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Main message of this talk:
Search for unification = search for symmetries
Most successful guiding principle of physics

L ... and perhaps also for quantum gravity... J
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The BKL Paradigm

f # Near a spacelike (cosmological) singularity, Einstein T
equations should simplify = BKL decoupling: 0, <« 9,7?
[ BKL = Belinskii, Khalatnikov, Lifshitz (1972)]
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The BKL Paradigm

f # Near a spacelike (cosmological) singularity, Einstein T
equations should simplify = BKL decoupling: 0, <« 9,7?
[ BKL = Belinskii, Khalatnikov, Lifshitz (1972)]

LA T

/
YN NN,

# Dimensional reduction to one (time) dimension —
effective dynamics near singularity from gradient
L expansion? — billiards, chaotic oscillations, etc. J
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Another (old) paradigm

f #» Cosmological evolution as ‘geodesic motion’ in the T
moduli space of 3-geometries [wheel er, DeWtt,...]:

M =B — {spatial metrics g;;(x)}
- ~ {diffeomorphisms}
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Another (old) paradigm

f #» Cosmological evolution as ‘geodesic motion’ in the T
moduli space of 3-geometries [wheel er, DeWtt,...]:

{spatlal metrics g;;(x)}
{diffeomorphisms}

M=g®

# Can we understand and ‘simplify’ M by means of an
embedding into a group theoretical coset G/ K (G)?

# The prototype example: moduli space of solutions of
Einstein equations with two commuting Killing vectors

1) T o

M = A /K( >), Ag = SL(2,R),. = Geroch group

C.cE.
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Another (old) paradigm

Cosmological evolution as ‘geodesic motion’ in the
moduli space of 3-geometries [wheel er, DeWtt,...]:

{spatlal metrics g;;(x)}

M=§" {diffeomorphisms}

Can we understand and ‘simplify’ M by means of an
embedding into a group theoretical coset G/ K (G)?

The prototype example: moduli space of solutions of

-

Einstein equations with two commuting Killing vectors

M=AV Ay, AV = sL(2,R), . = Geroch group

Unification of space-time, matter and gravitation:
configuration space M for quantum gravity should
consistently incorporate matter degrees of freedom.

Quantum Gravity, Unification,
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Hidden symmetries
f Reduction of SUGRA{1t0 D =11—n [cemer, Julia (1979)] —‘

Scalar Coset £,/ K(FE),)

© 00 J O Tt = W N =3

GL()/1
GL(2)/S0(2)
SL(3) x SL(2)/U(2)
SL(5)/SO(5)
S0O(5,5)/S0(5) x SO(5)
Es/USp(4)

L7 /SU(8)
Eg/(Spin(16)/Zs)
Eo/K (Eo)

—_
-

B

(
Ero/K(Eho)
E/K(E)

e

Julia(’85), DHN('02)
West (2001)

ification, and F'q () — p.4/16
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f:> B4, from dimensional reduction to D = 1? T
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f:> B4, from dimensional reduction to D = 1? T

However: £ = £(g:;(t), Aijr(¢)) is only invariant under GL(10,R) X T120 ... but:
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f:> B4, from dimensional reduction to D = 1? T

However: £ = £(g:;(t), Aijr(¢)) is only invariant under GL(10,R) X T120 ... but:

Effective dynamics of diagonal metric degrees of freedom is
governed by cosmological billiards in Weyl chamber of F!
[ Danour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]
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f:> B4, from dimensional reduction to D = 1? T

However: £ = £(g:;(t), Aijr(¢)) is only invariant under GL(10,R) X T120 ... but:

Effective dynamics of diagonal metric degrees of freedom is
governed by cosmological billiards in Weyl chamber of F!
[ Danour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]

motivates BASIC CONJECTURE: M = Eyo/K(FE)

Dynamics of supergravity (or | Null geodesic motion on
some M theoretic extension) | £/ K (Eo) coset space

are equivalent! [pHN, hep-t h/0207267]

SUGRA eqgs. of motion oco-component geodesic eqn.
L + canonical constraints and coset constraints J
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Definition of Ey

o N

F1o 1s the Kac—Moody group with Kac—Moody Lie algebra
g = eqo Oof rank 10 defined via the Dynkin diagram

