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Based on joint work with B. deWit, and H. and M. Godazgar:

[dWN:NPB274(1986),1302.6219; GGN:1303.1013,1307.8295,1309.0266,1312.1061]

as well as ongoing work with O. Hohm and H. Samtleben

[GGNHS: hopefully to appear soon]



Motivation

There are many indications of exceptional geometrical
structures in maximal supergravity and M theory:

• Ubiquity of exceptional groups: E6(6), E7(7), E8(8), . . .
[Cremmer,Julia(1979)]

• Presence of form fields beyond standard geometry

• Extra (central charge) coordinates beyond D = 11?

has led to several attempts to generalise geometry

• Double Field Theory [Siegel(1992);Hull(2005);Hohm,Hull,Zwiebach(2010),...]

• Generalised geometry (and ‘non-geometry’) [Berman,Cederwall,

Kleinschmidt,Thompson(2013); Coimbra,Strickland-Constable,Waldram(2014);...]

• Exceptional geometry [dWN(1986,2001);HN(1987);KNS(2000);Hillmann(2009);

Berman,Goadazgar,Perry,West(2011);Coimbra,Strickland-Constable,Waldram(2011); GGN(2013);

Hohm,Samtleben(2013)]



Generalised Geometry

Idea: ‘lift’ exceptional structures found in lower di-
mensions back up to D = 11 (or D = 10).

• Extend tangent space in accordance with R symmetries [dWN(1986);HN(1987)]

• Extend tangent space to include p-forms [Hitchin(2003);Gualtieri(2004)]

• Include windings of M2,M5, and KK branes [Hull(2007);Pacheco,Waldram(2008)]

• Extra (central charge) coordinates

[...,Siegel(1993);dWN(2001);West(2003);Hillmann(2009);Berman,Perry(2011)]

Exceptional duality symmetries necessitate new geo-
metric structures (vielbeine, connections,...) and (per-
haps) extra dimensions beyond D = 11 → two options:

• Postulate new structures ad hoc (‘top-down approach’).

• Derive them by re-writing original theory (‘bottom-up’).

• In either case must ascertain full consistency, either intrinsi-

cally or by comparison with original theory.



Cartan’s Theorem (1909)

... states that the most general algebra of vector fields on a

manifold consists (essentially) of the following three: diffeome-

orphisms, volume preserving diffeomorphisms, or symplectomor-

phisms. Or: there are no exceptional algebras of vector fields!

Thus, if a generalised vielbein VMA transforms according to

VMA(y) → V ′MA(y′) =
∂y′M

∂yN
VNA(y)

we can never arrange things such that

∂y′M(y)

∂yN
∈ E7(7) ⊂ GL(56,R) for all y

⇒ extra coordinates are not for real!

... as was to be expected since there appear to ex-
ist no consistent supergravity theories beyond D = 11
dimensions (at least, no one has found any so far...)!



More Motivation

What is to be gained from re-writing a known theory
(D = 11 supergravity [CJS(1978)]) into a form that is (or is
not??) on-shell equivalent to the original theory?

• Derivation of non-linear Kaluza-Klein ansätze

– Consistency of S7 compactification [dWN(1987),Pilch,HN(2012),GGN(2013)]

– Scherk-Schwarz compactifications [Samtleben(2008);GGN(2013)]

• Understanding origin of embedding tensor from higher
dimensions and compactification.

• ... and perhaps: new maximal supergravities?
[Dall’Agata,Inverso,Trigiante(2012);dWN(2013)]

Also, crucial new insights for (a long term project!)

• Infinite dimensional extensions: E10 [Julia(1983);DHN(2002),...]

or E11 [West(2001)] and emergent space-time?



Reminder: E7(7) from dimensional reduction

Starting from D = 11 supergravity [Cremmer,Julia,Scherk (1978)]

split coordinates as zM = (xµ, ym) and perform 4+7 split
of bosonic fields GMN and AMNP :

GMN : Gmn(28)⊕Gmµ(7)⊕Gµν(1)

AMNP : Amnp(35)⊕ Aµmn(21)⊕ Aµνm(7)⊕ Aµνρ(1)

To get proper count of scalar degrees of freedom →
dualize seven 2-form fields Aµνm [Cremmer,Julia (1979)]

28 + 35 + 7 = 70→ V(x) ∈ E7(7)/SU(8)

Key Question: is this structure peculiar to torus re-
duction, or can it be lifted back up to D = 11?

