Multiplet

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

The Geometry of Pure Spinor Superfield Formalism

GTP Seminar - NYUAD

Simone Noja

Universität Heidelberg

11/12/2024

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Motivations & Premises

The construction of supersymmetric field theories faces essential difficulties, *e.g.* supersymmetry is only represented *on-shell* / up to gauge transformations.

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Motivations & Premises

The construction of supersymmetric field theories faces essential difficulties, *e.g.* supersymmetry is only represented *on-shell* / up to gauge transformations.

- **Quantization:** desirable for the symmetry to act on the full space of fields without regard to the dynamics;
- **Geometrization:** reasonable to think of supersymmetry as arising from the action of particular geometric symmetry on an appropriate (super)space;

www extending the space of fields / superfield formulation

How to... Superfield Formulations

Harmonic Superspace (Galperin, Ivanov, Ogievetsky, Sokatchev...), Rheonomy (Castellani, D'Auria, Fre...), <u>Pure Spinors</u> (Nillson & Howe, Berkovits...)

Pure Spinor Superfield

Examples 00000000

Motivations & Premises

A View on Pure Spinors Superfield Formalism

Provide a view on pure spinor superfield formalism

- amenable to mathematicians;
- yields susy "multiplets" as understood by physicists.

Examples 00000000

Motivations & Premises

A View on Pure Spinors Superfield Formalism

Provide a view on pure spinor superfield formalism

- amenable to mathematicians;
- yields susy "multiplets" as understood by physicists.

Structure of the talk

- 1. Definition of **multiplet;**
- 2. Nilpotence variety and pure spinor superfield formalism;
- 3. Examples;
- 4. (If time permits: general results and considerations).
 - arXiv2404.07167 w/ R. Eager, R. Senghaas, <u>J. Walcher;</u>
 - arXiv:2206.08388 w/ <u>F. Hahner</u>, <u>I. Saberi</u>, <u>J. Walcher</u>;
 - see also arXiv:2111.01162

Multiplets - a first encounter in physics

A multiplet is a representation of the supersymmetry algebra ${\mathfrak g}$ of a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one into another under the action of \mathfrak{g} : they are the *building blocks of actions of physical theories*.

Multiplets - a first encounter in physics

A multiplet is a *representation of the supersymmetry algebra* \mathfrak{g} of a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one into another under the action of \mathfrak{g} : they are the *building blocks of actions of physical theories*.

A minimal supersymmetric Lagrangian in d = 4 reads

$$\mathscr{L}_{chiral} = -\partial \bar{\varphi} \cdot \partial \varphi + i \bar{\psi} \partial \psi + \bar{F} F$$

•••• The triplet (φ, ψ, F) is a multiplet, called *chiral multiplet*. •••• Supersymmetry transformations of (φ, ψ, F) read

$$\delta_s \phi = \epsilon \psi, \quad \delta_s \psi = i \overline{\epsilon} \partial \phi + \epsilon F, \quad \delta_s F = -i \epsilon \partial \psi$$

Multiplets - toward a mathematical definition

Obviously, a multiplet is a *representation-theoretic* notion, though it is not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V, some pieces of data should be part of our definition:

- Bosonic and Fermionic fields are sections of vector bundles on the spacetime V (with parity / Z/2-grading);
- Supersymmetry transformations are given by an action of a certain (super)algebra on these sections.

Multiplets - toward a mathematical definition

Obviously, a multiplet is a *representation-theoretic* notion, though it is not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V, some pieces of data should be part of our definition:

- Bosonic and Fermionic fields are sections of vector bundles on the spacetime V (with parity / Z/2-grading);
- Supersymmetry transformations are given by an action of a certain (super)algebra on these sections.

On the other hand, attention must be paid...

In relevant examples, the representation of the supersymmetry algebra is *not strict*!

