Wonders of E_{10} and $K(E_{10})$

Hermann Nicolai MPI für Gravitationsphysik (AEI), Potsdam Wonders of Gauge Theory and Supergravity IHP and LPT-ENS, Paris, 23 - 28 June 2008

(mostly) based on work done in collaboration with: Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Wonders of E_{10} and $K(E_{10})$

Hermann Nicolai MPI für Gravitationsphysik (AEI), Potsdam Wonders of Gauge Theory and Supergravity IHP and LPT-ENS, Paris, 23 - 28 June 2008

(mostly) based on work done in collaboration with: Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Main message of this talk:

Search for unification = search for symmetries

Most successful guiding principle of physics

Wonders of E_{10} and $K(E_{10})$

Hermann Nicolai MPI für Gravitationsphysik (AEI), Potsdam Wonders of Gauge Theory and Supergravity IHP and LPT-ENS, Paris, 23 - 28 June 2008

(mostly) based on work done in collaboration with:
Thibault Damour, Axel Kleinschmidt and Marc Henneaux

Main message of this talk: Search for unification = search for symmetries

... and perhaps also for quantum gravity...

Most successful guiding principle of physics

The BKL Paradigm

▶ Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_x \ll \partial_t$?

[BKL \equiv Belinskii, Khalatnikov, Lifshitz (1972)]

The BKL Paradigm

• Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_x \ll \partial_t$?

[BKL \equiv Belinskii, Khalatnikov, Lifshitz (1972)]

The BKL Paradigm

▶ Near a spacelike (cosmological) singularity, Einstein equations should simplify \Rightarrow BKL decoupling: $\partial_x \ll \partial_t$?

[BKL \equiv Belinskii, Khalatnikov, Lifshitz (1972)]

Dimensional reduction to one (time) dimension → effective dynamics near singularity from gradient expansion? → billiards, chaotic oscillations, etc.

Cosmological evolution as 'geodesic motion' in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

$$\mathcal{M} \equiv \mathcal{G}^{(3)} = \frac{\{\text{spatial metrics } g_{ij}(\mathbf{x})\}}{\{\text{diffeomorphisms}\}}$$

Cosmological evolution as 'geodesic motion' in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

$$\mathcal{M} \equiv \mathcal{G}^{(3)} = \frac{\{\text{spatial metrics } g_{ij}(\mathbf{x})\}}{\{\text{diffeomorphisms}\}}$$

• Can we understand and 'simplify' \mathcal{M} by means of an embedding into a group theoretical coset G/K(G)?

Cosmological evolution as 'geodesic motion' in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

$$\mathcal{M} \equiv \mathcal{G}^{(3)} = \frac{\{\text{spatial metrics } g_{ij}(\mathbf{x})\}}{\{\text{diffeomorphisms}\}}$$

- Can we understand and 'simplify' \mathcal{M} by means of an embedding into a group theoretical coset G/K(G)?
- The prototype example: moduli space of solutions of Einstein equations with two commuting Killing vectors

$$\mathcal{M}=A_1^{(1)}/K(A_1^{(1)})\;,\quad A_1^{(1)}\equiv \widehat{SL(2,\mathbb{R})}_{c.e.}=$$
 Geroch group

Cosmological evolution as 'geodesic motion' in the moduli space of 3-geometries [Wheeler, DeWitt,...]:

$$\mathcal{M} \equiv \mathcal{G}^{(3)} = \frac{\{\text{spatial metrics } g_{ij}(\mathbf{x})\}}{\{\text{diffeomorphisms}\}}$$

- Can we understand and 'simplify' \mathcal{M} by means of an embedding into a group theoretical coset G/K(G)?
- The prototype example: moduli space of solutions of Einstein equations with two commuting Killing vectors

$$\mathcal{M}=A_1^{(1)}/K(A_1^{(1)})\;,\quad A_1^{(1)}\equiv \widehat{SL(2,\mathbb{R})}_{c.e.}=\text{Geroch group}$$

Unification of space-time, matter and gravitation: configuration space M for quantum gravity should consistently incorporate matter degrees of freedom.

