Towards a Solution of Large N Double-Scaled SYK

Vladimir Narovlansky

Nazareth, 2019

Based on work with M. Berkooz, M. Isachenkov, and G. Torrents, arXiv:1811.02584.

The Sachdev-Ye-Kitaev (SYK) model

SYK is a quantum mechanical model ($0+1$ dimensions) involving N Majorana fermion $\psi_{i}, i=1, \cdots, N$, with random all-to-all interactons

$$
H=i^{p / 2} \sum_{1 \leq i_{1}<\cdots<i_{p} \leq N} J_{i_{1} \cdots i_{p}} \psi_{i_{1}} \cdots \psi_{i_{p}}
$$

The fermions satisfy the algebra

$$
\left\{\psi_{i}, \psi_{j}\right\}=2 \delta_{i j}
$$

Interesting because can do calculations at large N and strong coupling, and find that it is maximally chaotic (chaos bounded [Maldacena, Shenker, and Stanford, 2016]). Features of holographic theories with semi-classical duals, so can study holography.

The SYK model

Usually studied using summation of Feynman diagrams, leading to Schwinger-Dyson equations. In the IR, a conformal ansatz is plugged in and solved ([Polchinski and Rosenhaus, 2016], [Maldacena and Stanford, 2016]).

Goal: We will take a combinatorial approach, allowing to do exact computations (at all energy scales).

Double-Scaled SYK

Usually p is held fixed (independent of N) and $N \rightarrow \infty$.
Double-scaled SYK $=$ we take p (even) to scale as \sqrt{N} :

$$
\begin{equation*}
N \rightarrow \infty, \quad \lambda=\frac{2 p^{2}}{N}=\text { fixed } \tag{1}
\end{equation*}
$$

[Erdős and Schröder, 2014], [Cotler et al., 2017], [Berkooz, Narayan, and Simon, 2018]
Will be natural to denote

$$
q \equiv e^{-\lambda}
$$

The more standard SYK $\leftrightarrow q \rightarrow 1$
The J's are independent and Gaussian (actually enough to assume they are independent, have zero mean, unifromly bounded moments) with

$$
\left\langle J_{i_{1} \cdots i_{p}}^{2}\right\rangle_{J}=\binom{N}{p}^{-1}
$$

In the double-scaling (1), this differs by a factor of λ from usual convention [Maldacena and Stanford, 2016].

Chord diagrams

 agram

(

\qquad
-

,
(
O
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad [\qquad
\qquad
\qquad
五

-
O

.

Chord diagrams for the partition function

Consider moments from which can get immediately the (averaged) partition function

$$
\left\langle\operatorname{tr} H^{k}\right\rangle_{J}
$$

Denote $\left\{i_{1}, \cdots, i_{p}\right\} \leftrightarrow I$, so

$$
H=i^{p / 2} \sum_{I} J_{I} \cdot \psi_{I}
$$

where $\psi_{I}=\psi_{i_{1}} \cdots \psi_{i_{p}}$.

$$
\left\langle\operatorname{tr} H^{k}\right\rangle_{J}=i^{k p / 2} \sum_{I_{1}, \cdots, I_{k}} \underbrace{\left\langle J_{I_{1}} \cdots J_{I_{k}}\right\rangle_{J}} \operatorname{tr} \psi_{I_{1}}^{\cdots \psi_{I_{k}}}
$$

By Wick's theorem, the I_{j} come in pairs.

Chord diagrams for the partition function

Wick's theorem \rightarrow sum over pairings \Leftrightarrow sum over chord diagrams (circular since trace).
Each node $\leftrightarrow H$ insertion.
For each chord diagram left with

$$
\binom{N}{p}^{-k / 2} i^{k p / 2} \sum_{I_{1}, \cdots, I_{k / 2}} \operatorname{tr} \psi_{I_{1}} \cdots \psi_{I_{1}} \ldots
$$

Now commute nodes to bring all pairs to be neighboring:

Chord diagrams for the partition function

The $\binom{N}{p}^{-k / 2}$ factor (number of terms in the sum) turns counting to probabilities.

For $p \ll N$ can do this by choosing independently the p points of $I_{j^{\prime}}(p$ trials, in intersection with probability $p / N)$.

$$
\left|I_{j} \cap I_{j^{\prime}}\right| \sim \operatorname{Pois}\left(\frac{p^{2}}{N}\right)
$$

Since $p^{2} / N \sim O(1)$, the different intersections are independent.

