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1 Introduction

We would like to explore here possible dynamical properties of hadrons sug-
gested by the duality principle of Dolen, Horn and Scmid, and in particular
by its mathematical realization due to Veneziano. Our primary concern will
be not in the very interesting details of the mathematical properties that the
Veneziano model seems to possess in abundance, but rather in guessing at
the internal structure and dynamics of hadrons which underlie the Veneziano
model, recognizing that the latter is in all likelihood only an approximate and
imperfect representation of the former.

On crucial step we take in interpreting the Veneziano model is factoriza-
tion. Of course this is a trivial problem, at least in principle if not in practice,
if one is dealing with a given four-point amplitude. But it becomes a very
restrictive condition if one demands that the same set of resonances saturate
all n-point amplitudes. Perhaps such a condition is unwarranted; in dis-
cussing as revolutionary a concept as duality one may have to give up all the
conventional notions about resonances, e.g. that the intrinsic properties of
a resonance is independent of how it is prepared, and a multiple resonance
can be analyzed in terms of the individual resonances, etc. Nevertheless, the
fact that a set of resonances have been found to saturate all the n-point
Veneziano amplitudes of the standard variety is very significant. It suggests
that our conventional notions about resonances still make some sense, and
the know techniques of field theory can be applied to them.

The condition of factorizability immediately rules out an ad hoc addition
of satellite terms to a scattering amplitude because it would in general destroy
factorization unless more and more resonances are introduced. If satellite
terms do arise, they must do so in a well defined and self-consistent way.

As it stands now, the Veneziano model is still beset with many difficulties.
For all its mathematical elegance, its practical successes are few. It would
therefore be appropriate to list here its basic predictions as well as difficulties
without going into the details.

Basic predictions.
1) Linearly rising trajectories. This is in accordance with observation.
Whether the trajectories really keep rising indefinitely or not is of course
an open question, but it seems to be a valid simplification to assume that
they do.
2) Regularly spaced daughter trajectories, implying a highly degenerate level
structure. Again the actual degeneracy may be only approximate, but these
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daughters must exist if the model makes sense at all. So far there is some
evidence for e (daughter of p), but none for p' and E' (daughter of f).
3) The factorized Veneziano model implies an even higher degree of degen-
eracy. At each level many distinguishable states having the same spin exist.
The number of states increases with energy as - exp(cE). This situation
bears a striking similarity to Hagedorn's model of high energy reactions.

Unsolved practical problems.
1) Baryons. We do no yet have a quantitatively satisfactory picture of meson-
baryon and baryon-baryon scattering based on the Veneziano model, in spite
of the fact that duality was first discovered in meson-baryon scattering.
2) A general satisfactory unification of the quark model (or its SU(3), SU(6)
and chiral SU(3) aspects) with the Veneziano model does not exist yet.
3) No convincing theory of form factors exists.
4)We do not know what the Pomeron is within the framework of the Veneziano
model.

We must emphasize, however, that there are numerous attempts and
speculations regarding all these problems.

More fundamental difficulties.
1) Unitarity. The original Veneziano model is a zero width approximation.
The amplitude wildly oscillates with energy, and only after averaging over
an interval does it reproduce the smooth Regge behavior at high energy. If
a basic Hamiltonian for the model is given, unitarization might be formally
carried out by taking into account higher order processes, although the highly
singular nature of the Hamiltonian casts doubt about its meaningfulness.
2) A more serious problem, however, is the existence of ghosts. Here we mean
by ghosts unphysical particles having a) negative probability, or b) spacelike
momenta (tachyons), or both. The levels of the factorized Veneziano model
contain those of four-dimensional harmonic oscillators, where the timelike
excitations have an intrinsic negative norm. This does not necessarily mean
that the Breit-Wigner residue of a partial wave projection of a given ampli-
tude is not positive. Contributions from many degenerate states can add up
to a positive value, but there is no guarantee that this will always happen.
Fubini and Veneziano have found a Ward-like identity which accomplishes
this cancellation to a certain extent, and Virasoro has extended their result.
They rely, however, on very special properties of the Hamiltonian, and it is
not clear whether and how these can be preserved in general. Besides, Vira-
soro's scheme still leaves us with a tachyon ghost (m2 = -1). The killing of



283

tachyons is easy in special cases like 7r - it scattering (where the p trajectory
has a potential tachyon), but a general prescription in a factorized model
seems very complicated, if not impossible.