Hidden symmetries

Reduction of SUGRA₁₁ to D=11-n [Cremmer, Julia (1979)]

n	Scalar Coset $E_n/K(E_n)$
1	$GL(1)/{f 1}$
2	GL(2)/SO(2)
3	$SL(3) \times SL(2)/U(2)$
4	SL(5)/SO(5)
5	$SO(5,5)/SO(5) \times SO(5)$
6	$E_6/USp(4)$
7	$E_7/SU(8)$
8	$E_8/(Spin(16)/\mathbb{Z}_2)$
9	$E_9/K(E_9)$
10	$E_{10}/K(E_{10})$
11	$E_{11}/K(E_{11})$

However: $\mathcal{L} = \mathcal{L}\big(g_{ij}(t), A_{ijk}(t)\big)$ is only invariant under $GL(10, \mathbb{R}) \ltimes T_{120}$... but:

However: $\mathcal{L} = \mathcal{L}(g_{ij}(t), A_{ijk}(t))$ is only invariant under $GL(10, \mathbb{R}) \ltimes T_{120}$... but:

Effective dynamics of diagonal metric degrees of freedom is governed by *cosmological billiards* in Weyl chamber of E_{10} !

[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]

However: $\mathcal{L} = \mathcal{L}(g_{ij}(t), A_{ijk}(t))$ is only invariant under $GL(10, \mathbb{R}) \ltimes T_{120}$... but:

Effective dynamics of diagonal metric degrees of freedom is governed by *cosmological billiards* in Weyl chamber of E_{10} !

[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]

motivates BASIC CONJECTURE: $\mathcal{M} = E_{10}/K(E_{10})$

Dynamics of supergravity (or some M theoretic extension)

Null geodesic motion on $E_{10}/K(E_{10})$ coset space

are equivalent! [DHN, hep-th/0207267]

SUGRA eqs. of motion + canonical constraints

 E_{10} is the Kac–Moody group with Kac–Moody Lie algebra $\mathfrak{g}\equiv\mathfrak{e}_{10}$ of rank 10 defined via the Dynkin diagram

 E_{10} is the Kac–Moody group with Kac–Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ of rank 10 defined via the Dynkin diagram

Chevalley–Serre presentation: Generators h_i, e_i, f_i for i = 1, ..., 10 with relations

$$[h_i, h_j] = 0,$$
 $[e_i, f_j] = \delta_{ij} h_i,$ $[h_i, e_j] = A_{ij} e_j,$ $[h_i, f_j] = -A_{ij} f_j,$ $(\text{ad } e_i)^{1-A_{ij}} e_j = 0,$ $(\text{ad } f_i)^{1-A_{ij}} f_j = 0.$

 E_{10} is the Kac–Moody group with Kac–Moody Lie algebra $\mathfrak{g} \equiv \mathfrak{e}_{10}$ of rank 10 defined via the Dynkin diagram

Chevalley–Serre presentation: Generators h_i, e_i, f_i for i = 1, ..., 10 with relations

$$[h_i, h_j] = 0,$$
 $[e_i, f_j] = \delta_{ij} h_i,$ $[h_i, e_j] = A_{ij} e_j,$ $[h_i, f_j] = -A_{ij} f_j,$ $(\text{ad } e_i)^{1-A_{ij}} e_j = 0,$ $(\text{ad } f_i)^{1-A_{ij}} f_j = 0.$

 h_i span Cartan subalgebra \mathfrak{h} ; e_i and f_i : positive and negative simple root generators

▶ Root space decomposition: $\alpha \in Q(E_{10}) = II_{1,9}$

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} : [h, x] = \alpha(h)x \text{ for } h \in \mathfrak{h} \}$$

Real roots ($\alpha^2 = 2$) and imaginary roots ($\alpha^2 \le 0$)

▶ Root space decomposition: $\alpha \in Q(E_{10}) = II_{1,9}$

$$\mathfrak{g}_{\alpha} = \left\{ x \in \mathfrak{g} : [h, x] = \alpha(h)x \text{ for } h \in \mathfrak{h} \right\}$$

Real roots ($\alpha^2 = 2$) and imaginary roots ($\alpha^2 \le 0$)

• $W^+(E_{10}) = \mathsf{PSL}_2(\mathbb{O}_{\mathbb{Z}})$ [KFN, math.RT/0805.3018]

■ Root space decomposition: $\alpha \in Q(E_{10}) = II_{1,9}$

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} : [h, x] = \alpha(h)x \text{ for } h \in \mathfrak{h} \}$$

Real roots ($\alpha^2 = 2$) and imaginary roots ($\alpha^2 \le 0$)

- $W^+(E_{10}) = \mathsf{PSL}_2(\mathbb{O}_{\mathbb{Z}})$ [KFN, math.RT/0805.3018]
- Invariant bilinear form → Action Principle

$$\langle h_i | h_j \rangle = A_{ij}$$
 , $\langle e_i | f_j \rangle = \delta_{ij}$, $\langle [x, y] | z \rangle = \langle x | [y, z] \rangle$.

