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Motivations & Premises
The construction of supersymmetric field theories faces essential
difficulties, e.g. supersymmetry is only represented on-shell / up to
gauge transformations.

‚ Quantization: desirable for the symmetry to act on the
full space of fields without regard to the dynamics;
‚ Geometrization: reasonable to think of supersymmetry as
arising from the action of particular geometric symmetry on
an appropriate (super)space;

ù extending the space of fields / superfield formulation

How to... Superfield Formulations

Harmonic Superspace (Galperin, Ivanov, Ogievetsky, Sokatchev...),
Rheonomy (Castellani, D’Auria, Fre...), Pure Spinors (Nillson &
Howe, Berkovits...)
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Motivations & Premises

A View on Pure Spinors Superfield Formalism

Provide a view on pure spinor superfield formalism

‚ amenable to mathematicians;

‚ yields susy “multiplets” as understood by physicists.

Structure of the talk

1. Definition of multiplet;

2. Nilpotence variety and pure spinor superfield formalism;

3. Examples;

4. (If time permits: general results and considerations).

‚ arXiv2404.07167 w/ R. Eager, R. Senghaas, J. Walcher;

‚ arXiv:2206.08388 w/ F. Hahner, I. Saberi, J. Walcher;

‚ see also arXiv:2111.01162
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Multiplets - a first encounter in physics

A multiplet is a representation of the supersymmetry algebra g of
a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one
into another under the action of g: they are the building blocks of
actions of physical theories.

A minimal supersymmetric Lagrangian in d “ 4 reads

Lchiral “ ´Bφ̄ ¨ Bφ` iψ̄ {Bψ ` F̄ F

ù The triplet pφ,ψ,F q is a multiplet, called chiral multiplet.
ù Supersymmetry transformations of pφ,ψ,F q read

δsϕ “ ϵψ, δsψ “ i ϵ̄{Bϕ` ϵF , δsF “ ´iϵ{Bψ
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Multiplets - toward a mathematical definition

Obviously, a multiplet is a representation-theoretic notion, though it is
not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V , some pieces
of data should be part of our definition:

‚ Bosonic and Fermionic fields are sections of vector bundles on
the spacetime V (with parity / Z{2-grading);

‚ Supersymmetry transformations are given by an action of a
certain (super)algebra on these sections.

On the other hand, attention must be paid...

In relevant examples, the representation of the supersymmetry
algebra is not strict!
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The N “ 1, d “ 4 Vector Multiplet

This multiplet consists of the following collection of fields:

1. A P Ω1pR4q is a connection 1-form;

2. pλ, λ̄q P C8pR4,ΠpS` ‘ S´qq are spinors of opposite chirality;

3. D P C8pR4q is an auxiliary field;

4. c P C8pR4q is a ghost field (of ghost degree ´1 ù gauge).

‚ The ghost field has a non-zero differential:

c
d

ÞÝÑ dc ú δbrstAµ “ Bµc

‚ The ghost field has higher-order supersymmetry transformation:

Q b Q̄ b A
ρ2

ÞÝÑ ιtQ,Q̄uA ú δsc “ pϵσµϵ̄qAµ.
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The N “ 1, d “ 4 Vector Multiplet
g-module structure on the vector multiplet
In physics lingo, the higher-order transformation of c is a closure term for
the supersymmetry action: in this case, we say that “the supersymmetry
action only closes up to gauge transformations”.

Setting ρi : gbi ÝÑ EndpEqr1 ´ is, we have

ρ1-terms ú

$

&

%

δsAµ “ ϵσµλ̄` ψσµϵ̄,
δλs “ ϵD, δs λ̄ “ ´ϵ̄D,
δsD “ 0,

ρ2-terms ú δsc “ pϵσµϵ̄qAµ.

The relation between ρ1 and ρ2 is given by

rρ1pxq, ρ1pyqs ´ ρ1prx , y sq “ ´rd , ρ2px , yqs.

