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1 Motivation and introduction

Symmetry simplifies the description of phenomena in all areas of theoretical physics. Physicists

usually distinguish the following types of symmetries:

• spacetime symmetry (Lorentz-, Poincare group, etc.)

• internal symmetry (isospin, flavour, etc.)

• duality symmetry (e.g. ~E + i ~B 7→ eiα( ~E + i ~B) in Maxwell theory)

All of these examples have finite dimension. However, already the Standard Model and general

relativity involve symmetries of infinite dimension such as the following two:
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• Yang Mills SU(3)⊗ SU(2)⊗ U(1) symmetry (local gauge transformations)

• general coordinate transformations xµ 7→ xµ + ξµ(x) with vector fields ξµ(x)

These lectures are mainly devoted to a different class of infinite dimensional symmetries, namely

to symmetries of Kac Moody type. The latter for instance occur after dimensional reduction of

Einstein’s theory or of supergravity:

• D = 4 7→ D = 3 : Ehlers symmetry SL2(R) (∼ 1957)

• D = 4 7→ D = 2 : Geroch symmetry ŜL2(R) ⊗ central extension (∼ 1972)

• D = 4 7→ D = 1 : even bigger symmetry of Kac Moody type

A similar approach to the dimensional reduction of gravity was taken by Belinskii, Khalatnikof

& Lifshitz (BKL) around 1972 by examining light cones close to a singular surface in spacetime:

spacelike separated points causally decouple and spatial derivatives become hierarchically small

∂x � ∂t. Therefore the dynamical evolution is asymptotically governed by ordinary differential

equations in time. This scenario will be the topic of a later chapter.

2 Kac Moody Lie algebras

Lie algebras of Kac Moody type generalize the concepts of angular momentum in quantum

mechanics which is described by a triplet of non-commuting operators subject to sl2 ≡ su2⊗C

commutation relations. Let us adapt the following notation for the sl2 generators J i ≡ σi:

h ≡ J3 =

 1 0

0 −1

 , e ≡ J+ =

 0 1

0 0

 , f ≡ J− =

 0 0

1 0

 (2.1)

Then the commutation relations [J i, J j] = 2iεijkJk can be rewritten as[
h , e

]
= 2 e ,

[
h , f

]
= − 2 f ,

[
e , f

]
= h . (2.2)

Kac Moody Lie algebras are generated by several basic sl2 building blocks. Consider r sets of

sl2 generators: {
ei, fi, hi : i = 1, 2, ..., r

}
(2.3)

The information about their concatenation (i.e. the failure of {ei, fi, hi} to commute with

another triplet {ej, fj, hj}, i 6= j) can be encoded in the so-called Cartan matrix Aij, i, j =

1, 2, ..., r for which we state the following basic properties:

Aij ∈ Z , Aii = 2 , Aij ≤ 0 ∀ i 6= j (2.4)



4 2 KAC MOODY LIE ALGEBRAS

If the symmetry condition Aij = Aji is additionally imposed, then the composed algebra will

be simply-laced.

The Cartan matrix is defined in terms of the Chevalley Serre presentation of the algebra: First

of all choose a Cartan subalgebra of mutually commuting generators {hi : i = 1, ..., r},

[
hi , hj

]
= 0 , (2.5)

then the corresponding ladder operators {ei, fi : i = 1, ..., r} obey commutation relations

[
hi , ej

]
= Aij ej ,

[
hi , fj

]
= −Aij fj ,

[
ei , fj

]
= δij hj (2.6)

and the Serre relations

0 =

[
ei ,
[
ei , ...

[
ei︸ ︷︷ ︸

1−Aij fold commutator

, ej
]
...
] ]

=

[
fi ,
[
fi , ...

[
fi︸ ︷︷ ︸

1−Aij fold commutator

, fj
]
...
] ]

=
(
ad ei

)1−Aij(ej) =
(
ad fi

)1−Aij(fj) . (2.7)

Given a r× r Cartan matrix A, the corresponding Kac Moody algebra g(A) is defined as a free

Lie algebra generated by the {ei, fi, hi} modulo Serre relations.

An alternative representation of the r × r Cartan matrix is the Dynkin diagram. One possible

convention is the following:

• draw r nodes

• connect nodes i, j by Aij · Aji lines

Aij =


2 −1 0 0

−1 2 −1 −1

0 −1 2 0

0 −1 0 2


For infinite dimensional algebras with large offdiagonal entries, however, it might be preferable

to conventionally draw |Aij| lines between nodes i and j. Consider e.g. the Dynkin diagram

associated with Aij =
(

2 −2
−2 2

)
in both conventions:
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2.1 Examples of Kac Moody algebras

Example 1: A2 ≡ sl3 This Lie algebra is characterized by the Cartan matrix Aij =
(

2 −1
−1 2

)
.

Its rank r = 2 implies that there are six basic generators h1, h2, e1, e2, f1, f2 which might generate

further algebra elements via commutators. From [ei, fj], one can only get h1,2, also [hi, ej] and

[hi, fj] involves combinations of e’s and f ’s respectively, so the only possibility to construct

further g(A) elements are the commutators [e1, e2] and [f1, f2].