[No other polynomial Casimir for dim $g = \infty \rightarrow$ action is (essentially) unique!]

■ Root space decomposition: $\alpha \in Q(E_{10}) = II_{1,9}$

$$\mathfrak{g}_{\alpha} = \{ x \in \mathfrak{g} : [h, x] = \alpha(h)x \text{ for } h \in \mathfrak{h} \}$$

Real roots ($\alpha^2 = 2$) and imaginary roots ($\alpha^2 \le 0$)

- $W^+(E_{10}) = \mathsf{PSL}_2(\mathbb{O}_{\mathbb{Z}})$ [KFN, math.RT/0805.3018]
- Invariant bilinear form → Action Principle

$$\langle h_i | h_j \rangle = A_{ij}$$
 , $\langle e_i | f_j \rangle = \delta_{ij}$, $\langle [x, y] | z \rangle = \langle x | [y, z] \rangle$.

[No other polynomial Casimir for dim $g = \infty \rightarrow$ action is (essentially) unique!]

■ Triangular decomposition → Computability

$$\mathfrak{g} = \mathfrak{e}_{10} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+ \ , \quad \text{with } \mathfrak{n}_\pm := \bigoplus_{\alpha \geqslant 0} \mathfrak{g}_\alpha$$

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of \mathfrak{e}_{10} by $\omega([x,y]) = [\omega(x),\omega(y)]$.

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of \mathfrak{e}_{10} by $\omega([x,y]) = [\omega(x),\omega(y)]$.

Fixed point set

$$\mathfrak{t}_{10} \equiv K(\mathfrak{e}_{10}) = \left\{ x \in \mathfrak{e}_{10} : \omega(x) \equiv -x^T = x \right\}$$

is a subalgebra of e_{10} , called the compact subalgebra.

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of \mathfrak{e}_{10} by $\omega([x,y]) = [\omega(x),\omega(y)]$.

Fixed point set

$$\mathfrak{t}_{10} \equiv K(\mathfrak{e}_{10}) = \left\{ x \in \mathfrak{e}_{10} : \omega(x) \equiv -x^T = x \right\}$$

is a subalgebra of e_{10} , called the compact subalgebra.

 \rightarrow generalizes compact subalgebra of finite dimensional Lie algebras (in split real form; e.g. $\mathfrak{so}(n) \subset \mathfrak{gl}(n)$)

Chevalley involution ω on \mathfrak{e}_{10} is defined by

$$\omega(e_i) = -f_i, \quad \omega(f_i) = -e_i, \quad \omega(h_i) = -h_i$$

and extends to all of \mathfrak{e}_{10} by $\omega([x,y]) = [\omega(x),\omega(y)]$.

Fixed point set

$$\mathfrak{k}_{10} \equiv K(\mathfrak{e}_{10}) = \left\{ x \in \mathfrak{e}_{10} : \omega(x) \equiv -x^T = x \right\}$$

is a subalgebra of e_{10} , called the compact subalgebra.

 \rightarrow generalizes compact subalgebra of finite dimensional Lie algebras (in split real form; e.g. $\mathfrak{so}(n) \subset \mathfrak{gl}(n)$)

However: \$\epsilon_{10}\$ is not a Kac-Moody algebra [kn, hep-th/0506238]

ℓ	A_9 module	Tensor
0	$[100000001] \oplus [000000000]$	$K^a{}_b$
1	[00000100]	E^{abc}
2	[000100000]	$E^{a_1a_6}$
3	[01000001]	$E^{a_1a_8 a_9}$

ℓ	A_9 module	Tensor
0	$[100000001] \oplus [000000000]$	$K^a{}_b$
1	[00000100]	E^{abc}
2	[000100000]	$E^{a_1a_6}$
3	[01000001]	$E^{a_1a_8 a_9}$

These are just the representations corresponding to the bosonic fields of D = 11 SUGRA and their magnetic duals.

