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Motivations & Premises

The construction of supersymmetric field theories faces essential
difficulties, e.g. supersymmetry is only represented on-shell / up to
gauge transformations.
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Motivations & Premises

The construction of supersymmetric field theories faces essential
difficulties, e.g. supersymmetry is only represented on-shell / up to
gauge transformations.

¢ Quantization: desirable for the symmetry to act on the
full space of fields without regard to the dynamics;

e Geometrization: reasonable to think of supersymmetry as
arising from the action of particular geometric symmetry on
an appropriate (super)space;

> extending the space of fields / superfield formulation

How to... Superfield Formulations

Harmonic Superspace (Galperin, Ivanov, Ogievetsky, Sokatchev...),
Rheonomy (Castellani, D'Auria, Fre...), Pure Spinors (Nillson &
Howe, Berkouvits...)
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Motivations & Premises
A View on Pure Spinors Superfield Formalism
Provide a view on pure spinor superfield formalism
® amenable to mathematicians;

® yields susy “multiplets” as understood by physicists.

Examples
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Motivations & Premises
A View on Pure Spinors Superfield Formalism
Provide a view on pure spinor superfield formalism
® amenable to mathematicians;

® yields susy “multiplets” as understood by physicists.

Structure of the talk
1. Definition of multiplet;
2. Nilpotence variety and pure spinor superfield formalism;
3. Examples;

4. (If time permits: general results and considerations).

e arXiv2404.07167 w/ R. Eager, R. Senghaas, J. Walcher;
e arXiv:2206.08388 w/ F. Hahner, |. Saberi, J. Walcher;
e see also arXiv:2111.01162
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Multiplets - a first encounter in physics

A multiplet is a representation of the supersymmetry algebra g of
a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one
into another under the action of g: they are the building blocks of
actions of physical theories.
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Multiplets - a first encounter in physics

A multiplet is a representation of the supersymmetry algebra g of
a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one
into another under the action of g: they are the building blocks of
actions of physical theories.

A minimal supersymmetric Lagrangian in d = 4 reads
zﬁim[ = _895 ' a@ + I’JJ&’L/} + ﬁF

v~ The triplet (¢, v, F) is a multiplet, called chiral multiplet.
v~ Supersymmetry transformations of (¢, 1, F) read

5,0 = e, 0,9 = iedp+eF, O6,F = —iedyp




Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples
[o]e] Oe0000 0000000000 000000000 00000000

Multiplets - toward a mathematical definition

Obviously, a multiplet is a representation-theoretic notion, though it is
not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V/, some pieces
of data should be part of our definition:

e Bosonic and Fermionic fields are sections of vector bundles on
the spacetime V' (with parity / Z/2-grading);

® Supersymmetry transformations are given by an action of a
certain (super)algebra on these sections.
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Multiplets - toward a mathematical definition

Obviously, a multiplet is a representation-theoretic notion, though it is
not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V/, some pieces
of data should be part of our definition:

e Bosonic and Fermionic fields are sections of vector bundles on
the spacetime V' (with parity / Z/2-grading);

® Supersymmetry transformations are given by an action of a
certain (super)algebra on these sections.

On the other hand, attention must be paid...

In relevant examples, the representation of the supersymmetry
algebra is not strict!
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The N =1, d = 4 Vector Multiplet

This multiplet consists of the following collection of fields:

1. Ae Q(R*) is a connection 1-form;

2. (A A) e CP(R4 (S, @S_)) are spinors of opposite chirality;
3. D e C*(R*) is an auxiliary field;

4. ce C*(R*) is a ghost field (of ghost degree —1 v~ gauge).

® The ghost field has a non-zero differential:
d
c—> dc <« 55mA# = aHC

® The ghost field has higher-order supersymmetry transformation:

QRQAVAS Lo 5A > 5,0 = (ed"D)A,.
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The N =1, d = 4 Vector Multiplet

g-module structure on the vector multiplet

In physics lingo, the higher-order transformation of c is a closure term for
the supersymmetry action: in this case, we say that “the supersymmetry

action only closes up to gauge transformations”.

