , xg, y1, . . . , yg〉 is a symplectic basis �⇒
〈x1 + ny1, x2, . . . , xg, y1, . . . , yg〉 is also a symplectic basis

for any n ∈ Z, for example.
Now if we fix a symplectic basis of H , then the automorphism group AutH can

be identified as
AutH = GL(n,Z)

by associating to each element in AutH the corresponding matrix with respect to the
given symplectic basis. More precisely, first we express any two elements u, v ∈ H
as linear combinations

u = u1x1 + · · · + ugxg + ug+1y1 + · · · + u2gyg,

v = v1x1 + · · · + vgxg + vg+1y1 + · · · + v2gyg

with respect to the above symplectic basis and then we identify the two elements u, v
with the following 2g-dimensional column vectors

u = t(u1, . . . , ug, ug+1, . . . , u2g), v = t(v1, . . . , vg, vg+1, . . . , v2g)

in R
2g . Now set

J =
(
O E

−E O

)
∈ GL(2g,Z).

Then we can write

u · v = u1vg+1 + · · · + ugv2g − ug+1v2g − · · · − u2gvg = (u, Jv)
where (u, Jv) denotes the standard Euclidean inner product of two vectors u, Jv ∈
R

2g . Now a matrix A ∈ GL(2g,Z) preserves the intersection pairing μ if and only if
the condition

Au · Av = u · v for any u, v ∈ H (6.2)

holds. On the other hand we have

Au · Av = (Au, JAv) = (u,tAJAv),
u · v = (u, Jv).

It follows that A satisfies the condition (6.2) if and only if

tAJA = J.
Based on the above consideration, we define a subgroup

Sp(2g,Z) = {A ∈ GL(2g,Z); tAJA = J }
of GL(2g,Z). This group is a discrete subgroup of the symplectic group Sp(2g,R)
consisting of unimodular symplectic matrices. Sometimes the group Sp(2g,Z) is
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called the Siegel modular group because it plays a fundamental role in the theory of
Siegel modular forms.

In conclusion, if we fix a symplectic basis of H , then we have an isomorphism

Aut (H,μ) ∼= Sp(2g,Z)

and (6.1) induces a homomorphism

ρ0 : Mg −→ Sp(2g,Z).

It is easy to see that Sp(2,Z) = SL(2,Z) so that ρ0 is an isomorphism for the case
g = 1. In the cases where g ≥ 2, it was classically known, going back to a work
of Burkhardt at the end of the 19 th century and later works of Dehn and Nielsen,
that ρ0 is surjective (cf. [55]). It was recognized that ρ0 has a non-trivial kernel
which is a normal subgroup of Mg . This group was named the Torelli group after
an Italian mathematician and was known for some time among complex analysts and
algebraic geometers. However it was relatively recently that the Torelli group called
the attention of topologists. Probably Birman’s paper [6] published in 1971 is the
earliest work on this group by topologists. Then Johnson began a systematic study of
this group in the late 1970s and obtained foundational results concerning the structure
of the Torelli group within several years. We refer the readers to his survey paper [37]
as well as [36], [38] [39], [40]. Following his notation, the Torelli group is usually
denoted by �g . Thus we have a group extension

1 −→ �g −→ Mg
ρ0−→ Sp(2g,Z) −→ 1.

It is a classical result, going back to Grothendieck and Serre, that

the Torelli group �g is torsion free.

This can be shown as follows. Suppose that there exists a non-trivial element ϕ ∈ �g
which has a finite order, say d > 0. Then by Nielsen [78], there exists a diffeo-
morphism ϕ̃ : �g→ �g such that ϕ̃d = id and the mapping class of ϕ̃ is the given
one ϕ. Then consider the quotient �g/Gϕ̃ of �g divided by the action of the cyclic
group Gϕ̃ ∼= Z/d generated by the element ϕ̃. It is easy to see that this quotient
space is homeomorphic to a closed surface of some genus h, because the projection
�g→ �g/Gϕ̃ must be a branched covering along a finite set consisting of fixed points
of ϕ̃ on �g . Now there is a general fact on the rational cohomology of the quotient
space X/G divided by a properly discontinuous action of a discrete group G on X,
due originally to Grothendieck, thatH ∗(X/G;Q) ∼= H ∗(X;Q)G. If we apply this to
the above simplest case of a finite group action, we obtain isomorphisms

H ∗(�h;Q) ∼= H ∗(�g/Gϕ̃;Q) ∼= H ∗(�g;Q)Gϕ̃ ∼= H ∗(�g;Q)
where the last isomorphism comes from the assumption that ϕ̃ acts trivially on the
homology (and hence cohomology) of �g . We can now conclude that g = h which
is a contradiction because the condition g ≥ 2 should imply that h < g. Observe
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here that the genus 1 surface, namely the torus T 2 admits a free Z/d action and the
quotient space is again diffeomorphic to T 2.