And: is there a way to reformulate D = 11 (or IIA,
IIB,...) supergravity that makes these hidden symme-
tries manifest? [→ B.deWit and HN,NPB274(1986)363; HN,PLB187(1987)316]



Dualities in eleven dimensions

3-form/6-form duality

FM1···M7
= 7!D[M1

AM2···M7] + 7!

√
2

2
A[M1M2M3

DM4
AM5M6M7]

−
√
2

192
iǫM1···M11

(
ΨRΓ̃

M8···M11RSΨS + 12Ψ
M8Γ̃M9M10ΨM11

)

defines dual 6-form A(6) ≡ AMNPQRS, with

δAMNPQRS = − 3

6!
√
2
ε̄ΓMNPQRΨS] +

1

8
ε̄Γ[MNΨPAQRS]

Relations are valid on-shell and at full non-linear level.

By contrast, dualisation of gravity works only at linear
level, and without matter sources:

GMN = ηMN + hMN : hMN ←→ hM1···M8|N

In particular, ‘dual supergravity’ does not even exist
at linear level. [Bergshoeff,deRoo,Kerstan,Kleinschmidt,Riccioni(2008)]



Existing no go theorems suggest that D = 11 Lorentz
covariance must be abandoned if interactions are to be
included consistently! [Bekaert,Boulanger,Henneaux(2003)]

⇒ more 4+7 decompositions:

AMNPQRS : Amnpqrs(7)⊕ Aµmnpqr(21)⊕ Aµνmnpq(35)⊕Aµνρmnp(35)⊕ · · ·
hM1···M8|N : ∅ ⊕ hµmnpqrst|u(7)⊕ hµνmnpqrs|t(49)⊕ hµνρmnpqr|s(147)⊕ · · ·

Now we see that also fields other than scalars can be
re-packaged into E7(7) multiplets in eleven dimensions:

Vectors : 7⊕ 21⊕ 2̄1⊕ 7̄ = 56 (electromagnetic duality)

2-forms : 7⊕ 35⊕ 49⊕ · · · = 133 (E7(7) Noether current)

3-forms : 1⊕ 35⊕ 147⊕ · · · = 912 (embedding tensor)

→ Beyond kinematics main challenge is to show that full D = 11

theory (supersymmetry variations and field equations) can be

rewritten in an E7(7)×SU(8) covariant way!



NPB274(1986)363 in short

4+7 decomposition of elfbein (in triangular gauge)

EM
A(x, y) =

(
∆−1/2e′µ

α Bµ
mem

a

0 em
a

)
, ∆ ≡ det em

a

Similar redefinitions of fermions → chiral SU(8)

ϕ′µ = ∆−1/4(iγ5)
−1/2e′µ

α(Ψα − 1
2
γ5γαΓ

aΨa) , ϕµ
A or ϕµA ≡ 1

2
(1± γ5)ϕ′µA

χ′ABC = 3
4

√
2i∆−1/4(iγ5)−1/2Ψa[AΓ

a
BC] , χABC or χABC ≡ (1± γ5)χ′ABC

⇒ δBµ
m =

√
2

8
emAB

[
2
√
2εAϕBµ + εCγ

′
µχ

ABC
]
+ h.c.

with generalised vielbein ≡ GV

emAB = i∆−1/2(ΦTΓmΦ)AB , Φ(x, y) ∈ SU(8)

whence emAB becomes an SU(8) tensor!

Tangent space symmetry: SO(1, 10) → SO(1, 3)× SU(8)



Generalization to remaining 21 + 21 + 7 = 49 vectors: [dWN,GGN(2013)]

Bµm = −1
2
Bµ

m, Bµmn = −3
√
2
(
Aµmn −Bµ

pApmn

)
,

Bµmn = −3
√
2 ηmnp1...p5

(
Aµp1···p5 −Bµ

qAqp1···p5 −
√
2

4

(
Aµp1p2 − Bµ

qAqp1p2

)
Ap3p4p5

)

Bµm = −18 ηn1...n7
(
Aµn1...n7,m + (3c̃− 1) (Aµn1...n5 −Bµ

pApn1...n5)An6n7m

+ c̃An1...n6 (Aµn7m − Bµ
pApn7m) +

√
2

12
(Aµn1n2 −Bµ

pApn1n2)An3n4n5An6n7m

)

where Bµm = dual (magnetic) graviphoton. Requiring

δBµmn =

√
2

8
emnAB

[
2
√
2εAϕBµ + εCγ

′
µχ

ABC
]
+ h.c.

leads to more generalised vielbein components ⇒ extend emAB to

full 56-plet (emAB, emnAB, e
mn
AB, emAB) ≡ 56-bein in eleven dimensions!