Setting p' : g® — End(€)[1 — i], we have
0AL = eaux + o€,

pl-terms e~ o\ = €D, 6\ =—eD,
0,D =0,

pP-terms e~ §.c = (eatE)A,.
The relation between p! and p? is given by
[pl(x)apl(}/)] - pl([xvy]) = _[d7p2(xa.y)]'

In other words, p? provides a homotopy for the failure of p! to be
a strict g-action v~ we should consider weaker / L;-action!
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Multiplet - a (tentative) mathematical definition

Definition (g-Multiplet)
Let (E, D) be an affine dgs vector bundle on V = RY, let g be a super
L-algebra together with an injective map ¢ : Aff(V) — g.

A g-multiplet is a local g-module structure (E, D, p) on (E, D) such that
the pullback of the module structure along ¢ : Aff(V) — g agrees with
the natural action on sections.

1. Affine : the total space of E carries an action of Aff(V) = R? x so0(d)
such that its projection 7 : E — V is equivariant with respect to the
action of 2ff(V) on V;

2. dgs vector bundle (E,D): Z x Zj-graded vector bundle
E =@, (EX ® EX) equipped with a collection of differential operators
D: &k — X1 such that Do D = 0, where X := T (X, EX) are the
C*-sections of EX.

3. Local g-module structure : super Ly,-map p: g — (D(€),[D,—])
with D(E) := {x € End(£) : x is a differential operator} < End(E).



Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples
00000e

Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine
algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras p, but - as
defined - the notion is broader...

1. Let b be a Lie algebra and let g = h @ Aff(V). A g-multiplet contains
a collection of fields transforming in a local representation of fj v~
“flavor symmetry” multiplets.

2. The Lie algebra €Conf(V) of (super)conformal transformations on V
contains Aff(V) v Conf(V)-multiplets.
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Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine
algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras p, but - as
defined - the notion is broader...

1. Let b be a Lie algebra and let g = h @ Aff(V). A g-multiplet contains
a collection of fields transforming in a local representation of fj v~
“flavor symmetry” multiplets.

2. The Lie algebra €Conf(V) of (super)conformal transformations on V
contains Aff(V) v Conf(V)-multiplets.

Question : how to construct — and possibly “classify” — multiplets?
(i.e. how to provide the building blocks for supersymmetric
theories?)
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Pure Spinor Superfield Formalism & Nilpotence Variety
The Pure Spinor Superfield formalism is a machinery that

{ Bundles on } s { Multiplets for }

Ye p
—_— ~~

geometry representations
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Pure Spinor Superfield Formalism & Nilpotence Variety
The Pure Spinor Superfield formalism is a machinery that

{ Bundles on } s { Multiplets for }

Ye p
[ S}

geometry representations

The cornerstone of the construction is the algebraic variety Y, which
makes sense for any super Lie algebra g = go @ g1.
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Pure Spinor Superfield Formalism & Nilpotence Variety
The Pure Spinor Superfield formalism is a machinery that

{ Bundles on } s { Multiplets for }

Ye p
[ S}

geometry representations

The cornerstone of the construction is the algebraic variety Y, which
makes sense for any super Lie algebra g = go @ g1.

Let g := go @ g1 be a super Lie algebra and let Q € g;.

The equations Q? := %{Q, @} = 0, defines a set of quadrics, whose
zero locus is called nilpotence variety Y, = A9mo:,
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Pure Spinor Superfield Formalism & Nilpotence Variety
The Pure Spinor Superfield formalism is a machinery that

{ Bundles on } s { Multiplets for }

Ye p
[ S}

geometry representations

The cornerstone of the construction is the algebraic variety Y, which
makes sense for any super Lie algebra g = go @ g1.

Let g := go @ g1 be a super Lie algebra and let Q € g;.

The equations Q? := %{Q, @} = 0, defines a set of quadrics, whose
zero locus is called nilpotence variety Y, = A9mo:,

The equations are homogeneous, hence their space of solutions de-
scends to a projective variety PY, < Pdime1—1 " the projectivized
nilpotence variety of g.
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Nilpotence Variety

Definition (Nilpotence Variety of g)
Let g = go @® g1 be a super Lie algebra.