At level $\ell=3$: dual graviton $h_{a_1...a_8|a_9}$ (with $h_{[a_1...a_8|a_9]}=0$)

[For more representations, see: Fischbacher, N. hep-th/0301017]

Versatility of E_{10} (& E_{11})

Versatility of E_{10} (& E_{11})

The one-dimensional E_{10} σ -model unifies

The one-dimensional E_{10} σ -model unifies

$$\mathfrak{sl}(10) \subseteq \mathfrak{e}_{10}$$

$$D = 11 \text{ SUGRA}$$

[DHN; West 2002]

The one-dimensional E_{10} σ -model unifies

$$D = 11$$
 SUGRA

[DHN; West 2002]

mIIA D = 10 SUGRA

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

The one-dimensional E_{10} σ -model unifies

$$D = 11$$
 SUGRA

[DHN; West 2002]

$$mIIA D = 10 SUGRA$$

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

$$\mathfrak{sl}(9) \oplus \mathfrak{sl}(2) \subseteq \mathfrak{e}_{10}$$

IIB
$$D = 10$$
 SUGRA

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

The one-dimensional E_{10} σ -model unifies

$$D = 11$$
 SUGRA

[DHN; West 2002]

$$mIIA D = 10 SUGRA$$

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

$$\mathfrak{sl}(9) \oplus \mathfrak{sl}(2) \subseteq \mathfrak{e}_{10}$$

IIB
$$D = 10$$
 SUGRA

[Kleinschmidt, Schnakenburg, West 2003] [Kleinschmidt, N. 2004]

These are the (maximal) low energy theories of the 'M-theory diagram', now all part of a single model.

Decompose Cartan form for $V(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = \mathcal{Q}(t) + \mathcal{P}(t) \quad , \quad \mathcal{Q} \in \mathfrak{k}_{10} , \, \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}$$

Decompose Cartan form for $V(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = \mathcal{Q}(t) + \mathcal{P}(t) \quad , \quad \mathcal{Q} \in \mathfrak{k}_{10} , \ \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}$$

 \Rightarrow essentially unique coset Lagrangian (n(t)= lapse)

$$\mathcal{L} = \frac{1}{2n} \langle \mathcal{P} | \mathcal{P} \rangle.$$

Decompose Cartan form for $V(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = \mathcal{Q}(t) + \mathcal{P}(t) \quad , \quad \mathcal{Q} \in \mathfrak{k}_{10} , \ \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}$$

 \Rightarrow essentially unique coset Lagrangian (n(t)= lapse)

$$\mathcal{L} = \frac{1}{2n} \langle \mathcal{P} | \mathcal{P} \rangle.$$

invariant under local $K(E_{10})$ and global E_{10} :

$$\mathcal{V}(t) \to k(t)\mathcal{V}(t)g \Rightarrow \mathcal{P} \to k\mathcal{P}k^{-1}, \ \mathcal{Q} \to k\mathcal{Q}k^{-1} + \partial_t kk^{-1}$$

Decompose Cartan form for $V(t) \in E_{10}/K(E_{10})$

$$\partial_t \mathcal{V} \mathcal{V}^{-1}(t) = \mathcal{Q}(t) + \mathcal{P}(t) \quad , \quad \mathcal{Q} \in \mathfrak{k}_{10} , \ \mathcal{P} \in \mathfrak{e}_{10} \ominus \mathfrak{k}_{10}$$

 \Rightarrow essentially unique coset Lagrangian (n(t)= lapse)

$$\mathcal{L} = \frac{1}{2n} \langle \mathcal{P} | \mathcal{P} \rangle.$$

invariant under local $K(E_{10})$ and global E_{10} :

$$\mathcal{V}(t) \to k(t)\mathcal{V}(t)g \Rightarrow \mathcal{P} \to k\mathcal{P}k^{-1}, \ \mathcal{Q} \to k\mathcal{Q}k^{-1} + \partial_t kk^{-1}$$

Equations of motion: null geodesic on $E_{10}/K(E_{10})$

$$n\partial_t(n^{-1}\mathcal{P}) = [\mathcal{Q}, \mathcal{P}], \qquad \langle \mathcal{P}|\mathcal{P}\rangle = 0.$$

