Towards a Solution of Large N Double-Scaled SYK

Vladimir Narovlansky

Nazareth, 2019

Based on work with M. Berkooz, M. Isachenkov, and G. Torrents, arXiv:1811.02584.

The Sachdev-Ye-Kitaev (SYK) model

SYK is a quantum mechanical model (0 + 1 dimensions) involving N Majorana fermion ψ_i , $i = 1, \cdots, N$, with random all-to-all interactons

$$H = i^{p/2} \sum_{1 \le i_1 < \dots < i_p \le N} J_{i_1 \cdots i_p} \psi_{i_1} \cdots \psi_{i_p}$$

The fermions satisfy the algebra

$$\{\psi_i, \psi_j\} = 2\delta_{ij}$$

Interesting because can do calculations at large N and strong coupling, and find that it is maximally chaotic (chaos bounded [Maldacena, Shenker, and Stanford, 2016]). Features of holographic theories with semi-classical duals, so can study holography.

The SYK model

Usually studied using summation of Feynman diagrams, leading to Schwinger-Dyson equations. In the IR, a conformal ansatz is plugged in and solved ([Polchinski and Rosenhaus, 2016], [Maldacena and Stanford, 2016]).

Goal: We will take a combinatorial approach, allowing to do exact computations (at all energy scales).

Double-Scaled SYK

Usually p is held fixed (independent of N) and $N \to \infty$.

Double-scaled SYK = we take p (even) to scale as \sqrt{N} :

$$N \to \infty, \qquad \lambda = \frac{2p^2}{N} = \text{fixed}$$
 (1)

[Erdős and Schröder, 2014], [Cotler et al., 2017], [Berkooz, Narayan, and Simon, 2018]

Will be natural to denote

$$q \equiv e^{-\lambda}$$

The more standard SYK $\leftrightarrow q \rightarrow 1$

The J's are independent and Gaussian (actually enough to assume they are independent, have zero mean, unifromly bounded moments) with

$$\langle J_{i_1\cdots i_p}^2\rangle_J = \binom{N}{p}^{-1}$$

In the double-scaling (1), this differs by a factor of λ from usual convention [Maldacena and Stanford, 2016].

Chord diagrams

Chord diagrams

Consider moments from which can get immediately the (averaged) partition function

 $\langle \operatorname{tr} H^k \rangle_J$

Denote $\{i_1,\cdots,i_p\}\leftrightarrow I$, so

$$H = i^{p/2} \sum_{I} J_{I} \cdot \psi_{I}$$

where $\psi_I = \psi_{i_1} \cdots \psi_{i_p}$.

$$\langle \operatorname{tr} H^k \rangle_J = i^{kp/2} \sum_{I_1, \cdots, I_k} \underbrace{\langle J_{I_1} \cdots J_{I_k} \rangle_J}_{I_1} \operatorname{tr} \psi_{I_1} \cdots \psi_{I_k}.$$

By Wick's theorem, the I_j come in pairs.

Wick's theorem \rightarrow sum over pairings \Leftrightarrow sum over chord diagrams (circular since trace). Each node $\leftrightarrow H$ insertion.

For each chord diagram left with

Now commute nodes to bring all pairs to be neighboring:

The $\binom{N}{p}^{-k/2}$ factor (number of terms in the sum) turns counting to probabilities.

For $p \ll N$ can do this by choosing independently the p points of $I_{j'}$ (p trials, in intersection with probability p/N).

$$|I_j \cap I_{j'}| \sim Pois\left(\frac{p^2}{N}\right)$$

Since $p^2/N \sim O(1)$, the different intersections are independent.