Serre relations ensure that the formation of new generator terminates. In this case, 1−A12 = 2

implies [
e1
[
e1 , e2

] ]
=

[
f1

[
f1 , f2

] ]
= 0 . (2.8)

There is a matrix representation for the eight basis elements:

h1 =


1 0 0

0 −1 0

0 0 0

 , h2 =


0 0 0

0 1 0

0 0 −1



e1 =


0 1 0

0 0 0

0 0 0

 , e2 =


0 0 0

0 0 1

0 0 0

 ,
[
e1 , e2

]
=


0 0 +1

0 0 0

0 0 0



f1 =


0 0 0

1 0 0

0 0 0

 , f2 =


0 0 0

0 0 0

0 1 0

 ,
[
f1 , f2

]
=


0 0 0

0 0 0

−1 0 0


(2.9)

Example 2: A
(1)
1 Let us slightly modify the off-diagonal entries of the sl3 Cartan matrix and

examine Aij =
(

2 −2
−2 2

)
. Now the Serre relations give

0 6=
[
e1
[
e1 , e2

] ]
, 0 =

[
e1

[
e1
[
e1 , e2

] ] ]
, (2.10)

but one can still generate new elements by [e2, ·] action on the nonzero double commutator. It

turns out that the A
(1)
1 is infinite dimensional.

Example 3: H(3) The Cartan matrix Aij =
(

2 −3
−3 2

)
of the Fibonacci Algebra H(3) implies

even less restrictive Serre relations

0 6=
[
e1

[
e1
[
e1 , e2

] ] ]
, 0 =

[
e1

[
e1

[
e1
[
e1 , e2

] ] ] ]
. (2.11)

This innocent looking modification of (2.10) leads to an explosion of the (nonzero commutators

of the) algebra, we will go into more detail in the later subsection 2.6. The same is true for any

Aij =
(

2 −m
−m 2

)
with m ≥ 3.
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We will see that the existence of zero or negative eigenvalues of the Cartan matrix implies

infinite dimension for the corresponding algebra. Nice textbook about these cases are [1], [2].

2.2 Basic properties of Kac Moody algebras

Kac Moody algebras share a number of features with finite dimensional matrix algebras:

• triangular decomposition

Any Kac Moody algebra can be decomposed as

g(A) = n− ⊕ h ⊕ n+ (2.12)

where h denotes the Cartan subalgebra (CSA) and

n− ≡ lower triangular part: multiple {fi} commutators

n+ ≡ upper triangular part: multiple {ei} commutators . (2.13)

This property enables the development of representation theory by means of heighest

weight states |·〉 (analogous to quantum mechanics) such that n+|·〉 = 0.

• root space decomposition

The CSA acts diagonally on n±, the eigenvalues are called roots α and can be represented

as r component vectors. To each root α, one can associate a subspace of g(A)

gα :=
{
x ∈ g(A) :

[
h , x

]
= α(h) · x

}
, (2.14)

i.e. technically speaking α ∈ h∗. Setting x equal to a basic Chevalley Serre generator,

one arrives at the simple root vectors ei ↔ αi and fi ↔ −αi, so a multiple commutator

is associated with the linear combination[
ei1 , ...

[
eik−1

, eik
]
...
]
↔

k∑
ν=1

αiν . (2.15)

Note that the CSA h formally belong to the subspace of the zero root.

• invariant bilinear form

We define a bilinear form 〈·|·〉 : g(A)× g(A)→ C by nonzero entries

〈ei | fj〉 = δij , 〈hi |hj〉 = Aij (2.16)

whereas 〈e|e〉 = 〈e|h〉 = ... = 0. In addition, we require 〈·|·〉 to satisfy the invariance

property

〈
[
x , y

]
| z〉 = 〈x |

[
y , z

]
〉 ∀ x, y, z ∈ g(A) (2.17)
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which helps to handle multiple commutators 〈[ei, ...[ej, ek]...]|[fi, ...[fj, fk]...]〉 by means of

the following algorithm:

– use the invariance property (2.17) to shuffle one of the e’s to the right hand side

– apply the Jacobi identity to obtain commutators of type [e, f ] ≡ h

– evaluate the diagonal action [fi, hj] = Ajifj of the Cartan generators

This can be further illustrated by an explicit example:

〈
[
ei , ej

]
|
[
fi , fj

]
〉 = 〈ei |

[
ej ,

[
fi , fj

] ]
〉

= 〈ei |
[
fi ,
[
ej , fj

]︸ ︷︷ ︸
=hj

]
〉 − 〈ei |

[
fj ,

[
ej , fi

]︸ ︷︷ ︸
=0

]
〉

= 〈ei |
[
fi , hj

]
〉 = 〈ei |Aji fj〉 . (2.18)

For finite dimensional g(A), there is the explicit realization 〈x|y〉 = Tr{xy} for the bilinear,

the invariance property follows from cyclicity of the trace.

