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Preface

The topological string on a Calabi-Yau threefold X is (loosely
speaking) an “integrable spine” of the Type II string theory on
X × R

3,1. Calabi-Yau spaces are the natural target space because
they preserve some supersymmetry.

The full Type II theory in 10 dimensions is known to develop an
11-dimensional Poincare invariance at strong coupling — leading
to the conjecture that there is an M-theory in 11 dimensions whose
low energy limit is 11-dimensional supergravity.

Could something similar happen for the topological string — could
the Calabi-Yau space X grow an extra dimension? The natural
target spaces in this case would be G2 holonomy manifolds. But
what is the appropriate low energy action?
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Geometric structures and forms

Hitchin introduced new action functionals for which the critical
points are geometric structures on a manifold X — e.g. symplectic
structure, complex structure, G2 holonomy metric.

The construction is based on the idea that geometric structures are
often characterized by the existence of particular differential forms
on X — e.g. presymplectic form ω, holomorphic volume form Ω,
associative 3-form Φ — obeying some integrability conditions —
e.g. dω = 0, dΩ = 0, dΦ = d ∗ Φ = 0.



Stable forms

A form ω on an n-dimensional manifold X can give rise to a
geometric structure because it defines a reduction of the group
GL(n,R) of coordinate changes (structure group of TX ) to the
subgroup that preserves ω.

In order to get the same structure at every point of X ,
independent of small perturbations of ω, want ω to be
nondegenerate and generic in an appropriate sense. What does this
mean for a general p-form?



Stable 2-forms

If p = 2, we know how to define a nondegenerate form: it is
ω = M ijdxi ∧ dxj with detM 6= 0.

A nondegenerate real 2-form in dimension n = 2m can always
locally be written

ω = e1 ∧ f1 + · · · + em ∧ fm,

for some choice of basis {e1, . . . , em, f1, . . . , fm} for T ∗X , varying
over X (“vielbein”). So ω defines a presymplectic structure:
reduces GL(2m,R) → Sp(2m,R) at each point.

If dω = 0, then there exist local coordinates
(p1, . . . , pm, q1, . . . , qm) such that

ω = dp1 ∧ dq1 + · · · + dpm ∧ dqm.

Then ω defines a symplectic structure.



Stable forms

Another way of expressing the statement that a 2-form ω is
nondegenerate is to say that any small perturbation ω → ω + δω

can be undone by a local GL(n,R) transformation. In this sense ω
is stable.

This formulation can be generalized to other p-forms: we say
ω ∈ Ωp(X ,R) is stable if it lies in an open orbit of the local
GL(n,R) action, i.e. if any small perturbation can be undone by a
local GL(n,R) action.

So e.g. there are no stable 0-forms; any 1-form that is everywhere
nonvanishing is stable; for 2-forms stability is equivalent to
nondegeneracy (when n is even!)



Stable 3-forms

What about p = 3? The dimension of ∧3(Rn) grows like n3, but
the dimension of GL(n,R) grows like n2 ⇒ for large enough n,
there cannot be stable 3-forms!

In large enough dimensions, every 3-form is different.



Stable 3-forms in dimension 6

But some exceptional examples exist — e.g. n = 6.

dim∧3(R6) = 20

dimGL(6,R) = 36

So consider a stable real 3-form ρ in dimension 6. The stabilizer of
ρ inside GL(6,R) has real dimension 36 − 20 = 16; in fact it is
either SL(3,R) × SL(3,R) or SL(3,C) ∪ SL(3,C).

We’re interested in the case of SL(3,C) ∪ SL(3,C).



Stable 3-forms in dimension 6

If ρ has stabilizer SL(3,C) ∪ SL(3,C) it can be written locally in
the form

ρ =
1

2

(

ζ1 ∧ ζ2 ∧ ζ3 + ζ̄1 ∧ ζ̄2 ∧ ζ̄3
)

where ζ1 = e1 + ie2, ζ2 = e3 + ie4, ζ3 = e5 + ie6, and the ei are a
basis for T ∗X , varying over X . The ζi determine an almost
complex structure on X . If we are lucky, there exist local complex
coordinates (z1, z2, z3) such that ζi = dzi ; in that case we say the
almost complex structure is integrable, i.e. it is an honest complex
structure.