In other words, ρ2 provides a homotopy for the failure of ρ1 to be
a strict g-action ù we should consider weaker / L8-action!
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Multiplet - a (tentative) mathematical definition

Definition (g-Multiplet)
Let pE ,Dq be an affine dgs vector bundle on V “ Rd , let g be a super
L8-algebra together with an injective map ι : AffpV q Ñ g.

A g-multiplet is a local g-module structure pE ,D, ρq on pE ,Dq such that
the pullback of the module structure along ι : AffpV q Ñ g agrees with
the natural action on sections.

1. Affine : the total space of E carries an action of AffpV q “ Rd ¸ sopdq

such that its projection π : E Ñ V is equivariant with respect to the
action of AffpV q on V ;

2. dgs vector bundle pE ,Dq: Z ˆ Z2-graded vector bundle
E “

À

kpE k
` ‘ E k

´q equipped with a collection of differential operators

D : Ek
˘ Ñ Ek`1

˘ such that D ˝ D “ 0, where Ek
˘

..“ ΓpX ,E k
˘q are the

C8-sections of E k
˘.

3. Local g-module structure : super L8-map ρ : g Ñ pDpEq, rD,´sq

with DpEq ..“ tx P EndpEq : x is a differential operatoru Ă EndpEq.
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Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine
algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras p, but - as
defined - the notion is broader...

1. Let h be a Lie algebra and let g “ h ‘ AffpV q. A g-multiplet contains
a collection of fields transforming in a local representation of h ù

“flavor symmetry” multiplets.

2. The Lie algebra ConfpV q of (super)conformal transformations on V
contains AffpV q ù ConfpV q-multiplets.

Question : how to construct – and possibly “classify” – multiplets?
(i.e. how to provide the building blocks for supersymmetric
theories?)
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Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

"

Bundles on
Yp

*

looooooooomooooooooon

geometry

PS
ù

"

Multiplets for
p

*

looooooooooomooooooooooon

representations

The cornerstone of the construction is the algebraic variety Yg, which
makes sense for any super Lie algebra g “ g0 ‘ g1.

Let g ..“ g0 ‘ g1 be a super Lie algebra and let Q P g1.

The equations Q2 ..“ 1
2tQ,Qu “ 0, defines a set of quadrics, whose

zero locus is called nilpotence variety Yg Ď Adim g1 .

The equations are homogeneous, hence their space of solutions de-
scends to a projective variety PYg Ď Pdim g1´1, the projectivized
nilpotence variety of g.
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Nilpotence Variety

Definition (Nilpotence Variety of g)
Let g “ g0 ‘ g1 be a super Lie algebra.

1. let R be the polynomial ring Sym‚pg_
1 r´1sq;

2. let I be the ideal defined by the set of equations tQ,Qu.

Then we call

‚ Yg
..“ SpecpR{I q Ă SpecpRq is the affine nilpotence variety;

‚ PYg
..“ ProjpR{I q Ă ProjpRq is the projective nilpotence variety.

Very concretely, for super Poincaré algebras, expanding Q “ λaQa

and identifying R “ Crλas, if we denote Γµab the structure constant
of the bracket tQa,Qbu „ Γµabpµ, we have

R {I “ Crλas
L

pλaΓµabλ
bq.
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and identifying R “ Crλas, if we denote Γµab the structure constant
of the bracket tQa,Qbu „ Γµabpµ, we have

R {I “ Crλas
L

pλaΓµabλ
bq.



12/36

Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples

Nilpotence Variety

Definition (Nilpotence Variety of g)
Let g “ g0 ‘ g1 be a super Lie algebra.

1. let R be the polynomial ring Sym‚pg_
1 r´1sq;

2. let I be the ideal defined by the g0-valued set of equations
tQ,Qu “ 0.

