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Interfaces in 2D critical statistical models

The Ising interfaces

Hull percolation

Self-avoiding loops in SAW

Several more statistical systems: The Q-state Potts model, Spanning tree, Loop-erased
random walk etc.

Probability theory

The scaling limit of interface in 2D critical statistical models is expected to converge to
Schramm-Loewner Evolution SLEκ Schramm 99

Conformal Loop Ensemble CLEκ ∼ Collection of SLEκ
Camia, Newman, Sheffield, Werner, Ang, Holden, Sun, ...

QFT and Integrability

Interfaces in statistical models are described by Loop models
Temperley, Lieb 71; Baxter, Kelland, Wu 76

Critical loop models can be described by conformally invariant QFT, known as 2D CFT
Nienhuis, Cardy, Saleur, Zuber, Di Francesco, ...
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Loop model on the hexagonal lattice

a.ka. "the O(n) loop model" by Nienhuis 82

Zloop(K , n) =
∑

non-intersecting loops

n#(loops)K #(bonds)

=

∫
Sn−1

∏
i

dSi
∏
〈i,j〉

(1 + KSi Sj )

n→ 1: Interfaces of the Ising spins.

n→ 0: self-avoiding walk

∼ n2K 22

Connection probabilities/ Correlation functions:

z2z1 , z2z1

z3

. . . (1)

We are interested in finding their closed expressions.
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The scaling limit and phase transition

K = 0 K = Kc (The dilute phase)

K > Kc (The dense phase)

Second-order phase transition at

Kc = (2 +
√

2− n)−
1
2 (2)

Proof for Kc at n = 0 by Duminil-Copin and Smirnov 10

z2z1 ∼
1

(z1 − z2)∆(n)
(3)

Changes in critical exponents for K > Kc

Expect full conformal symmetry in both dilute and dense phases
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Critical loop models can be described by 2D CFT (Conformal field theory)

c = 13− 6β2 − 6β−2 and β2 =

{
1
π

arccos(−n/2) ∈ [1, 2] dilute
2− 1

π
arccos(−n/2) ∈ (0, 1) dense

(4)

The corresponding 2D CFT is non-unitary.

Expected to converge to CLEκ.

n c κ = 4/β2 Models

0 0 8
3 Self-avoiding walk (Dilute)

1 0 6 Percolation (Dense)

1 1
2

16
3 Ising domain walls (Dilute)

−2 −2 2 Loop-erased random walk (Dilute)

(5)

Another universality class at K =∞ where we expect
W3 symmetry Reshetikhin 91 and Dupic, Estienne, Ikhlef 2016
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Transfer matrix approach Large t ∼ 500

L = 8 (6)

Rewrite the partition function as Zloop = Tr(e−H ),

H = −K
L∑

i=1

ei where ei are generators of the dilute Temperley-Lieb algebra (7)

For instance, see Grimm 95 and Belletête, Saint-Aubin 11.

Rewrite the partition function Z as the product of the transfer matrix T

Z = 〈finall|T t |initial〉 with T =

( L∏
i=1

R2i,2i+1

)( L∏
i=1

R2i−1,2i

)
. (8)

where

Rk,k+1 = + K
[

+

]
+ K 2

[
+ + + +

]
.

(9)
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Three-point functions

Ẑ (l1, l2, l3; K ) = Z with

Insert l1 consecutive lines at the bottom

Insert l2 consecutive lines at the middle

Insert l3 consecutive lines at the top

For example, l1 = 2

limL→∞
Ẑ (2,2,2;Kc )

Z

We are interested in the universal ratios

U(l1, l2, l3; K ) = Ẑ (l1, l2, l3; K )

√
Z

Ẑ (l1, l1, 0; K )Ẑ (l2, l2, 0; K )Ẑ (l3, l3, 0; K )
(10)

limL→∞ U(0, 0, 0; Kc) ∝ Liouville 3pt Jacobsen, Saleur, Ikhlef 15

Computing limL→∞ U(l1, l2, l3; Kc)

Use CFT to predict the closed expression.

Use transfer matrix approach to compute U(l1, l2, l3; Kc) for large L.

Compare results from the two different approaches.
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2D CFT (Conformal field theories)

2D Quantum field theories with conformal symmetry described by

[Ln, Lm] = (n −m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (11)

where c is the central charge.

What are CFTs exactly? Let Oj (z, z̄) be local operators that transform in Virasoro reps,

CFT = {Oi (z, z̄)|Oi (z, z̄)× Oj (z, z̄) ∝
∑

k⊂CFT

Cijk Ok (z, z̄)} (12)

Correlation functions are strongly constrained,

〈O∆1 (z1)V∆1 (z2)〉 = δ∆1,∆2 |z12|−2∆

〈O∆1 (z1)V∆2 (z2)O∆3 (z3)〉 =
C123

|z12|∆1+∆2−∆3 |z13|∆1+∆3−∆2 |z23|∆2+∆3−∆1

All higher-point functions can be written in terms of the three-point functions
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CFT describing critical loop models
Spectrum from the Coloumb Gas formalism
Di Francesco, Saleur, Zuber 87; Ikhlef, Jacobsen, Saleur 15

V D
P : (∆(P),∆(P)) for P ∈ C , (13a)

V(r,s) : (∆(r,s),∆(r,−s)) for r ∈
N∗

2
and s ∈

Z
r
, (13b)

where

∆(P) =
c − 1

24
+ P2 with ∆(r,s) = ∆(P(r,s)) and P(r,s) =

1
2

(rβ − sβ−1) . (14)