We have emphasized the ghost problem because this is not peculiar to the
Veneziano model alone, but it is rather a common disease afflicting all at-
tempts at a description of hadron states as infinite multiplets. The program
of current algebra saturation, as well as the use of infinite-component wave
equations, have floundered on the same difficulty. To a certain extent, the
two kinds of ghosts seem to be complementary: The use of finite-dimensional
Lorentz tensors (as in the factorized dual model) involves negative probabil-
ities, whereas infinite-dimensional unitary representations in general lead to
tachyons.

If these ghosts are so difficult to eliminate, why not accept them and look
for them? Maybe ghosts of one kind or the other do exist, which would make
either T.D.Lee or G.Feinberg happy (or both, plus Sudarshan and others).
But the trouble is that the extent to which these ghosts appear in a particular
problem seems to depend on one's cleverness and ability to avoid them. How
many of the ghosts are "real"? This is the most serious question of principle
that haunts us, especially us the theorists.

2 Factorized Veneziano model

As has been shown by various people, the n-point dual amplitude for scalar
external particles can be factorized in terms of a set of harmonic oscillators
corresponding to an elastic string of finite intrinsic length. In classical theory,
the motion of a free mass point can be derived from the action integral

I = -m f dT, dT2 = -dx,,dx" (metric (- + ++)) (1)

Alternatively one may take

u

if 2m^ dTµ dT
- 1 Idr (2)

T being an independent parameter, and xµ (T) the dynamical variables. (The
constant in the integrand is added for convenience.) This form is more suit-
able for the transition to quantum theory. Because of the translational in-
variance under T r + c and xU --> x' + aµ, both the Hamiltonian and the



284

momenta

H = (pµpµ + m2)/2m

pµ = mdxµ/dT

are conserved . By imposing the constraint

dx, dxµ - -1

dT dr

(3)

(4)

we can normalize the parameter 'r, which then becomes the proper time of
the mass point. This condition (4) amounts to

H = 0. (5)

In quantum mechanics, one postulates the commutation relations

[xµ,pv] = igµv (6)

and the Schrodinger equation

iaT=HT (7)

Eq.(5) is to be replaced by

H' = O (8)

which is nothing but the Klein-Gordon equation

(pµpµ + m2)T = 0. (9)

We see thus the usefulness of the proper-time formalism. If we just integrate
Eq.(7), we get

'F(T) = exp[-i(p2 + rn2)T/2m]W(0) (10)

or

(AP (X' ; T), XP (x; 0)) = (x'l exp[-iT(p2 + m2)/2m]lx)

= (-im2/47r2) exp[imx2/2T - iTm/2]

= (-im2/4ir2) exp[imT{(x/T)2 - 1}/2] (11)
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This is the transition amplitude x -* x' after an elapsed "time" T. Integrating
over r from 0 to oc (we might say it does not matter how much time it has
elapsed between the events x and x'), we obtain the Feynman propagator

2 2 - • 1

2m f
00e _iT (P2 +m2)/2mdr = -i(p + m aE) (12)

It is well known that the above results may be interpreted or derived from
the path integration method.

After this digression , let us come to the elastic string. We can imagine
it to be the limit of a chain of N mass points as N -+ oc. Each mass point
will trace out a world line, so that in the limit we are dealing with a two-
dimensional world sheet . This sheet may be parametrized by two intrinsic
coordinates ^ (0 < ^ < 7r, let us say ) and r (-oc < T < oo), corresponding
to spacelike and timelike coordinates . We assume the action integral

I = 1

ii
ax,'

axµ
'ox,' axµ d^dT (13)

47r Or Or a^ a^
from which follows the equation

(02/0T2 - a2 /a 2 )xµ = 0 (14)

with the boundary condition

axµ/a^ = 0 at = 0, ir. (15)

Duality is essentially a result of the symmetry between 6 and T though it is
not yet a perfect symmetry because of the differences in domain and metric.
We have chosen the hyperbolic form because only then can one formulate the
Hamiltonian principle . Actually it turns out that in computing the scattering
amplitudes a switch to an elliptic form through the change T - -irk brings
out duality more explicitly.