Stable 3-forms in d = 6

Given the stable ρ ∈ Ω3(X ,R)

ρ =
1

2

(

ζ1 ∧ ζ2 ∧ ζ3 + ζ̄1 ∧ ζ̄2 ∧ ζ̄3
)

we can define another real 3-form

ρ̂(ρ) =
i

2

(

ζ1 ∧ ζ2 ∧ ζ3 − ζ̄1 ∧ ζ̄2 ∧ ζ̄3
)

This ρ̂ is algebraically determined by ρ. Then Ω = ρ+ i ρ̂ is a
holomorphic 3-form in the almost complex structure determined by
ρ.

The complex structure is integrable just if dΩ = 0, i.e. dρ = 0,
d ρ̂(ρ) = 0.



Hitchin’s holomorphic volume functional

The integrability condition dρ = 0, d ρ̂(ρ) = 0 can be obtained by
extremization of a volume functional:

VH(ρ) =
1

2

∫

X

ρ̂(ρ) ∧ ρ =
−i

4

∫

Ω ∧ Ω.

Here ρ varies within a cohomology class, [ρ] ∈ H 3(X ,R) — i.e.
ρ = ρ0 + dβ for some fixed closed ρ0. So dρ = 0 of course; and
the effect of variation of β is

δVH(ρ) =

∫

X

ρ̂(ρ) ∧ d(δβ),

so δVH(ρ) = 0 for all δβ ⇒ d ρ̂(ρ) = 0.



Intermezzo

One can write VH(ρ) more explicitly in terms of ρ:

VH(ρ) =
1

2

∫

d6x
√

ρa1a2a3ρa4a5a6ρa7a8a9ρa10a11a12ε
a2a3a4a5a6a7εa8a9a10a11a12a1



Hitchin’s holomorphic volume functional

So extremization of VH , with a fixed [ρ] ∈ H3(X ,R), leads to
integrable complex structures on X , equipped with holomorphic
3-forms Ω, such that the real parts of the periods are fixed by
[Re Ω] = [ρ]. (Almost “Calabi-Yau structures” on X , except that
we didn’t say X was Kähler. No Ricci flat metrics here!)

Complex geometry emerges from real 3-forms! A peculiarity of
d = 6.



Hitchin vs. the B model

So altogether we have

VH(ρ) =
−i

4

∫

Ω ∧ Ω,

the action of a “2-form abelian gauge theory” in 6 dimensions, for
which the classical solutions are roughly Calabi-Yau structures. (A
stripped-down gravity theory.)

We already know a theory in 6 dimensions with these classical
solutions — the B model topological string, or “Kodaira-Spencer
gravity.” So could VH be a target space action for the B model?

Define formally the partition function,

ZH([ρ]) =

∫

ρ∈[ρ]
Dρ exp (VH(ρ)) .

This is a real function of [ρ] ∈ H3(X ,R). We want to compare it
to the B model partition function.



The B model and background dependence

The B model partition function is naively a holomorphic function
of the complex moduli of X , ZB(t). But more precisely, it has a
background dependence: depends on choice of base-point
Ω0 ∈ H3(X ,R), so it should be written ZΩ0

B (t). Here t

parameterizes tangent vectors to the extended Teichmuller space
(complex structures together with a choice of holomorphic 3-form):
t ∈ H3,0(XΩ0

,C) ⊕ H2,1(XΩ0
,C). [Bershadsky-Cecotti-Ooguri-Vafa]

The various ZΩ0
B are related by a holomorphic anomaly equation

which gives the parallel transport from one Ω0 to another Ω′
0. This

equation has an elegant interpretation. [Witten]



Background dependence as the wavefunction property

Consider H3(X ,R) as a symplectic vector space; then we can
quantize it. (Think of R

2 with ω = dp ∧ dq.) The Hilbert space
consists of functions ψ which depend on “half the coordinates,”
e.g. functions on a Lagrangian subspace (choice of polarization).
Different polarizations are related by Fourier-like transforms.

So we can have real polarizations (like ψ(q) or
ψ(p) =

∫

dq e ipqψ(q)), obtained by splitting H3(X ,Z) into “A
and B cycles” — symplectic marking,
H3(X ,Z) = H3(X ,Z)A ⊕ H3(X ,Z)B .

Can also have holomorphic polarizations (like ψ(q + ip) or
ψ(q + τp)) obtained by splitting H3(X ,C), e.g. Hodge splitting
H3(X ,C) =

(

H3,0 ⊕ H2,1
)

⊕
(

H0,3 ⊕ H1,2
)

.