2.3 The Cartan Weyl basis

Sometimes it is convenient to use a so-called Cartan-Weyl basis for g(A). Using Greek indices

µ, ν to label the root components corresponding to an arbitrary basis Hµ in the CSA, with

the usual summation convention and metric Gµν , we have hi := αµiHµ and define ei = E(αi).

Therefore,

[
Hµ , E(α)

]
= αµE(α) (2.19)

〈Hµ |Hν〉 = Gµν (2.20)

[
E(α) , E(β)

]
=

 cαβ E(α + β) : α + β root

0 : otherwise
, (2.21)

the latter identity (with unfixed prefactor cαβ) following from the Jacobi identity applied to

the double commutator
[
Hµ, [E(α), E(β)]

]
= (αµ + βµ)[E(α), E(β)].

One can also define the scalar product in the root space h∗ via

〈αi |αj〉 = αµi α
µ
j Gµν = αµi α

µ
j 〈Hµ |Hν〉

= 〈hi |hj〉 = Aij . (2.22)

In finite dimensional g(A) with positive definite A, one can take Gµν = δµν .
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Example: sl3 ≡ A2 This algebra is governed by Cartan matrix Aij =
(

2 −1
−1 2

)
. Its positive

definiteness admits the Gµν = δµν metric, and an explicit realization of the simple roots solving

αµi α
µ
jGµν = Aij is

α1 =
(√

2 , 0
)
, α2 =

(
− 1√

2
,

√
3

2

)
. (2.23)

The root lattice is a priori fixed to lie in ⊂ Zα1 ⊕ Zα2, and application of the Serre relations

shows that there is an additional positive root α1 + α2 associated with [e1, e2].

Using relations h1 =
√

2H1 and h2 = − 1√
2
H1 +

√
3
2
H2 between Chevalley Serre- and Cartan

Weyl generators in the CSA, one can translate the matrix realization (2.9) of h1,2 into

H1 =


1√
2

0 0

0 − 1√
2

0

0 0 0

 , H2 =


1√
6

0 0

0 1√
6

0

0 0 −
√

2
3

 . (2.24)

2.4 Classification according to Cartan matrix signature

Kac Moody algebras can be neatly classified according to their Cartan matrix A and in partic-

ular to its signature. A necessary and sufficient criterion for g(A) to have finite dimension is

A > 0, i.e. A being positive definite. Consider the most general ansatz Aij =
(

2 −a
−b 2

)
for rank

r = 2, then

A > 0 ⇔ a · b ≤ 3 . (2.25)

The integer solutions are the following:

( 2 0
0 2 ) ↔ sl2 ⊕ sl2 ,

(
2 −1
−1 2

)
↔ sl3 ≡ A2(

2 −2
−1 2

)
↔ B2, C2 ,

(
2 −3
−1 2

)
↔ G2

(2.26)

In 1968, Kac and Moody dropped the restriction to A > 0 and considered positive semidefinite

Cartan matrices A ≥ 0 known as affine algebras. Clearly, they are infinite dimensional, and

there are many applications in physics, e.g. to 2 dimensional QFT (in particular to CFTs),

to integrable systems and to dimensionally reduced Einstein gravity (the Geroch group upon

reducing D = 4 7→ D = 2). The rank two examples satisfy a · b = 4, these are
(

2 −2
−2 2

)
and(

2 −4
−1 2

)
.

For indefinite A (i.e. A with at least one negative eigenvalue), on the other hand, very little is

known, and it remains an outstanding problem to find a manageable representation for g(A).

In particular, there is not a single example of an indefinite KM algebra for which the root

multiplicities, i.e. the number of Lie algebra elements associated with a given root, are known

in closed form.
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One might think about further generalization of possibly indefinite Kac Moody algebras, for

instance super Lie algebras, Borcherd’s generalized Kac Moody algebras (with Aii 6= 2) and toric

algebras (defined by algebra valued functions on S1 × S1).

2.5 Realization of affine algebras: current algebras

Consider a finite dimensional Lie algebra ḡ with generators JA subject to commutation relations

[
JA , JB

]
= fABC J

C . (2.27)

Its affinization is defined by corresponding Laurent modes {JAm : m ∈ Z} and a central charge

c, in particular by the generalized commutation relations

[
JAm , J

B
n

]
= fABC J

C
m+n + mc δm+n,0 δ

AB . (2.28)

One way of giving a meaning to the extra label m ∈ Z of the JAm generators is to define

JA ≡ JA(θ) on S1 = {z ∈ C : |z| = 1} parametrized by θ ∈ [0, 2π), then

JA(θ) =
∑
m∈Z

eimθ JAm . (2.29)

Using the representations 2πδ(θ) =
∑

m∈Z e
imθ and −2πiδ(θ) =

∑
m∈Zme

imθ of the δ function,

one can show the commutator to be equivalent to

[
JA(θ1) , J

B(θ2)
]

= 2π fABC J
C(θ1) δ(θ1 − θ2) − 2πi c δAB δ′(θ1 − θ2) . (2.30)

This is what Schwinger found in 1950 upon analyzing two dimensional quantum electrodynam-

ics. Correspondingly, the piece ∼ cδ′(θ1 − θ2) is known as Schwinger term.