Eq.(13 ) is invariant under the translations T --* T + c and xµ -* xµ + aµ,
which imply the conservation laws

H = f [ µ + t( ) 1

Pµ =

7rpµp

(1/2ir )(axµ/aT ),
= cons .f ]c

Pµ = (1/27r) f (axµ/aT)d = jPµd = const. (16)
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in direct analogy with Eq .( 3). A normal mode decomposition of Eqs.(14)
and (15) yields

xµ = x0 + 2 E xn cos ne00
n=1

pn
= axn /or (n 0), p0 =

2
ax0/aT

°O

H = µOµµ0 + 1: (pµnpn + n2xunx02

P` = p0 (17)

We may interpret x0 and p0 as the center-of-mass coordinates and momenta.
When the system is quantized , we get the familiar expression

H = PIP'` + Ho, Ho = natnan(+c number)
n=1

xn = (an + ant)l 2n

Pn = -i(an - ant) n/2 (n ^ 0)

l
µ vt µv

an , an J = g 6nm

By imposing the subsidiary condition

(H-a)' =0

we can single out an infinite tower of states with the mass spectrum

M2=Ho+a=EnNµn+a
µ,n

(18)

(19)

(20)

In order to construct dual scattering amplitudes we introduce an external
scalar field cp and postulate

H = PPPµ + Ho + g : cp(x(^ = 0)) : (21)

We will not discuss how this leads to n-point dual amplitudes in the multi-
peripheral configuration since it is well known.

We now add several remarks.
1) The condition 0 < ^ < it fixes a fundamental scale of length . ^ is here
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measured in (GeV/c)-1 to fit the trajectory slope of - 1. Whether the
system is to be interpreted as a rubber string or a rubber band depends on
the boundary condition to be imposed . The rubber band , as twice as many
modes as the string , but the difference does not show up in a case like Eq.(21)
because those modes which have nodes at ^ = 0 cannot be excited . Clearly
there will be differences if one tries to extend the model , and this will be an
important point in constructing a general theory of hadrons.
2) For a point particle Eq.(1) has a purely geometric meaning (as the length
of a world line ), but Eq .(2) does not since it depends on the scale (gauge)
of the unphysical parameter T. In the case of the string , on the other hand,
Eq.(13 ) is invariant under the scaling T, ^ -► AT, ) . This is one aspect of
the conformal invariance of two-dimensional Laplace equations , a property
which has widely been utilized to study the Veneziano model.

Nonetheless , Eq.(13 ) is not a purely geometrical quantity . For curiosity,
then , let us try to construct a geometric action integral as one does in general
relativity . Obviously a natural candidate for it is the surface area of the two-
dimensional world sheet; another would involve its Riemann curvature. The
sheet is imbedded in the Minkowskian 4-space, so one can parametrize its
points as yy(^°, ^1), (^o l„ T, ^1 ti ^). The surface element is a a - tensor

day" = Gyvd2^,
Gyv = O ( yy, y' )l a(e°, 1) (22)

whereas its line element is

ds2 = g«pdad'° (a, = 0,1)

gaa = (ayylar)(ayy/W) (23)

A possible action integral would be

I = f (dvy„d&w 1/2
= ff I2detgl1/2d2^ (24)

to be compared with the old one (13 ) which can be written (y -> x)

oaQ oaa

f f gaa
9 d2 , g = (0 0) (25)I 47r

It is obvious that Eq.(24) leads to nonlinear equations. More complicated
equations involving curvature would be not only nonlinear, but also have
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higher derivatives.
3) It is sometimes useful to consider the "energy -momentum tensor" in the
(^, r) space:

1 1 o o76

To = 27r (gaa - 2 gao g7a g (26)

In particular , let us take its space integral over a test function f (),

TaQ[f] = jT(e)f()de. (27)

By virtue of the canonical commutation relations , they generate a commu-
tator algebra