Now one of the foundational results of Johnson mentioned above is that �g is
finitely generated for any g ≥ 3. To prove this, he introduced the following two types
of elements of Mg . One is the BP-map (BP for bounding pair) defined as follows.
Suppose that there are given two disjoint simple closed curves C andD on �g which
satisfy the condition that if we cut �g along C and D, then the resulting surface is
disconnected. In other words, the disjoint union C ∪ D bounds a subsurface of �g .
We say that C and D are a bounding pair. In this case, we call the element

τCτ
−1
D ∈Mg

the BP-map corresponding to the above bounding pair. The other type is the BSCC-
map (BSCC for bounding simple closed curve) defined as follows. Suppose that there
is given a simple closed curve C on �g such that if we cut �g along C, then the
resulting surface is disconnected. In other words, the simple closed curve C bounds a
subsurface of �g . We say that C is a bounding simple closed curve. In this case, we
call the element

τC ∈Mg

the BSCC-map corresponding to the bounding simple closed curve C.
In fact, the following important fact holds:

BP-map, BSCC-map ∈ �g. (6.3)

To see this, let us study how a Dehn twist τC along a simple closed curve C acts on
H1(�g;Z). Let u ∈ H1(�g;Z) be a homology class and choose an oriented curve
E on �g which represents u. We can assume that E intersects C transversely at
finitely many points. Let us choose an orientation on C and let v ∈ H1(�g;Z) be the
homology class represented by C with this orientation. Locally C divides the regular
neighborhood of C into two parts. If we identify a closed regular neighborhood of
the oriented C with S1 × [−1, 1] according to the given orientation on the surface
in such a way that the oriented C is identified with the oriented S1 × {0}, then we
can distinguish the above two pieces by calling them the negative and positive sides
respectively. Now we count the number of the intersection points C ∩E algebraically
by giving +1 if the oriented curve E intersects C from negative to positive direction
and −1 if E intersects C from positive to negative direction. Let m be the totality of
these ±1 numbers. Then we have

τC(u) = u+mv.
Observe here that, if we reverse the orientation of C, then both m and v change signs
so that the above formula remains unchanged. Now we can check the above fact (6.3)
as follows. First let C,D be a BP-pair. Then we can give orientations on them so
that the resulting homology classes are the same. On the other hand, in the above
computation, we have τC(u) = τD(u) for any u so that τCτ

−1
D acts on the homology
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trivially. Next, if C is a BSCC, then clearly the corresponding homology class is
trivial, whence the claim follows.

The genus of a BP-map (or BSCC-map) is defined as follows. If we cut�g along a
BP-pair C,D (or a BSCC C), then we obtain two surfaces. The genus of the relevant
map is defined to be the smaller genus of these two surfaces.

Theorem 6.1 (Johnson [38]). The Torelli group �g is finitely generated for any g ≥ 3.

The method of proving this theorem was roughly as follows. Johnson constructed
a certain finite set of BP-maps of all genera between 1 and g − 2 and showed that the
subgroup of �g generated by them is a normal subgroup. Since he had already proved
in [35] that �g is normally generated by just one BP-map of genus 1, the proof was
completed.

Johnson considered also the subgroup

Kg = the subgroup of Mg generated by all the BSCC-maps

of the mapping class group. Since any BSCC-map is contained in �g , Kg is a subgroup
of �g . Also it is easy to see that property (5.1) implies any conjugate element of a
BSCC-map is again a BSCC-map. It follows that Kg is a normal subgroup of Mg

(and �g). More strongly, it is known that Kg is a characteristic subgroup of Mg (and
�g). This follows from a result of Ivanov [31] (see also [57]) that any automorphism
of Mg is induced by an inner automorphism of D(�g) for any g ≥ 3 and a similar
result for the case of the Torelli group �g due to Farb and Ivanov [20].

It can be shown that Kg coincides with �g for g = 2. However Johnson [39]
proved that the quotient �g/Kg is an infinite group for any g ≥ 3. More precisely,
choose a symplectic basis x1, . . . , xg, y1, . . . , yg of H = H1(�g;Z) as before. The
element

ω0 = x1 ∧ y1 + · · · + xg ∧ yg ∈ �2H

is called the symplectic class. It is known that this element is well defined independent
of the choice of symplectic bases. It is easy to see that the mapping

H � u �−→ u ∧ ω0 ∈ �3H

is injective. HenceH can be considered as a submodule of�3H so that we can consider
the quotient module �3H/H . Now Johnson [36] constructed a homomorphism

τ : �g −→ �3H/H

and showed that it is surjective and vanishes on the subgroup Kg . This homomorphism
is called now the Johnson homomorphism (see §7 for more details). Later he proved
in [39] that Ker τ is precisely the subgroup Kg . Thus we have an extension

1 −→ Kg −→ �g
τ−→ �3H/H −→ 1.