The various ZΩ0
B are expressions of the same wavefunction in

different polarizations of H3(X ,R) — polarization given by the
Hodge splitting determined by Ω0.



Hitchin vs. the B model

So we’ve seen that ZB depends on only half the coordinates of
H3(X ,R) (Lagrangian subspace) and requires a choice of
polarization. These features are visible already classically (genus
zero).

On the other hand, ZH is a function on all of H3(X ,R), and
doesn’t seem to require any choice.

So we can’t say ZH = ZB . Instead, propose that ZH = ZB ⊗ ZB ,
or more precisely, ZH is the Wigner function associated to ZB : this
is the phase-space density,

(ZB ⊗ ZB)([ρ]) =

∫

dΦ e−〈Φ,ρB 〉 |ZB(ρA + iΦ)|2.

Here we wrote ZB in the real polarization determined by a choice
of A and B cycles (symplectic marking): ρA = ρ|H3(X ,R)A ,
ρB = ρ|H3(X ,R)B .



Hitchin vs. the B model

The relation ZH = ZB ⊗ ZB holds at least classically — i.e. leading
order asymptotics in large [ρ] expansion. In that limit the
saddle-point evaluation of

∫

dΦ e−〈Φ,ρB 〉 |ZB(ρA + iΦ)|2

indeed gives

(ZB ⊗ ZB)([ρ]) ∼ e i
R

Ω∧Ω,

where Ω is the complex structure with [Re Ω] = [ρ].
This agrees with the saddle-point evaluation of ZH([ρ]), almost by
definition.



Hitchin vs. the B model

At one-loop the situation is subtler: careful BV quantization shows
that, in order to agree with the known one-loop ZB ⊗ ZB , one
needs to replace ZH by an extended ZH . [Pestun-Witten]

The extended ZH includes fields describing variations of
generalized complex structures. [Hitchin]



Hitchin B model and black holes

The Wigner function of the B model (which we have now
identified as ZH([ρ])) has appeared recently in another context: it
was conjectured that ZH([ρ]) computes the number of states of a
black hole.

Motivation from the attractor mechanism: suppose we consider
Type IIB superstring on X × R

3,1. Then we can construct a
charged black hole by wrapping a D3-brane on a 3-cycle
Q ∈ H3(X ,Z). The complex moduli of X near the horizon then
get fixed to an Ω satisfying [Re Ω] = Q∗.

This is exactly the Ω that Hitchin’s gauge theory constructs if we
fix the class [ρ] = Q∗. And ZH([ρ]) is exactly the number of states
of the black hole! [Ooguri-Strominger-Vafa]

So ZH reformulates the B model in a way naturally adapted to the
counting of black hole states.



Hitchin’s symplectic volume functional

What about the A model? This has to do with variations of
symplectic structures.

Hitchin introduced a functional which produces at its critical
points symplectic structures in d = 6.

A stable 4-form σ in d = 6 may be written σ = 1
2k ∧ k . Then k

gives a presymplectic structure. Define

VS(σ) =
1

6

∫

k ∧ k ∧ k =
1

3

∫

k ∧ σ.

Varying VS(σ) with [σ] ∈ H4(X ,R) fixed, i.e. σ = σ0 + dγ for
some closed σ0, get

δVS =
1

2

∫

k ∧ dδγ,

so δVS = 0 ⇒ dk = 0, i.e. k defines a symplectic structure.

So VS has the same classical solutions as the A model.



Hitchin A model and black holes

Another attractor mechanism: consider M-theory on X × R
4,1.

Then we can construct a charged black hole by wrapping an
M2-brane on a 2-cycle Q ∈ H2(X ,Z). The Kähler moduli of X

near the horizon then get fixed to an k satisfying 1
2 [k ∧ k ] = Q∗.

This is exactly the k that Hitchin’s gauge theory constructs if we
fix the class [σ] = Q∗. So the weird fact that VS involves the
4-form k ∧ k instead of the 2-form k gets naturally related to the
fact that we want to fix a 2-cycle charge.

The leading number of states of this black hole is
∼ exp

∫

k ∧ k ∧ k at large k , which agrees with the classical value
of the Hitchin A model partition function,

ZS([σ]) =

∫

σ∈[σ]
Dσ exp (VS(σ))) .



Hitchin A model and black holes

It was known before that one can extract counts of BPS states of
wrapped M2-branes in five dimensions from the perturbative A
model. [Gopakumar-Vafa]

Here we are finding that the Hitchin version of the A model is
organized differently — its partition function seems to be directly
counting the number of states.