(Too ±To,)[f], (Too ± Toi)[g] -2i(Too ±Toi)[h],

(Too ± Toi)[f], (Too + Toi)[g] ] = 0,

h = f'g - f9 (28)

as an integral form of the Schwinger conditions . These relations , when ap-

plied to the set fn = 1 - e-tin f , amount to

Ln, Lm ] = 2(n - m)Ln+m

Ln, Lm ] = 0

Ln = (Too ± Toi)[eainl], L±[fn] = Lo - L±n (29)

These operators L± [ fn] have been found useful in generating the various
gauge operations.
4) As we have mentioned already, the most serous defect of the above for-
mulation is the indefinite metric that appears in defining the covariant com-
mutation relations (18). The mass operator (20), however , acquires as a
result the nice property of being positive . The transition from a classical to
quantum picture of 4-dimensional harmonic ocsillators is a drastic one. A
wave function in coordinate space would behave like exp[- c2(x2 - xo)], which
explodes in the timelike direction . We could actually insist that it should
behave instead like exp[-c(x2 + xo)]. This would amount to interchanging
the creation and annihilation operators and using positive metric for the time
component . But then the mass operator would not be positive , and moreover
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each level would become infinitely degenerate . In group theoretical terms,
the former corresponds to non -unitary, and the latter to unitary representa-
tions of U(3 , 1). The former have negative probability ghosts while the latter
have negative mass squared ghosts. The Veneziano model seems to prefer
the former . Such a choice is necessary to ensure a Regge behavior a la Van
Hove, but runs into trouble with form factors. This is a general agony of
making the choice, not restricted to Mr . Veneziano alone.
5) We have ignored the problems of the extra scalar excitations which are
needed to incorporate the proper trajectory intercepts in the dual channel.
This is another rather unphysical aspect of factorization. These extra modes
may be taken either as a set of harmonic oscillators in a fifth dimension
or as a modification of the propagator . Whether these states have positive
metric or not depends on the intercept and the external masses. Actually a
sixth dimension would be necessary to take care of two-particle trajectories
correctly . We have no illuminating interpretations to offer on this subject.

3 Quarks and the dual model

What we propose here is a program of building a general picture of the struc-
ture of hadrons on the basis of the factorized Veneziano model. It has been
noted by Harari and Rosner that the duality may be interpreted schemati-
cally in terms of quark diagrams , which have a strong predictive power, albeit
of qualitative nature. These diagrams are indeed very suggestive . First of all
they agree with the foregoing picture that the hadrons form two-dimensional
sheets in space -time. Furthermore , they imply that quarks and antiquarks
form the boundary lines of the sheets . A meson system , for example , is then
a q - q molecule bound by an elastic string . We could also imagine a rubber
band in which q and q are attached to diametrically opposite points. To go
on further , we have to make a choice.

On the basis of the duality diagram picture , we will adopt the linear
molecule rather than the benzene ring. An advantage of the linear picture
is that a linear chain can be broken in two linear chains, thereby accounting
for the production mechanism

A --*B+C (30)

In fact the duality diagrams can be interpreted exactly in this way.
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To make things a bit more sophisticated, we will present a modified ver-
sion of the quark model. This is the three-triplet model proposed by Dr. Han
and me some time ago. It had the advantage of a) having integral charges,
b) naturally accounting for the zero triality of known hadrons, as well as c)
for the SU(6) classification of the baryons. In this scheme there are nine
fundamental fermions grouped into three SU(3) triplets. We may use the
notation Ti"; i, n = 1, 2, 3, where n distinguishes between different triplets.
Ti' behaves like a triplet representation in the ordinary SU(3) space (lower
index), and like an antitriplet representation in the new SU(3) space (upper
index). These SU(3) spaces are denoted as SU(3)' and SU(3)" respectively.
Each space has its own isospin and hypercharge, and the electric charge is
the sum of two charge operators A' +)V . We call 3)Q the charm number C.
We will also make things a bit more exciting by naming the three different
triplets D, N, and A. Their quantum number assignments are given in the
table.

C Q
Di 1 1, 0, 0
Ni -2 0, -1, -1
Ai 1 1, 0, 0

In the lowest approximation, SU(3)' and SU(3)" are separately good
symmetries. In particular, all low lying hadron states are assumed to belong
to SU(3)" singlets, which turn out to correspond to only zero triality states in
SU(3)'. (The same is accomplished also by assuming zero charm for hadrons.)
Baryons and mesons have the usual pattern TTT and TT. More precisely,

BNDNA

M DD+NN+AA (31)

where B is completely antisymmetric in the SU(3)" space in order to be a
singlet , and this takes care of the Pauli principle.