Then we call

‚ Yg
..“ SpecpR{I q Ă SpecpRq is the affine nilpotence variety;

‚ PYg
..“ ProjpR{I q Ă ProjpRq is the projective nilpotence variety.

ù Mathematically, the nilpotence variety of g can be seen as a
“moduli space of cohomologies”...

ù Physically, these cohomologies are called twists of the related
(g-invariant) physical theories.
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Super Poincaré Algebra p of V
As a super Lie algebra comes with a Z{2-grading p “ p0 ‘ p1:

1. The fermionic part p1 is the tensor product of a spin representation S
with an auxiliary vector space U

p1 “ S b U,

Recall that there are either one S or two S˘ representations of
SpinpV{Cq.

‚ Depending on the dimension, U can be equipped with a
symmetric or antisymmetric bilinear form.

‚ The “degree of supersymmetry” N is dimpUq as a multiple of its
smallest possible dimension.

2. The bosonic part p0 arises from translations V , Lorentz
transformations sopV q and R-symmetry r:

p0 “ pV ¸ sopV qq ˆ r,

where r “ tglpUq, sopUq, sppUqu, for U the auxiliary vector space.

‚ The R-symmetry arises as automorphisms of U.
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Supertranslations (aka Supersymmetry) Algebra t

It is a subalgebra of p. As a super Lie algebra it reads

t “ t0 ‘ t1 “ V ‘ p1.

More precisely, it is a central extension of p1 the form

0 // V // t // p1 // 0,

the bracket on t is given by the equivariant map

Γ : Sym2pSq Ñ V

for S a spin representation.

It might be convenient to look at the super Poincaré algebra as graded
algebra p “ p0 ‘ p1 ‘ p2, in a way such that supertranslations read
t ..“ pą0 and t¨, ¨u : Sym2pp1q Ñ p2 is p0-equivariant.
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d “ 4, N “ 1 Nilpotence Variety

‚ The super Poincaré algebra reads

p “ p0 ‘ p1 “ pV ¸ sopV qq ‘ pS` ‘ S´q

where S˘ are chiral Weyl spinor representations of SpinpV q.

‚ Γ defines an isomorphism Γ : S` b S´
–

ÝÑ V .

‚ This implies that tQ,Qu “ 0 ðñ Q P S` or Q P S´.

‚ Y pd “ 4,N “ 1q consists in two C2-planes in C4 intersecting at the
origin:

Y p4, 1q “ C2 Yt0u C2 “ S` Yt0u S´.
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d “ 4, N “ 1 Nilpotence Variety

The computation can be repeated in coordinates!

‚ A general supercharge can be written

Q “ λαQβ ` λ̄
9βQ̄ 9β

as decomposed in its S´ and S` components.

‚ The equation tQ,Qu “ 0 reduces to four quadratic equations

λαλ̄
9βΓµ
α 9β

“ 0 ù

$

’

’

&

’

’

%

λ1λ̄1 ` λ2λ̄2 “ 0,
λ1λ̄1 ´ λ2λ̄2 “ 0,
λ1λ̄2 ` λ2λ̄1 “ 0,
λ1λ̄2 ´ λ2λ̄1 “ 0.

‚ Adding and subtracting one finds

λ1λ̄1 “ λ2λ̄2 “ λ1λ̄2 “ λ2λ̄1 “ 0 ù λα “ 0 _ λ̄
9β “ 0.



17/36

Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples

d “ 3, N “ 1 Nilpotence Scheme

‚ The super Poincaré algebra reads

p “ p0 ‘ p1 “ pV ¸ sopV qq ‘ S

where S is in the fundamental representation of Spinp3q.

‚ Γ defines an isomorphism Γ : Sym2pSq
–

ÝÑ V .

‚ This implies that tQ,Qu “ 0 ðñ Q “ 0.

‚ Y p3, 1q “ t0u Ă C2... as an algebraic set!