The set of maps S1 → ḡ into some finite dimensional Lie algebra ḡ is often referred to as the

loop algebra ĝ. Loop groups Ĝ are analogously defined as maps from S1 into finite dimensional

groups.

One can explicitly construct the central element c by means of the eigenvector ni with eigenvalue

zero of the Cartan matrix, i.e.
∑

j Aijnj = 0. It is easy to check that

c :=
r∑
j=1

nj hj (2.31)

commutes with any g(A) element.
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Example: A
(1)
1 ≡ ŝl2 ⊕ C The Cartan matrix Aij =

(
2 −2
−2 2

)
implies the commutation rela-

tions [
h1 , e1,2

]
= ± 2 e1,2

[
h1 , f1,2

]
= ∓ 2 f1,2 (2.32)[

h2 , e1,2
]

= ∓ 2 e1,2
[
h2 , f1,2

]
= ± 2 f1,2 . (2.33)

These can be reproduced from the current algebra[
J3
m , J

±
n

]
= ± 2 J±m+n (2.34)[

J+
m , J

−
n

]
= J3

m+n + mc δm+n,0 (2.35)

by identifying

e1 ≡ J+
0 , e2 ≡ J−1 , f1 ≡ J−0 , f2 ≡ J+

−1 (2.36)

h1 ≡ J3
0 , c ≡ h1 + h2 . (2.37)

Further current modes J3
6=0 and J+

>0, J
−
<0 are obtained via commutators such as[

e1 , e2
]

= + J3
+1

[
e1 ,

[
e1 , e2

] ]
= − 2 J+

+1 (2.38)[
f1 , f2

]
= − J3

−1

[
f1 ,

[
f1 , f2

] ]
= − 2 J−−1 . (2.39)

2.6 Root systems

Recall the discussion of the algebra sl3 in subsection (2.3). From the Cartan matrix and in

particular from the Serre relations, we concluded the root lattice to be hexagonal with two

simple roots α1,2:

−α1 α1

α2 α1 + α2

−α2−α1 − α2
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Let us now focus on simply-laced algebras whose spacelike roots all have uniform length α2 = 2.

In the finite dimensional sector, this is the case for the A,D- and E algebras. Another way of

expressing the limiting impact of the Serre relations on simply-laced algebras is

∀ roots α we have α2 = 2 with respect to the metric Gµν = δµν . (2.40)

However, for indefinite Cartan matrices Aij = αµi α
ν
jGµν , the metric is of Lorentzian signature,

e.g. Gµν = ηµν = diag(−1,+1, ...,+1) in an appropriate basis. Then, the Serre relations

are equivalent to α2 ≤ 2, more precisely one has (assuming simply-laced algebras to exclude

0 < α2 < 2)

Figure 1: Roots with α2 = 2 lie on a hyperboloid (its axis pointing into the timelike direction)

• real roots α2 = 2 on the hyperboloid −(α1)2 +
∑r

j=2(α
j)2 = 2

• imaginary roots α2 ≤ 0 (null or timelike)

In the affine case A ≥ 0, all the roots (α, δ) are either of affine type α2 = 2 or null δ2 = 0,

whereas indefinite algebras certainly have timelike roots α2 < 0.

In string theory, one can assign masses m2 = −α2 to roots α, this gives the following dictionary:

real root ↔ tachyon

null root ↔ photon

timelike root ↔ massive Regge excitation
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Example 1: A
(1)
1 The Cartan matrix Aij =

(
2 −2
−2 2

)
obviously has a zero eigenvector (1, 1)

associated with the central element c = h1+h2. The problem about c is that all its commutators

trivially vanish, so getting a two dimensional root lattice requires a extension of the Cartan

subalgebra {J3
0 , c} ⊕ {d} by a further element d to lift the degeneracy. The additional generator

d is defined by adjoint action [
d , Jam

]
= mJam . (2.41)

In the following diagram, we will include the d eigenvalue of the corresponding generator as a

second component for the root. The simple roots read α1 =
√

2 (1, 0) and α2 =
√

2 (−1, 1) and

reproduce the Cartan matrix entries Aij = αµi α
ν
jGµν in the degenerate metric Gµν = diag(1, 0).

Hence, δ = α1 + α2 is a null root!

α1
α2

δ

h1 = J3
0

f1 = J−0 e1 = J+
0

e2 = J−1

f2 = J+
−1

[e1, e2] = J3
1 [

[e1, e2], e1
]

= 2J+
1

The same ladder construction applies to any other affine algebra: Start with the root system

of the zero modes Jan=0 of the corresponding current algebra, then the action of the ladder

operators Jan 6=0 gives rise to a copy of the zero modes’ root system for each d eigenvalue. In

other words, each affine algebra can be constructed from a finite dimensional algebra whose

root system is reproduced infinitely many times in a ladder-like structure.

