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The BKL Paradigm
Near a spacelike (cosmological) singularity, Einstein
equations should simplify ⇒ BKL decoupling: ∂x � ∂t?
[BKL ≡ Belinskii, Khalatnikov, Lifshitz (1972)]

Dimensional reduction to one (time) dimension →
effective dynamics near singularity from gradient
expansion? → billiards, chaotic oscillations, etc.
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Another (old) paradigm

Cosmological evolution as ‘geodesic motion’ in the
moduli space of 3-geometries [Wheeler, DeWitt,...]:

M ≡ G(3) =
{spatial metrics gij(x)}

{diffeomorphisms}

Can we understand and ‘simplify’ M by means of an
embedding into a group theoretical coset G/K(G)?

The prototype example: moduli space of solutions of
Einstein equations with two commuting Killing vectors

M = A
(1)
1 /K(A

(1)
1 ) , A

(1)
1 ≡ ̂SL(2, R)c.e. = Geroch group

Unification of space-time, matter and gravitation:
configuration space M for quantum gravity should
consistently incorporate matter degrees of freedom.
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Hidden symmetries
Reduction of SUGRA11 to D = 11−n [Cremmer, Julia (1979)]

n Scalar Coset En/K(En)

1 GL(1)/1

2 GL(2)/SO(2)

3 SL(3) × SL(2)/U(2)

4 SL(5)/SO(5)

5 SO(5, 5)/SO(5) × SO(5)

6 E6/USp(4)

7 E7/SU(8)

8 E8/(Spin(16)/Z2)

9 E9/K(E9)

10 E10/K(E10)

11 E11/K(E11)

y

y

yy

y

y

y

y

y

y Julia(’85), DHN(’02)

y West (2001)
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⇒ E10 from dimensional reduction to D = 1?

However: L = L
`

gij(t), Aijk(t)
´

is only invariant under GL(10, R) n T120 ... but:

Effective dynamics of diagonal metric degrees of freedom is
governed by cosmological billiards in Weyl chamber of E10!
[Damour, Henneaux, hep-th/0012172; DHN, hep-th/0212256]

motivates BASIC CONJECTURE: M = E10/K(E10)

Dynamics of supergravity (or
some M theoretic extension)

Null geodesic motion on
E10/K(E10) coset space

are equivalent! [DHN, hep-th/0207267]

SUGRA eqs. of motion
+ canonical constraints

∞-component geodesic eqn.
and coset constraints
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Definition of E10

E10 is the Kac–Moody group with Kac–Moody Lie algebra
g ≡ e10 of rank 10 defined via the Dynkin diagram

1 2 3 4 5 6 7 8 9

10

y y y y y y y y y

y

y ⇐⇒
Aij

Cartan matrix

Chevalley–Serre presentation: Generators hi, ei, fi for
i = 1, . . . , 10 with relations

[hi, hj ] = 0, [ei, fj ] = δijhi,

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj ,

(ad ei)
1−Aijej = 0, (ad fi)

1−Aijfj = 0.

hi span Cartan subalgebra h; ei and fi: positive and negative simple root generators
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Key Properties

Root space decomposition: α ∈ Q(E10) = II1,9

gα =
{

x ∈ g : [h, x] = α(h)x forh ∈ h
}

Real roots (α2 = 2) and imaginary roots (α2 ≤ 0)

W+(E10) = PSL2(OZ) [KFN, math.RT/0805.3018]

Invariant bilinear form → Action Principle

〈hi|hj〉 = Aij , 〈ei|fj〉 = δij , 〈[x, y]|z〉 = 〈x|[y, z]〉.

[No other polynomial Casimir for dim g = ∞ → action is (essentially) unique!]

Triangular decomposition → Computability

g = e10 = n− ⊕ h ⊕ n+ , with n± :=
⊕

α≷0 gα
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Compact subalgebra K(e10)

Chevalley involution ω on e10 is defined by

ω(ei) = −fi, ω(fi) = −ei, ω(hi) = −hi

and extends to all of e10 by ω([x, y]) = [ω(x), ω(y)].