Because of these basic works, sometimes the group Kg is called the Johnson subgroup
or Johnson kernel.
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To conclude this section, we would like to make a list which indicates the known
results concerning finite generation as well as finite presentability of groups such as
the automorphism group of Fn, the IA automorphism group of Fn, the mapping class
group, the Torelli group and the Johnson subgroup Kg (the groups Out Fn and IOutn
are not included in the list because the results for these groups are the same as Aut Fn
and IAutn respectively). We refer the readers to the cited original papers and also to
the survey papers [84], [10], [34], [37] for details.

Groups Generators Relations

Aut Fn finitely generated finitely presented

Nielsen [76] Nielsen [76]

McCool [58] McCool [58]

Aut+Fn Gersten [21] Gersten [21]

IAutn finitely generated unknown (n ≥ 4)

Magnus [53] not finitely presentable (n = 3)

Krstić–McCool [48]

Mg finitely generated finitely presentable

Dehn [17] McCool [59]

Hatcher–Thurston [28]

Lickorish [51] finitely presented

Humphries [30] Wajnryb [85]

Gervais [22]

�g finitely generated (g ≥ 3) unknown (g ≥ 3)

Johnson [38] infinitesimal finite presentation

Hain [23]

infinitely generated (g = 2) free group (g = 2)

Mess [62] Mess [62]

Kg infinitely generated unknown (g ≥ 3)

Biss–Farb [11] (g ≥ 3)

Problem 1. Complete the above list by filling in the “unknown” blanks.



Chapter 7. Introduction to mapping class groups of surfaces and related groups 371

7 Johnson homomorphisms

In this section, we define so called Johnson homomorphisms which give homomor-
phisms defined on a certain series of subgroups of the mapping class group into certain
abelian groups.

In order to do so, we first describe a method of investigating the structure of a given
abstract group Γ by approximating it by a series of nilpotent groups. This method is
due originally to Malcev [56]. The first approximation is the abelianization Γ ab of
Γ . This can be algebraically expressed as follows. Let Γ1 denote the commutator
subgroup of Γ . Namely, it is the subgroup of Γ generated by the commutators
[γ1, γ2] = γ1γ2γ

−1
1 γ−1

2 (γ1, γ2 ∈ Γ ). It is easy to see that Γ1 is a normal subgroup
of Γ and, as is well known, we have a canonical isomorphism

Γ ab ∼= Γ/Γ1.

Next we consider the second commutator subgroup Γ2 which is defined to be the
subgroup of Γ generated by the two-fold commutators

[γ1, [γ2, γ3]] = γ1[γ2, γ3]γ−1
1 [γ2, γ3]−1 (γ1, γ2, γ3 ∈ Γ ).

Then it can be checked that Γ2 is a normal subgroup of Γ and Γ/Γ2 is a two-step
nilpotent group. More precisely, the quotient group Γ1/Γ2 is an abelian group and
Γ/Γ2 can be described by the following group extension

0 −→ Γ1/Γ2 −→ Γ/Γ2 −→ Γ/Γ1 = Γ ab −→ 1 (7.1)

which is a central extension ofΓ/Γ1 = Γ ab byΓ1/Γ2. We can continue this procedure
to obtain a series of nilpotent groups Nk (k = 1, 2, . . . ) which approximate Γ as
follows, whereN1 = Γ ab andN2 = Γ/Γ2. We setΓ0 = Γ and for each k = 1, 2, . . . ,
we inductively define

Γk = [Γ, Γk−1]
= the subgroup of Γ generated by k-fold commutators.

It can be checked that Γk is a normal subgroup of Γ and the series {Γk}k of normal
subgroups of Γ is called the lower central series of Γ . It can be easily checked that
these subgroups ofΓ are all characteristic subgroups meaning that any automorphism
f ∈ Aut Γ of Γ preserves them. Now we set Nk = Γ/Γk and call this group the k-th
nilpotent quotient of Γ . In fact, the quotient Ck = Γk−1/Γk is easily seen to be an
abelian group and furthermore we have a central extension

0 −→ Ck −→ Nk −→ Nk−1 −→ 1 (k = 2, 3, . . . ). (7.2)