10
A,
2 ¥ ¥ 0 = ’
Cartan matrix
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Definition of Eq

o N

F1o 1s the Kac—Moody group with Kac—Moody Lie algebra
= ¢1p Of rank 10 defined via the Dynkin diagram

Cartan matrix

Chevalley—Serre presentation: Generators #h;, ¢;, f; for
i =1,...,10 with relations

Ilo
® . 4 . 4 | . 4 - 4 > 4 @ >
1 2 3 4 5 6 7 8 9

[h%h]} :O7 [eiaf]} 5 h
i, e5] = Agjey, i, 1] = —Aij fj,
(ade;) ~e; =0, (ad ;)1 =4 f; = 0.
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Definition of Eq

o N

F1o 1s the Kac—Moody group with Kac—Moody Lie algebra
= ¢1p Of rank 10 defined via the Dynkin diagram

10
A,
ettt
Cartan matrix

Chevalley—Serre presentation: Generators #h;, ¢;, f; for
i =1,...,10 with relations

[h%h]} :O7 [eiaf]} 5 h
i, e5] = Agjey, i, 1] = —Aij fj,
(ad e;)t™ A”e] = 0, (ad fi)l_A"'jfj = 0.

h; span Cartan subalgebra b; e; and f;: positive and negative simple root generators
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Key Properties

f ® Root space decomposition: a € Q(FE1p) =119 T
go={z€g: [ha] =alh)r forhe b}

Real roots (o = 2) and imaginary roots (a? < 0)

Quantum Gravity, Unification, and E'q () —p.7/16



Key Properties

f ® Root space decomposition: a € Q(FE1p) =119 T
go={z€g: [ha] =alh)r forhe b}

Real roots (a? = 2) and imaginary roots (a? < 0)
® WT(Eg) = PSLy(Qy) [KFN, nat h. RT/ 0805. 3018]
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Key Properties

f ® Root space decomposition: a € Q(FE1p) =119 T
go={z€g: [ha] =alh)r forhe b}

Real roots (o = 2) and imaginary roots (a? < 0)
® WT(Ey) =PSLy(Qyz) [KFN, math. RT/ 0805. 3018]
# Invariant bilinear form —  Action Principle

(hilhs) = Aij, (eilfj) =0i; » (z,yllz) = (@|ly, 2])-

[No other polynomial Casimir for dim g = co — action is (essentially) unique!]
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Key Properties

Root space decomposition: a € Q(E19) = 111 9 T
go={z€g: [ha] =alh)r forhe b}

Real roots (o = 2) and imaginary roots (a? < 0)
W (E19) = PSL2(Qyz) [KFN, mat h. RT/ 0805. 3018]
Invariant bilinear form —  Action Principle

(hilhj) = Aij o (eilfi) =di;  ([z,y]l2) = (][y, 2]).
[No other polynomial Casimir for dim g = co — action is (essentially) unique!]

Triangular decomposition —  Computability

g:em:u_@b@u+ ; Withﬂi = @azOg&

|
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Compact subalgebra K (eq)
-

Chevalley involution w on ¢ Is defined by
w(e) = —fi, w(fi)=—ei, wlhi)=—h;

and extends to all of ¢1g by w(|x,y]) = |w(z),w(y)].



Compact subalgebra K (eq)
-

Chevalley involution w on ¢ Is defined by
w(e) = —fi, w(fi)=—ei, wlhi)=—h;

and extends to all of ¢1g by w(|x,y]) = |w(z),w(y)].
Fixed point set

B = K(em) = {ZE c €10 : w(a:) = —:ET — .CE}

IS a subalgebra of ¢, called the compact subalgebra.
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Compact subalgebra K (eq)

o N

Chevalley involution w on ¢ Is defined by
w(ei) =—fi, w(fi)=—€, w(h)=—h;

and extends to all of ¢1g by w(|x,y]) = |w(z),w(y)].
Fixed point set

B = K(elo) = {ZE c €10 : w(a;') = —:ET — .CE}
IS a subalgebra of ¢, called the compact subalgebra.

