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Cohomology

Space = pointed simplicial (or cell) complex.

Definition
A reduced cohomology theory H is:

Topology → Algebra
space X 7→ Hn(X ) abelian group, n ∈ Z,

map X f−→ Y 7→ Hn(X )
Hn(f )←− Hn(Y ) homomorphism,

homotopic f ' g : X → Y 7→ Hn(f ) = Hn(g) equal,

base point union
∐
i∈I

Xi 7→
∏
i∈I

Hn(Xi) product,

cofiber sequence exact sequence
X → Y → Cf → ΣX 7→ Hn(X )← Hn(Y )← Hn(Cf )← Hn(ΣX ),

Hn(X ) ∼= Hn+1(ΣX ) suspension formula.
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Cohomology

Space = pointed simplicial (or cell) complex.

Definition
A reduced cohomology theory H on compact spaces is:

Topology → Algebra
space X 7→ Hn(X ) abelian group, n ∈ Z,

map X f−→ Y 7→ Hn(X )
Hn(f )←− Hn(Y ) homomorphism,

homotopic f ' g : X → Y 7→ Hn(f ) = Hn(g) equal,

base point union
∐
i∈I

Xi 7→
∏
i∈I
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Cofiber sequence

X Y Cf ΣXf // i //
q

//
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Cofiber sequence

X Y Cf ΣXf // i
inclusion

//
q

//

mapping
cone

%%
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Cofiber sequence

X Y Cf ΣXf // i
inclusion

//
q

collapse
//

mapping
cone

%%
suspension
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Examples of cohomologies

Example
Singular cohomology H∗(X ,Z), defined on all spaces,

Hn(discrete) = 0, for n 6= 0,

H0(X ,Z) = pointed maps X → Z.

course

Complex K -theory K ∗(X ), X compact,

K 0(X ) = stable isomorphism classes of C-vector bundles/X ,

K n(X ) ∼= K n+2(X ), n ∈ Z, Bott periodicity,

K 1(X ) ∼= K 0(ΣX ).
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Spectra

Definition
A spectrum E = {E0,E1, . . . ,En, . . . } is a sequence of spaces together
with bonding maps,

ΣEn −→ En+1, n ≥ 0.

An Ω-spectrum is a spectrum E where the adjoints of the bonding
maps En → ΩEn+1 are homotopy equivalences.

Example
Any space X defines a spectrum Σ∞X = {X ,ΣX , . . . ,ΣnX , . . . }, which
is not an Ω-spectrum.
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Spectra and cohomology

Theorem (G. W. Whitehead’62)
A spectrum E represents a cohomology theory H defined on compact
spaces by

Hn(X ) = lim
k→∞

[Σk−nX ,Ek ], n ∈ Z,

where [−,−] denotes the set of homotopy classes of maps.

If E is an Ω-spectrum then E represents a cohomology theory H
defined on all spaces by the formula above.
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Classical representability theorems

Theorem (E. H. Brown’63)
Any cohomology theory defined on all spaces is represented by a
spectrum.

Theorem (J. F. Adams’71)
Any cohomology theory defined on compact spaces is represented by
a spectrum.

The following corollary can be applied to complex K -theory.

Corollary
Any cohomology theory on compact spaces can be extended to a
cohomology theory defined on all spaces.
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Spectrum for singular cohomology

E = {Z,S1,CP∞, . . . } with H∗(X ) = H∗(X ,Z).
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Spectrum for singular cohomology

E = {Z,S1,CP∞, . . . } with H∗(X ) = H∗(X ,Z).

= ΣZ

= S1
��
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Spectrum for singular cohomology

E = {Z,S1,CP∞, . . . } with H∗(X ) = H∗(X ,Z).
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Spectrum for singular cohomology

E = {Z,S1,CP∞, . . . } with H∗(X ) = H∗(X ,Z).

= ΣZ

= S1
��

degree −3 00
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Spectrum for singular cohomology

E = {Z,S1,CP∞, . . . } with H∗(X ) = H∗(X ,Z).

ΣS1 = S2 = = CP1 CP∞
inclusion //
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Stable homotopy

Recall that cohomology regards suspension as an invertible functor:

Hn(X ) ∼= Hn+1(ΣX ).

Definition
The compact stable homotopy category SHc :

Objects: (X ,n), X compact space, n ∈ Z,

(X ,n) ∼ ΣnX .

Morphisms: Hom((X ,n), (Y ,m)) = lim
k→∞

[Σk+nX ,Σk+mY ].