We have already defined root spaces gα by x ∈ gα ⇔ [h, x] = α(h)x, let us now introduce

multiplicities of roots α as

mult(α) := dim gα . (2.42)

Real roots satisfy mult(α) = 1 whereas multiplicities of imaginary roots increase exponentially

with −α2. Raising operators E(α) associated with a root α of nontrivial multiplicity require

an extra label Es(α) : s = 1, ...,mult(α).
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Example 2: H(3) We already mentioned the example of the Fibonacci algebra H(3) algebra

in section 2. For hyperbolic indefinite algebras, the multiplicities of raising operators increase

in an uncontrolled way with the length of the associated root. In fact, there is not a single

example of a indefinite hyperbolic algebra for which the mult(α) are known in closed form. The

following diagram is a nice example for the proliferation of multiplicities:

1      

1      

1      

1      

2      

2      

1      

1      

1      

1      

3      

4      

4      

4      

4      

3      

3      

2      

2      

6      

9      

9      

9      

9      

9      

9      

6      

6      

4      

4      

1      

1      

16     

23     

23     

27     

27     

27     

27     

23     

23     

16     

16     

9      

9      

4      

4      

1      

1      

39     

60     

60     

73     

73     

80     

80     

73     

73     

60     

60     

39     

39     

23     

23     

9      

9      

3      

3      

107    

162    

162    

211    

211    

240    

240    

240    

240    

211    

211    

162    

162    

107    

107    

60     

60     

27     

27     

9      

9      

2      

2      

288    

449    

449    

600    
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Figure 2: Elements of H(3) generated by multiple e1, e2 generators together with their multi-

plicities; figure taken from [3]

The numbers next to the H(3) elements denote the root multiplicities, computed by means of

the Peterson recursion formula [1], [2]. Circles mark the real roots on the hyperbola α2 = 2;

all the other roots are situated within the light cone. There are no null roots, i.e. H(3) does

not have any affine subalgebra. (In this case the algebra is referred to as strictly hyperbolic).
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2.7 Weyl group

An important tool for classifying root systems is the Weyl group W (A). This discrete group is

generated by reflections on the hyperplanes perpendicular to simple roots αi : i = 1, ..., r. An

elementary reflection of a vector v in root space is implemented as

wi(v) := v − 〈αi | v〉αi (2.43)

using α2
i = 2 (which also enables to check w2

i = 1).

Each element of W (A) can be written as a product w1w2...wn of elementary reflections (2.43).

The products with an even number n ∈ 2N of operations forms a subgroup W+(A), the even

Weyl group.

If A is finite, then W (A) ⊂ O(r) with |W (A)| < ∞. For Lorentzian A, on the other hand,

W (A) ∈ O(1, r− 1) and |W (A)| =∞. Affine A can be embedded into some Lorentzian Ã such

that W (A) is the subgroup of W (Ã) leaving the null root δ invariant (e.g. W (An) = Sn+1).

Let us finally define the fundamental Weyl chamber CW to be the wedge about the origin of

root space delimited by the reflecting hyperplanes of W (A) such that

CW =
{
v ∈ Rr : 〈v |αi〉 ≥ 0 ∀ i = 1, ..., r

}
. (2.44)

2.8 Hyperbolic Kac Moody algebras

In order to define the class of hyperbolic KM algebras, we first of all need the notion of a regular

subalgebra which is the result of deleting a node from the original algebra’s Dynkin diagram.

An indefinite KM algebra g(A) is called hyperbolic if all its regular subalgebras are finite or

affine.

Hyperbolic algebras have been classified in [4]. Taking all examples into account, one arrives

at the important lemma

g(A) hyperbolic ⇒ rank(A) ≤ 10 . (2.45)

As an example for a hyperbolic KM algebra, consider the algebra F ≡ AE3 examined by

Feingold & Frenkel in 1983 [5]. It is also relevant in the context of D = 4 gravity [9], see the

later section 4. It is governed by the Cartan matrix

A =


2 −1 0

−1 2 −2

0 −2 2

 (2.46)

or equivalently by the following Dynkin diagram
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If one erases the right node, the surviving
(

2 −1
−1 2

)
block corresponds to an sl3 acting on the

spatial dreibein of the D = 4 gravity model. On the other hand, after removing the left node,

a
(

2 −2
−2 2

)
block survives associated with the Geroch algebra ŝl2.

The Weyl group W (A) of the F algebra has the remarkable property that the even subgroup

W+(A) coincides with the modular group

W (A) = PGL2(Z) ⊃ W+(A) = PSL2(Z) . (2.47)

3 Supergravity and E10

In this subsection, we will demonstrate that one can extract the (bosonic) particle content of

prominent supergravity theories from clever decompositions of the hyperbolic E10 algebra. A

nice reference about this topic is [6]. Let us first of all introduce the algebraic tool for this task.

3.1 Level decomposition

The aim of level decomposition is the analysis of an unknown algebra in terms of well-understood

subalgebras. Pick a distinguished node corresponding to simple root α0, then any root can be

decomposed as

α = ` · α0 +
∑
j 6=0

mj αj , (3.1)

the integer coefficient ` of the distinguished root α0 is referred to as level. The remaining j sum

in (3.1) is a root of the chosen subalgebra.