The preference of zero triality is thus reduced in this model to the SU(3)"
symmetry , which one may attribute to a dynamical property of superstrong
interactions having a larger scale of masses (r' 1GeV) than for the strong
interactions (- 1GeV).

The combination of duality and the three -triplet model will then produce
the following picture. The hadrons are "molecules " bound by superstrong
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interactions, with the bond structure

B-T-T-T

M , T - T (32)

The bonds must have a saturation property for zero triality. In the original
scheme demanding perfect SU(3)" symmetry, the baryon would have to have
either a ring structure

D
B

N-A

(33)

or a resonating linear structure

B - D - N - A + permutations. (34)

If SU(3)" symmetry is abandoned and only the neutral charm condition is
imposed , we may simply assume

B-D-N-A (35)

In the latter case the charm number is equivalent to valency. But then we lose
the distinction between D and A, drifting back to a two-triplet model. Our
tentative preference is in Eq.(34) though the other two possibilities should
not be ignored. The meson scheme would follow Eq.(31).

What can we do with this model? We have now hadrons endowed with
SU(3) and Dirac spin. These are more or less localized at certain points along
the string whose function is to carry bulk of the energy and momentum of
the system. The triplets (or simply quarks) themselves are massless, or have
only small masses. Several remarks are in order.
1) The interaction process (30) is viewed as a creation of pair TT at a point
where the break occurs. After the cut, each portion subsequently grows into
a full grown string, like an earthworm! This would not be possible if the
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string is made up of a fixed number of mass points. We must conclude that
the number is not only large but also indefinite. Let us examine this situation
a little further. Take a string stretched between two fixed points in space
with a distance L apart. If the number of mass points is N, the potential

energy is

V , N(L/N)2 = L2/N (36)

which depends on N. However, if the number of discrete steps in the "time"
direction T also increases with N to sustain duality, the action integral I -
NV - L2 will be independent of N. This is the scale invariance we have
discussed. In units of the fictitious time T, a system lives longer the larger
the number N. The actual state of a hadron would be a linear superposition
of configurations having different values of N, but their contributions are all
proportional to each other.

If this view is accepted, we can define the Hamiltonian (or vertex) respon-
sible for the process (30) as an overlap integral of the three wave functions
corresponding to the states A, B, and C. There is a selection rule

NA = NB + Nc (Ni> 0) (37)

and its two cyclic permutations, either one of which must be satisfied. A
more explicit expression satisfying (37) would look like

CN,N f ... f tIiB(x(1), ... , x(N')),pC(x(N'+1), ... x(N)

0<N'<N

TA(x(i), ... x(N))F(x(i), ... x(N)) rj d4x( i) (38)

where F is some scalar function. This integral can be appropriately rewritten
in terms of the wave functions flx(^)] in the limit N, N' -* oo.
In the actual Veneziano model, the interaction is such that the breaking of a
string occurs only at one of the ends, which may be interpreted to mean the
limit

N -> oo; N'/N-0 or N'/N-1

In general, however, there is no reason to impose such a condition. We
would still get a dual theory of sorts; an amplitude corresponding to one
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configuration will have singularities in the crossed channels too, though there
may not be a symmetry between dual channels in individual amplitudes.
2) The triplet or the quark fields introduce extra spins to the system in
conformity with the SU(6) type theories, so 7r and p mesons belong to the
s wave states of the string. But this also brings in the old headaches of
relativistic SU(6) theories as well. How can one eliminate half of the Dirac
components in order to avoid parity doubling and ghost states? The difficulty
is compounded by the fact that we would like to maintain duality too. A
possible scheme based on the Carlitz-Kisslinger type cut mechanism has been
developed by Freund et al. We will not discuss it here. Instead, we would like
to propose a general formalism which tries to accomplish this in a dynamical
way. The basic idea is as follows. Instead of regarding the triplets and
the strings as separate entities, let us take a unified picture and replace
the string with a chain of TT pairs, so that it would look like a polarized
medium with opposite charges created at its ends. There will be interactions
between neighbors which depend on their Dirac, SU(3)', and SU(3)" spins.
To be dual, these interactions must occur in the "time" direction too, thus
forming a two-dimensional polarizable medium. These interactions would
contribute to the action integral in addition to the kinetic term represented
by the string Hamiltonian. Roughly speaking, that would produce a spin
and SU(3) dependence of various trajectories. It is conceivable that parity
doubling and other problems can be reduced in the same way to ones of
dynamical stability. An example of TT interaction might be