1. let R be the polynomial ring Sym*(gy [—1]);
2. let I be the ideal defined by the set of equations {Q, Q}.
Then we call
® Y, :=Spec(R/l) < Spec(R) is the affine nilpotence variety;
* PY, := Proj(R/I) < Proj(R) is the projective nilpotence variety.
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Nilpotence Variety

Definition (Nilpotence Variety of g)
Let g = go @® g1 be a super Lie algebra.

1. let R be the polynomial ring Sym*(gy [—1]);
2. let I be the ideal defined by the set of equations {Q, Q}.
Then we call
® Y, :=Spec(R/l) < Spec(R) is the affine nilpotence variety;
* PY, := Proj(R/I) < Proj(R) is the projective nilpotence variety.

Very concretely, for super Poincaré algebras, expanding Q@ = A\?Q,
and identifying R = C[A?], if we denote '}, the structure constant
of the bracket {Q,, Qs} ~ -, p,., we have

R/1I = CIN] J(AaTk \P).
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Nilpotence Variety
Definition (Nilpotence Variety of g)
Let g = go @ g1 be a super Lie algebra.
1. let R be the polynomial ring Sym*(gy [—1]);

2. let | be the ideal defined by the gg-valued set of equations
{Q.Q}t=0.

Then we call
* Y, :=Spec(R/I) < Spec(R) is the affine nilpotence variety;
* PY, := Proj(R/I) < Proj(R) is the projective nilpotence variety.

w~> Mathematically, the nilpotence variety of g can be seen as a
“moduli space of cohomologies” ...
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Nilpotence Variety
Definition (Nilpotence Variety of g)
Let g = go @ g1 be a super Lie algebra.
1. let R be the polynomial ring Sym*(gy [—1]);

2. let | be the ideal defined by the gg-valued set of equations
{Q.Q}t=0.

Then we call
* Y, :=Spec(R/I) < Spec(R) is the affine nilpotence variety;
* PY, := Proj(R/I) < Proj(R) is the projective nilpotence variety.

w~> Mathematically, the nilpotence variety of g can be seen as a
“moduli space of cohomologies” ...

w~> Physically, these cohomologies are called twists of the related
(g-invariant) physical theories.
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Super Poincaré Algebra p of V

As a super Lie algebra comes with a Z/2-grading p = po @ p1:

1.

The fermionic part p; is the tensor product of a spin representation S
with an auxiliary vector space U

p1:5®U7

Recall that there are either one S or two S representations of
Spin(Vic).
® Depending on the dimension, U can be equipped with a
symmetric or antisymmetric bilinear form.
® The “degree of supersymmetry” A is dim(U) as a multiple of its
smallest possible dimension.

. The bosonic part pg arises from translations V, Lorentz

transformations so(V) and R-symmetry t:
po = (V 5 s0(V)) x v,

where v = {gl(U),s0(U),sp(U)}, for U the auxiliary vector space.
® The R-symmetry arises as automorphisms of U.
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Supertranslations (aka Supersymmetry) Algebra t

It is a subalgebra of p. As a super Lie algebra it reads
t=to®t1 = Vop:.

More precisely, it is a central extension of p; the form

0 4 t P1 0,
the bracket on t is given by the equivariant map
r:Sym*S) -V

for S a spin representation.

It might be convenient to look at the super Poincaré algebra as graded
algebra p = po @ p1 @ P2, in a way such that supertranslations read
t:=p=o and {-,-} : Sym?(p1) — p2 is po-equivariant.
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d = 4, N/ =1 Nilpotence Variety

Introduction Superfield
00 5

The super Poincaré algebra reads

p=po®p1=(Vxs0(V) DS+ ®S-)

where S are chiral Weyl spinor representations of Spin(V).

I" defines an isomorphism [ : S, ® S_ =, V.
This implies that {Q,Q} =0 <= Q€ S, or Qe S_.