The geometric idea behind this procedure is a slicing of the root space, each slice being as-

sociated with a fixed value of the level `. Of course, there are various ways of slicing, and it

is most convenient to pick a real root perpendicular to a spacelike hypersurface. Slicings by

lightlike or timelike hyperplanes would produce gradings with respect to affine or indefinite KM

subalgebras, with each slice containing infinitely many roots.
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`+ 1

`

The algebra then obtains a graded structure

g(A) =
⊕
`∈Z

g(`) (3.2)

where the levels are additive under the commutator,[
g(`) , g(`

′)
]
⊂ g(`+`

′) . (3.3)

3.2 A9 decomposition of E10

Now we apply this prescription of level decomposition to the hyperbolic E10 algebra with root

labelling as shown in the Dynkin diagram below. Singling out the branched node α0 leaves an

Figure 3: Dynkin diagram of E10

A9 = sl10 subalgebra. Note the level `(α) stays invariant under the adjoint action of the sl10

subalgebra. Hence, the set of E10 elements corresponding to a given level ` can be decomposed

into a (finite) number of irreducible representations of sl10. We will next give an overview over

the first levels ` = 0, 1, 2, 3:

• level ` = 0

At zero level, no e0, f0 generators are involved, the only contribution from the α0 node is

the Cartan generator h0 ∼ 1, therefore

g(0) = sl10 ⊕ span{h0} = gl10 . (3.4)
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The gl10 algebra is well-known to be spanned by generators Ka
b with a, b = 1, 2, ..., 10

such that [
Ka

b , K
c
d

]
= δcbK

a
d − δab K

c
d (3.5)

〈Ka
b |Kc

d〉 = δcb δ
a
d − δab δ

c
d . (3.6)

• level ` = 1

On the first level ` = 1, one is faced with some representation of sl10 which is determined

by the presence of extra generators {e0, f0, h0}. Take f0 as a highest weight vector and

examine the adjoint action x(f0) := [x, f0] of x ∈ sl10 on it via

ei(f0) = 0 , fi(f0) ∼ δi,3 , i = 1, 2, ..., 9 (3.7)

and

hi(f0) = −Ai0 f0 = δi,3 f0 . (3.8)

This defines the (001000000) representation of sl10 spanned by antisymmetric three forms

of dimension 120 = ( 10
3 ). We will label its members as Eabc = E[abc].

• level ` = 2

By virtue of the level additivity (3.3), level two tensors can be obtained from commutators

of ` = 1 objects [
Eabc , Edef

]
=: Eabcdef . (3.9)

The tensor product of the three form representations (e.g. by means of Young tableaus)

yields Dynkin labels (000001000).

• level ` = 3

Let us simply state the result at level three: The [` = 1, ` = 2] commutator yields objects[
Eabc , Ed1d2...d6

]
=: E[a|bc]d1d2...d6 . (3.10)

in the (100000010) representation of sl10 with the additional property that

E[a|bcd1...d6] = 0 . (3.11)

3.3 D = 11 supergravity

In D = 11 spacetime dimensions [6], one can formulate the maximally supersymmetric theory

of gravity. Its bosonic particle content is made of

GMN ≡ graviton , AMNP ≡ three form . (3.12)
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The AMNP field gives rise to a field strength four form

FMNPQ := 4 ∂[M ANPQ] (3.13)

invariant under gauge transformation δAMNP = 3∂[MΛNP ] with two form gauge parameter Λ.

This can be rephrased in the language of differential forms as F = dA and δA = dΛ.

The field strength can be dualized to a seven form field

F̃ := ∗F , F̃M1...M7 =
1

4!
εM1...M7N1...N4 F

N1...N4 . (3.14)

In Maxwell theory, there are equations of motion and Bianci identities dF = d ∗ F = 0 which

allow to also derive the dual field strength F̃ from a potential Ã 6= ∗A (at least locally).

However, there is a little extra term in the supergravity equations of motion for the three form

field A due to a topological term A ∧ F ∧ F in the Lagrangian:

dF̃ − 3
√

2F ∧ F = d
(
F̃ − 3

√
2A ∧ F

)
= 0 (3.15)

We can thus locally express the closed form F̃ − 3
√

2A∧F in terms of a six form field Ã 6= ∗A,

F̃ − 3
√

2A ∧ F = dÃ . (3.16)

There is a nice correspondence between the fields of this supergravity and the lowest A9 levels

of E10. At ` = 0, we have found a gl10 representation under which the spatial zehnbein eMA

transforms. The antisymmetric E[abc] from the ` = 1 level can be matched with the electric

three form components AMNP whereas the E[abcdef ] tensors at ` = 2 correspond to the dual

electric magnetic potential Ã. Also the ` = 3 objects E[a|bcd1...d6] can be found within the

supergravity framework as some magnetic dual of the zehnbein.