j = g E (_,,(n) T'(" ) + const)
(n,n')

(39)

where -y(,,n) refers to a triplet sitting on a site n of a two-dimensional lattice,
and n' refers to one of its neighbors. We must choose the constant g in such
a way that a chain TTTT • . T will have the lowest energy (which may be
adjusted to zero). To be dual, the same patter must be repeated in the time
direction too. We thus end up with a pattern

TTTT...........T

TTTT...........T

TTTT...........T

TTTT...........T
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In other words, it is a two-dimensional antiferromagnet or ionic crystal! Ex-
ternal particles should couple to it like a magnetic field couples to the spin:

it
= E

y,(,n)0p(n)

n
(40)

The scattering amplitude would then be obtained, following the Feynman
principle, from an expression like

Tr exp[I + I'] (41)

the trace being taken with respect to the -y matrices. Eq.(41) is nothing
but a partition function! It is not scale invariant, but rather an extensive
quantity proportional to the number of constituents (unless I = 0). Thus
the probability of creating exotic states having many disordered atoms (Large
III) would be severely cut down.

The simplest mathematical model of the above type is the well known
Ising model with its glorious Onsager solution. Perhaps we can adopt the
Ising model here as a prototype. The transition from a Lagrangian to a
Hamiltonian formalism is accomplished by means of the so-called transfer
matrix.
3) The world sheet formalism presented here may accommodate Dirac's
monopoles, because the monopoles can be described, according to Dirac,
in terms of the same kind of world sheets swept out by strings attached to
them. If this is the case, the triplets can have magnetic charges. Since all
hadrons are magnetically neutral, these charges must add up to zero, which
reminds us of the fact that the charm number is also zero for them. Thus we
are tempted to identify the charm with the magnetic charge, which would
cause strong binding between opposite charges. The two spaces SU(3)' and
SU(3)" may be called electric and magnetic SU(3) respectively, correspond-
ing to the 3 x 3 ways of assigning electric and magnetic quantum numbers.

Such a formalism has been independently proposed by Schwinger from a
different motivation. He calls these nine objects dyons. The direct parallelism
between dyons and the triplets has been pointed out by Biedenhahn and Han.

Of course there are all sorts of problems associated with monopoles. The
most serious and perhaps most intriguing is the large P and T violation one
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must expect off hand. This could give a natural explanation for CP violation,
but the problem is how to suppress it to a degree ti 10-10 which is required
by neutron electric dipole moment.

At any rate, the close mathematical connection between the dual model
and the monopoles lies in the fact that the Maxwell field due to a pair of
monopoles is given by

F, (x) = gEµvAP ff 6'(x - y)WP (y)d2e (42)

where GP,d2e = du,. v is the surface element , Eq.(22 ), of a world sheet spread
between the world lines of the pair . Eq.(42 ) is independent of the choice
of the sheet ; one gets the correct equations if Eq .(42) is substituted in the
Maxwell Lagrangian and the y's are varied , including the end points.

4 Statistical approximation

We will briefly discuss here a high energy approximation to dual amplitudes
which was originally based on an intuitive argument, but can also be justified
more rigorously. The point is that in a high energy process a very large
number of states are available according to the factorized dual theory. In
fact the number of states p(s) increases like exp[cvrs], which one can easily
derive from the Stephan-Boltzmann law for a one-dimensional black body
radiation. The only difference is that s = (center-of mass energy)2 takes the
place of the ordinary energy. The constant c is numerically

c = 2i n/6 (43)

where n is the dimensionality (4, or 5, or more) of the oscillator vectors. As
has been pointed out by Fubini et al, this happens to give the same number
(c 1/16OMeV-1 for n = 6) as the Hagedorn constant.