Y(d = 4,N = 1) consists in two C2-planes in C* intersecting at the
origin:

Y(4,1) = C? Yo} C? = S, U0} S_.
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d = 4, N/ =1 Nilpotence Variety

The computation can be repeated in coordinates!
® A general supercharge can be written
— )\ 380,
Q=2"Qs + X'Q;
as decomposed in its S_ and S, components.
® The equation {Q, Q} = 0 reduces to four quadratic equations
)\15\1 + )\25\2 _ 0,
AL — 202 =0,

AAZ 4+ X2\ =0,
AR — A23 = 0.

aYBrt (0 v
AAFQB—O

® Adding and subtracting one finds

AN =022 = A2 = 2R =0 wo A% =0 v X =0,
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d = 3, N =1 Nilpotence Scheme

The super Poincaré algebra reads

p=po@p=(Vxso(V)®S

where S is in the fundamental representation of Spin(3).

[ defines an isomorphism I : Sym?(S) —=> V.
® This implies that {Q,Q} =0 < Q =0.
Y(3,1) = {0} = C?... as an algebraic set!
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d = 3, N =1 Nilpotence Scheme

® The super Poincaré algebra reads

p=po®pr=(Vxso(V)®S
where S is in the fundamental representation of Spin(3).
* I defines an isomorphism I : Sym?(S) = V.
® This implies that {Q,Q} =0 < Q =0.
® Y(3,1) = {0} = C2... as an algebraic set!
® As a scheme, it is a fat point! Indeed expanding {Q, Q} = 0 one has

(AI)Z _ )\1)\2 _ ()\2)2 =0.

o It follows that Y(3,1) = Spec(C[AL, A2]/((A1)2, ALA2, (A2)2)),
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® Ind=6,N = (1,0) we have symplectic spinors v~ t; = S, ® U, with
(U,w) a symplectic vector space.

® The nilpotence ideal | = ()\?Fgﬁw’j)\f) is a determinantal ideal

. AL a2 a3 “rank 1 locus”
| = {(2 x 2)-minors of [L] := ()\i )\é )é )\;21;)} o of [L]

If follows that the nilpotence variety has a very nice a nice projective
model, in fact the projective nilpotence variety PY (6, (1,0)) is a Segre
4-fourfold (sitting in P7):

Y (6;(1,0)) = P! x P? — P’

> bundles are easily available on this (smooth!) variety...
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Relations between Nilpotence Varieties

in P3 in P7 in P! in P15
Y(10:1)
Y(6:(1,0)) Y(6:(2.0)
Y (5:1) Y(5:2)

Examples
00000000
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Pure Spinor Superfield Formalism

In a nutshell, pure spinor superfield formalism constructs
p-multiplets starting from the geometric data of modules on
Y.

p
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Pure Spinor Superfield Formalism
® |dentifying the spacetime V = p, we consider the supermanifold x
O(x) = C*(p=0) = C*(V) ®c A*(py) = C(CY) ®c A*(pY)

and call local coordinates x*|0* and O(X) the algebra of free
superfields.
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Pure Spinor Superfield Formalism
® |dentifying the spacetime V = p, we consider the supermanifold x
O(x) = C*(p=0) = C*(V) ®c A*(py) = C(CY) ®c A*(pY)
and call local coordinates x*|0* and O(X) the algebra of free
superfields.
® There are two commuting action of the supersymmetry algebra,
(4,r) : p1 — End(X):
UQa) = Qu = dgo — iT" ;07 0y
r(Qa) = Do i= o + iTH 507 Oy
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Pure Spinor Superfield Formalism
® |dentifying the spacetime V = p, we consider the supermanifold x
O(x) = C*(p=0) = C*(V) ®c A*(py) = C(CY) ®c A*(pY)

and call local coordinates x*|0* and O(X) the algebra of free
superfields.

® There are two commuting action of the supersymmetry algebra,
(4,r) : p1 — End(X):

((Qu)
r(Qa) =

@a = a@ot —_— Irgﬁeﬁaxp
Do 1= Opo + iTH 507

® Take a (graded po-equivariant) module M on the nilpotence variety Y.
This means that M is a graded po-equivariant R/I-module, for

R/l = C[x*]/!
where | is the ideal cut out by {Q, Q} = 0.
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Pure Spinor Superfield Formalism

® Crucial step: tensor the algebra of free superfields O(X) with the
R/I-module M as to get a cochain complex

A* (M) := (M ®c O(X), D),

where D := A\*® r(Q,) = XD, and A* acts via the R/I-module
structure.