Hence Nk is a k-step nilpotent group and we obtain an inverse system

· · · −→ Nk −→ Nk−1 −→ · · · −→ N3 −→ N2 −→ N1 = Γ ab

of nilpotent groups to which there is a homomorphism from the given group Γ .
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Next we ignore any torsion in the above argument and consider everything over
Q. In some sense, this procedure can be understood as taking tensor products with Q.
The first step is straightforward. Namely we just take the usual tensor product of Γ ab

with Q

N1 ⊗Q = Γ ab ⊗Q

which is a vector space over Q. For the second step, recall that any central extension
of a group Γ by an abelian group C is classified by its extension class which is a
second cohomology class defined in H 2(Γ ;C) (see [12]). If we apply this to the
central extension (7.1), we obtain a certain element

χ2(Γ ) ∈ H 2(Γ ab;Γ1/Γ2).

Application of the natural homomorphisms Γ ab→Γ ab⊗Q and Γ1/Γ2→Γ1/Γ2⊗Q

to the above element gives

χ
Q

2 (Γ ) ∈ H 2(Γ ab ⊗Q;Γ1/Γ2 ⊗Q).

This yields a central extension

0 −→ Γ1/Γ2 ⊗Q −→ N2 ⊗Q −→ Γ ab ⊗Q −→ 1 (7.3)

by which the group N2 ⊗ Q is defined. We can inductively continue this procedure
and we eventually obtain a series of central extensions

0 −→ Ck ⊗Q −→ Nk ⊗Q −→ Nk−1 ⊗Q −→ 1 (k = 2, 3, . . . ). (7.4)

In this way, a series of nilpotent groups {Nk ⊗Q}k is defined. The inverse system

· · · −→ Nk ⊗Q −→ Nk−1 ⊗Q −→ · · · −→ N3 ⊗Q −→ N2 ⊗Q −→ N1 ⊗Q

of nilpotent groups is called the Malcev completion of the given group Γ .

Example 7.1. One of the most important examples of the Malcev completions which
appears in the theory of free groups as well as the mapping class group is that of free
groups. Here we briefly describe it. Let Fn denote a free group of rank n and we
denote the abelianization H1(Fn;Z) of Fn simply by H which is a free abelian group
of rank n. We consider the free graded Lie algebra generated by the elements of H
which we denote by

L =
∞⊕

k=1

Lk

as follows. The degree 1 part L1 is defined to beH itself. Then we consider the bracket
[u, v] ∈ L2 of two elements u, v ∈ H . The skew commutativity [v, u] = −[u, v] of
the Lie algebra implies that L2 = �2H . Next we consider the bracket

[ , ] : L1 ⊗L2 = H ⊗�2H −→ L3.

The Jacobi identity of the Lie algebra forces that the submodule �3H ⊂ H ⊗�2H

(defined by the correspondence u∧ v ∧w→ u⊗ [v,w] + v ⊗ [w, u] +w⊗ [u, v])
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must vanish under the above map. There are no other constraints so that L3 =
H ⊗ �2H/�3H . Going further, the complexity of enumerating all the relations
imposed by the structure of the Lie algebra increases. However we can avoid this
difficulty by embedding L into the tensor algebra

T ∗(H) =
∞⊕

k=1

H⊗k.

The degree 1 parts of L and T ∗(H) are the same, namely both are H . The second
term can be embedded as

L2 = �2H � [u, v] = u ∧ v �−→ u⊗ v − v ⊗ u ∈ H⊗2.

As for the third term, consider the linear mapping

H ⊗�2H � u⊗ [v,w]
�−→ u⊗ v ⊗ w − u⊗ w ⊗ v − v ⊗ w ⊗ u+ w ⊗ v ⊗ u ∈ H⊗3.

It is easy to check that the kernel of this map is precisely �3H so that we obtain an
embedding

L3 = H ⊗�2H/�3H � u⊗ [v,w]
�−→ u⊗ v ⊗ w − u⊗ w ⊗ v − v ⊗ w ⊗ u+ w ⊗ v ⊗ u ∈ H⊗3.

Then we can inductively define Lk as the image of the linear mapping

H⊗k ⊃ H ⊗Lk−1 � u⊗ ξ �−→ u⊗ ξ − ξ ⊗ u ∈ H⊗k.
Thus L = ⊕kLk is realized as a submodule of T ∗(H). The elements in L are called
Lie elements of T ∗(H). Now it is a classical result that L is isomorphic to the graded
module associated to the lower central series of the free groupFn. Namely there exists
a canonical isomorphism

(Fn)k−1/(Fn)k ∼= Lk

where (Fn)k denotes the k-th term in the lower central series of Fn (the first one
Fn/(Fn)1 ∼= H gives the abelianization). Thus we have a series of central extensions

0 −→ Lk −→ Nk(Fn) −→ Nk−1(Fn) −→ 1 (k = 2, 3, . . . )

where Nk(Fn) denotes the k-th nilpotent quotient of Fn. See [55] for details.