Suspension: Σ(X ,n) = (X ,n + 1) ∼= (ΣX ,n).

Exact triangles: (X ,n)→ (Y ,n)→ (Cf ,n)→ Σ(X ,n) coming from
cofiber sequences.
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Triangulated categories

Definition
A triangulated category consists of:

an additive category T,
an equivalence Σ: T ∼−→ T,

a family of exact triangles X f→ Y → Cf → ΣX in T,

X
f // Y

~~~~
~~

~~
~

Cf

+1

__@@@@@@@

satisfying the formal properties of the compact stable homotopy
category.
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Homotopy and derived categories

Example
Let R be a ring.

The homotopy category K(R), objects are complexes of
R-modules,

C = · · · → Cn+1
dC−→ Cn

dC−→ Cn−1 → · · · , d2
C = 0,

(ΣC)n = Cn−1, dΣC = −dC ,

morphisms are chain homotopy classes of maps, and exact
triangles come from cofiber sequences of complexes. 4

The derived category D(R) ⊂ K(R) is the full subcategory
spanned by ‘injective resolutions’ of complexes.

For any Grothendieck abelian category A we also have
triangulated categories D(A) ⊂ K(A).
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Compactness in triangulated categories

Definition
A triangulated category T is cocomplete if it has all coproducts,∐

i∈I

Xi , I a set.

An object Y in T is compact if any map

Y −→
∐
i∈I

Xi

factors as
Y −→

∐
j∈J

Xj ⊂
∐
i∈I

Xi , I ⊃ J finite.
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Compactness in triangulated categories

Example
D(A) and K(A) are cocomplete.

Compact objects in D(R) are bounded complexes of finitely
generated projective R-modules, a.k.a. perfect complexes.

The compact stable homotopy category SHc admits a
cocompletion SH called the full stable homotopy category, whose
objects are spectra.

The derived category D(sheaves/M) of sheaves of abelian groups
on an open connected manifold M of dim M ≥ 1 does not contain
any non-trivial compact object [Neeman’01].
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Cohomology in triangulated categories

Definition
A cohomology theory H in a cocomplete triangulated category T is an
additive functor

H : Top −→ Ab

to abelian groups taking exact triangles X f→ Y → Cf → ΣX in T to
exact sequences

H(X )←− H(Y )←− H(Cf )←− H(ΣX ),

and coproducts to products

H(
∐
i∈I

Xi) ∼=
∏
i∈I

H(Xi).

We set Hn(X ) = H(Σ−nX ).
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Cohomology in triangulated categories

Example
For any R-module A we have Hn(−,A) : K(R)op → Ab,

Hn(C,A) =
cycles

boundaries
=
{c : Cn → A | 0 = fdC : Cn+1 → Cn → A}

{b = b′dC : Cn → Cn−1 → A}
.

Similarly we have Hn(−,A) : D(R)op → Ab.

Any object E in T represents a cohomology theory H : Top → Ab
with

H(X ) = HomT(X ,E).

Fernando Muro Representability of cohomology theories



Cohomology in triangulated categories

Example
For any R-module A we have Hn(−,A) : K(R)op → Ab,

Hn(C,A) =
cycles

boundaries
=
{c : Cn → A | 0 = fdC : Cn+1 → Cn → A}

{b = b′dC : Cn → Cn−1 → A}
.

Similarly we have Hn(−,A) : D(R)op → Ab.

Any object E in T represents a cohomology theory H : Top → Ab
with

H(X ) = HomT(X ,E).

Fernando Muro Representability of cohomology theories



Cohomology in triangulated categories

Example
For any R-module A we have Hn(−,A) : K(R)op → Ab,

Hn(C,A) =
cycles

boundaries
=
{c : Cn → A | 0 = fdC : Cn+1 → Cn → A}

{b = b′dC : Cn → Cn−1 → A}
.

Similarly we have Hn(−,A) : D(R)op → Ab.

Any object E in T represents a cohomology theory H : Top → Ab
with

H(X ) = HomT(X ,E).

Fernando Muro Representability of cohomology theories



Cohomology in triangulated categories

Definition
A cohomology theory H in the full subcategory of compact objects
Tc ⊂ T is an additive functor

H : (Tc)op −→ Ab

to abelian groups taking exact triangles X f→ Y → Cf → ΣX in Tc to
exact sequences

H(X )←− H(Y )←− H(Cf )←− H(ΣX ).

Example
Any object E in T represents a cohomology theory H : (Tc)op → Ab
with

H(Y ) = HomT(Y ,E), for any Y in Tc .
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Compactly generated triangulated categories

Definition
A cocomplete triangulated category T is compactly generated if any
non-trivial object X in T admits a non-trivial map Y → X from a
compact object Y in Tc .

Example
The stable homotopy category SH.

The derived category of a ring D(R).

The derived category D(Qcoh/X ) of complexes of quasi-coherent
sheaves on a quasi-compact separated scheme X.

D(sheaves/M) is not compactly generated.

K(Z) is not compactly generated.
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Neeman’s representability theorems

Theorem (Brown representability, Neeman’96)