D? = AWH(Qur(Qp) = ;AN (r(Qu).r(Q)} =

1 1
= XN r({Qa, Qs}) = 2 A°Th N r(py) = 0.
2 27

=0onY,

Examples
00000000
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Pure Spinor Superfield Formalism

® Crucial step: tensor the algebra of free superfields O(X) with the
R/I-module M as to get a cochain complex

A* (M) := (M ®c O(X), D),

where D := \*® r(Q,) = XD, and A\® acts via the R/I-module
structure.

D% = XN r(Qu)r(@s) = X X*{r(Qu). r(Qa)} =

1 1
= XN r({Qa, Qs}) = 2 A°Th N r(py) = 0.
2 27

=0onY,

® A*(M) has the structure of a dgs vector space (v~ Z X Zj-graded)
deg(A%) = (1,—) deg(x*) = (0,+), deg(6®) = (0,-).

In fact, A*(M) can be viewed as the global sections of an affine dgs
vector bundle 7 : E — V = p,, with typical fiber EXK = (M)*® A*gy
> multiplet!
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Pure Spinor Superfield Formalism

® We still have a left action £! In particular one can argue that:
1. (p=o) commutes with D = it defines a p~o-module structure
on A*(M);
2. it is equivariant with respect to pg = can be extended to a full
p-action

Uip— A (M)

v A*(M) is endowed with the structure of a p-multiplet!




Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples
[o]e] 000000 0000000000 000000000 00000000

Pure Spinor Superfield Formalism

® We still have a left action £! In particular one can argue that:
1. (p=o) commutes with D = it defines a p~o-module structure

on A*(M);
2. it is equivariant with respect to pg = can be extended to a full
p-action

Uip— A (M)

v A*(M) is endowed with the structure of a p-multiplet!

...from Superspace to Space(time)...

We would like to have the “ordinary” presentation of multiplet as
collections of vector bundles on the spacetime V out of A*(M).

A spectral sequence argument allows for the connection:

{p-multiplet A*(M)} > {vector bundles over spacetime}
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Filtration and Associated Spectral Sequence

. We consider the filtered complex F*.A*(M) according to the filtered
weights in the above table;

homological deg ‘ intrinsic parity ‘ filtered weight

X 0 + 0
0 0 - 1
A 1 - 1

. The differential does not respect the weight grading:
D = Do + D1 = A*0pe + A*Th 507 0 .
—

w=0 w=2
. The associated graded complex reads
GrA* (M) = (C* (V) ®c (M ®c C[0%]), Dy = A*0ga) = C* (V) ®c K* (M)
where K*(M) is the Koszul complex of M:

K*(M) = (M ®c C[6°], Do = \*Ope) .
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Koszul Homology and Component Fields

In short, the Koszul homology of M (e~ E;) determines the
component field description as known in the physics literature:
in A*(M)

E]_. _ H.(GFA.(M)) s { Component Fields }

* M is a graded pg-equivariant module v~ H*(K*(M)) gives finite
dimensional representations of the Lorentz and R-symmetry algebra.

® H*(GrA*(M)) determines a (graded) vector bundle over the spacetime
V with fibers
(B0 = H* (KK(M)®

e D; induces a new differential D’ and the p-module structure transfer
as well.

v~ this “page 1 multiplet” (E’,D’,p') determines a new multiplet defined
over spacetime!
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Pure Spinor Formalism, in a Nutshell

(A*(M), D) free over superspace
(H*(GrA*(M)),D’) free over spacetime
(H*(A*(M)),0) not necessarily free
Mathematics | Physics
First page complex Field content
First page differential BRST / BV differential
Action of @, on representatives SUSY transformations

Second page complex ‘ gauge invariant (on-shell) fields ‘
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Properties of Modules and Properties of Multiplets

Module Multiplet

M = O(S) for S hyperplane in Y Exterior algebra in S
(chiral / free superfields)

M = Oy complete intersection

. . e . o/md
of quadratic equations Exterior algebra identified with Q®(R?)