Example: $A_9 \subset E_{10}$

Example: $A_9 \subset E_{10}$

With $\partial_t \mathcal{V} \mathcal{V}^{-1} = \sum_{\ell \geq 0} P^{(\ell)} * E^{(\ell)}$ (schematically) and truncation $P^{(\ell)} = 0$ for $\ell > 3 \Rightarrow$ Equations of motion up to $\ell = 3$ ($a, b = 1, \ldots, 10$) [DHN; DN, hep-th/0410245]

$$\begin{split} n\mathcal{D}^{(0)}(n^{-1}P_{ab}^{(0)}) &= -\frac{1}{4} \left(P_{acd}^{(1)}P_{bcd}^{(1)} - \frac{1}{9}\delta_{ab}P_{cde}^{(1)}P_{cde}^{(1)} \right) \\ &- \frac{1}{2 \cdot 5!} \left(P_{ac_1...c_5}^{(2)}P_{bc_1...c_5}^{(2)} - \frac{1}{9}\delta_{ab}P_{c_1...c_6}^{(2)}P_{c_1...c_6}^{(2)} \right) \\ &+ \frac{4}{9!} \left(P_{ac_1...c_7|c_8}^{(3)}P_{bc_1...c_7|c_8}^{(2)} + \frac{1}{8}P_{c_1...c_8|a}^{(3)}P_{c_1...c_8|b}^{(3)} \right) \\ &- \frac{1}{8}\delta_{ab}P_{c_1...c_8|c_9}^{(3)}P_{c_1...c_8|c_9}^{(3)} \right) \\ &n\mathcal{D}^{(0)}(n^{-1}P_{abc}^{(1)}) &= -\frac{1}{6}P_{abcdef}^{(2)}P_{def}^{(1)} + \frac{1}{3 \cdot 5!}P_{abcd_1...d_5|d_6}^{(3)}P_{d_1...d_6}^{(2)} \\ &n\mathcal{D}^{(0)}(n^{-1}P_{a_1...a_6}^{(2)}) &= \frac{1}{6}P_{a_1...a_6cde}^{(3)}P_{cde}^{(1)} \\ &n\mathcal{D}^{(0)}(n^{-1}P_{a_1...a_8|a_9}^{(3)}) &= 0 \qquad \text{(with } P_{[a_1...a_8|a_9]}^{(3)} = 0 \text{)}. \end{split}$$

This is a consistent truncation of $E_{10}/K(E_{10})$ coset dynamics: solutions of truncated theory are also solutions of the full theory.

Bosonic D=11 supergravity equations [Cremmer, Julia, Scherk 1978]

$$\mathcal{E}_{AB} \equiv R_{AB} - \frac{1}{3} F_{ACDE} F_B{}^{CDE} + \frac{1}{36} \eta_{AB} F_{CDEF} F^{CDEF} = 0$$

$$\mathcal{M}^{BCD} \equiv D_A F^{ABCD} + \frac{1}{576} \epsilon^{BCDE_1 \dots E_8} F_{E_1 \dots E_4} F_{E_5 \dots E_8} = 0$$

and Bianchi identities: $D_{[A}F_{BCDE]}=R_{[AB\ C]D}=0$

Bosonic D=11 supergravity equations [Cremmer, Julia, Scherk 1978]

$$\mathcal{E}_{AB} \equiv R_{AB} - \frac{1}{3} F_{ACDE} F_B{}^{CDE} + \frac{1}{36} \eta_{AB} F_{CDEF} F^{CDEF} = 0$$

$$\mathcal{M}^{BCD} \equiv D_A F^{ABCD} + \frac{1}{576} \epsilon^{BCDE_1 \dots E_8} F_{E_1 \dots E_4} F_{E_5 \dots E_8} = 0$$

and Bianchi identities: $D_{[A}F_{BCDE]} = R_{[AB\ C]D} = 0$

Consider gauge fi xed (à la ADM) equations at some fixed spatial point x_0 :

- ullet keeping all temporal and fi rst order spatial derivatives at ${f x}_{\! 0}$
- lacksquare zero-shift gauge: $E_M{}^A=\left(egin{array}{c|c} N&0\ \hline 0&e_m{}^a \end{array}
 ight)$ and Coulomb gauge: $A_{tmn}=0$
- Anholonomy coefficients $[\partial_b, \partial_c] = \tilde{\Omega}_{bc|a} \partial_a$ chosen traceless (in some neighborhood of \mathbf{x}_0) by exploiting *spatial* Lorentz group, i.e. $\Lambda_{ab} = \Lambda_{ab}(t, \mathbf{x})$ [???]
- Thus the standard ADM procedure leads to usual split into:
 - Dynamical equations: $\mathcal{E}_{ab}=\mathcal{M}_{abc}=D_{[0}F_{bcde]}=R_{[0a\ b]c}=0$
 - Canonical constraints: $\mathcal{E}_{00} = \mathcal{E}_{0a} = \mathcal{M}_{0ab} = D_{[a}F_{bcde]} = R_{[ab\ c]d} = 0$