Any cohomology theory H : Top → Ab on a compactly generated
triangulated category T is representable.

Theorem (Adams representability, Neeman’97)
Let T be a compactly generated triangulated category with Tc

countable.
Any cohomology theory H : (Tc)op → Ab is represented by a not
necessarily compact object E in T, H = HomT(−,E)|Tc .
Any natural transformation HomT(−,E)|Tc → HomT(−,E ′)|Tc is
represented by a morphism E → E ′ in T.

Remark
This theorem applies to SH, but it also applies to D(Z).
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Counterexamples to Adams representability

Example (Casacuberta–Neeman’09)
Let R be a ‘polynomial ring with a proper class of indeterminates’, the
subcategory of acyclic complexes in K(R) does not satisfy Brown
representability.

Example (Christensen–Keller–Neeman’01)
Whether Adams representability holds in the derived category of
the complex affine plane D(Qcoh/A2

C) depends essentially on the
continuum hypothesis.
Adams representability does not hold in D(k [x , y ]) provided
card k ≥ ℵ3.

transfinite
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A homological criterion for Adams representability

Definition
A right Tc-module A is an additive functor A : (Tc)op → Ab. The
category Mod(Tc) of right Tc-modules is a Grothendieck abelian
category with a set of small projective generators.

Theorem (Neeman’97, Beligiannis’00)
If T is compactly generated and H : (Tc)op → Ab is a cohomology
theory then:

proj dim H ≤ 2⇒ H is representable.
proj dim H ≤ 1 for all H ⇔ Adams representability theorem for T.
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Purity

Purity is the relative homological algebra in Mod(R) obtained by
regarding all finitely presented R-modules as projectives.

Proposition (Christensen–Keller–Neeman’01)
For any ring R,

sup
H : (D(R)c)op→Ab

cohomology

proj dim H ≥ pure proj dim Mod(R).

Remark (Baer–Brune–Lenzing’82)
If R is a finite-dimensional hereditary algebra over an uncountable
algebraically closed field, then D(R) satisfies the Adams
representability theorem⇔ has finite representation type.
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Transfinite compactness in triangulated categories

Definition
Let T be a cocomplete triangulated category. For any regular
cardinal α there is a notion of α-compact object. These objects span a
full triangulated subcategory Tα ⊂ T. For α = ℵ0 this coincides with
classical compactness.

If Y is in Tα then any map

Y −→
∐
i∈I

Xi

factors as
Y −→

∐
j∈J

Xj ⊂
∐
i∈I

Xi , I ⊃ J, card J < α.
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Transfinite compactness in triangulated categories

Example
Let α > ℵ0.

A spectrum E in SH is α-compact whenever cardπn(E) < α for
all n ∈ Z.

Given a ring R, either noetherian or with card R < α, α-compact
objects in D(R) are complexes C such that card Hn(C) has < α
generators for all n ∈ Z.
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Well generated categories

Definition
A cocomplete triangulated category T is α-compactly generated if any
non-trivial object X in T admits a non-trivial map Y → X from an
α-compact object Y in Tα. A cocomplete triangulated category is well
generated if it is α-compactly generated for some regular cardinal α.

Example
All compactly generated triangulated categories are well
generated.

D(sheaves/M) is well generated, actually ℵ1-compactly
generated.

K(Z) is not well generated.

If T is well generated then Top is never well generated.
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Representability in well generated categories

Theorem (Brown representability, Neeman’01)
Any cohomology theory H : Top → Ab on a well generated triangulated
category T is representable.

Definition
A cohomology theory H for α-compact objects is an additive functor

H : (Tα)op −→ Ab

taking exact triangles to exact sequences and

H(
∐
i∈I

Xi) ∼=
∏
i∈I

H(Xi), card I < α.

What about α-Adams representability?
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Representability in well generated categories

Conjecture (Rosický’05, Neeman’09)
T is a well generated triangulated category⇔ there exists a regular
cardinal α such that the α-Adams representability theorem holds:

Any cohomology theory H : (Tα)op → Ab is represented by a not
necessarily α-compact object E in T, H = HomT(−,E)|Tα .

Any natural transformation HomT(−,E)|Tα → HomT(−,E ′)|Tα is
represented by a morphism E → E ′ in T.

Proposition (The ‘easy’ part, Rosicky’09)
⇐ is true, in particular Brown representability follows from α-Adams
representability.

Almost nothing is known about⇒ for α > ℵ0. remark theorem
