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Setup and motivation

The Sachdev-Ye-Kitaev (SYK) model

SYK is a quantum mechanical model (0 + 1 dimensions) involving
N Majorana fermion ψi, i = 1, · · · , N , with random all-to-all
interactons

H = ip/2
∑

1≤i1<···<ip≤N
Ji1···ipψi1 · · ·ψip

The fermions satisfy the algebra

{ψi, ψj} = 2δij

Interesting because can do calculations at large N and strong
coupling, and find that it is maximally chaotic (chaos bounded
[Maldacena, Shenker, and Stanford, 2016]). Features of holographic
theories with semi-classical duals, so can study holography.



Setup and motivation

The SYK model

Usually studied using summation of Feynman diagrams, leading to
Schwinger-Dyson equations. In the IR, a conformal ansatz is
plugged in and solved ([Polchinski and Rosenhaus, 2016], [Maldacena and

Stanford, 2016]).

+ + + · · ·+

1

G(ω)
= −iω − Σ(ω), Σ(τ) = J2G(τ)p−1

Goal: We will take a combinatorial approach, allowing to do exact
computations (at all energy scales).



Setup and motivation

Double-Scaled SYK

Usually p is held fixed (independent of N) and N →∞.

Double-scaled SYK = we take p (even) to scale as
√
N :

N →∞, λ =
2p2

N
= fixed (1)

[Erdős and Schröder, 2014], [Cotler et al., 2017], [Berkooz, Narayan, and

Simon, 2018]

Will be natural to denote
q ≡ e−λ

The more standard SYK ↔ q → 1

The J ’s are independent and Gaussian (actually enough to assume they
are independent, have zero mean, unifromly bounded moments) with

〈J2
i1···ip〉J =

(
N

p

)−1

In the double-scaling (1), this differs by a factor of λ from usual

convention [Maldacena and Stanford, 2016].



Chord diagrams

Chord diagrams



Chord diagrams

Chord diagrams for the partition function

Consider moments from which can get immediately the (averaged)
partition function

〈trHk〉J

Denote {i1, · · · , ip} ↔ I, so

H = ip/2
∑
I

JI · ψI

where ψI = ψi1 · · ·ψip .

〈trHk〉J = ikp/2
∑

I1,··· ,Ik

〈JI1 · · · JIk〉J︸ ︷︷ ︸ trψI1 · · ·ψIk .
By Wick’s theorem, the Ij come in pairs.



Chord diagrams

Chord diagrams for the partition function
1

2

3

4

5

6

7

8Wick’s theorem → sum over pairings ⇔ sum
over chord diagrams (circular since trace).
Each node ↔ H insertion.

For each chord diagram left with(
N

p

)−k/2
ikp/2

∑
I1,··· ,Ik/2

trψI1 · · ·ψI1 · · ·

Now commute nodes to bring all pairs to be neighboring:

×(−1)|Ij∩Ij′|

ψIj ψIj′ ψIjψIj′

=



Chord diagrams

Chord diagrams for the partition function

The
(
N
p

)−k/2
factor (number of terms in the sum) turns counting

to probabilities.

|Ij| = p

|Ij′ | = p
?

For p� N can do this by choosing independently the p points of
Ij′ (p trials, in intersection with probability p/N).

|Ij ∩ Ij′ | ∼ Pois
(
p2

N

)
Since p2/N ∼ O(1), the different intersections are independent.



Chord diagrams

Chord diagrams for the partition function

Each intersection then gives (n = |Ij ∩ Ij′ |)
∞∑
n=0

(
(p2/N)n

n!
e−p

2/N

)
(−1)n = e−λ = q

Using ikp/2 trψI1ψI1ψI2ψI2 · · · = 1 we get

〈trHk〉J =
∑

Chord diagrams

q# intersections

For example

+ +

×1 ×q ×1

= 2 + q〈trH4〉J =



Chord diagrams

Operators

Similarly to the Hamiltonian, consider random operators with
different pA ∼

√
N

MA = ipA/2
∑

1≤i1<···<ipA≤N
J
(A)
i1···ipA

ψi1 · · ·ψipA

A - flavor. The J ’s are again random, independent, with zero
mean and

〈J (A)
i1···ipA

J
(B)
j1···jpB

〉J =

(
N

pA

)−1
δABδi1,j1δi2,j2 · · ·

(and independent of the Hamiltonian couplings).



Chord diagrams

Correlation function moments

〈trHk1M1H
k2M1 · · · 〉J

From the averaging, the Hamiltonian insertions are paired, the M1

insertions are paired.

M1

M1

H

H H

H

H

H

k1

k2



Chord diagrams

Correlation function moments

The only difference is the probability distribution of the number of
sites in the intersection. For sets of size p, pA the intersection is
distributed Pois

(ppA
N

)
. So

= q̃A = e−2ppA/N

A

= q = e−2p2/N

〈trHk1M1H
k2M1 · · · 〉J =

=
∑

Chord diagrams

q# H-H intersections
∏
A

q̃# H-MA intersections
A
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Effective Hilbert space and analytic evaluation

Partition function

Want to evaluate the sum over chord diagrams [Berkooz, Narayan, and

Simon, 2018]. Cut open the chord diagrams at an arbitrary point.