Now we define the Johnson homomorphisms. First we begin with the case of
automorphism groups of free groups. This case was considered first by Andreadakis
[1] before the works of Johnson.

We can define a series Aut Fn(k) (k = 1, 2, . . . ) of subgroups of Aut Fn as follows.
Any member (Fn)k in the lower central series of Fn is a characteristic subgroup in the
sense that it is preserved by any automorphism ϕ ∈ Aut Fn. Hence we obtain a series



374 Shigeyuki Morita

of representations

pk : Aut Fn −→ AutNk(Fn) (k = 1, 2, . . . ).

The first one p1 is nothing but the natural homomorphism

Aut Fn −→ AutN1(Fn) = GL(n,Z).

Now we set

Aut Fn(k) = Ker pk = {ϕ ∈ Aut Fn;ϕ acts on Nk(Fn) trivially}.
The first one Aut Fn(1) is nothing but the subgroup IAutn.

Now let ϕ ∈ Aut Fn(k) be any element. Then for each element γ ∈ Fn,

ϕ(γ )γ−1 ∈ (Fn)k
because, by the assumption, ϕ acts on Nk(Fn) = Fn/(Fn)k trivially. Consider the
image of ϕ(γ )γ−1 in Lk+1 = (Fn)k/(Fn)k+1 which we denote by [ϕ(γ )γ−1]. This
procedure defines a mapping

Fn � γ �−→ [ϕ(γ )γ−1] ∈ Lk+1.

It can be shown that the above mapping factors through the abelianization of Fn so
that we obtain a mapping

H = (Fn)ab −→ Lk+1.

Hence we can define a mapping

τk : Aut Fn(k) −→ Hom(H,Lk+1) (7.5)

by setting
τk(ϕ)([γ ]) = [ϕ(γ )γ−1] (γ ∈ Fn).

Finally it can be checked that the above mapping (7.5) is in fact a homomorphism and
this is called the k-th Johnson homomorphism for the automorphism groups of free
groups.

By the definition of the homomorphism τk , it is easy to see that

Ker τk = Aut Fn(k + 1).

Therefore we have an injection

Aut Fn(k)/Aut Fn(k + 1) ⊂ Hom(H,Lk+1).

If we make the direct sum over k, we obtain an injection
∞⊕

k=1

Aut Fn(k)/Aut Fn(k + 1) ⊂
∞⊕

k=1

Hom(H,Lk+1).

It is known that both of the above graded modules have the structure of graded Lie
algebras over Z and it is a very important problem to identify the left hand side as an
explicit Lie subalgebra of the right hand side.
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Problem 2. Determine the graded module

∞⊕

k=1

Aut Fn(k)/Aut Fn(k + 1)

associated to the filtration {Aut Fn(k)}k of the group Aut Fn as a Lie subalgebra of the
graded Lie algebra

∞⊕

k=1

Hom(H,Lk+1).

Next we consider the case of the mapping class group. Here, for simplicity, we
consider only the case of a compact surface �0

g = �g \ IntD2 with one boundary
component. Then Γ = π1�

0
g is a free group of rank 2g. As before, we denote

H1(�
0
g;Z) simply by H which is a free abelian group of rank 2g. By Theorem (3.2),

the mapping class group Mg,1 of �0
g is a subgroup of Aut F2g . Hence we can define

a filtration {Mg,1(k)}k of Mg,1 by simply restricting that of Aut F2g to the subgroup
Mg,1. The first term Mg,1(1) in this filtration is nothing but the Torelli group �g,1. It
turns out that, in the case of the mapping class group, there are important additional
structures which do not exist in the case of Aut F2g . First notice that the Poincaré
duality theorem for the (co)homology of the surface implies that there is a natural
isomorphism

H ∗ = Hom(H,Z) = H 1(�0
g;Z) ∼= H.

It follows that we can replace the target Hom(H,Lk+1) of the k-th Johnson homo-
morphism (7.5) byH ⊗Lk+1. Johnson [36] proved that the image of the first Johnson
homomorphism

τ1 : �g,1 −→ H ⊗�2H

is precisely the submodule

�3H ⊂ H ⊗�2H.