3.4 D = 10 supergravities

There is no unique supergravity theory in D = 10 spacetime dimensions, the two possibilities

are usually classified as type IIA and IIB according to the superstring theories from which they

arise as the low energy limit. Also, the IIA supergravity can be obtained dimensionally reducing

the (unique) D = 11 analogue. Both have a close connection to further level decompositions of

E10 (alternative to picking the A9 subalgebra):

• type IIB supergravity from the A8 ⊕ A1 subalgebra [7]

Distinguishing the root α0 as shown in the figure leaves a disconnected Dynkin diagram

associated with the direct sum A8⊕A1. This leads the following representations at lowest

levels (see [7] for the details):
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Figure 4: E10 decomposition with respect to A8 ⊕ A1

– ` = 0: g(0) =
(
sl9 ⊕ span{h0}

)
⊕ sl2 = gl9 ⊕ sl2

– ` = 1: Eα
pq ↔ sl2 doublet of two form fields

– ` = 2: Epqrs ↔ four form with self dual field strength dE = ∗dE

– ` = 3: Eα
pqrstu ↔ magnetic dual of ` = 1

This is precisely the massless (bosonic) particle content of type IIB supergravity.

• type IIA supergravity from the D9 subalgebra [8]

The choice of slicing as displayed in the next figure leads to a (non-compact) D9 = so(9, 9)

subalgebra.

Figure 5: E10 decomposition with respect to D9

At level ` = 0, the standard so(9, 9) generators M [IJ ] arise and reflect the degrees of

freedom in the metric Gµν and a two form field Bµν . Things are more complicated at

first level ` = 1 where the standard procedure of the previous examples leads to a 256

component spinor EA of SO(9, 9). The maximal compact subgroup is SO(9)⊗ SO(9) ⊂
SO(9, 9) which on the other hand has diagonal subgroup SO(9)diag ⊂ SO(9) ⊗ SO(9).

Decomposing the level one spinor representation with respect to the smaller groups,

(256)︸ ︷︷ ︸
w.r.t SO(9,9)

= (16) ⊗ (16)︸ ︷︷ ︸
w.r.t SO(9)×SO(9)

= (9) ⊕ (84) ⊕ (126) ⊕ (36) ⊕ (1)︸ ︷︷ ︸
w.r.t SO(9)diag

, (3.17)

we end up with all the odd SO(9)diag forms, e.g. Aµ ∈ (9) and A[µνλ] ∈ (84) (and their

magnetic five- and seven form duals). In string theorists’ language, level ` = 0 contains

the degrees of freedom of the NS NS sector whereas ` = 1 covers the R R sector. See [8]

for further information on that topic.
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4 Cosmological billard and Kac Moody algebras

In this section, we will discuss a cosmological problem concerning spacelike big bang like sin-

gularities. Consider causally decoupled events close to such a cosmological singulariy: It was

conjectured by Belinskii, Khalatnikof & Lifshitz (BKL) that in this regime, spatial gradients

become negligible ∂x � ∂t such that the (generically partial and highly nonlinear) Einstein

equations asymptotically reduce to ordinary differntial equations in time.

t = 0

The material is mostly taken from [9].

4.1 The Kasner solution

The simplest realization of the BKL assumption is the Kasner solution (1926):

ds2 = − dt2 + t2p1 dx2 + t2p2 dy2 + t2p3 dz2 (4.1)

1 = p2
1 + p2

2 + p2
3 = p1 + p2 + p3 (4.2)

This solves Einstein’s equations and leaves a reparametrization freedom t 7→ t′(t). It is ho-

mogeneous but not isotropic, and singular at t = 0 (where we permute the pi such that

p1 < 0 < p2 < p3 < 1). Volumes at the singularity scale as

√
g ∼ tp1+p2+p3 = t . (4.3)

To actually test the BKL hypothesis, one has to introduce some curvature. Let us consider

homogeneous spaces of constant curvature. It turns out that the dynamics is characterized by

Kasner bounces

(p1, p2, p3) 7→ (p′1, p
′
2, p
′
3) , (4.4)

which can occur in two ways:
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• infinite number of Kasner bounces as t→ 0, i.e. chaotic oscillations

• finite number of bounces, ∃ t = ε such that the solution is Kasner like for 0 < t < ε with

pi = pi(~x) (which is referred to as the AVD regime for asymptotically velocity dominated)

BKL checked that the first (chaotic) case rather than the second one is realized in D = 4

gravity, in fact this holds in any dimension D ≤ 10.

The Einstein Hilbert action for a metric in the gauge

ds2 = −N2(t) dt2 + gmn(t) dxm dxn (4.5)

(with lapse function N(t)) is given by (see second exercise session)

SEH[N, g] ∼
∫

dt

√
g

N

(
Tr
{

g−1 ġ g−1 ġ
}
−
(
Tr{g−1 ġ}

)2)
. (4.6)

Here, g = det gij denotes the determinant of the spatial metric, g its matrix form and ġ ≡ dg
dt

.

In particular, assuming the diagonal Kasner type metric g
(K)
mn = δm,n exp(−2βm(t)), we can

simplify the action to

SEH[N, g(K)] ∼
∫

dt

√
g

N

D−1∑
a=1

(
dβa

dt

)2

−

(
D−1∑
a=1

dβa

dt

)2


=

∫
dt

1

Ñ
Gab β̇

a β̇b . (4.7)

This defines the rescaled lapse function Ñ = N√
g

and the DeWitt metric Gab in βa parameter

space, it is Lorentzian with signature (−,+,+, ...,+). A timelike direction in this space is

dβa ∼ (1, 1, ..., 1), this reflects the familiar fact that the gravitational action is not bounded

from below (even with Euclidean signature). It is this characteristic feature of gravity which

causes the Lorentzian nature of the emerging KM algebras.