Hitchin and topological strings

So Hitchin’s functionals VH and VS in 6 dimensions seem to give
reformulations of the target space dynamics of the B model and A
model topological string theories, naturally adapted to the problem
of counting black holes.

We only argued for this classically; it remains to be seen how much
VH and VS can capture about the quantum theories.

These reformulations may be of interest in their own right. They
are also naturally related to Hitchin’s functional in 7 dimensions.



Stable 3-forms in dimension 7

Another exceptional example — n = 7.

dim∧3(R7) = 35

dimGL(7,R) = 49

So consider a stable real 3-form Φ in dimension 7. The stabilizer of
Φ inside GL(7,R) has dimension 49 − 35 = 14; in one open subset
it is the compact form of G2.



Stable 3-forms in dimension 7 and G2 structures

If Φ ∈ Ω3(Y ,R) is stable of the appropriate sort, it determines a
“G2 structure” on Y (reduction of the structure group to G2).

Concretely, Φ can be written in the form

Φ =

7
∑

i ,j ,k=1

Ψijkei ∧ ej ∧ ek ,

where Ψijk are the structure constants of the imaginary octonions,
and the ei are a basis for T ∗Y , varying over Y . G2 occurs as the
automorphism group of the imaginary octonions.

We can construct a metric from Φ, namely

gΦ =

7
∑

i=1

ei ⊗ ei .

This metric has G2 holonomy just if dΦ = 0, d ∗Φ Φ = 0.



Hitchin’s G2 volume functional

The integrability condition dΦ = 0, d ∗Φ Φ = 0 can – again – be
obtained by extremization of the volume functional:

V7(Φ) =

∫

Y

Φ ∧ ∗ΦΦ.

Again Φ varies within a cohomology class, [Φ] ∈ H 3(Y ,R) — i.e.
Φ = Φ0 + dΓ for some fixed closed Φ0. So dΦ = 0 of course; and
the effect of variation of Γ is

δV7(Φ) =
7

3

∫

Y

∗ΦΦ ∧ d(δΓ),

so δV7(Φ) = 0 ⇒ d ∗Φ Φ = 0.



Hitchin’s G2 volume functional and topological M-theory

So

V7(Φ) =

∫

Y

Φ ∧ ∗ΦΦ

generates G2 holonomy metrics at its critical points. In this sense
it is a candidate action for topological M-theory.

By analogy with physical M-theory, one would expect that
topological M-theory on X × S1 should be related to topological
string theory on X . Indeed, this V7 can be connected to the A and
B models.



Hitchin’s G2 volume functional and topological M-theory

Namely, letting t be the coordinate along S 1 in Y = X × S1, and
splitting

Φ = kdt + ρ

one gets (assuming the constraints k ∧ ρ = 0,
2VS (σ) − VH(ρ) = 0)

∗ΦΦ = ρ̂dt + σ

which implies
V7(Φ) = 2VH(ρ) + 3VS(σ)

So topological M-theory seems to reduce to the sum of the A and
B models at least in this formal sense.



Hamiltonian reduction

Another perspective on this relation: consider canonical
quantization of topological M-theory on X × R. The phase space
is then Ω3

exact(X ,R) × Ω4
exact(X ,R) (omitting zero modes), with

the symplectic pairing determined by

〈δρ, δσ〉 =

∫

δρ ∧
1

d
δσ (1)

and the Hamiltonian

H = 2VS(σ) − VH(ρ). (2)

The conditions k ∧ ρ = 0, 2VS(σ) −VH(ρ) = 0 then (should) show
up as the diffeomorphism and Hamiltonian constraints, as usual for
quantization of a diffeomorphism invariant theory.

The A model and B model appear as conjugate degrees of freedom!



Open questions

There are many open questions:

I How does topological M-theory embed into the physical
string/M-theory (what quantities does it compute?)

I Can it be used to give a nonperturbative definition of the
topological string? The splitting between A and B models is
not covariant in 7 dimensions — does this mean the A and B
models have to be mixed together nonperturbatively? How
should the 6-dimensional couplings gA, gB be identified?

I What is the meaning of the fact that the A and B model
appear as conjugate variables? (S-duality?) [Nekrasov-Ooguri-Vafa]

I Should the theory be augmented to one which describes
generalized G2 structures? [Pestun-Witten, Hitchin, Witt]

I Is there a lift to 8 dimensions? [Anguelova-de Medeiros-Sinkovics]
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