‚ As a scheme, it is a fat point! Indeed expanding tQ,Qu “ 0 one has

pλ1q2 “ λ1λ2 “ pλ2q2 “ 0.

‚ It follows that Y p3, 1q “ SpecpCrλ1, λ2s{ppλ1q2, λ1λ2, pλ2q2qq,
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d “ 6, N “ p1, 0q Projective Nilpotence Variety

‚ In d “ 6,N “ p1, 0q we have symplectic spinors ù t1 “ S` bU, with
pU, ωq a symplectic vector space.

‚ The nilpotence ideal I “ pλαi Γ
µ
αβω

ijλβj q is a determinantal ideal

I “

"

p2 ˆ 2q-minors of rLs ..“

ˆ

λ11 λ21 λ31 λ41
λ12 λ22 λ32 λ42

˙*

ù
“rank 1 locus”

of rLs

If follows that the nilpotence variety has a very nice a nice projective
model, in fact the projective nilpotence variety PY p6, p1, 0qq is a Segre
4-fourfold (sitting in P7):

Y p6; p1, 0qq “ P1 ˆ P3 ãÑ P7

ù bundles are easily available on this (smooth!) variety...
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Relations between Nilpotence Varieties

in P3 in P7 in P11 in P15

Y p10; 1q� _

��

Y p6; p1, 0qq
� � //

� _

��

Y p6; p2, 0qq� _

��

Y p5; 1q
� � //

� _

��

Y p5; 2q� _

��

Y p4; 1q� _

��

� � // Y p4; 2q
� � //

� _

��

Y p4; 3q
� � //

� _

��

Y p4; 4q� _

��

Y p2; p2, 2qq
� � // Y p2, p4, 4qq

� � // Y p2, p6, 6qq
� � // Y p2, p8, 8qq



20/36

Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples

Pure Spinor Superfield Formalism

In a nutshell, pure spinor superfield formalism constructs
p-multiplets starting from the geometric data of modules on

Yp.
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Pure Spinor Superfield Formalism
‚ Identifying the spacetime V “ p2 we consider the supermanifold X

OpX q “ C8ppą0q “ C8pV q bC ^‚pp_
1 q “ C8pCdq bC ^‚pp_

1 q

and call local coordinates xµ|θα and OpX q the algebra of free
superfields.

‚ There are two commuting action of the supersymmetry algebra,
pℓ, rq : p1 Ñ EndpX q:

ℓpQαq ” pQα ..“ Bθα ´ iΓµαβθ
βBxµ

rpQαq ” pDα ..“ Bθα ` iΓµαβθ
βBxµ

‚ Take a (graded p0-equivariant) module M on the nilpotence variety Y .
This means that M is a graded p0-equivariant R{I -module, for

R{I “ Crλαs{I

where I is the ideal cut out by tQ,Qu “ 0.
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Pure Spinor Superfield Formalism
‚ Crucial step: tensor the algebra of free superfields OpX q with the

R{I -module M as to get a cochain complex

A‚pMq ..“ pM bC OpX q, Dq,

where D ..“ λα b rpQαq “ λα pDα and λα acts via the R{I -module
structure.

D2 “ λαλβrpQαqrpQβq “
1

2
λαλβtrpQαq, rpQβqu “

“
1

2
λαλβrptQα,Qβuq “

1

2
λαΓµαβλ

β

loooomoooon

“0 on Yp

rppµq “ 0.

‚ A‚pMq has the structure of a dgs vector space (ù Z ˆ Z2-graded)

degpλαq “ p1,´q degpxµq “ p0,`q, degpθαq “ p0,´q.

In fact, A‚pMq can be viewed as the global sections of an affine dgs
vector bundle π : E Ñ V “ p2, with typical fiber E k

x “ pMqk b ^‚g_
1

ù multiplet!