Diagonal field V D
∆ = loop-insertion operator

V D
P

w(P) = 2 cos(2πP)

(15)

Non-diagonal field V(r,s) = line-insertion operator

123

2r
V(r,s)

(16)
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Building correlation functions

Conjecture: Correlation functions are parametrized by combinatorial maps
Grans-Samuelsson, RN, Jacobsen, Ribault, Saleur 23

Combinatorial maps = graphs with no crossing + cyclic symmetry of incident edges

〈
4∏

i=1

V
( 1

2 ,0)
(zi , z̄i )〉 =

z2

z1 z4

z3

+ + (17)

〈
4∏

i=1

V(1,0)(zi , z̄i )〉 =
z2

z1 z4

z3

+ + +

z2

z1 z4

z3

+

+ . (18)

The critical limit of U(l1, l2, l3; Kc) is expected to be

lim
L→∞

U(l1, l2, l3; Kc) ∝ 〈V
(

l1
2 ,0)

(0)V
(

l2
2 ,0)

(∞)V
(

l3
2 ,0)

(1)〉 (19)
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Computing correlation functions

Solve the crossing-symmetry equation of 〈V1V2V3V4〉

∑
V∈S(s)

D(s)
V︸︷︷︸

Unknown

2
V

3

1 4

s-channel

︸ ︷︷ ︸
Completely known
RN and Ribault 20

=
∑

V∈S(t)

D(t)
V

2

V

41

3
t-channel

=
∑

V∈S(u)

D(u)
V

2

V

41

3
u-channel

(20)

lim
L→∞

U(l1, l2, l3; Kc) can be extracted from DV

The crossing equation + Other constraints =⇒
D(r,s) = rational functions in n × Barnes’ double Gamma functions
Jacobsen, RN, Ribault 23
Other constraints from the assumptions:

I Single-valuedness of 〈V1V2V3V4〉
I Analyticity of model’s parameters
I Conformal symmetry
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Three points on the same loop 〈V(1,0)V(1,0)V(1,0)〉

lim
L→∞

U(2, 2, 2; Kc) =
Γβ(β + β−1)6Γβ(2β)3

Γβ

(
1

2β + β
)6

Γβ

(
1

2β + 2β
)2

Γβ(2β + 2β−1)

1
π(β−2 − β2)

×

√
sin(πβ2) sin(πβ−2)

2 cos(πβ2)
(21)

where Γβ(x) has the integral representation

Γβ(x) = exp

{∫ ∞
0

dt
t

(
e−xt − e−

1
2 (β+β−1)

(1− e−βt )(1− e−β−1t )
−

( 1
2 (β + β−1)− x)2

2
e−t

−
1
2 (β + β−1)− x

t

)}
. (22)

limL→∞ U(2, 2, 2; Kc) perfectly agrees with the CLE 4
β2

result by Xin Sun et al.
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Comparison with other methods

limL→∞ U(2, 2, 2; Kc) perfectly agrees with the transfer matrix result on lattice of size L ≥ 7.

0.15 0.20 0.25 0.30 0.350.9975

0.9980

0.9985

0.9990

0.9995

1.0000

Y-axis =
limL→∞ U(2, 2, 2; Kc)

U(2, 2, 2; Kc) on lattice of size L = 7
, X-axis =

β2

4

The case β2 = 2
3 describes the probability of having 3 points on the boundary of percolation

cluster.
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Walking through 3 points 〈V
( 1

2 ,0)
V(1,0)V( 1

2 ,0)
〉
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0.9996

0.9997

0.9998

0.9999

1.0000

Y-axis =
limL→∞ U(1, 2, 1; Kc)

U(1, 2, 1; Kc) on lattice of size L = 7
,

X-axis =
β2

4

The case β2 = 3
2 describes the probability of self-avoiding walk through 3 points.
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3 Pivotal points 〈V(2,0)V(2,0)V(2,0)〉

0.15 0.20 0.25 0.30 0.35

1.010

1.012

1.014

1.016

1.018

Y-axis =
limL→∞ U(4, 4, 4; Kc)

U(4, 4, 4; Kc) on lattice of size L = 7
,

X-axis =
β2

4

For β2 = 2
3 , this case describes the probability of 3 points sit at the pivot points of percolation

clusters.

17 / 18



Main results and outlook

Conjecture :
Jacobsen, RN, Ribault, Roux

lim
L→∞

U(l1, l2, l3; Kc) = C
(

l1
2 ,0)(

l2
2 ,0)(

l3
2 ,0)

√√√√√C(0,1−β2)(0,1−β2)(0,1−β2)∏3
i=1 C

(
li
2 ,0)(

li
2 ,0)(0,1−β2)

(23)

with
C(r1,s1)(r2,s2)(r3,s3) =

∏
ε1,ε2,ε3=±

Γ−1
β

(
β+β−1

2 + β
2

∣∣∑
iεi ri
∣∣+ β−1

2
∑

iεi si

)
(24)

C(r1,s1)(r2,s2)(r3,s3) reduce to Liouville three-point functions for r1 = r2 = r3 = 0

C(r1,s1)(r2,s2)(r3,s3) also appears in the E-series minimal models.

Rewrite higher-point functions as these 3-point functions
I 1-point functions on the torus.
I 2-point functions on the disk.
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