(Oy ford =4,N =4)

M is Gorenstein BV datum
(Oy for d =10 SYM)

M is Cohen-Macaulay BRST datum & antifield multiplet
(Oy ford =6, N = (1,0))

M is not Cohen-Macaulay BRST datum & no antifield multiplet
(Oy ford =4, N =1)
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Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module)

Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its
ring of function R/l is a Cohen-Macaulay ring of (Krull) dimension d.
Then the antifield multiplet A*(R/I)Y of A*(R/I) is given by

A*(R/1)Y = A*(wrp1)

where wg/ = Ext,’{fd(R/l, R) is the dualizing module of R/l and n is
the (Krull) dimension of ambient ring R.

Antifield multiplets A*(M) <~ Dualizing modules of M
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Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module)

Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its
ring of function R/l is a Cohen-Macaulay ring of (Krull) dimension d.
Then the antifield multiplet A*(R/I)Y of A*(R/I) is given by

A*(R/1)Y = A*(wrp1)

where wg/ = Ext,’{fd(R/l, R) is the dualizing module of R/l and n is
the (Krull) dimension of ambient ring R.

Antifield multiplets A*(M) <~ Dualizing modules of M

Warning: Dualizing Complexes & Pure Spinors

If Y is not Cohen-Macaulay, then one has a dualizing complex w,';,/,
instead of a single module, hence the PS formalism is not capable of
producing the antifield multiplet of R/I.
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d = 4, N =1 Chiral Multiplet via Pure Spinors

* Recall that the nilpotence variety is Y = C? Uy C? = 51 Uy S-.
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d = 4, N =1 Chiral Multiplet via Pure Spinors
* Recall that the nilpotence variety is Y = C? Uy C? = 51 Uy S-.
* Choose M = C[A\%] and construct the PS complex
(A*(M), D) = (C*(t) ®c C[A*], D = X*0gs + A°T% .00,
® Compute the relevant Koszul homology: using t; = S @ S_ one has
K*(M) = (A*Sy ® A°S_ @ C[A*], Dy = A*054)

with 6% are coordinates for S, and 6% are coordinates for S_.
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d = 4, N =1 Chiral Multiplet via Pure Spinors
* Recall that the nilpotence variety is Y = C? Uy C? = 51 Uy S-.
* Choose M = C[A\%] and construct the PS complex
(A*(M),D) = (C*(t) ®c C[A*], D = X*0ga + A°T%,0%0,)
® Compute the relevant Koszul homology: using t; = S @ S_ one has
K*(M) = (A*Sy ® A°S_ @ C[A*], Dy = A*054)
with 6% are coordinates for S, and 6% are coordinates for S_.

® 0% does not occur in Dy, hence the cohomology reads
H*(K*(M)) = A®S; @ H*(A*S_ @ C[XY]) = A*S, ®C.

® Reinstating the spacetime dependence one has that the
Dy-cohomology reads

C*(CH @ H* (K* (M) = C*(C*) @c A°S.
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d = 4, N =1 Chiral Multiplet via Pure Spinors
Field Content: Chiral Supermultiplet

Field ‘ Representative in the Dy-cohomology
o | ¢
¢ w0
F ‘ F6,60,
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d = 4, N =1 Chiral Multiplet via Pure Spinors
Field Content: Chiral Supermultiplet

Field ‘ Representative in the Dy-cohomology

¢ | ¢
V| Yo
Fo| F 0,6,

Supersymmetry Transformations of the Chiral Multiplet

The action on the supercharges in p; on the representatives in
cohomology gives the supersymmetry transformations:

p(Q + Q) (¢ + 0t + FO10,) = (edg + i(00")0,,) (¢ + O + FO105)
= ) + (igﬁd) +eF)0+ (—ieﬁz/;) 0,0,
S Y———— ~—
5¢ S SF

Examples
0@000000
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d =6, N = (1,0) Multiplets via Pure Spinors
* Recall that Y(6;(1,0)) = P! x P3 — P’
® All line bundles are of the form

Op1yps(n, m) = 73 Op1(n) o 75 Ops(m) (n,m) € 792

Pl xP3
v all multiplets A(m, n) coming from line bundles can be classified!