22/36

Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples

Pure Spinor Superfield Formalism
‚ Crucial step: tensor the algebra of free superfields OpX q with the

R{I -module M as to get a cochain complex

A‚pMq ..“ pM bC OpX q, Dq,

where D ..“ λα b rpQαq “ λα pDα and λα acts via the R{I -module
structure.
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1
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Pure Spinor Superfield Formalism
‚ We still have a left action ℓ! In particular one can argue that:

1. ℓppą0q commutes with D ñ it defines a pą0-module structure
on A‚pMq;

2. it is equivariant with respect to p0 ñ can be extended to a full
p-action

ℓ̃ : p Ñ A‚pMq;

ù A‚pMq is endowed with the structure of a p-multiplet!

...from Superspace to Space(time)...
We would like to have the “ordinary” presentation of multiplet as
collections of vector bundles on the spacetime V out of A‚pMq.

A spectral sequence argument allows for the connection:

␣

p-multiplet A‚pMq
(

ù
␣

vector bundles over spacetime
(
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Filtration and Associated Spectral Sequence
1. We consider the filtered complex F ‚A‚pMq according to the filtered

weights in the above table;

homological deg intrinsic parity filtered weight

x 0 + 0
θ 0 - 1
λ 1 - 1

2. The differential does not respect the weight grading:

D “ D0 ` D1 “ λαBθα
loomoon

w“0

`λαΓµαβθ
βBxµ

loooooomoooooon

w“2

.

3. The associated graded complex reads

GrA‚pMq “ pC8pV q bC pM bC Crθαsq,D0 “ λαBθαq – C8pV q bC K‚pMq

where K‚pMq is the Koszul complex of M:

K‚pMq ..“ pM bC Crθαs,D0 “ λαBθαq .



25/36

Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples

Koszul Homology and Component Fields

In short, the Koszul homology of M (ú E ‚
1 ) determines the

component field description as known in the physics literature:

E ‚
1 “ H‚pGrA‚pMqq ú

"

Component Fields
in A‚pMq

*

‚ M is a graded p0-equivariant module ù H‚pK‚pMqq gives finite
dimensional representations of the Lorentz and R-symmetry algebra.

‚ H‚pGrA‚pMqq determines a (graded) vector bundle over the spacetime
V with fibers

pE 1
xqk “ H‚pKpMqqpkq

‚ D1 induces a new differential D1 and the p-module structure transfer
as well.

ù this “page 1 multiplet” pE 1,D1, ρ1q determines a new multiplet defined
over spacetime!
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Pure Spinor Formalism, in a Nutshell

pA‚pMq,Dq

��

free over superspace

��

pH‚pGrA‚pMqq,D1q

��

free over spacetime

��

pH‚pA‚pMqq, 0q not necessarily free

Mathematics Physics

First page complex Field content
First page differential BRST / BV differential

Action of Qα on representatives SUSY transformations

Second page complex gauge invariant (on-shell) fields



27/36

Introduction Multiplets Nilpotence Varieties Pure Spinor Superfield Examples

Properties of Modules and Properties of Multiplets

Module Multiplet

M “ OpSq for S hyperplane in Y Exterior algebra in S
(chiral / free superfields)

M “ OY complete intersection
of quadratic equations

Exterior algebra identified with Ω‚pRd q

(OY for d “ 4,N “ 4 )

M is Gorenstein BV datum
(OY for d “ 10 SYM)

M is Cohen-Macaulay BRST datum & antifield multiplet
(OY for d “ 6, N “ p1, 0q)

M is not Cohen-Macaulay BRST datum & no antifield multiplet
(OY for d “ 4, N “ 1)
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Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module)
Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its
ring of function R{I is a Cohen-Macaulay ring of (Krull) dimension d.
Then the antifield multiplet A‚pR{I q_ of A‚pR{I q is given by

A‚pR{I q_ “ A‚pωR{I q

where ωR{I “ Extn´d
R pR{I ,Rq is the dualizing module of R{I and n is

the (Krull) dimension of ambient ring R.