The absorptive part of a scattering amplitude consists of a sum over
intermediate states with fixed s, i.e. over a microcanonical ensemble:

A = E (pig( -q)In)(nlJ(q)Ip) (44)
Sn =3
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If s is large, one is tempted to replace it with a sum over a canonical ensemble.

More precisely

A - c(^) j(p j.7(-q )jn)e
-Qsn (njj(q)jp)

n

c(/3) E Fn
e-psi

n

(45)

Here the sn's are the eigenvalues of the mass operator (20), not the actual

s = (p + q)2. This amounts to relaxing the subsidiary condition (19). c(/3)

is a normalization factor. If the sum (45) had a sharp peak around sn =
s, it would be a good approximation to Eq.(44) as in the usual statistical
mechanics. The parameter /3 should then be the inverse temperature (r
1 / J) of the string. Actually, things do not work out that way because Fn
does not grow like p(Sn) but much more slowly like sa, which is the Regge

behavior. If a > 0, still there will be a peak around sn = s where

a/s -- /3 (46)

So we can use this as the definition of /3.
In the operator formalism , Eq.(45) can be explicitly evaluated from

A = c(/)(0lr'e-'sx0rl0) (47)

where r and r' are appropriate interaction vertices. We find

A ' (1 - e-,3)-
1 -a(t) , -1-a(t) (48)

which give the correct Regge behavior in view of Eq .(46), if c(/3) - /3. The

above idea makes physical sense, perhaps better than the Veneziano model

itself, because we apply it to the absorptive parti and smear the resonance

peaks as in the discussion of finite energy sum rules. But the real part,

when smeared , should also show a similar behavior for reasons of analyticity.

Justification of the method depends on the assumption that the absorptive

part grows with s (a > 0). The formula may still be valid for a < 0,

but that does not follow from the above argument . Assuming the general

validity of the procedure, we can also handle the high energy behavior of

many particle processes . The main point is that any high energy ("hot")

propagator - 1/(s - Ho ) is replaced by a Boltzmann factor - /3 exp(-/3Ho)
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where ,0 ti IIs, which would give a correct answer as far as the s-dependence
is concerned.

At this point let us indulge in some speculations. The problems are uni-
tarity and the Pomeron, both of which are lacking in the Veneziano model. It
is generally assumed that the Pomeron (in the t-channel ) is equivalent to
non-resonant background in the s-channel. But the background is after all
made up of hadrons, so a unitarized dual theory should naturally contain the
Pomeron. Now the unitarization means taking account of dissociation and
recombination of resonances among themselves. Wouldn't it be reasonable,
then, to consider a grand canonical ensemble of resonances? The main prob-
lem is of course how to define the vertex operator in a scattering problem.
We would like to suggest the ansatz that instead of Eq.(46), 0-1 should be
the thermodynamic temperature, or

0 - c/V1_s (49)

because the distribution of M2 would be decided by the interaction among
the strings in the ensemble , and not by the coupling of these states to the
external channels. We would then get the result

A r., sa(t)12 (50)

suggesting that the Pomeron trajectory has half the universal slope of reso-
nances. Whether this is a pole or a cut, and what the intercept is, cannot
be decided in such a crude picture. It is interesting that the same behavior
as Eq.(50) has been obtained by explicitly computing certain higher order
diagrams of the dual model.

There is still another possibility for the Pomeron which will be discussed
later.

5 Electromagnetic interactions and inelastic
e - p scattering

We would like to tackle the problem of inelastic e - p scattering on the basis
of our model. Before doing this, we have to make some remarks about the
electromagnetic interactions in general. If we just have an elastic spring
with a charge distribution along the string but without the quark spin, the
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problem of setting up the gauge principle is very simple. In the Hamiltonian
(16) one makes the replacement

pµ(^) ) pµ(^) - p(^)A'(x(^)) (51)

where p(^) is an arbitrary distribution function. But this is not the most
general form. Instead of x(^) and p(^), we should choose the set {xn, pn}, or
any other orthogonal basis, and apply the gauge principle. Because A(x) is
nonlinear in x, we get inequivalent results.