Fixed point set

k10 ≡ K(e10) =
{

x ∈ e10 : ω(x) ≡ −xT = x
}

is a subalgebra of e10, called the compact subalgebra.

→ generalizes compact subalgebra of finite dimensional
Lie algebras (in split real form; e.g. so(n) ⊂ gl(n))

However: k10 is not a Kac-Moody algebra [KN, hep-th/0506238]
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Level decomposition: A9 ⊂ e10

1 2 3 4 5 6 7 8 9

10, `

y y y y y y y y y

y

y ⇐⇒ sl(10) ≡ A9 ⊂ e10

` A9 module Tensor
0 [100000001] ⊕ [000000000] Ka

b

1 [000000100] Eabc

2 [000100000] Ea1...a6

3 [010000001] Ea1...a8|a9

These are just the representations corresponding to the
bosonic fields of D = 11 SUGRA and their magnetic duals.
At level ` = 3: dual graviton ha1...a8|a9

(with h[a1...a8|a9] = 0)
[For more representations, see: Fischbacher,N. hep-th/0301017]
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Versatility of E10 (& E11)

The one-dimensional E10 σ-model unifies

y y y y y y y y y

y

y

z

sl(10) ⊆ e10

D = 11 SUGRA
[DHN; West 2002]

y y y y y y y y y

y

z

y

so(9, 9) ⊆ e10

mIIA D = 10 SUGRA
[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

y y y y y y y y y

y

z

sl(9) ⊕ sl(2) ⊆ e10

IIB D = 10 SUGRA
[Kleinschmidt, Schnakenburg, West 2003]
[Kleinschmidt, N. 2004]

These are the (maximal) low energy theories of the
‘M-theory diagram’, now all part of a single model.
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Dynamics: bosonic Lagrangian

Decompose Cartan form for V(t) ∈ E10/K(E10)

∂tVV
−1(t) = Q(t) + P(t) , Q ∈ k10 , P ∈ e10 	 k10

⇒ essentially unique coset Lagrangian (n(t)= lapse)

L =
1

2n
〈P|P〉.

invariant under local K(E10) and global E10:

V(t) → k(t)V(t)g ⇒ P→ kPk−1 , Q→ kQk−1 + ∂tkk−1

Equations of motion: null geodesic on E10/K(E10)

n∂t(n
−1P) =

[

Q,P
]

, 〈P|P〉 = 0.
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Example: A9 ⊂ E10

With ∂tVV
−1 =

P

`≥0 P (`) ∗ E(`) (schematically) and truncation P (`) = 0 for ` > 3 ⇒

Equations of motion up to ` = 3 (a, b = 1, . . . , 10) [DHN; DN, hep-th/0410245]

nD(0)(n−1P
(0)
ab

) = −
1

4

`

P
(1)
acd

P
(1)
bcd

−
1

9
δabP

(1)
cde

P
(1)
cde

´

−
1

2 · 5!

`

P
(2)
ac1...c5P

(2)
bc1...c5

−
1

9
δabP

(2)
c1...c6P

(2)
c1...c6

´

+
4

9!

`

P
(3)
ac1...c7|c8

P
(3)
bc1...c7|c8

+
1

8
P

(3)
c1...c8|a

P
(3)
c1...c8|b

−
1

8
δabP

(3)
c1...c8|c9

P
(3)
c1...c8|c9

´

nD(0)(n−1P
(1)
abc

) = −
1

6
P

(2)
abcdef

P
(1)
def

+
1

3 · 5!
P

(3)
abcd1...d5|d6

P
(2)
d1...d6

nD(0)(n−1P
(2)
a1...a6

) =
1

6
P

(3)
a1...a6cde

P
(1)
cde

nD(0)(n−1P
(3)
a1...a8|a9

) = 0 (with P
(3)
[a1...a8|a9]

= 0).