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

The $\mathcal{N} = 1$, d = 4 Vector Multiplet

This multiplet consists of the following collection of fields:

- 1. $A \in \Omega^1(\mathbb{R}^4)$ is a connection 1-form;
- 2. $(\lambda, \overline{\lambda}) \in C^{\infty}(\mathbb{R}^4, \Pi(S_+ \oplus S_-))$ are spinors of opposite chirality;
- 3. $D \in C^{\infty}(\mathbb{R}^4)$ is an auxiliary field;
- 4. $c \in C^{\infty}(\mathbb{R}^4)$ is a ghost field (of ghost degree $-1 \rightsquigarrow$ gauge).
 - The ghost field has a *non-zero differential*:

$$c \stackrel{d}{\longmapsto} dc \quad \iff \quad \delta_{\textit{brst}} A_{\mu} = \partial_{\mu} c$$

• The ghost field has higher-order supersymmetry transformation:

$$Q \otimes \bar{Q} \otimes A \stackrel{\rho^2}{\longmapsto} \iota_{\{Q,\bar{Q}\}} A \quad \Longleftrightarrow \quad \delta_s c = (\epsilon \sigma^{\mu} \bar{\epsilon}) A_{\mu}.$$

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

The $\mathcal{N} = 1$, d = 4 Vector Multiplet

g-module structure on the vector multiplet

In physics lingo, the higher-order transformation of c is a *closure term* for the supersymmetry action: in this case, we say that "the supersymmetry action only closes up to gauge transformations".

Setting
$$\rho^{i}: \mathfrak{g}^{\otimes i} \longrightarrow End(\mathcal{E})[1-i]$$
, we have
 ρ^{1} -terms $\longleftrightarrow \begin{cases} \delta_{s}A_{\mu} = \epsilon\sigma_{\mu}\overline{\lambda} + \psi\sigma_{\mu}\overline{\epsilon}, \\ \delta\lambda_{s} = \epsilon D, \quad \delta_{s}\overline{\lambda} = -\overline{\epsilon}D, \\ \delta_{s}D = 0, \end{cases}$
 ρ^{2} -terms $\longleftrightarrow \delta_{s}c = (\epsilon\sigma^{\mu}\overline{\epsilon})A_{\mu}.$
The relation between ρ^{1} and ρ^{2} is given by
 $[\rho^{1}(x), \rho^{1}(y)] - \rho^{1}([x, y]) = -[d, \rho^{2}(x, y)].$

In other words, ρ^2 provides a **homotopy** for the failure of ρ^1 to be a strict g-action \longrightarrow we should consider weaker / L_{∞} -action!

Multiplet - a (tentative) mathematical definition

Definition (g-Multiplet)

Let (E, D) be an affine dgs vector bundle on $V = \mathbb{R}^d$, let \mathfrak{g} be a super L_{∞} -algebra together with an injective map $\iota : \mathfrak{Aff}(V) \to \mathfrak{g}$.

A g-multiplet is a local g-module structure (E, D, ρ) on (E, D) such that the pullback of the module structure along $\iota : \mathfrak{Aff}(V) \to \mathfrak{g}$ agrees with the natural action on sections.

- 1. Affine : the total space of *E* carries an action of $\mathfrak{Aff}(V) = \mathbb{R}^d \rtimes \mathfrak{so}(d)$ such that its projection $\pi : E \to V$ is *equivariant* with respect to the action of $\mathfrak{Aff}(V)$ on *V*;
- 2. **dgs vector bundle** (E, D): $\mathbb{Z} \times \mathbb{Z}_2$ -graded vector bundle $E = \bigoplus_k (E_+^k \oplus E_-^k)$ equipped with a collection of differential operators $D : \mathcal{E}_{\pm}^k \to \mathcal{E}_{\pm}^{k+1}$ such that $D \circ D = 0$, where $\mathcal{E}_{\pm}^k := \Gamma(X, E_{\pm}^k)$ are the C^{∞} -sections of E_{\pm}^k .
- 3. Local g-module structure : super L_{∞} -map $\rho : g \to (\mathcal{D}(\mathcal{E}), [D, -])$ with $\mathcal{D}(\mathcal{E}) := \{x \in End(\mathcal{E}) : x \text{ is a differential operator}\} \subset End(\mathcal{E}).$

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras $\mathfrak{p},$ but - as defined - the notion is broader...