— generalizes compact subalgebra of finite dimensional
Lie algebras (in split real form; e.g. so(n) C gl(n))
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Compact subalgebra K (eq)

o N

Chevalley involution w on ¢ Is defined by
w(ei) =—fi, w(fi)=—€, w(h)=—h;

and extends to all of ¢1g by w(|x,y]) = |w(z),w(y)].
Fixed point set

B = K(elo) = {ZE c €10 : w(a;') = —:ET — .CE}
IS a subalgebra of ¢, called the compact subalgebra.

— generalizes compact subalgebra of finite dimensional
Lie algebras (in split real form; e.g. so(n) C gl(n))

LHowever: 1o Is not a Kac-Moody algebra kN, hep-th/ 0506238 J
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|_evel decomposition: Ag C ey

B = B

oo o o o o 0 & 0 - ((]()) = Ay C e




|_evel decomposition: Ag C ey

B = B

9o & o 99 — ;((10) = Ag C ey

@
NG
“e

£ Ag module Tensor
0 | [100000001] & [000000000] K%

1 000000100 pabe

2 000100000 pa-as

3 010000001 [par--as|ag

o |
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|_evel decomposition: Ag C ey

B = B

9o & o 99 — ;((10) = Ag C ey

@
NG
“e

( Ag module Tensor
0 | [100000001] & [000000000] K%

1 (000000100 Eabc

2 (000100000 Fa1...a6

3 010000001 [ --aslas

These are just the representations corresponding to the
bosonic fields of D = 11 SUGRA and their magnetic duals.

At level ¢ = 3: dual graviton h,, g1 WIth 2, o100 = 0)
[ For nore representations, see: Fischbacher,N hep-th/0301017]
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Versatility of £y (& E1q)

fThe one-dimensional £y o-model unifies



Versatility of £y (& E1q)

fThe one-dimensional £y o-model unifies T

5[<10)g210 I
e—o o o o o o—o D =11 SUGRA

[DHN; West 2002]
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Versatility of £y (& E1q)

fThe one-dimensional £y o-model unifies T

5[(10) C €10

50(97 9) C €10

.

..

D =11 SUGRA

[DHN; West 2002]

mIlA D = 10 SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]
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Versatility of £y (& E1q)

fThe one-dimensional £y o-model unifies T

-l

5[(10) C €10

o—o D =11 SUGRA

[DHN; West 2002]

*—o mIlA D = 10 SUGRA

50(9, 9) C ¢ I
s[(9) B sl(2) C ey I

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

o—o IB D =10 SUGRA

[Kleinschmidt, Schnakenburg, West 2003]

[Kleinschmidt, N. 2004]
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Versatility of £y (& E1q)

fThe one-dimensional £y o-model unifies T

5[<10)g210 I
e—o o o o o o—o D =11 SUGRA

[DHN; West 2002]

50<979> C €10 I
® ® ®

o—o o 0o o mIlA D = 10 SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

s[(9) B sl(2) C ey I
@ ®

e—o o o o o IIB D = 10 SUGRA

[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

These are the (maximal) low energy theories of the
L‘M-theory diagram’, now all part of a single model. J
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Decompose Cartan form for V(t) € E1o/K(FE1o)

OVV L) = Q) +P(t) , Q€tyy, PEeid b



Dynamics: bosonic Lagrangian

o N

Decompose Cartan form for V(t) € E1o/K(FE1o)

oOVV ) = Q) +P(t) , QE€t, PECenO b
= essentially unique coset Lagrangian (n(t)= lapse)

_1
2

L (P|P).
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Dynamics: bosonic Lagrangian

-

Decompose Cartan form for V(t) € E1o/K(FE1o)

oOVV ) = Q) +P(t) , QE€t, PECenO b
= essentially unique coset Lagrangian (n(t)= lapse)

_1
2

L (P|P).

iInvariant under local K (Fyy) and global £y:

V(t) — kt)V(t)g = P—EkPE Y, Q— kQk™ + 9ikk™!

.