Antifield multiplets A‚pMq ú Dualizing modules of M

Warning: Dualizing Complexes & Pure Spinors
If Y is not Cohen-Macaulay, then one has a dualizing complex ω‚

R{I
instead of a single module, hence the PS formalism is not capable of
producing the antifield multiplet of R{I .
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d “ 4, N “ 1 Chiral Multiplet via Pure Spinors
‚ Recall that the nilpotence variety is Y “ C2 Yt0u C2 “ S` Yt0u S´.

‚ Choose M “ Crλ̄ 9αs and construct the PS complex

pA‚pMq,Dq “
`

C8ptq bC Crλ̄ 9αs,D “ λ̄ 9αBθ̄ 9α ` λ̄ 9αΓµα 9αθ
αBµ

˘

‚ Compute the relevant Koszul homology: using t1 “ S` ‘ S´ one has

K‚pMq “
`

^‚S` b ^‚S´ b Crλ̄ 9αs,D0 “ λ̄ 9αBθ̄ 9α

˘

with θα are coordinates for S` and θ̄ 9α are coordinates for S´.

‚ θα does not occur in D0, hence the cohomology reads

H‚pK‚pMqq “ ^‚S` b H‚p^‚S´ b Crλ̄ 9αsq – ^‚S` b C.

‚ Reinstating the spacetime dependence one has that the
D0-cohomology reads

C8pC4q b H‚pK‚pMqq – C8pC4q bC ^‚S`.
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d “ 4, N “ 1 Chiral Multiplet via Pure Spinors

Field Content: Chiral Supermultiplet

Field Representative in the D0-cohomology

ϕ ϕ

ψ ψθ

F Fθ1θ2

Supersymmetry Transformations of the Chiral Multiplet
The action on the supercharges in p1 on the representatives in
cohomology gives the supersymmetry transformations:

ρpQ ` Q̄qpϕ` θψ ` Fθ1θ2q “ pϵBθ ` ipθσµϵ̄qBµqpϕ` θψ ` Fθ1θ2q

“ ϵψ
loomoon

δϕ

` pi ϵ̄{Bϕ` ϵF q
looooomooooon

δψ

θ ` p´iϵ{Bψq
looomooon

δF

θ1θ2
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d “ 6, N “ p1, 0q Multiplets via Pure Spinors
‚ Recall that Y p6; p1, 0qq “ P1 ˆ P3 ãÑ P7

‚ All line bundles are of the form

OP1ˆP3pn,mq “ π˚
1OP1pnq bOP1ˆP3

π˚
3OP3pmq pn,mq P Z‘2.

ù all multiplets Apm, nq coming from line bundles can be classified!

‚ For example, one finds:

1. OY p0, 0q ù vector multiplet:

OY p0, 0q ù A‚p0, 0q “ pΩ0, Ω1, S´ b C2, Ω0 b C3q

2. OY p1, 0q ù hypermultiplet:

OY p1, 0q ù A‚p1, 0q “ pΩ0 b C2, S`, S´, Ω0 b C2q

3. OY p2, 0q ù antifield multiplet of the vector multiplet:

OY p2, 0q ù A‚p2, 0q “ pΩ0 b C3, S´ b C2, Ω1, Ω0q
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d “ 6, N “ p1, 0q Multiplets via Pure Spinors

‚ Recall that Y p6; p1, 0qq “ P1 ˆ P3 ãÑ P7

‚ On the other hand, also higher-rank vector bundles can be considered,
such as the conormal bundle

0 // N_
Y

// Ω1
P7|Y

// Ω1
Y

// 0.