Chord diagrams for the partition function

Each intersection then gives $\left(n=\left|I_{j} \cap I_{j^{\prime}}\right|\right)$

$$
\sum_{n=0}^{\infty}\left(\frac{\left(p^{2} / N\right)^{n}}{n!} e^{-p^{2} / N}\right)(-1)^{n}=e^{-\lambda}=q
$$

Using $i^{k p / 2} \operatorname{tr} \psi_{I_{1}} \psi_{I_{1}} \psi_{I_{2}} \psi_{I_{2}} \cdots=1$ we get

$$
\left\langle\operatorname{tr} H^{k}\right\rangle_{J}=\sum_{\text {Chord diagrams }} q^{\# \text { intersections }}
$$

For example

Operators

Similarly to the Hamiltonian, consider random operators with different $p_{A} \sim \sqrt{N}$

$$
M_{A}=i^{p_{A} / 2} \sum_{1 \leq i_{1}<\cdots<i_{p_{A}} \leq N} J_{i_{1} \cdots i_{p_{A}}}^{(A)} \psi_{i_{1}} \cdots \psi_{i_{p_{A}}}
$$

A - flavor. The J 's are again random, independent, with zero mean and

$$
\left\langle J_{i_{1} \cdots i_{p_{A}}}^{(A)} J_{j_{1} \cdots j_{p_{B}}}^{(B)}\right\rangle_{J}=\binom{N}{p_{A}}^{-1} \delta^{A B} \delta_{i_{1}, j_{1}} \delta_{i_{2}, j_{2}} \cdots
$$

(and independent of the Hamiltonian couplings).

Correlation function moments

$$
\left\langle\operatorname{tr} H^{k_{1}} M_{1} H^{k_{2}} M_{1} \cdots\right\rangle_{J}
$$

From the averaging, the Hamiltonian insertions are paired, the M_{1} insertions are paired.

Correlation function moments

The only difference is the probability distribution of the number of sites in the intersection. For sets of size p, p_{A} the intersection is distributed Pois $\left(\frac{p p_{A}}{N}\right)$. So

$$
\begin{aligned}
& \left\langle\operatorname{tr} H^{k_{1}} M_{1} H^{k_{2}} M_{1} \cdots\right\rangle_{J}= \\
& \quad=\sum_{\text {Chord diagrams }} q^{\# H-H \text { intersections }} \prod_{A} \tilde{q}_{A}^{\# H-M_{A} \text { intersections }}
\end{aligned}
$$

Effective Hilbert space and analytic evaluation

Partition function

Want to evaluate the sum over chord diagrams [Berkooz, Narayan, and Simon, 2018]. Cut open the chord diagrams at an arbitrary point.

Recall each node is a Hamiltonian insertion, and between each two insertions there is a propagating state $\cdots H H \cdots=\cdots H|l\rangle\langle l| H \cdots$.

Partition function

Want to evaluate the sum over chord diagrams [Berkooz, Narayan, and Simon, 2018]. Cut open the chord diagrams at an arbitrary point.

Recall each node is a Hamiltonian insertion, and between each two insertions there is a propagating state $\cdots H H \cdots=\cdots H|l\rangle\langle l| H \cdots$. Effective Hilbert space \mathcal{H} with basis $|l\rangle$, number of chords $l=0,1,2, \cdots$.

Partition function

Node \leftrightarrow Hamiltonian insertion. 2 transitions only:

In the latter case can close either of the l chords. Crossings \rightarrow $1+q+q^{2}+\cdots q^{l-1}=\frac{1-q^{l}}{1-q}$. Effective Hamiltonian

$$
T=\left(\begin{array}{ccccc}
0 & \frac{1-q}{1-q} & 0 & 0 & \cdots \\
1 & 0 & \frac{1-q^{2}}{1-q} & 0 & \cdots \\
0 & 1 & 0 & \frac{1-q^{3}}{1-q} & \cdots \\
0 & 0 & 1 & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Can simply diagonalize and get the energies

$$
E(\theta)=\frac{2 \cos (\theta)}{\sqrt{1-q}}, \quad \theta \in[0, \pi)
$$

Partition function is just

$$
\left\langle\operatorname{tr} e^{-\beta H}\right\rangle_{J}=\int_{0}^{\pi} d \mu(\theta) e^{-\beta E(\theta)}
$$

The measure is

$$
d \mu(\theta) \equiv \frac{d \theta}{2 \pi}(q ; q)_{\infty}\left(e^{2 i \theta} ; q\right)_{\infty}\left(e^{-2 i \theta} ; q\right)_{\infty}, \text { where }(a ; q)_{n}=\prod_{k=0}^{n-1}\left(1-a q^{k}\right)
$$

Correlation functions

Correlation functions

Consider a region enclosed by a contracted pair of M-nodes.