Generalizing this fact, it was proved in [66] that the target of τk can be narrowed, for
any k, as follows. We define a submodule Hk of H ⊗Lk+1 by setting

Hk = Ker
(
H ⊗Lk+1

[ , ]−−−→ Lk+2
)

where [ , ] denotes the bracket operation in the graded Lie algebra L. It can be checked
that the graded submodule

∞⊕

k=1

Hk ⊂
∞⊕

k=1

H ⊗Lk+1

is a graded Lie subalgebra.
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Problem 3. Determine the graded module
∞⊕

k=1

Mg,1(k)/Mg,1(k + 1)

associated to the filtration {Mg,1(k)}k of the mapping class group Mg,1 as a Lie
subalgebra of the graded Lie algebra

∞⊕

k=1

Hk.

A similar problem for the usual mapping class group Mg can be formulated by
making use of the result of Labute [49].

8 Teichmüller space and Outer Space

There are two important spaces on which the mapping class group Mg and the outer
automorphism group Out Fn of a free group act canonically. One is the classical
Teichmüller space, introduced by Teichmüller in the 1930s, and the other is the Outer
Space defined in the 1980s by Culler and Vogtmann [16]. Here we briefly describe
the definitions of them which can be given in parallel with each other.

The Teichmüller space of �g , denoted by Tg , is defined to be the space of all the
orientation preserving diffeomorphisms

f : �g −→M

from�g to compact Riemann surfacesM of genus g divided by a certain equivalence
relation. More precisely

Tg = {f : �g→M;M is a Riemann surface of genus g}/ ∼
where two orientation preserving diffeomorphisms

f : �g −→M, f ′ : �g −→M ′

are equivalent if there exists an isomorphismh : M →M ′ of Riemann surfaces (namely
a biholomorphism) such that the following diagram

�g
f−−−−→ M

∥∥∥
⏐⏐�h

�g
f ′−−−−→ M ′

is homotopy commutative. Let [f : �g→M] ∈ Tg denote the equivalence class
represented by f : �g→M . If we pull back the complex structure on M by the
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diffeomorphism f , we obtain a complex structure on �g whose induced orientation
coincides with the given orientation on �g . Since homotopic diffeomorphisms of
�g are mutually isotopic, the isotopy class of the pull back complex structure on �g
depends only on the element [f : �g→M]. Thus we can also write

Tg = {isotopy classes of complex structure on �g}.
In the cases where g ≥ 2, a complex structure on �g is the same as a hyperbolic
structure (that is a Riemannian structure with constant negative curvature −1) by the
classical uniformization theorem. Therefore we have yet one more description:

Tg = {isotopy classes of hyperbolic structure on �g} (g ≥ 2).

The space of all the complex (or hyperbolic) structures on �g has a natural C∞
topology and it induces a topology on Tg . It is a classical result of Teichmüller that
Tg is homeomorphic to R

6g−6 for any g ≥ 2. The mapping class group Mg acts on
Tg from the right by

Tg ×Mg � ([f : �g→M], ϕ) �−→ [f � ϕ̃ : �g→M] ∈ Tg

where ϕ̃ ∈ Diff+�g is a lift of ϕ ∈ Mg . This action is known to be properly
discontinuous. The quotient space

Mg = Tg/Mg

is called the moduli space of Riemann surfaces of genus g which consists of all the
isomorphism classes of genus g Riemann surfaces.

The Outer Space Xn, which is an analogue of the Teichmüller space where we
replace Mg with Out Fn, was defined by Culler and Vogtmann [16] as follows. A
metric graph � is a graph (one dimensional finite complex) such that (i) the valencies
at vertices are all ≥ 3 and (ii) there is given a length on every edge such that the sum
is equal to 1. Let Rn denote the wedge of labeled n circles S1

i (i = 1, . . . , n) so
that there is given an isomorphism π1Rn ∼= Fn. Then the Outer Space (of rank n) is
defined as the set of homotopy equivalences f : Rn→ � from Rn to metric graphs �
divided by a certain equivalence relation. More precisely

Xn = {f : Rn→ �;� is a metric graph with π1� ∼= Fn}/ ∼
where two homotopy equivalences

f : Rn −→ �, f ′ : Rn −→ �′

are equivalent if there exists an isometry h : �→ �′ of metric graphs such that the
following diagram

Rn
f−−−−→ �

∥∥∥
⏐⏐�h

Rn
f ′−−−−→ �′
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is homotopy commutative. Let [f : Rn→ �] ∈ Xn denote the equivalence class
represented by f : Rn→ �. The group Out Fn acts on Xn from the right by

Xn × Out Fn � ([f : Rn→ �], ϕ) �−→ [f � ϕ̃ : Rn→ �] ∈ Xn
where ϕ̃ : Rn→ Rn is a homotopy equivalence which represents ϕ ∈ Out Fn. There
is a natural topology on Xn and Culler and Vogtmann proved that Xn is contractible
and the above action is properly discontinuous. The quotient space

Gn = Xn/Out Fn

is called the moduli space of metric graphs of rank nwhich consists of all the isometry
classes of metric graphs of rank n. We refer to the survey paper [84] by Vogtmann and
also Bestvina [5] for recent results concerning the Outer Space as well as Out Fn.