‚ Remarkably, the conormal bundle is related to supergravity multiplet:

A‚pN_
Y q Q p . . . , Sym2

0pV q, pV b S´q 3
2

b C2, . . . q

The following is always true:

1. OY ù vector (gauge) multiplet;

2. N_
Y ù supergravity multiplet;

3. π˚OY ù chiral multiplet(s);
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d “ 1 Supersymmetry and Pure Spinors

‚ In d “ 1 the nilpotence ideal is I “
řN

i“1 λ
2
i for any amount of

supersymmetry N , hence the nilpotence variety Y p1,N q is a quadric
hypersurface.

‚ The most studied d “ 1 multiplets arise from the graph technology of
Adinkras: the following is an example of the most important class of
Adinkras, the valise Adinkras:

‚ Via pure spinors formalism, valise Adinkras corresponds to
characteristic bundle on the quadric Y p1,N q: the spinor bundle.
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Outro - toward derived geometry
At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable
of accounting for all of the multiplets?

As it turns out, the answer is no:

‚ A relevant example is the antifield multiplet of the d “ 4,N “ 1
vector multiplet (ú OY ).

Geometrically, the antifield multiplet of the vector multiplet is related to the
dualizing module of Y ù if Y is singular, there is no dualizing module, but
dualizing complex instead!

‚ This point in the direction of a derived pure spinor formalism (ù
input are not single modules, but complexes of modules)!

‚ Pure spinor superfield formalism as an instance of Koszul duality:

d=0 susy : D5pPN´1q – D5pΛ‚t-modq ù BGG correspondence;

d=1 susy : D5pQN´1q – D5pUptq-modq ù “deformed” BGG correspondence
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Pure Spinors in d “ 1 and Geometry of Quadrics

1. The N-extended supersymmetry algebra tN in d “ 1 is characterized
by the relations tQi ,Qju “ 2δijH for i , j “ 1, . . . ,N;

2. The nilpotence variety of tN is a quadric hypersurface
YN

..“ Specpkrλ1, . . . , λN s{qNq for qN ..“
řN

i“1 λ
2
i the standard

quadratic form;

Theorem (“Deformed” BGG correspondence & d “ 1 SUSY )
Let R{I be the ring of functions on YN and let Ukptq be the universal
enveloping algebra of tN . Then

D5pR{I -Modq – D5pUkptq-Modq. (1)

In particular, the following (Abelian) categories are mapped into each
other:

MCMgrpR{I q
++

CℓpqNq-Modgr.
ll

(2)
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Thank you very much!



1/8

36



1/8

Multiplets and Pure Spinor Formalism

Definition (Multiplet)

A g-multiplet is a triple pE ,D, ρq, where pE ,Dq is an affine dgs
vector bundle E on V equipped with a (local) g-module structure
ρ : g ù DpE q, such the following commute

g
ρ

// DpE q

affpV q

ϕ

OO ::

A morphism of multiplet is map of cochain complexes
ψ : ΓpE q Ñ ΓpE 1q such that ψ ˝ ρpxq “ ρ1pxq ˝ ψ for every x P g.

Definition (Category of Multiplets)

The dg-category g-Mult of g-multiplets is the (full) subcategory of
local g-modules whose object are g-multiplets.
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Multiplets and Pure Spinor Formalism

Definition (Poincaré Superalgebra)

A superalgebra g is of super Poincaré type if it can be written as
an extension

0 // t // g // g0 // 0,

where t is the two-step nilpotent superalgebra of supertranslations.

Definition (Pure Spinor Functor)

PS : C ‚
CE ptq-Modg0 ÝÑ g-Mult.
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Why Pure Spinors?

‚ Let V a vector space of dimension 2n or 2n ` 1.

‚ Let S be a spin representation of SpinpV q, then S is a
ClpV q-module.

‚ Accordingly, there is an action V ýS , with pv ,Qq ÞÑ v ¨ Q

‚ If Q P S , we consider AnnpQq ..“ tv P V : v ¨ Q “ 0u. Now,
dimAnnpQq “ m ď n.

Definition (Pure Spinor)
We say that Q is a pure spinor if m “ n.
Alternatively, Q is pure if AnnpQq Ă V is a maximal isotropic subspace.