-

|
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Dynamics: bosonic Lagrangian

o N

Decompose Cartan form for V(t) € E1o/K(FE1o)
OVVHt) = Q)+ P(t) , Q€kty, PEewoty

= essentially unique coset Lagrangian (n(t)= lapse)

_1
2

L (P|P).

iInvariant under local K (Fyy) and global £y:
V(t) — kt)V(t)g = P—EkPE Y, Q— kQk™ + 9ikk™!
Equations of motion: null geodesic on E1y/ K (FEqp)

L nd(n~'P) = [Q,P], (P|P) = 0. J
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Example: Aqg C Eqg
- -

With 0,V =37 ,- P19 « E(Y) (schematically) and truncation P(“) = 0 for¢ >3 =
Equations of motionupto / = 3 (a,b=1,...,10) [ DHN; DN, hep-th/ 0410245]

_ 1 1
DO et baare)
1 2 2 1 2 2
_2 . 5l (chci"‘c5pb(cl)...c5 - §5abp(§1-)-.c6pc(1.)..c6)
LA p® () Llp® p®

9|( acy...c7leg” bey...cqles 8 c1...cgla” cq...cg|b

_ é 5P PO )

Cl...Cg|Cg Cl...68|09

0) /. —1p1)y L (2 (1) LPNG) (2)
nD) (n Pohe) = _gpabcdefpdef T ﬁpabcdl---d5|d6pd1---d6
B 1
nD(O) (7’1, 1Pc§f?..a6) — EPCE??..a(gcdePc(clli
0) (,,—1 p(3) _ i (3) =
nD (7’1, Pal...a8|a9) = 0 (with P[al...a8|a9] = 0).

This is a consistent truncation of 1o/ K (FE10) coset dynamics: solutions of truncated
theory are also solutions of the full theory.
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Correspondence with SUGRA {4

Bosonic D = 11 supergravity equations [ Cremmer, Julia, Scherk 1978]

EaB

MBCD _

and Bianchi identities:

1

1
Rap — gFAC’DEFBCDE + —napFopprFPEE =0

36

1
D,FABCD | -  BCDE;.
A 576

DiaFpecpe) = Riapojp =0

.E
*Fg,. . E,FEs.. . Eg =0

|
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Correspondence with SUGRA {4

Bosonic D = 11 supergravity equations [ Cremmer, Julia, Scherk 1978]
1 1
EaB = Rap-— gFAC’DEFBCDE + %WABFCDEFFCDEF =0
1
MBCD = p, pABCD 4 _GBCDEl...ESFEL“ELLFEF)WES —0

576
and Bianchi identities: Do l'gcpr) = Riapcp =0

Consider gauge fi xed (a la ADM) equations at some fixed spatial point x;:

® keeping all temporal and fi rst order spatial derivatives at x;

® zero-shift gauge: F,4 = and Coulomb gauge: A¢ypn = 0

® Anholonomy coeffi cients [, 0.] = ch|a8a chosen traceless (in some neighborhood
of x) by exploiting spatial Lorentz group, i.e. Agp = Agp(t,x) [ ?2?27]

® Thus the standard ADM procedure leads to usual split into:
— Dynamical equations: &,, = Mupe = DioFhede] = Rioaple =0
— Canonical constraints: £yo = oo = Moab = Dia Frede] = Riab ja = 0
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Correspondence with SUGRA {4

Bosonic D = 11 supergravity equations [ Cremmer, Julia, Scherk 1978]
1 1
EaB = Rap-— gFAC’DEFBCDE + %”ABFCDEFFCDEF 0
1
MBCD = p, pABCD 4 _EBCDEl...ESFElmELLFEF)mES —0

576
and Bianchi identities: Do l'gcpr) = Riapcp =0

Then with the identifi cation » = Ne ! and (r.h.s. always at fi xed spatial point x = x)

D(O)P(O) _ Rtlme derivatives
Pl = NFpabe
PCS??..% = _%Neal...a6b1...b4Fb1...b4
ng?..agmg = gNeal...agbCdeag

the two sets of dynamical equations coincide! (recall P[(3) | = =0& Qab“, =0 )

slag
Dynamical equations for mlIA and IIB similarly from level decompositions w.r.t. fi nite
dimensional subgroups Dg = SO(9,9) C Eijp and Ag x A1 = SL(9) x SL(2) C Fo.
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Constraints: an intriguing link

Conserved E1g current 7 = nVPV -1 (= Noether charge associated with global E1):

B 1 mqo|lmi...mg 1 mi...meg 1 mnp
j — QJ(_3) Fmo‘ml...mg —|_ gj(_Q) le...m6 —|_ QJ(—l)anp
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Constraints: an intriguing link

Conserved E1g current 7 = nVPV -1 (= Noether charge associated with global E1):