56-bein in eleven dimensions

VmAB =

√
2i

8
emAB = −

√
2

8
∆−1/2ΓmAB ≡ Vm8

AB ≡ −V8m
AB,

VmnAB = −
√
2

8
∆−1/2

(
ΓmnAB + 6

√
2AmnpΓ

p
AB

)
,

VmnAB = −
√
2

8
· 1
5!
ηmnp1···p5∆−1/2

[
Γp1···p5AB + 60

√
2Ap1p2p3Γp4p5AB

− 6!
√
2
(
Aqp1···p5 −

√
2

4
Aqp1p2Ap3p4p5

)
ΓqAB

]
,

VmAB = −
√
2

8
· 1
7!
ηp1···p7∆−1/2

[
(Γp1···p7Γm)AB + 126

√
2 Amp1p2Γp3···p7AB

+ 3
√
2× 7!

(
Amp1···p5 +

√
2

4
Amp1p2Ap3p4p5

)
Γp6p7AB

+
9!

2

(
Amp1···p5 +

√
2

12
Amp1p2Ap3p4p5

)
Ap6p7qΓ

q
AB

]



V(e, A(3), A(6)) has all the requisite properties of an E7(7) matrix:

VMNAB ≡ (VMNAB)∗ , VMNAB ≡ (VMN
AB)

∗

where we have combined the GL(7) indices into SL(8) indices

VMN ≡
(
Vmn,Vm8

)
, VMN ≡

(
Vmn,Vm8

)

With proper E7(7) indices M,N , . . . in 56 representation

VM ≡
(
VMN,VMN

)
, VM = ΩMNVN ≡

(
VMN,−VMN

)

and symplectic form ΩMN

VMABVN AB − VMABVNAB = iΩMN ,

ΩMNVMABVN CD = i δABCD,

ΩMNVMABVNCD = 0 ⇒ ∈ Sp(56,R)
(for E7(7) have to work a little harder...)

⇒ E7(7) covariant form of vector transformation in D = 11:

δBMµ = iVMAB

(
ε̄Cγµχ

ABC + 2
√
2ε̄AψBµ

)
+ h.c.



Extending general covariance

Standard behaviour under internal diffeomorphisms ξm = ξm(x, y):

δVmAB = ξp∂pVmAB − ∂pξ
mVpAB −

1

2
∂pξ

pVmAB

δVmnAB = ξp∂pVmnAB − 2 ∂[mξ
pVn]pAB −

1

2
∂pξ

pVmnAB

δVmnAB = ξp∂pVmnAB + 2 ∂pξ
[mVn]pAB +

1

2
∂pξ

pVmnAB

δVmAB = ξp∂pVmAB + ∂mξ
pVpAB +

1

2
∂pξ

pVmAB

Due to its explicit dependence on A(3) and A(6) V also transforms

under 2-form gauge transformations with parameter ξmn(x, y):

δAmnp = 3! ∂[mξnp] , δAmnpqrs = 3
√
2 ∂[mξnpAqrs] ⇒

δVmAB = 0, δVmnAB = 36
√
2 ∂[mξnp] VpAB,

δVmnAB = 3
√
2 ηmnpqrst∂pξqr VstAB, δVmAB = 18

√
2 ∂[mξnp] VnpAB



Idem for 5-form gauge transformations

δAmnp = 0 , δAmnpqrs = 6! ∂[mξnpqrs] ⇒

δVmAB = δVmnAB = 0, δVmnAB = 6 · 6!
√
2 ηmnp1···p5∂[qξp1···p5]VqAB,

δVmAB = 3 · 6!
√
2 ηn1···n7∂[mξn1···n5]Vn6n7AB

These formulas can be neatly summarised as

δΛVMAB = L̂ΛVMAB

with ΛM ≡ (ξm, ξmn, ξ
mn, ξm) and generalised Lie derivative:

L̂ΛXM =
1

2
ΛN∂NXM + 6(tα)M

N (tα)P
Q∂QΛ

PXN +
1

2
w ∂NΛ

NXM

⇒ unifies internal diffeomorphisms and tensor gauge transfor-

mations and suggests extra coordinates: 4+56 instead of 4+7?