In general, it is a very important problem to determine the (co)homology groups
of the moduli spaces associated to various geometrical objects. In the above, we have
the moduli spaces of Riemann surfaces and the moduli space of metric graphs. There
have been obtained many results concerning the cohomology of these moduli spaces
(we refer to the survey papers [26], [45], [83], [84], [71] as well as original papers
[25], [73], [64], [65], [63], [52], [29], [15]). However the cohomological structures
of them are far from being very well understood.

Problem 4. Study the (co)homology groups of the moduli space Mg of Riemann
surfaces and the moduli space Gn of metric graphs.

9 Symplectomorphism groups of surfaces

As in §1, let Diff+�g denote the orientation preserving diffeomorphism group of
�g . Let us choose an area form ω on �g . Then, by the dimension reason, it can be
considered also as a symplectic form on �g . We denote by

Symp�g = {ϕ ∈ Diff+�g;ϕ∗ω = ω}
the subgroup of Diff+�g consisting of those diffeomorphisms which preserve the
form ω. We call it the symplectomorphism group of the symplectic manifold (�g, ω)
or the orientation and area preserving diffeomorphism group of�g with respect to the
area form ω.

As was already mentioned in §1, in general, the volume preserving diffeomorphism
group DiffυM of a C∞ manifold M with respect to a given volume form υ and also
the symplectomorphism group Symp(M,ω) of a symplectic manifold (M,ω) are
both very important objects of geometry and topology. Recently there has been rapid
progress in a topological study of symplectic manifolds, under the name of symplectic
topology (see [61] for foundations and generalities of this theory).

The case of surfaces is the simplest one. However it is at the same time very
important because the symplectic and the volume preserving contexts are the same in
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this case so that we can expect very rich structures here. In the following, we would
like to describe one feature of these structures, namely the one which is induced by a
basic concept in symplectic topology called the flux homomorphism.

If we apply Moser’s theorem in [72], mentioned in §2, to Symp�g , we can conclude
that the inclusion

Symp�g ⊂ Diff+�g
is a homotopy equivalence. It follows that the symplectic mapping class group
SD(�g, ω) of the symplectic manifold (�g, ω) can be canonically identified with
the usual mapping class group Mg and we obtain the following exact sequence

1 −→ Symp0�g −→ Symp�g −→Mg −→ 1.

In particular, the natural homomorphism Symp�g→Mg is surjective. Let us see
this fact somewhat more explicitly. One form of Moser’s theorem cited above can be
stated as follows. Let M be a closed oriented C∞ manifold and let υ, υ ′ be any two
volume forms onM . Then there exists a diffeomorphism ϕ ofM , which can be chosen
to be isotopic to the identity, such that υ ′ = cϕ∗υ where c is a constant defined by

∫

M

υ ′ = c
∫

M

υ.

Now let ϕ ∈ Mg be any element and let ϕ̃ ∈ Diff+�g be its lift. Consider the
form ϕ̃∗ω which is another area form on �g . Hence by the above theorem of Moser,
there exists an element ψ ∈ Diff+�g , which is isotopic to the identity, such that
ϕ̃∗ω = ψ∗ω. If we set ϕ̃′ = ϕ̃ψ−1, then (ϕ̃′)∗ω = ω so that ϕ̃′ belongs to Symp�g .
On the other hand, since ψ is isotopic to the identity, the projection of ϕ̃′ to Mg is
the same as that of ϕ̃ which is the given element ϕ. We can now conclude that the
mapping Symp�g→Mg is surjective as required. It might be amusing to observe
here that the Dehn twist along a simple closed curveC on�g , defined in §5, preserves
any area form on �g whose restriction to a cylindrical neighborhood of C is equal to
the 2-form dθ ∧ dt .