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A homological criterion for Adams representability

Definition
A right continuous Tα-module A is an additive functor A : (Tα)op → Ab
with

A(
∐
i∈I

Xi) ∼=
∏
i∈I

A(Xi), card I < α.

The category Modα(Tα) of right continuous Tα-modules is an abelian
category but not Grothendienck.

Theorem (M-Raventós’09)
If T is α-compactly generated and H : (Tα)op → Ab is a cohomology
theory then:

proj dim H ≤ 2⇒ H is representable.
proj dim H ≤ 1 for all H ⇔ α-Adams representability theorem for T.
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Transfinite purity

α-purity is the relative homological algebra in Mod(R) obtained by
regarding all R-modules with < α generators and relations as
projectives.

Proposition (M-Raventós’09)
For any ring R,

sup
H : (D(R)α)op→Ab

cohomology

proj dim H ≥ α-pure proj dim Mod(R).

Proposition (M-Raventós’09)
If R is a finite-dimensional wild hereditary k-algebra, card k ≥ ℵω, then
the α-Adams representability theorem is false for all α < ℵω.

skip remark
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Transfinite purity

Remark
If the conjecture is true, then for any ring R there exists a cardinal α
such that for any R-module A there is a short exact sequence,

0→
⊕
i∈I

Pi −→
⊕
j∈J

Qj −→ A→ 0,

such that the modules Pi and Qj have < α generators and relations.

Moreover, if B is an R-module with < α generators and relations, then

B

A
⊕
j∈J

Qj

∀
��

∃
���

�
�

//
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Adams representability for α = ℵ1

Under the continuum hypothesis, the following theorem can be applied
to D(sheaves/M).

Theorem (ℵ1-Adams representability, M-Raventós’09)
Let T be an ℵ1-generated triangulated category with card Tℵ1 ≤ ℵ1.
Then:

Any cohomology theory H : (Tℵ1)op → Ab is represented by a not
necessarily ℵ1-compact object E in T, H = HomT(−,E)|

Tℵ1
.

This is the only available non-trivial result on α-Adams representability
for α > ℵ0.

Fernando Muro Representability of cohomology theories



Adams representability for α = ℵ1

Under the continuum hypothesis, the following theorem can be applied
to D(sheaves/M).

Theorem (ℵ1-Adams representability, M-Raventós’09)
Let T be an ℵ1-generated triangulated category with card Tℵ1 ≤ ℵ1.
Then:

Any cohomology theory H : (Tℵ1)op → Ab is represented by a not
necessarily ℵ1-compact object E in T, H = HomT(−,E)|

Tℵ1
.

This is the only available non-trivial result on α-Adams representability
for α > ℵ0.

Fernando Muro Representability of cohomology theories



Adams representability for α = ℵ1

Under the continuum hypothesis, the following theorem can be applied
to D(sheaves/M).

Theorem (ℵ1-Adams representability, M-Raventós’09)
Let T be an ℵ1-generated triangulated category with card Tℵ1 ≤ ℵ1.
Then:

Any cohomology theory H : (Tℵ1)op → Ab is represented by a not
necessarily ℵ1-compact object E in T, H = HomT(−,E)|

Tℵ1
.

This is the only available non-trivial result on α-Adams representability
for α > ℵ0.

Fernando Muro Representability of cohomology theories



Adams representability for α = ℵ1

Under the continuum hypothesis, the following theorem can be applied
to D(sheaves/M).

Theorem (ℵ1-Adams representability, M-Raventós’09)
Let T be an ℵ1-generated triangulated category with card Tℵ1 ≤ ℵ1.
Then:

Any cohomology theory H : (Tℵ1)op → Ab is represented by a not
necessarily ℵ1-compact object E in T, H = HomT(−,E)|

Tℵ1
.

This is the only available non-trivial result on α-Adams representability
for α > ℵ0.

Fernando Muro Representability of cohomology theories



Representability of cohomology theories

Fernando Muro

Universidad de Sevilla
Departamento de Álgebra

Joint Mathematical Conference CSASC 2010
Prague, January 2010

Fernando Muro Representability of cohomology theories



Cofiber sequence of complexes

X

...

Xn+1

Xn

Xn−1

...

dX

��

dX

��

��

��

Y

...

Yn+1

Yn

Yn−1

...

dY

��

dY

��

��

��

f //

f //

f //

f //
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back
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Crash course on singular cohomology

Compute the cohomology of spheres,

Sn = {(x0, . . . , xn) ∈ Rn+1 | x2
0 + · · ·+ x2

n = 1};

S0 = {±1} = • • , H0(S0,Z) = pointed maps S0 → Z ∼= Z;

ΣS0 = • •

•

•���������

??
??

??
??

?

?????????

��
��

��
��

� ∼= = S1,

H1(S1,Z) ∼= H0(S0,Z) ∼= Z, Hn(S1,Z) = 0 for n 6= 1;
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Crash course on singular cohomology

Compute the cohomology of spheres,

Sn = {(x0, . . . , xn) ∈ Rn+1 | x2
0 + · · ·+ x2

n = 1};

ΣS1 =

•

•