The trouble with this method is that the form factors are all Gaussian,
an undesirable characteristic of harmonic oscillators. For a pointlike charge
distribution the Gaussian peak is infinitely sharp (in momentum space) since
the string has an infinite zero-point length. If we renormalize away the
Gaussian factor, on the other hand, what is left is in general a polynomial
which is not good either.

Another popular approach to form factors is the spurion method which
allows one to obtain pole dominance form factors. A difficulty here is the
gauge invariance, or the conservation law, which cannot be automatically
guaranteed. At any rate there is a large amount of arbitrariness in either
method.

Another serious problem is dealing with external fields in a factorized
dual model. It arises from the fact that one needs fifth-dimension oscillators
for factorization of a general dual amplitude, but the parameters of the fifth
dimension depends on the individual external masses in a non-factorizable
way. Thus one cannot maintain duality and factorizability for arbitrary ex-
ternal fields. Full duality must then be abandoned in our model when dealing
with electromagnetic interaction. For example, a virtual Compton amplitude
should not be dual;

One might argue that in the pole dominance model the lines p and p',
instead of the photons, may be treated as external:
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but this does not work for many photon cases.
In spite of the unpleasant Gaussian nature of form factors in the first

method described above, let us see what will come out if duality is not
demanded . The crossed channel singularities in the usual case arises from
the singular nature of the vertex operator

r(q) - exp[iq • x(0)] = exp iq • xo + 2iq • E xn (52)00
n=1

In order to blunt the singularity , we assume that the charge is located at a
coordinate

x = f x(^)f (e)de = xo + 2 E xnfn (53)
n=1

such that

Efn<00 (54)

According to the gauge principle, the electromagnetic interaction is obtained
by the substitution

po
-; po - eAl'(x), pn --+ en - 2e fnA' ( x) in the Hamilto-
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nian . The current operator is then

00
jµ=e po+1: pn.fn

n=1

eaq•x

For the ground state (spin zero), this gives a vertex

(55)

00

rµ=e(p+P)µ exp {_q2 f/n (56)
n=1

Now let us discuss of diagonal elements (nJj,110) corresponding to inelas-
tic processes. We would like to compare them with the e - p scattering
data ignoring the effect of spin. The familiar structure functions W1 and W2
should be obtained from

E (OL7,(-q)I n)(nhµ(q)10) (57)
3n=n

where the statistical method could be applied for large s.
There still remains a problem. In the SLAC data, W1 and W2 seem to

have an s dependence (W1 - s, W2 - 1/s) which is consistent with the
Pomeron picture. On the other hand, Eq.(55) will not give any Regge (or
power) behavior. We propose to fix this by including the fifth dimension:

exp[iq - x] -+ exp[iq ' x + 285x5(0)] (58)

where q5 is an appropriate constant. Since x5(0) is not smeared out, it gives

rise to a fixed power behavior - sa where a is constant, corresponding to a

flat trajectory. We do not know what all this means, but the Pomeron might

be of this nature. At any rate we can evaluate Eq.(57) with the new ansatz,

and obtain the result

1 - e
-n a f,2l (59)W1 , (s - m')" exp { _2q2 °°E

n=1 n

and similarly for W2. Here m2 is the initial Hadron mass. Actually we
have lost gauge invariance from a) addition of the fifth dimension and b) the
statistical approximation, so we cannot get the ratio W1 /W2 exactly. But
the main feature of Eq.(59) is that for large s we have

/ - c/(s - m2) (60)
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so that

Wi N (s - m2)a` exp[ -2g2^Z fa]

(s - m2)ai exp[-)ig2 /( s - m2)]

(s - m2)a. eXp[ -Ai/(w - 1)], i = 1,2
00

Ai = 2ci E fn, w = 1 + ( s - m2)l q2 (= 2mvl q2) (61)
n=1

Which a1 = 1, a2 = -1, we get the scaling law (for large s)

or

(s - m2)W2

2mvW2

N

N
exp[-A2/(w - 1)]

(w/w - 1) exp[-A2/(w - 1)],

(s - m2)-1W1 N exp[-)1/(w - 1)] (62)

The general behavior of the exponential factor in Eq.(62) is:
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