But only consistent with Section Constraint:

tMNα ∂M ⊗ ∂N = ΩMN∂M ⊗ ∂N = 0 ⇔ ∂M = 0 for M 6= m

[Coimbra,Strickland-Constable,Waldram(2012);Berman,Cederwall,Kleinschmidt,Thompson(2013)]

Back to seven (or six) internal coordinates!



Generalised Vielbein Postulate = GVP

56-bein obeys a generalisation of the usual GVP, both for external

and internal dimensions. For external dimensions, we have

∂µVMAB + 2L̂BµVMAB +QC
µ [AVMB]C = PµABCDVMCD

where L̂Λ was defined above. To be compared with D = 4 relation

∂µVM ij − gBµPXPMN +Qk
µ[iVM j]kVN ij = Pµ ijklVMkl

where XM generate the gauge algebra ⇒ furnishes higher dimen-

sional origin of embedding tensor ΘMα via

XMN
P ≡ ΘM

α(tα)N
P

This correspondence has been checked for S7 compactification

(where gauging is purely electric) [GGN:1309.0266] and Scherk-Schwarz

compactifications [GGN:1312.1061] (where gauge fields are usually both

electric and magnetic).

→ may thus explain new SO(8) gaugings [Dall’Agata,Inverso,Trigiante,

PRL109(2012)201301] via U(1) duality rotation in D = 11!



Internal GVP à la dWN and GGN

∂mVMAB − ΓmM
NVN AB + QC

m[AVMB]C = PmABCDVMCD

with SU(8) connection

QmA
B = −1

2
ωmab Γ

ab
AB +

√
2

48
Fmabc Γ

abc
AB +

√
2

14 · 6!Fmabcdef Γ
abcdef
AB ,

and ‘non-metricity’

PmABCD =

√
2

32
FmabcΓ

a
[ABΓ

bc
CD] −

√
2

56 · 5!Fmabcdef Γ
a
[ABΓ

bcdef
CD]

E7(7)-valued generalised ‘affine’ connection ΓmMN = Γm
α(tα)MN :

(Γm)n
p ≡ −Γpmn + 1

4δ
p
nΓ

q
mq, (Γm)8

8 = −3
4 Γ

n
mn,

(Γm)8
n =
√
2ηnp1···p6 Ξm|p1···p6, (Γm)

n1···n4 = 1√
2
ηn1···n4p1p2p3 Ξm|p1p2p3

where

Ξp|mnq ≡ DpAmnq −
1

4!
Fpmnq ⇒ Ξ[m|npq] = 0

Ξp|m1···m6
≡ DpAm1···m6

− 1

7!
Fpm1...m6

+ . . . ⇒ Ξ[p|m1···m6] = 0



• These connections (as determined from D = 11 su-
pergravity) satisfy all covariance properties!

• but have non-vanishing components only along seven
dimensions, vanish along all other directions.

So what about connection coefficients for M 6= m

⇒ ∂MVN AB−ΓMN
PVP AB +QC

M[AVN B]C = PMABCDVNCD ??

Possible (and even required, see below), but:

• Connections become highly ambiguous, and are not
fixed by requiring absence of (generalised) torsion.

• Full (generalised) covariance incompatible with ex-
pressibility in terms of V and ∂V only.

• Remarkably, supersymmetric theory is insensitive
to these ambiguities and other difficulties!



Torsion

Definition from generalised geometry [CSW(2014);Cederwall,Edlund,Karlsson(2013)]

TNKM = ΓNK
M − 12PMK

P
QΓPN

Q + 4PMK
P
NΓQP

Q

This is the 912 representation in 56 × 133→ 56 ⊕ 912 ⊕ 6480.

A simple component-wise calculation using the components of Γ

shows that the generalised torsion does indeed vanish, e.g.

Tm8n8
p8 = Γm8n8

p8 − 48Pp8n8
q8
r8Γq8m8

r8 + 16Pp8n8
q8
m8Γr8 q8

r8

= Γ[mn]
p − 2

3
Γr[m

rδpn] = 0

if ordinary torsion Γ[mn]
p = 0. Similarly (using Ppqn8

r8
st = − 1

12δ
pq
n[sδ

r
t])

Tm8n8
pq = Γm8n8

pq + 2Γr8m8
r[pδq]n

= 3
√
2ηpqt1...t5

(
Ξm|nt1...t5 − Ξn|mt1...t5 + 5Ξt1|mnt2...t5

)

= 21
√
2ηpqt1...t5Ξ[m|nt1...t5] = 0 etc.