B 1 mqo|lmi...mg 1 mi...meg 1 mnp
j — @J(_3) Fmo‘ml...mg —|_ gc](_Q) le...mG —|_ gJ(_l)anp

Consider Sugawara-like (o< 7 ®@ J) expressions  [DKN, hep-th 0709.2691]

ami 10 5 no|n1 7 J0|1 8J9|101 7

(=6) a (=3) (=3)
mq...M105M1...M5 o ... M4M1 1M 713 ...71101(0
() = Jy J(=3)
. 21
mi...M10 ;N1 N2 . ~Tognimaia...ms5 gn2mMme...1M10 n1mi1ms9 ng‘m'g,...mlo
S = Sl ey Ty

o |
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Constraints: an intriguing link

Conserved E1g current 7 = nVPV -1 (= Noether charge associated with global E1):

1

J = —J o SIﬂnOMnluﬂng_F(ﬂ (—2)

917 (=3)

1

.m
6Fm1...

1

H0ym K0+ 511 map BT+ S T2y mamg BT A

Consider Sugawara-like (oc J ® J) expressions

gml---mlo ;nolny...n7
(—6)
QM1 -..M105NT -5

(—=5)

le ...M1Q ;N1 N2

(—4)

Jn0|m1 ...msg Jm9|m10n1...n7
(—3) (—3)
J?’Ll M4 M9 ng ...1MM10

(=2) (=3)

21
5

(-2) (~2)

...Mm10 4 J

[DKN, hep-th 0709.2691]

nimims9 JTLQ \m3...m10

(=1) (=3)

(with appropriate antisymmetrizations) to re-express canonical constraints:

mi...mig ;no|ni...n7
£(-6)
mi...m10;n1---15
£(=s)
QMm1...m1Q ;n1N2

(—4)

maq... Mg
£=3)

X

X

...M10 €n1---n7pq7"qu rno Bianchi (l)
:M10 M1---M5P1---P5 Dpl Fpg...p5 Bianchi (”)
.-m10 AqOn1n2 Gauss constraint
mon gl Momentum constraint
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Summary
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The ‘maximally extended’ hyperbolic KM algebra E
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Summary

o N

The ‘'maximally extended’ hyperbolic KM algebra Eg

# Incorporates and unites many relations between
maximal supergravity theories, generalizing known
duality symmetries (including affine Geroch group)
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Summary
fThe ‘maximally extended’ hyperbolic KM algebra Eg T

# Incorporates and unites many relations between
maximal supergravity theories, generalizing known
duality symmetries (including affine Geroch group)

# provides a concise algorithmic scheme via ‘geodesic’
c-model and triangular (and level) decomposition.
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Summary

o N

The ‘'maximally extended’ hyperbolic KM algebra Eg

# Incorporates and unites many relations between
maximal supergravity theories, generalizing known
duality symmetries (including affine Geroch group)

# provides a concise algorithmic scheme via ‘geodesic
c-model and triangular (and level) decomposition.

# yields same information as maximal supersymmetry:

— correct supermultiplets of SUGRA; and all D < 11 maximal supergravities
— in particular: self-duality of 5-form fi eld strength in IIB;

— unique (bosonic) action, Chern—Simons couplings;

— no cosmological constantin D = 11;

— (partial) information about R*, R”, ... corrections?

o |
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Summary

o N

The ‘'maximally extended’ hyperbolic KM algebra Eg

# Incorporates and unites many relations between
maximal supergravity theories, generalizing known
duality symmetries (including affine Geroch group)

# provides a concise algorithmic scheme via ‘geodesic
c-model and triangular (and level) decomposition.

# yields same information as maximal supersymmetry:

— correct supermultiplets of SUGRA; and all D < 11 maximal supergravities
— in particular: self-duality of 5-form fi eld strength in IIB;

— unique (bosonic) action, Chern—Simons couplings;

— no cosmological constantin D = 11;

— (partial) information about R*, R”, ... corrections?

# Fermions correctly described by R symmetry K (FEqp).

o |
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Outlook
-

New mechanism for (de-)emergence of space-time?

— Space from Lie algebra
— Time ‘operationally’ from Wheeler-DeWitt equation

— General covariance as an emergent property?

|
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Thank you for your attention
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