In particular, for dimV “ 2n, considering PpSq, we have that
(projective) pure spinors are given by the homogeneous space
SOp2nq{Upnq. The pure spinor space coincides - in some relevant
cases - with the nilpotence variety of super Poincaré algebras.
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CM condition

Let R be a commutative, Noetherian and local ring and let M be an
R-module.

We say that M is CM if depthRpMq “ dimRpMq.

There is also a homological useful characterization: namely we let R be
polynomial a ring of Krull dimension n and S ãÑ R of Krull dimension d .
Then we call ω‚

S
..“ Ext‚

RpS ,Rq the dualizing complex of S (notice that
this coincide with diff. forms of deg d if S ãÑ R is non-singular... ).
Now, S is CM if Ext iRpS ,Rq “ 0 for every i ‰ n ´ d , that is if the
dualizing complex is a module.
In particular, if it is also free of rank 1, then we say that M is Gorenstein.

Typical example: plane curves with embedded points are not CM, e.g.

Spec
`

CrX ,Y s{px2, xyq
˘

.

Indeed px2, xyq – pxq ¨ pxyq: y -axis with embedded point p0, 0q.
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Operators of a Theory
The operators of a theory consist of functionals of the fields of the
theory are denoted with OpEq.

For any point x P V we can define local operators via

OxpEq ..“ Sym‚pJ8E |xq_,

where J8E denotes the jet bundles of E - in other words, the local
operators at x evaluate polynomials in the fields and derivatives of
fields at x .

Given a map ρ : g ù pDpE q, rD,´sq, the dual maps pρpjqq_

define an action on the linear local operators, which extends to
OxpEq via Leibniz rule.
Fixing an element Q P g, we can define a map

δQ “
ÿ

j

ρpjqpQ, . . . ,Qq_ : OxpEq Ñ OxpEq,

this defines the action of Q P g on the operators of the theory.
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BRST Datum

A BRST datum on a multiplet pE ,D, ρq consists of:

‚ a local super L8 structure tµku on L ” E r´1s such that
µ1 “ D, and whose associated CE differential we denote by
QBRST ;

‚ a local functional S0 P OpE q of bidegree p0,`q called BRST
action action, which is QBRST -closed and invariant for the L8

action ρ.



7/8

BV Datum
A BV datum on a multiplet pE ,D, ρq consists of:

‚ a graded antisymmetric map x´,´y : E b E Ñ ωX of
bidegree p´1,`q which is fiberwise non-degenerate and
invariant for the L8 action ρ;

‚ A C ‚pgq-valued BV action of bidegree p0,`q given by
SBV “

ř

k S
k
BV where Sk

BV P C kpgq b OpE q, such that it
satisfies the g-equivariant master equation

dgSBV `
1

2
tSBV , SBV u “ 0.

Here

S0
BV pΦq “

ż

X
xΦ,DΦy ` IBV pΦq

where IBV is at least cubic in the fields and where

Sk
BV px1, . . . , xk ; Φq “

ż

X
xΦ, ρkpx1, . . . , xkqΦy
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Frrom BRST to BV Datum
To move from a BRST datum to a BV datum one considers

LBV “ L ‘ L_r´ks,

which is equipped with a canonical evaluation pairing (of degree
-k). The BRST action deforms the obvious L8 structure on the
direct sum, thus giving rise to an L8 structure on LBV , for which
the evaluation pairing is invariant (after an application of the
homological perturbation lemma).

1. If M is Gorenstein, its Koszul homology is naturally equipped
with a perfect pairing, that equips the multiplet with a BV
datum (in fact the minimal free resolution of M is self-dual if
it is Gorenstein).

2. If M is Cohen-Macaulay, we can instead work as above:
consider L_r´ks to be given by the dualizing module and look
at L ‘ L_r´ks to define the BV datum.
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