Each intersection then gives $(n = |I_j \cap I_{j'}|)$

$$\sum_{n=0}^{\infty} \left(\frac{(p^2/N)^n}{n!} e^{-p^2/N} \right) (-1)^n = e^{-\lambda} = q$$

Using $i^{kp/2} \operatorname{tr} \psi_{I_1} \psi_{I_2} \psi_{I_2} \cdots = 1$ we get

$$\langle \operatorname{tr} H^k \rangle_J = \sum_{\text{Chord diagrams}} q^{\# \text{ intersections}}$$

For example

Operators

Similarly to the Hamiltonian, consider random operators with different $p_A\sim \sqrt{N}$

$$M_A = i^{p_A/2} \sum_{1 \le i_1 < \dots < i_{p_A} \le N} J^{(A)}_{i_1 \cdots i_{p_A}} \psi_{i_1} \cdots \psi_{i_{p_A}}$$

 \boldsymbol{A} - flavor. The $\boldsymbol{J}\mbox{'s}$ are again random, independent, with zero mean and

$$\langle J_{i_1\cdots i_{p_A}}^{(A)}J_{j_1\cdots j_{p_B}}^{(B)}\rangle_J = \binom{N}{p_A}^{-1}\delta^{AB}\delta_{i_1,j_1}\delta_{i_2,j_2}\cdots$$

(and independent of the Hamiltonian couplings).

Correlation function moments

 $\langle \operatorname{tr} H^{k_1} M_1 H^{k_2} M_1 \cdots \rangle_J$

From the averaging, the Hamiltonian insertions are paired, the M_1 insertions are paired.

Correlation function moments

The only difference is the probability distribution of the number of sites in the intersection. For sets of size p, p_A the intersection is distributed $Pois\left(\frac{pp_A}{N}\right)$. So

 $\langle \operatorname{tr} H^{k_1} M_1 H^{k_2} M_1 \cdots \rangle_J = \\ = \sum_{\text{Chord diagrams}} q^{\# H-H \text{ intersections}} \prod_A \tilde{q}_A^{\# H-M_A \text{ intersections}}$

Effective Hilbert space and analytic evaluation

Effective Hilbert space and analytic evaluation

Partition function

Want to evaluate the sum over chord diagrams [Berkooz, Narayan, and Simon, 2018]. Cut open the chord diagrams at an arbitrary point.

Recall each node is a Hamiltonian insertion, and between each two insertions there is a propagating state $\cdots HH \cdots = \cdots H|l\rangle \langle l|H \cdots$.

Partition function

Want to evaluate the sum over chord diagrams [Berkooz, Narayan, and Simon, 2018]. Cut open the chord diagrams at an arbitrary point.

Recall each node is a Hamiltonian insertion, and between each two insertions there is a propagating state $\cdots HH \cdots = \cdots H|l\rangle \langle l|H \cdots$. Effective Hilbert space \mathcal{H} with basis $|l\rangle$, number of chords $l = 0, 1, 2, \cdots$.

Partition function

Node \leftrightarrow Hamiltonian insertion. 2 transitions only:

Effective Hilbert space and analytic evaluation

In the latter case can close either of the l chords. Crossings $\rightarrow 1+q+q^2+\cdots q^{l-1}=\frac{1-q^l}{1-q}.$ Effective Hamiltonian

$$T = \begin{pmatrix} 0 & \frac{1-q}{1-q} & 0 & 0 & \cdots \\ 1 & 0 & \frac{1-q^2}{1-q} & 0 & \cdots \\ 0 & 1 & 0 & \frac{1-q^3}{1-q} & \cdots \\ 0 & 0 & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Can simply diagonalize and get the energies

$$E(\theta) = \frac{2\cos(\theta)}{\sqrt{1-q}}, \qquad \theta \in [0,\pi).$$

Partition function is just

$$\langle \operatorname{tr} e^{-\beta H} \rangle_J = \int_0^\pi d\mu(\theta) \, e^{-\beta E(\theta)}$$

The measure is

$$d\mu(\theta) \equiv \frac{d\theta}{2\pi}(q;q)_{\infty}(e^{2i\theta};q)_{\infty}(e^{-2i\theta};q)_{\infty}, \text{ where } (a;q)_n = \prod_{k=0}^{n-1}(1-aq^k).$$

Correlation functions

Correlation functions

Correlation functions

Consider a region enclosed by a contracted pair of M-nodes.