It makes sense to introduce further time variables, first of all proper time T

dT := −N(t) dt ⇒ ds2 = − dT 2 + gmn
(
t(T )

)
dxm dxn (4.8)

such that the singularity occurs at T → 0+. Alternatively, the time coordinate τ defined by

dτ = − dT

T
⇒ τ ∼ − lnT (4.9)

has the advantage to considerably simplify the equation of motion (from varying the action

(4.7) with respect to the metric) to

d2βa

dτ 2
= 0 ⇒ βa(τ) = va · τ + βa0 . (4.10)
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By varying SEH with respect to Ñ , one obtains the Hamiltonian constraint

0 = Gab β̇
a β̇b = Gab v

a vb . (4.11)

In this description, the Kasner solutions correspond to free relativistic particle motion in β

space. The singularity corresponds to
∑

a β
a →∞ (or in the hyperbolic polar parametrization

βa = ργa with Gabγ
aγb = −1 to ρ2 →∞).

4.2 Iwasawa decomposition

Let us now drop the restriction on the metric to be diagonal. A convenient parametrization for

such a more general g is the Iwasawa decomposition of the metric

g = NTA2N (4.12)

into a diagonal part A and an upper triangular factor (the ∗ denoting undetermined entries)

N =


1 ∗ · · · ∗
0 1 · · · ∗

0 0
. . .

...

0 0 · · · 1

 . (4.13)

Then the Einstein Hilbert Lagrangian associated with the general action (4.6) becomes

LEH ∼ 1

Ñ

{
Gab β̇

a β̇b +
D−1∑
a<b

e2(βa−βb) (Ṅ a
mNm

b)
2

}
. (4.14)

A Hamiltonian description requires conjugate momenta

πa :=
∂LEH

∂β̇a
, pam :=

∂LEH

∂Ṅm
a

(4.15)

such that the Einstein Hilbert Hamiltonian is given by

HEH = Ñ

{
Gab πa πb +

D−1∑
a<b

e−2(βa−βb) (pm aN b
m)2

}
(4.16)

Gab πa πb =
D−1∑
a=1

π2
a −

1

d− 1

(
D−1∑
a=1

πa

)2

. (4.17)

According to a somewhat lengthy calculation in [9], this is a special case of a more general class

of Hamiltonians

H = Ñ

{
Gab πa πb +

∑
A

cA(Q,P, ∂β, ∂Q) e−2wA(β)

}
(4.18)
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where (Q,P ) denote the remaining phase space variables other than (β, π) and the wA are

linear functions wA(β) = Gabw
a
Aβ

b. It is convenient to represent the βa in terms of hyperbolic

polar coordinates (with radial variable ρ) as

βa = ρ γa , Gab γ
a γb = −1 , (4.19)

then the behaviour close to the singularity is given by the ρ→∞ limit:

lim
ρ→∞

e−2wA(β) = lim
ρ→∞

e−2ρwA(γ) =: Θ∞
(
−wA(γ)

)
(4.20)

The exponential suppression with increasing ρ leads to an infinitely high step function

Θ∞(x) =

 ∞ : x > 0

0 : x < 0
(4.21)

in the limit ρ→∞, i.e. the Hamiltonian (4.20) contains a potential with infinitely high walls

located at the zeros of wA(γ). These explain the Kasner bounces mentioned at the beginning

of this section. At the ρ→∞ singularity, the whole dynamics of the system is confined to the

γa phase space region where wA(γ) > 0 ∀ A. This is a wedge delimited by the hyperplanes

of vanishing wA(γ) = 0, and if it lies within the light cone of parameter space, then we find

chaotic bahviour.

4.3 The BKL assumption and Kac Moody algbras

In the previous subsections, we have explained consequences of the BKL assumption ∂x � ∂t:

Except for a finite number of them, the infinite number of degrees of freedom encoded in

the spatially inhomogeneous metric freeze when approaching the singularity, i.e. they tend to

some finite limits as T → 0. Equations (4.10) and (4.18), (4.20) show that the dynamics of

the remaining ”active” degrees of freedom (corresponding to the diagonal components of the

metric) could be asymptotically described in terms of a simple ”billard dynamics”.

The ”billard table” and its walls {γ ∈ RD−1 : wA(γ) = 0} can be identified with the fundamen-

tal Weyl chamber and the roots of some hyperbolic KM algebra (which is AE3 for pure gravity).

In particular, the minimal set of constraints wA(γ) ≥ 0 which imply all the others correspond

to the simple real roots. (The hyperplanes orthogonal to imaginary roots are spacelike, and

the latter are of no relevance for the Weyl group.) Again, one should stress that the indefinite

nature of the algebra is responsible for the action being unbounded from below.
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