~~~~~~~~

@@
@@

@@
@@

AAAAAAAA

}}
}}

}}
}}
∼= = S2,

H2(S2,Z) ∼= H1(S1,Z) ∼= Z, Hn(S2,Z) = 0 for n 6= 2;

and inductively,

ΣSn−1 = Sn, Hn(Sn,Z) ∼= Hn−1(Sn−1,Z) ∼= Z,
Hm(Sn,Z) = 0 for m 6= n.
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Crash course on singular cohomology

Let Cf be a simplicial complex,

= Cf
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= Cf

Any simplex is a cone over its
boundary, therefore Cf can be ob-
tained from Y ,

= Y

as the mapping cone of the inclusion f ,

X =

inclusionf

SS

S1 = X Y Cf ΣX = S2.
f

inclusion
// i

inclusion
//

q
//

inclusion
izz
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Crash course on singular cohomology

Given a cofiber sequence

Sn f−→ Y i−→ Cf
q−→ Sn+1;

Hm(Y ,Z) = Hm(Cf ,Z), if m 6= n,n + 1;

0← Hn+1(Cf ,Z)←− Z Hn(f ,Z)←− Hn(Y ,Z)←− Hn(Cf ,Z)← 0,

Hn(Cf ,Z) = Ker Hn(f ,Z),

Hn+1(Cf ,Z) = Coker Hn(f ,Z).

back

Fernando Muro Representability of cohomology theories



Crash course on singular cohomology

Given a cofiber sequence

Sn f−→ Y i−→ Cf
q−→ Sn+1;

Hm(Y ,Z) = Hm(Cf ,Z), if m 6= n,n + 1;

0← Hn+1(Cf ,Z)←− Z Hn(f ,Z)←− Hn(Y ,Z)←− Hn(Cf ,Z)← 0,

Hn(Cf ,Z) = Ker Hn(f ,Z),

Hn+1(Cf ,Z) = Coker Hn(f ,Z).

back

Fernando Muro Representability of cohomology theories



Crash course on singular cohomology

Given a cofiber sequence

Sn f−→ Y i−→ Cf
q−→ Sn+1;

Hm(Y ,Z) = Hm(Cf ,Z), if m 6= n,n + 1;

0← Hn+1(Cf ,Z)←− Z Hn(f ,Z)←− Hn(Y ,Z)←− Hn(Cf ,Z)← 0,

Hn(Cf ,Z) = Ker Hn(f ,Z),

Hn+1(Cf ,Z) = Coker Hn(f ,Z).

back

Fernando Muro Representability of cohomology theories



Crash course on singular cohomology

Given a cofiber sequence

Sn f−→ Y i−→ Cf
q−→ Sn+1;

Hm(Y ,Z) = Hm(Cf ,Z), if m 6= n,n + 1;

0← Hn+1(Cf ,Z)←− Z Hn(f ,Z)←− Hn(Y ,Z)←− Hn(Cf ,Z)← 0,

Hn(Cf ,Z) = Ker Hn(f ,Z),

Hn+1(Cf ,Z) = Coker Hn(f ,Z).

back

Fernando Muro Representability of cohomology theories