Time evolution over this region (before was T^k)? In the Hilbert space we keep only number of solid chords, can we do that? Yes!

Correlation functions

Consider a region enclosed by a contracted pair of M-nodes.

Time evolution over this region (before was T^k)? In the Hilbert space we keep only number of solid chords, can we do that? Yes!

Diagrammatic rules

Similarly to [Mertens, Turiaci, and Verlinde, 2017], it is convenient to organize the results for correlation functions using non-perturbative diagrammatic rules. The diagrams arise naturally here; these are just chord diagrams.

Propagator

- Sum over energy eigenstates that propagate, or equivalently over θ , with measure $d\mu(\theta) = \frac{d\theta}{2\pi}(q, e^{\pm 2i\theta}; q)_{\infty}$.
- Vertex

$$\begin{array}{c|c} l \\ \hline \\ \theta_2 \end{array} = \gamma_l(\theta_1, \theta_2) = \sqrt{\frac{(\tilde{q}_A^2; q)_\infty}{(\tilde{q}_A e^{i(\pm \theta_1 \pm \theta_2)}; q)_\infty}}, \qquad \tilde{q}_A = q^{l_A}$$

Diagrammatic rules

These rules give precisely the 2-point function and the first 4-point function $\langle M_1 M_1 M_2 M_2 \rangle.$

$$\langle M_1 M_2 M_1 M_2 \rangle = \int \prod_{j=1}^4 d\mu(\theta_j) e^{-\sum \beta_j E(\theta_j)} \gamma_{l_1}(\theta_1, \theta_4) \gamma_{l_1}(\theta_2, \theta_3) \gamma_{l_2}(\theta_1, \theta_2) \gamma_{l_2}(\theta_3, \theta_4) \cdot R$$

So R is associated to the crossing of chords.

The R-matrix

The chord diagram is reminiscent of holography, representing the hyperbolic disc, boundary is exactly our QM system. The chords intersection is scattering in the bulk – the R-matrix.

For the Schwarzian, the R-matrix is the 6j symbol of SU(1,1).

In double-scaled SYK, the R-matrix is the 6j symbol of the quantum group $U_q(su(1,1))$!

The spectrum also matches to this quantum group. Suggests that the theory can be **completely solved** by symmetry considerations.

More on the results

• In $q \rightarrow 1$ and low energies, these results reduce exactly to those of the Schwarzian. But the results above are at all energies and for any q.

More on the results

- In $q \rightarrow 1$ and low energies, these results reduce exactly to those of the Schwarzian. But the results above are at all energies and for any q.
- Using saddle point for the 4-point function [Lam et al., 2018], calculated the Lyapunov exponent for small λ and low energies $T\ll\sqrt{\lambda}$

$$\lambda_L = 2\pi T - 4\pi \lambda^{-1/2} T^2 + \cdots$$

More on the results

- In $q \rightarrow 1$ and low energies, these results reduce exactly to those of the Schwarzian. But the results above are at all energies and for any q.
- Using saddle point for the 4-point function [Lam et al., 2018], calculated the Lyapunov exponent for small λ and low energies $T\ll\sqrt{\lambda}$

$$\lambda_L = 2\pi T - 4\pi \lambda^{-1/2} T^2 + \cdots$$

• The analysis did not use the trace, so holds trivially also for pure states in agreement with [Kourkoulou and Maldacena, 2017].

Summary and future directions

Calculated exact correlation functions, including the 4-point function, in large N double-scaled SYK and saw an emerging quantum group.

- Solving the model by $U_q(su(1,1))$ symmetry considerations.
- Computing chaos for large λ and temperature.
- The leading order in N is basically completely solved. Suggests we can go to subleading in $N. \end{tabular}$
- Bulk dual.
- Non-thermal mixed states.

Thank you!