® For example, one finds:

1. Oy(0,0) v~ vector multiplet:

Oy (0,0) v A%(0,0) = (Q°, Q! S_®C?, Q°®C?)
2. Oy(1,0) v~ hypermultiplet:

Oy(1,0) v A°(1,0) = (°®C?, S,, S, Q®C?
3. Oy(2,0) v~ antifield multiplet of the vector multiplet:

Oy (2,0) w» A°(2,0) = (Q®C3, S_®C?, Q' Q%
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d =6, N = (1,0) Multiplets via Pure Spinors

* Recall that Y (6;(1,0)) = P! x P3 — P’

® On the other hand, also higher-rank vector bundles can be considered,
such as the conormal bundle

0 NY Q) Q3 0.

® Remarkably, the conormal bundle is related to supergravity multiplet:

A*NY) 3 (..., Sym3(V), (V®5_)%®(C2, o)

The following is always true:
1. Oy v~ vector (gauge) multiplet;
2. Ny w~ supergravity multiplet;

3. mOy v~ chiral multiplet(s);
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d = 1 Supersymmetry and Pure Spinors

® In d = 1 the nilpotence ideal is | = Zﬁl A? for any amount of
supersymmetry A, hence the nilpotence variety Y (1, ) is a quadric
hypersurface.

® The most studied d = 1 multiplets arise from the graph technology of
Adinkras: the following is an example of the most important class of
Adinkras, the valise Adinkras:

® Via pure spinors formalism, valise Adinkras corresponds to
characteristic bundle on the quadric Y(1,N): the spinor bundle.
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Outro - toward derived geometry
At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable
of accounting for all of the multiplets?
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Outro - toward derived geometry
At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable
of accounting for all of the multiplets?

As it turns out, the answer is no:

e A relevant example is the antifield multiplet of the d = 4, A/ =1
vector multiplet (e~ Oy).

Geometrically, the antifield multiplet of the vector multiplet is related to the
dualizing module of Y v if Y is singular, there is no dualizing module, but
dualizing complex instead!
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Outro - toward derived geometry
At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable
of accounting for all of the multiplets?

As it turns out, the answer is no:

e A relevant example is the antifield multiplet of the d = 4, A/ =1
vector multiplet (e~ Oy).

Geometrically, the antifield multiplet of the vector multiplet is related to the
dualizing module of Y v if Y is singular, there is no dualizing module, but
dualizing complex instead!

® This point in the direction of a derived pure spinor formalism (v~
input are not single modules, but complexes of modules)!

® Pure spinor superfield formalism as an instance of Koszul duality:
d=0 susy : D"(PN~1) = D"(A*t-mod) v~ BGG correspondence;
d=1 susy : D"(Qn_1) = D’ (U(t)-mod) v~ “deformed” BGG correspondence
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Pure

Pure Spinors in d = 1 and Geometry of Quadrics

1. The N-extended supersymmetry algebra ty in d = 1 is characterized
by the relations {Q;, Q;} = 20;;H for i,j=1,...,N;

2. The nilpotence variety of ty is a quadric hypersurface

Yy := Spec(k[A1, ..., An]/qn) for g = Zf\lzl )\,? the standard
quadratic form;

Theorem (“Deformed” BGG correspondence & d = 1 SUSY )

Let R/l be the ring of functions on Yx and let Uk(t) be the universal
enveloping algebra of ty. Then

D’(R/I-Mod) = D’(Uy(t)-Mod). (1)

In particular, the following (Abelian) categories are mapped into each

other: o

MCM,(R/l) Cl(qn)-Modg,. (2)
—_
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Thank you very much!
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Multiplets and Pure Spinor Formalism

Definition (Multiplet)

A g-multiplet is a triple (E, D, p), where (E, D) is an affine dgs
vector bundle E on V equipped with a (local) g-module structure
p: g~ D(E), such the following commute

g —— D(E)
|
aff(V)
A morphism of multiplet is map of cochain complexes
Y : T(E) — T'(E’) such that v o p(x) = p’(x) o9 for every x € g.

Definition (Category of Multiplets)

The dg-category g-Mult of g-multiplets is the (full) subcategory of
local g-modules whose object are g-multiplets.
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Multiplets and Pure Spinor Formalism

Definition (Poincaré Superalgebra)
A superalgebra g is of super Poincaré type if it can be written as
an extension

0 t g do 07
where t is the two-step nilpotent superalgebra of supertranslations.