Time evolution over this region (before was T^{k})? In the Hilbert space we keep only number of solid chords, can we do that? Yes!

Correlation functions

Consider a region enclosed by a contracted pair of M-nodes.

Time evolution over this region (before was T^{k})? In the Hilbert space we keep only number of solid chords, can we do that? Yes!

Diagrammatic rules

Similarly to [Mertens, Turiaci, and Verlinde, 2017], it is convenient to organize the results for correlation functions using non-perturbative diagrammatic rules. The diagrams arise naturally here; these are just chord diagrams.

- Propagator

- Sum over energy eigenstates that propagate, or equivalently over θ, with measure $d \mu(\theta)=\frac{d \theta}{2 \pi}\left(q, e^{ \pm 2 i \theta} ; q\right)_{\infty}$.
- Vertex

$$
\int_{\theta_{2}}^{\theta_{1}}=\gamma_{l}\left(\theta_{1}, \theta_{2}\right)=\sqrt{\frac{\left(\tilde{q}_{A}^{2} ; q\right)_{\infty}}{\left(\tilde{q}_{A} e^{i\left(\pm \theta_{1} \pm \theta_{2}\right)} ; q\right)_{\infty}}}, \quad \tilde{q}_{A}=q^{l_{A}}
$$

Diagrammatic rules

These rules give precisely the 2-point function and the first 4-point function $\left\langle M_{1} M_{1} M_{2} M_{2}\right\rangle$.
$\left\langle M_{1} M_{2} M_{1} M_{2}\right\rangle=\int \prod_{j=1}^{4} d \mu\left(\theta_{j}\right) e^{-\sum \beta_{j} E\left(\theta_{j}\right)} \gamma_{l_{1}}\left(\theta_{1}, \theta_{4}\right) \gamma_{l_{1}}\left(\theta_{2}, \theta_{3}\right) \gamma_{l_{2}}\left(\theta_{1}, \theta_{2}\right) \gamma_{l_{2}}\left(\theta_{3}, \theta_{4}\right) \cdot R$
So R is associated to the crossing of chords.

The R-matrix

The chord diagram is reminiscent of holography, representing the hyperbolic disc, boundary is exactly our QM system. The chords intersection is scattering in the bulk - the R-matrix.

For the Schwarzian, the R-matrix is the $6 j$ symbol of $S U(1,1)$. In double-scaled SYK, the R-matrix is the $6 j$ symbol of the quantum group $U_{q}(s u(1,1))$!

The spectrum also matches to this quantum group. Suggests that the theory can be completely solved by symmetry considerations.

More on the results

- In $q \rightarrow 1$ and low energies, these results reduce exactly to those of the Schwarzian. But the results above are at all energies and for any q.

More on the results

- In $q \rightarrow 1$ and low energies, these results reduce exactly to those of the Schwarzian. But the results above are at all energies and for any q.
- Using saddle point for the 4-point function [Lam et al., 2018], calculated the Lyapunov exponent for small λ and low energies $T \ll \sqrt{\lambda}$

$$
\lambda_{L}=2 \pi T-4 \pi \lambda^{-1 / 2} T^{2}+\cdots
$$

More on the results

- In $q \rightarrow 1$ and low energies, these results reduce exactly to those of the Schwarzian. But the results above are at all energies and for any q.
- Using saddle point for the 4-point function [Lam et al., 2018], calculated the Lyapunov exponent for small λ and low energies $T \ll \sqrt{\lambda}$

$$
\lambda_{L}=2 \pi T-4 \pi \lambda^{-1 / 2} T^{2}+\cdots
$$

- The analysis did not use the trace, so holds trivially also for pure states in agreement with [Kourkoulou and Maldacena, 2017].

Summary and future directions

Calculated exact correlation functions, including the 4-point function, in large N double-scaled SYK and saw an emerging quantum group.

- Solving the model by $U_{q}(s u(1,1))$ symmetry considerations.
- Computing chaos for large λ and temperature.
- The leading order in N is basically completely solved. Suggests we can go to subleading in N.
- Bulk dual.
- Non-thermal mixed states.

Thank you!