This is a consistent truncation of E10/K(E10) coset dynamics: solutions of truncated

theory are also solutions of the full theory.

Quantum Gravity, Unification, and E10 – p.12/16



Example: A9 ⊂ E10

With ∂tVV
−1 =

P

`≥0 P (`) ∗ E(`) (schematically) and truncation P (`) = 0 for ` > 3 ⇒

Equations of motion up to ` = 3 (a, b = 1, . . . , 10) [DHN; DN, hep-th/0410245]

nD(0)(n−1P
(0)
ab

) = −
1

4

`

P
(1)
acd

P
(1)
bcd

−
1

9
δabP

(1)
cde

P
(1)
cde

´

−
1

2 · 5!

`

P
(2)
ac1...c5P

(2)
bc1...c5

−
1

9
δabP

(2)
c1...c6P

(2)
c1...c6

´

+
4

9!

`

P
(3)
ac1...c7|c8

P
(3)
bc1...c7|c8

+
1

8
P

(3)
c1...c8|a

P
(3)
c1...c8|b

−
1

8
δabP

(3)
c1...c8|c9

P
(3)
c1...c8|c9

´

nD(0)(n−1P
(1)
abc

) = −
1

6
P

(2)
abcdef

P
(1)
def

+
1

3 · 5!
P

(3)
abcd1...d5|d6

P
(2)
d1...d6

nD(0)(n−1P
(2)
a1...a6

) =
1

6
P

(3)
a1...a6cde

P
(1)
cde

nD(0)(n−1P
(3)
a1...a8|a9

) = 0 (with P
(3)
[a1...a8|a9]

= 0).

This is a consistent truncation of E10/K(E10) coset dynamics: solutions of truncated

theory are also solutions of the full theory.

Quantum Gravity, Unification, and E10 – p.12/16



Correspondence with SUGRA11

Bosonic D = 11 supergravity equations [Cremmer, Julia, Scherk 1978]

EAB ≡ RAB −
1

3
FACDEFB

CDE +
1

36
ηABFCDEF FCDEF = 0

M
BCD

≡ DAFABCD +
1

576
εBCDE1...E8FE1...E4

FE5...E8
= 0

and Bianchi identities: D[AFBCDE] = R[AB C]D = 0

Then with the identification n = Ne−1 and (r.h.s. always at fixed spatial point x = x0)

D
(0)P

(0)
ab

= Rtime derivatives
ab

P
(1)
abc

= NF0abc

P
(2)
a1...a6

= −
1

4!
Nεa1...a6b1...b4Fb1...b4

P
(3)
a1...a8|a9

=
3

2
Nεa1...a8bcΩ̃bc|a9

the two sets of dynamical equations coincide! (recall P
(3)
[a1...a8|a9]

= 0 ⇔ Ω̃ab|b = 0 )

Dynamical equations for mIIA and IIB similarly from level decompositions w.r.t. finite
dimensional subgroups D9 ≡ SO(9, 9) ⊂ E10 and A8 × A1 ≡ SL(9) × SL(2) ⊂ E10.

Quantum Gravity, Unification, and E10 – p.13/16



Correspondence with SUGRA11

Bosonic D = 11 supergravity equations [Cremmer, Julia, Scherk 1978]

EAB ≡ RAB −
1

3
FACDEFB

CDE +
1

36
ηABFCDEF FCDEF = 0

M
BCD

≡ DAFABCD +
1

576
εBCDE1...E8FE1...E4

FE5...E8
= 0

and Bianchi identities: D[AFBCDE] = R[AB C]D = 0

Then with the identification n = Ne−1 and (r.h.s. always at fixed spatial point x = x0)

D
(0)P

(0)
ab

= Rtime derivatives
ab

P
(1)
abc

= NF0abc

P
(2)
a1...a6

= −
1

4!
Nεa1...a6b1...b4Fb1...b4

P
(3)
a1...a8|a9

=
3

2
Nεa1...a8bcΩ̃bc|a9

the two sets of dynamical equations coincide! (recall P
(3)
[a1...a8|a9]

= 0 ⇔ Ω̃ab|b = 0 )

Dynamical equations for mIIA and IIB similarly from level decompositions w.r.t. finite
dimensional subgroups D9 ≡ SO(9, 9) ⊂ E10 and A8 × A1 ≡ SL(9) × SL(2) ⊂ E10.