Definition (Pure Spinor Functor)

2S : Clp(t)-Mod® — g-Mult.
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Why Pure Spinors?

® Let V a vector space of dimension 2n or 2n + 1.

Let S be a spin representation of Spin(V), then S is a
Cl(V)-module.

® Accordingly, there is an action V C S, with (v, Q) — v - Q

If Qe S, we consider Ann(Q) :={ve V:v-Q =0}. Now,
dimAnn(Q) = m < n.

Definition (Pure Spinor)

We say that Q is a pure spinor if m = n.
Alternatively, Q is pure if Ann(Q) < V is a maximal isotropic subspace.

In particular, for dimV = 2n, considering P(S), we have that
(projective) pure spinors are given by the homogeneous space
50(2n)/U(n). The pure spinor space coincides - in some relevant
cases - with the nilpotence variety of super Poincaré algebras.
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CM condition

Let R be a commutative, Noetherian and local ring and let M be an
R-module.

We say that M is CM if depthg(M) = dimg(M).

There is also a homological useful characterization: namely we let R be
polynomial a ring of Krull dimension n and S < R of Krull dimension d.
Then we call wg := Extg(S, R) the dualizing complex of S (notice that
this coincide with diff. forms of deg d if S — R is non-singular... ).
Now, S is CM if Exts(S, R) = 0 for every i # n— d, that is if the
dualizing complex is a module.

In particular, if it is also free of rank 1, then we say that M is Gorenstein.

Typical example: plane curves with embedded points are not CM, e.g.
Spec (C[X, Y]/(x*,xy)) .

Indeed (x2,xy) = (x) - (xy): y-axis with embedded point (0, 0).
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Operators of a Theory

The operators of a theory consist of functionals of the fields of the
theory are denoted with O(E).

For any point x € V we can define local operators via
Ox(€) == Sym*(J*E|x)",

where J®E denotes the jet bundles of E - in other words, the local
operators at x evaluate polynomials in the fields and derivatives of
fields at x.

Given a map p : g v~ (D(E),[D, —]), the dual maps (pU))¥
define an action on the linear local operators, which extends to
O« (&) via Leibniz rule.

Fixing an element @ € g, we can define a map

6 =2 p9(Q,..., Q)" 1 Ox(E) — Ox(E),
J

this defines the action of Q € g on the operators of the theory.
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BRST Datum

A BRST datum on a multiplet (E, D, p) consists of:
® a local super Ly, structure {ux} on L = E[—1] such that
w1 = D, and whose associated CE differential we denote by
QBRsT;

® a local functional Sg € O(E) of bidegree (0, +) called BRST
action action, which is Qgrs7-closed and invariant for the L,
action p.
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BV Datum
A BV datum on a multiplet (E, D, p) consists of:

*® a graded antisymmetric map (—,—): EQ E — wx of
bidegree (—1,+) which is fiberwise non-degenerate and
invariant for the Ly, action p;

* A C*(g)-valued BV action of bidegree (0,+) given by
Sev = >, SEV where SEV € CK(g) ® O(E), such that it
satisfies the g-equivariant master equation

dQSBV + %{SB V, SBV} = 0.

Here
SEV(o) = J (b, D®) + IgV (D)
X

where IgV is at least cubic in the fields and where

SEV(XI) s 7Xk;d>) = f <¢’pk(X1) s an)¢>
X



0000000

Frrom BRST to BV Datum

To move from a BRST datum to a BV datum one considers
LgV =L LY[—k],

which is equipped with a canonical evaluation pairing (of degree
-k). The BRST action deforms the obvious L, structure on the
direct sum, thus giving rise to an Ly, structure on LgV/, for which
the evaluation pairing is invariant (after an application of the
homological perturbation lemma).

1. If M is Gorenstein, its Koszul homology is naturally equipped
with a perfect pairing, that equips the multiplet with a BV
datum (in fact the minimal free resolution of M is self-dual if
it is Gorenstein).

2. If M is Cohen-Macaulay, we can instead work as above:

consider LY [—k] to be given by the dualizing module and look
at L@ LY [—k] to define the BV datum.
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