1

2

3

4

5

6

stage 1stage 0 stage 2 stage k

1 2 k

Recall each node is a Hamiltonian insertion, and between each two
insertions there is a propagating state · · ·HH · · · = · · ·H|l〉〈l|H · · · .



Effective Hilbert space and analytic evaluation

Partition function

Want to evaluate the sum over chord diagrams [Berkooz, Narayan, and

Simon, 2018]. Cut open the chord diagrams at an arbitrary point.

1

2

3

4

5

6

stage 1stage 0 stage 2 stage k

1 2 k

|1〉 |2〉 |3〉 |2〉 |1〉

Recall each node is a Hamiltonian insertion, and between each two
insertions there is a propagating state · · ·HH · · · = · · ·H|l〉〈l|H · · · .
Effective Hilbert space H with basis |l〉, number of chords
l = 0, 1, 2, · · · .



Effective Hilbert space and analytic evaluation

Partition function

1
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3

4

5

6

stage 1stage 0 stage 2 stage k

1 2 k

|1〉 |2〉 |3〉 |2〉 |1〉

Node ↔ Hamiltonian insertion. 2 transitions only:

|l〉 → |l + 1〉

|2〉 |3〉

|l〉 → |l − 1〉

|2〉|3〉



Effective Hilbert space and analytic evaluation
|2〉|3〉

In the latter
case can close either of the l chords. Crossings →
1 + q + q2 + · · · ql−1 = 1−ql

1−q . Effective Hamiltonian

T =



0 1−q
1−q 0 0 · · ·

1 0 1−q2
1−q 0 · · ·

0 1 0 1−q3
1−q · · ·

0 0 1 0 · · ·
...

...
...

...
. . .


Can simply diagonalize and get the energies

E(θ) =
2 cos(θ)√

1− q
, θ ∈ [0, π).

Partition function is just

〈tr e−βH〉J =

∫ π

0

dµ(θ) e−βE(θ)

The measure is

dµ(θ) ≡ dθ

2π
(q; q)∞(e2iθ; q)∞(e−2iθ; q)∞, where (a; q)n =

n−1∏
k=0

(1− aqk).
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Correlation functions

Correlation functions

Consider a region enclosed by a contracted pair of M -nodes.

MA MA

Time evolution over this region (before was T k)? In the Hilbert
space we keep only number of solid chords, can we do that? Yes!

MA MA

q̃A
q̃A
q̃A

q̃A

q̃A
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Correlation functions

Diagrammatic rules

Similarly to [Mertens, Turiaci, and Verlinde, 2017], it is
convenient to organize the results for correlation functions
using non-perturbative diagrammatic rules. The diagrams
arise naturally here; these are just chord diagrams.

θ1

τ1τ2

θ2

l

• Propagator
θ

τ2 τ1 = e−∆τ ·E(θ)

• Sum over energy eigenstates that propagate, or equivalently over θ, with
measure dµ(θ) = dθ

2π
(q, e±2iθ; q)∞.

• Vertex

θ2

l θ1

= γl(θ1, θ2) =

√
(q̃2
A; q)∞

(q̃Aei(±θ1±θ2); q)∞
, q̃A = qlA



Correlation functions

Diagrammatic rules

θ1

τ1τ2

θ2

l

τ1τ2

τ3 τ4

θ1

θ2

θ3

θ2

l1

l2

τ1

τ2

τ3

τ4

θ1

θ2

θ3

θ4

l1l2

These rules give precisely the 2-point function and the first 4-point
function 〈M1M1M2M2〉.

〈M1M2M1M2〉 =
∫ 4∏

j=1

dµ(θj)e
−

∑
βjE(θj)γl1 (θ1, θ4)γl1 (θ2, θ3)γl2 (θ1, θ2)γl2 (θ3, θ4)·R

So R is associated to the crossing of chords.



Correlation functions

The R-matrix
τ1

τ2

τ3

τ4

θ1

θ2

θ3

θ4

l1l2The chord diagram
is reminiscent of holography, representing
the hyperbolic disc, boundary is exactly
our QM system. The chords intersection
is scattering in the bulk – the R-matrix.

For the Schwarzian, the R-matrix is the 6j symbol of SU(1, 1).

In double-scaled SYK, the R-matrix is the 6j symbol of the
quantum group Uq(su(1, 1)) !

The spectrum also matches to this quantum group. Suggests that
the theory can be completely solved by symmetry considerations.



Correlation functions

More on the results

• In q → 1 and low energies, these results reduce exactly to those of
the Schwarzian. But the results above are at all energies and for
any q.

• Using saddle point for the 4-point function [Lam et al., 2018],
calculated the Lyapunov exponent for small λ and low energies
T �

√
λ

λL = 2πT − 4πλ−1/2T 2 + · · ·

• The analysis did not use the trace, so holds trivially also for pure
states in agreement with [Kourkoulou and Maldacena, 2017].
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Summary and future directions

Calculated exact correlation functions, including the 4-point
function, in large N double-scaled SYK and saw an emerging
quantum group.

• Solving the model by Uq(su(1, 1)) symmetry considerations.

• Computing chaos for large λ and temperature.

• The leading order in N is basically completely solved. Suggests we
can go to subleading in N .

• Bulk dual.

• Non-thermal mixed states.



Thank you!
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