Bosonic D=11 supergravity equations [Cremmer, Julia, Scherk 1978]

$$\mathcal{E}_{AB} \equiv R_{AB} - \frac{1}{3} F_{ACDE} F_B{}^{CDE} + \frac{1}{36} \eta_{AB} F_{CDEF} F^{CDEF} = 0$$

$$\mathcal{M}^{BCD} \equiv D_A F^{ABCD} + \frac{1}{576} \epsilon^{BCDE_1...E_8} F_{E_1...E_4} F_{E_5...E_8} = 0$$

and Bianchi identities: $D_{[A}F_{BCDE]} = R_{[AB\ C]D} = 0$

Then with the identification $n = Ne^{-1}$ and (r.h.s. always at fixed spatial point $\mathbf{x} = \mathbf{x}_0$)

$$\mathcal{D}^{(0)} P_{ab}^{(0)} = R_{ab}^{\text{time derivatives}}$$

$$P_{abc}^{(1)} = NF_{0abc}$$

$$P_{a_1...a_6}^{(2)} = -\frac{1}{4!} N\epsilon_{a_1...a_6b_1...b_4} F_{b_1...b_4}$$

$$P_{a_1...a_8|a_9}^{(3)} = \frac{3}{2} N\epsilon_{a_1...a_8bc} \tilde{\Omega}_{bc|a_9}$$

the two sets of dynamical equations coincide! (recall $P^{(3)}_{[a_1...a_8|a_9]}=0 \Leftrightarrow \tilde{\Omega}_{ab|b}=0$)

Dynamical equations for mllA and IIB similarly from level decompositions w.r.t. fi nite dimensional subgroups $D_9 \equiv SO(9,9) \subset E_{10}$ and $A_8 \times A_1 \equiv SL(9) \times SL(2) \subset E_{10}$.

Conserved E_{10} current $\mathcal{J} = n \mathcal{VPV}^{-1}$ (\equiv Noether charge associated with global E_{10}):

$$\mathcal{J} = \frac{1}{9!} J_{(-3)}^{m_0|m_1...m_8} F_{m_0|m_1...m_8} + \frac{1}{6!} J_{(-2)}^{m_1...m_6} F_{m_1...m_6} + \frac{1}{3!} J_{(-1)}^{mnp} F_{mnp}$$
$$+ J_{(0)m}^n K^m{}_n + \frac{1}{3!} J_{(1)mnp} E^{mnp} + \frac{1}{6!} J_{(2)m_1...m_6} E^{m_1...m_6} + \dots$$

Conserved E_{10} current $\mathcal{J} = n \mathcal{VPV}^{-1}$ (\equiv Noether charge associated with global E_{10}):

$$\mathcal{J} = \frac{1}{9!} J_{(-3)}^{m_0|m_1...m_8} F_{m_0|m_1...m_8} + \frac{1}{6!} J_{(-2)}^{m_1...m_6} F_{m_1...m_6} + \frac{1}{3!} J_{(-1)}^{mnp} F_{mnp} + J_{(0)m}^n K^m{}_n + \frac{1}{3!} J_{(1) \, mnp} E^{mnp} + \frac{1}{6!} J_{(2) \, m_1...m_6} E^{m_1...m_6} + \dots$$

Consider Sugawara-like ($\propto \mathcal{J} \otimes \mathcal{J}$) expressions [DKN, hep-th 0709.2691]

$$\mathcal{L}_{(-6)}^{m_1 \dots m_{10}; n_0 \mid n_1 \dots n_7} = J_{(-3)}^{n_0 \mid m_1 \dots m_8} J_{(-3)}^{m_9 \mid m_{10} n_1 \dots n_7}
\mathcal{L}_{(-5)}^{m_1 \dots m_{10}; n_1 \dots n_5} = J_{(-2)}^{n_1 \dots n_4 m_1 m_2} J_{(-3)}^{m_3 \dots m_{10}}
\mathcal{L}_{(-4)}^{m_1 \dots m_{10}; n_1 n_2} = \frac{21}{5} J_{(-2)}^{n_1 m_1 \dots m_5} J_{(-2)}^{n_2 m_6 \dots m_{10}} + J_{(-1)}^{n_1 m_1 m_2} J_{(-3)}^{n_2 \mid m_3 \dots m_{10}}$$