⇒ irreducibility properties of ΓMNP are crucial for TMNP = 0 !

[GGNHS, to appear]



Absorbing non-metricity
[Hehl,VonDerHeyde,Kerlick,Nester(1976); M.Perry, private communication]

Cf. GVP of ordinary differential geometry

∂men
a + ωm

a
ben

b − Γpmnep
a = 0

But there is a more general expression

∂men
a + ωm

a
ben

b − Γpmnep
a = Tmn

pep
a + Pm

a
b en

b

with torsion Tmn
p and non-metricity Pmnp ≡ 1

2Dmgnp, which can be

absorbed by redefinitions

Γpmn −→ Γpmn − P(m
c
|d| en)

depc,

Tmn
p −→ Tmn

p − P[m
c
|d| en]

depc

Idem for exceptional geometry:

ΓMN
P −→ Γ̃MN

P = ΓMN
P − i

(
VNABPMABCDVP CD−VN ABPM

ABCDVPCD
)

so that the internal GVP becomes

∂MVN AB − Γ̃MN
PVP AB + QC

M[AVN B]C = 0



Supersymmetric theory

Supersymmetry variations of bosonic fields

δeµ
α = ε̄AγαψµA + ε̄Aγ

αψaµ

δBMµ = iVMAB

(
ε̄Cγµχ

ABC + 2
√
2ε̄AψBµ

)
+ h.c.

δVMAB = 2
√
2VMCD

(
ε̄[AχBCD] +

1

24
ǫABCDEFGH ε̄

EχFGH
)

are derived from D = 11 SUGRA in [dWN,GGN], while pos-
tulated in recent approaches to exceptional geometry.

To establish agreement for the supersymmetry varia-
tions of fermions is more tricky! Recall [dWN(1986)]

δψAµ ∝ · · · + emAB∂m(γµεB) +
1

2
emABQmB

CγµεC −
1

2
emCDP

ABCD
m γµεD

δχABC ∝ · · · + em[AB∂mε
C] − 1

2
em[ABQmD

C]εD −

− 1

2
emDEP

DE[AB
m εC] − 2

3
emDEP

ABCD
m εE



To absorb non-metricity PABCD
m in these variations, must redefine

SU(8) connection [GGNHS, to appear]

QmA
B → QMA

B ≡ QMA
B + QMA

B

where

QMA
B = RMA

B + UMA
B

with

RMA
B ≡ 4i

3

(
VnBCVMDE PnACDE + VnACVMDE Pn

BCDE
)

+
20i

27

(
VnDEVMBC PnACDE + VnDEVMAC Pn

BCDE
)

− 7i

27
δA

B
(
VnCDVMEF PnCDEF + VnCDVMEF Pn

CDEF
)

UMA
B = VMCD u

CD,B
A − VMCD uCD,A

B

where u[CD,B]
A ≡ 0 , uCA,BC ≡ 0 in 1280 of SU(8).

Redefinition requires SU(8) connection components alongM 6= m!



Leads to very compact expressions:

δψAµ ∝ · · · + VMABDM(Q)BC(γµεC)
δχABC ∝ · · · + VM [ABDM(Q)εC]

Also: requires extra components QM for M 6= m and

ΓMN
P → Γ̂MN

P ≡ Γ̃MN
P + i

(
VPABQMA

CVNBC − VPABQMA
CVNBC

)

After all these operations we are left with fully covariant and

torsion-free connections and a standard GVP

∂MVN AB − Γ̂MN
PVP AB + QC

M[AVN B]C = 0

NB: absence of torsion does not fix affine connection uniquely,

irremovable ambiguity is in 1280 of SU(8).

[Coimbra,Strickland-Constable,Waldram(2012);Cederwall,Edlund,Karlsson(2013);GGNHS(2014)]



Conclusions

• Starting from ‘old’ results [dWN(1986);GGN(2013)] one can con-
struct generalised SU(8) and affine connections that
satisfy all required covariance properties.

• These cannot be written in terms of just V and ∂V,
unlike in General Relativity, even with zero torsion.

• SUSY theory smartly picks just the right combina-
tions which are insensitive to ambiguities/difficulties
encountered in generalised geometry constructions.

• Only in this supersymmetric context ‘old’ results
agree with more recent constructions! [GGNHS(2014)]

• New theories by ω-deformations?