Now we describe the flux homomorphism briefly (see [61] for details). It is defined
for a general symplectic manifold (M,ω). Let Symp0(M,ω) denote the identity com-
ponent of Symp (M,ω) as before. Then the flux homomorphism is a homomorphism

Flux : S̃ymp0(M,ω) −→ H 1(M;R) (9.1)

from the universal covering group of Symp0(M,ω) to the first real cohomology group
ofM defined as follows. For each element ϕ ∈ Symp0(M,ω), let ϕt ∈ Symp0(M,ω)

be an isotopy such that ϕ0 = id and ϕ1 = ϕ. Then

Flux({ϕt }) =
∫ 1

0
iϕ̇t ω dt

where ϕ̇t denotes the vector field associated to ϕt , which is considered as a one-
parameter family of transformations of M , and i denotes the interior product. It can
be checked that the above value depends only on the homotopy class of the curve {ϕt }
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in Symp0(M,ω) with fixed endpoints. Hence we have the induced map described in
(9.1). Furthermore it can be checked that Flux is a homomorphism and also that it is
surjective. We have an exact sequence

1 −→ π1 Symp0(M,ω) −→ S̃ymp0(M,ω) −→ Symp0(M,ω) −→ 1

and the subgroup

�ω = Flux(π1 Symp0(M,ω)) ⊂ H 1(M;R)
is called the flux group. Then (9.1) induces the following homomorphism which is
also called the flux homomorphism

Flux : Symp0(M,ω) −→ H 1(M;R)/�ω. (9.2)

Very recently, Ono [79] proved a long standing conjecture that the flux group is a
discrete subgroup of H 1(M;R) for any compact symplectic manifold M .

Now in our case of surfaces, by Moser’s theorem Symp0�g is homotopy equiv-
alent to Diff+�g which in turn is known by Earle and Eells [18] to be homotopy
equivalent to T 2 for the case g = 1 and contractible for any g ≥ 2. Hence we obtain
homomorphisms

Flux : Symp0T
2 −→ H 1(T 2;R)/H 1(T 2; cZ),

Flux : Symp0�g −→ H 1(�g;R) (g ≥ 2)

where c denotes the total area of T 2 with respect to ω.

10 Extensions of the Johnson homomorphism and the flux
homomorphism

Assume that a group G acts on a module M by automorphisms. In other words,
suppose that a homomorphism

G −→ AutM

is given. Then we can give the direct productM ×G a natural structure of a group by
setting

(m, g)(n, h) = (m+ g(n), gh) (m, n ∈ M,g, h ∈ G).
The resulting group is denoted byM�G and called the semi-direct product ofM and
G or split extension of G by M .

We mention the following three results which have a similar formal nature to
each other. The first one is given in [67], where it was proved that the first Johnson
homomorphism τ1 : �g,1 −→ �3H can be extended to a homomorphism

ρ1 : Mg,1 −→ �3HQ � Sp(2g,Z)
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where HQ = H ⊗ Q. Similar results hold for the other types of the mapping class
groups Mg and Mg,∗. The second one is due to Kawazumi [41] who proved, among
other things, that the first Johnson homomorphism τ1 : IAutn −→ H ∗ ⊗�2H can be
extended to a homomorphism

ρ1 : Aut Fn −→ VQ � GL(n,Z)

where V = H ∗ ⊗ �2H and VQ = V ⊗ Q. A similar result holds for Out Fn.
The third one is given in [46] where it was proved that the flux homomorphism
Flux : Symp0�g→ H 1(�g;R) can be extended to a homomorphism

F̃lux : Symp�g −→ H 1(�g;R)� Sp(2g,Z).

Thus we have the following three commutative diagrams.

1 −−−−→ �g,1 −−−−→ Mg,1 −−−−→ Sp(2g,Z) −−−−→ 1
⏐⏐�τ1

⏐⏐�ρ1

∥∥∥

1 −−−−→ �3H −−−−→ �3HQ � Sp(2g,Z) −−−−→ Sp(2g,Z) −−−−→ 1

1 −−−−→ IAutn −−−−→ Aut Fn −−−−→ GL(n,Z) −−−−→ 1
⏐⏐�τ1

⏐⏐�ρ1

∥∥∥

1 −−−−→ V −−−−→ VQ � GL(n,Z) −−−−→ GL(n,Z) −−−−→ 1

1 −−−−→ Symp0�g −−−−→ Symp�g −−−−→ Mg −−−−→ 1
⏐⏐�Flux

⏐⏐�F̃lux

∥∥∥

1 −−−−→ HR −−−−→ HR � Mg −−−−→ Mg −−−−→ 1

where HR = H 1(�g;R).
The first two diagrams can be extended further by considering higher nilpotent

quotients of the Torelli group �g,1 and the group IAutn. However, as for the last one,
there is no such extension because the kernel of the flux homomorphism, which is
denoted by Ham�g and called the Hamiltonian symplectomorphism group, is known
to be perfect by Thurston [82] (see also Banyaga [3] for the generalization of this
fact to general symplectic manifolds). There are several results which make use of
the above three commutative diagrams, see [68], [42], [43], [70], [41], [46], [47] and
references in them. However it seems likely that there should exist further interesting
facts to be uncovered along these lines.

Problem 5. Give further applications as well as generalizations of the above three
commutative diagrams.
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