Conserved E_{10} current $\mathcal{J} = n \mathcal{V} \mathcal{P} \mathcal{V}^{-1}$ (\equiv Noether charge associated with global E_{10}):

$$\mathcal{J} = \frac{1}{9!} J_{(-3)}^{m_0|m_1...m_8} F_{m_0|m_1...m_8} + \frac{1}{6!} J_{(-2)}^{m_1...m_6} F_{m_1...m_6} + \frac{1}{3!} J_{(-1)}^{mnp} F_{mnp} + J_{(0)m}^n K^m{}_n + \frac{1}{3!} J_{(1) \, mnp} E^{mnp} + \frac{1}{6!} J_{(2) \, m_1...m_6} E^{m_1...m_6} + \dots$$

Consider Sugawara-like ($\propto \mathcal{J} \otimes \mathcal{J}$) expressions [DKN, hep-th 0709.2691]

$$\mathfrak{L}_{(-6)}^{m_1...m_{10}; n_0|n_1...n_7} = J_{(-3)}^{n_0|m_1...m_8} J_{(-3)}^{m_9|m_{10}n_1...n_7}
\mathfrak{L}_{(-5)}^{m_1...m_{10}; n_1...n_5} = J_{(-2)}^{n_1...n_4m_1m_2} J_{(-3)}^{m_3...m_{10}}
\mathfrak{L}_{(-4)}^{m_1...m_{10}; n_1n_2} = \frac{21}{5} J_{(-2)}^{n_1m_1...m_5} J_{(-2)}^{n_2m_6...m_{10}} + J_{(-1)}^{n_1m_1m_2} J_{(-3)}^{n_2|m_3...m_{10}}$$

(with appropriate antisymmetrizations) to re-express canonical constraints:

The 'maximally extended' hyperbolic KM algebra E_{10}

incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- \bullet provides a concise algorithmic scheme via 'geodesic' σ -model and triangular (and level) decomposition.

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- provides a concise algorithmic scheme via 'geodesic' σ -model and triangular (and level) decomposition.
- yields same information as maximal supersymmetry:
 - correct supermultiplets of SUGRA₁₁ and all D < 11 maximal supergravities
 - in particular: self-duality of 5-form fi eld strength in IIB;
 - unique (bosonic) action, Chern–Simons couplings;
 - no cosmological constant in D = 11;
 - (partial) information about R^4, R^7, \ldots corrections?

- incorporates and unites many relations between maximal supergravity theories, generalizing known duality symmetries (including affine Geroch group)
- \bullet provides a concise algorithmic scheme via 'geodesic' σ -model and triangular (and level) decomposition.
- yields same information as maximal supersymmetry:
 - correct supermultiplets of SUGRA₁₁ and all D < 11 maximal supergravities
 - in particular: self-duality of 5-form fi eld strength in IIB;
 - unique (bosonic) action, Chern-Simons couplings;
 - no cosmological constant in D = 11;
 - (partial) information about R^4, R^7, \ldots corrections?
- Fermions correctly described by R symmetry $K(E_{10})$.

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time 'operationally' from Wheeler-DeWitt equation
 - General covariance as an emergent property?

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time 'operationally' from Wheeler-DeWitt equation
 - General covariance as an emergent property?
- new perspectives for background independence?

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time 'operationally' from Wheeler-DeWitt equation
 - General covariance as an emergent property?
- new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time 'operationally' from Wheeler-DeWitt equation
 - General covariance as an emergent property?
- new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
- Any relation to zero tension limit of string theory?

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time 'operationally' from Wheeler-DeWitt equation
 - General covariance as an emergent property?
- new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
- Any relation to zero tension limit of string theory?
- Further exploration of these links could lead to important advances in physics and mathematics.

- New mechanism for (de-)emergence of space-time?
 - Space from Lie algebra
 - Time 'operationally' from Wheeler-DeWitt equation
 - General covariance as an emergent property?
- new perspectives for background independence?
- Quantization: wave function of the universe as a modular form over $E_{10}(\mathbb{Z})$? [Ganor, hep-th/9903110].
- Any relation to zero tension limit of string theory?
- Further exploration of these links could lead to important advances in physics and mathematics.

Thank you for your attention