Quantum Gravity, Unification, and E10 – p.13/16



Correspondence with SUGRA11

Bosonic D = 11 supergravity equations [Cremmer, Julia, Scherk 1978]

EAB ≡ RAB −
1

3
FACDEFB

CDE +
1

36
ηABFCDEF FCDEF = 0

M
BCD

≡ DAFABCD +
1

576
εBCDE1...E8FE1...E4

FE5...E8
= 0

and Bianchi identities: D[AFBCDE] = R[AB C]D = 0

Consider gauge fixed (à la ADM) equations at some fixed spatial point x0:

keeping all temporal and first order spatial derivatives at x0

zero-shift gauge: EM
A =

0

@

N 0
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a

1
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Constraints: an intriguing link

Conserved E10 current J = nVPV−1 (≡ Noether charge associated with global E10):

J =
1

9!
J

m0|m1...m8

(−3)
Fm0|m1...m8

+
1

6!
Jm1...m6

(−2)
Fm1...m6

+
1

3!
Jmnp

(−1)
Fmnp

+Jn
(0)mKm

n +
1

3!
J(1) mnpEmnp +

1

6!
J(2) m1...m6

Em1...m6 + . . .

Consider Sugawara-like (∝ J ⊗ J ) expressions [DKN, hep-th 0709.2691]

L
m1...m10 ; n0|n1...n7

(−6)
= J

n0|m1...m8

(−3)
J

m9|m10n1...n7

(−3)

L
m1...m10;n1...n5

(−5)
= Jn1...n4m1m2

(−2)
Jm3...m10

(−3)

L
m1...m10 ;n1n2

(−4)
=

21

5
Jn1m1...m5

(−2)
Jn2m6...m10

(−2)
+ Jn1m1m2

(−1)
J

n2|m3...m10

(−3)

(with appropriate antisymmetrizations) to re-express canonical constraints:

L
m1...m10 ; n0|n1...n7

(−6)
∝ εm1...m10εn1...n7pqrRpq rn0

Bianchi (I)

L
m1...m10;n1...n5

(−5)
∝ εm1...m10εn1...n5p1...p5Dp1

Fp2...p5
Bianchi (II)

L
m1...m10 ;n1n2

(−4)
∝ εm1...m10M

0n1n2 Gauss constraint

L
m1...m9

(−3)
∝ εm1...m9n

E0n Momentum constraint
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Summary

The ‘maximally extended’ hyperbolic KM algebra E10

incorporates and unites many relations between
maximal supergravity theories, generalizing known
duality symmetries (including affine Geroch group)

provides a concise algorithmic scheme via ‘geodesic’
σ-model and triangular (and level) decomposition.

yields same information as maximal supersymmetry:
– correct supermultiplets of SUGRA11 and all D < 11 maximal supergravities
– in particular: self-duality of 5-form field strength in IIB;
– unique (bosonic) action, Chern–Simons couplings;
– no cosmological constant in D = 11;

– (partial) information about R4, R7, . . . corrections?

Fermions correctly described by R symmetry K(E10).
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Outlook

New mechanism for (de-)emergence of space-time?
– Space from Lie algebra
– Time ‘operationally’ from Wheeler-DeWitt equation

– General covariance as an emergent property?

→ new perspectives for background independence?

Quantization: wave function of the universe as a
modular form over E10(Z)? [Ganor, hep-th/9903110].

Any relation to zero tension limit of string theory?

Further exploration of these links could lead to
important advances in physics and mathematics.

Thank you for your attention
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