- Let h be a Lie algebra and let g = h ⊕ 𝔅ff(V). A g-multiplet contains a collection of fields transforming in a local representation of h ↔ "flavor symmetry" multiplets.
- The Lie algebra Conf(V) of (super)conformal transformations on V contains Aff(V) v→ Conf(V)-multiplets.

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras $\mathfrak{p},$ but - as defined - the notion is broader...

- Let h be a Lie algebra and let g = h ⊕ 𝔅ff(V). A g-multiplet contains a collection of fields transforming in a local representation of h ↔ "flavor symmetry" multiplets.
- 2. The Lie algebra $\mathfrak{Conf}(V)$ of (super)conformal transformations on V contains $\mathfrak{Aff}(V) \leadsto \mathfrak{Conf}(V)$ -multiplets.

Question : how to construct – and possibly "classify" – multiplets? (*i.e.* how to provide the building blocks for supersymmetric theories?)

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

The cornerstone of the construction is the algebraic variety Y_g , which makes sense for any super Lie algebra $g = g_0 \oplus g_1$.

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

The cornerstone of the construction is the algebraic variety Y_g , which makes sense for any super Lie algebra $g = g_0 \oplus g_1$.

Let $\mathfrak{g} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra and let $Q \in \mathfrak{g}_1$.

The equations $Q^2 := \frac{1}{2} \{Q, Q\} = 0$, defines a set of quadrics, whose zero locus is called **nilpotence variety** $Y_g \subseteq \mathbb{A}^{\dim g_1}$.

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

The cornerstone of the construction is the algebraic variety Y_g , which makes sense for any super Lie algebra $g = g_0 \oplus g_1$.

Let $\mathfrak{g} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra and let $Q \in \mathfrak{g}_1$.

The equations $Q^2 := \frac{1}{2} \{Q, Q\} = 0$, defines a set of quadrics, whose zero locus is called **nilpotence variety** $Y_{\mathfrak{g}} \subseteq \mathbb{A}^{\dim \mathfrak{g}_1}$.

The equations are homogeneous, hence their space of solutions descends to a projective variety $\mathbb{P}Y_{\mathfrak{g}} \subseteq \mathbb{P}^{\dim \mathfrak{g}_1 - 1}$, the **projectivized** nilpotence variety of \mathfrak{g} .

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Nilpotence Variety

Definition (Nilpotence Variety of g)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let *R* be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1]);$
- 2. let I be the ideal defined by the set of equations $\{Q, Q\}$.

Then we call

- $Y_{g} := \operatorname{Spec}(R/I) \subset \operatorname{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \operatorname{Proj}(R/I) \subset \operatorname{Proj}(R)$ is the projective nilpotence variety.

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Nilpotence Variety

Definition (Nilpotence Variety of g)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let *R* be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1]);$
- 2. let I be the ideal defined by the set of equations $\{Q, Q\}$.

Then we call

- $Y_{g} := \operatorname{Spec}(R/I) \subset \operatorname{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \operatorname{Proj}(R/I) \subset \operatorname{Proj}(R)$ is the projective nilpotence variety.

Very concretely, for super Poincaré algebras, expanding $Q = \lambda^a Q_a$ and identifying $R = \mathbb{C}[\lambda^a]$, if we denote Γ^{μ}_{ab} the structure constant of the bracket $\{Q_a, Q_b\} \sim \Gamma^{\mu}_{ab}p_{\mu}$, we have

$$R/I = \mathbb{C}[\lambda^a] / (\lambda^a \Gamma^{\mu}_{ab} \lambda^b).$$

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Nilpotence Variety

Definition (Nilpotence Variety of g)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let *R* be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1]);$
- 2. let I be the ideal defined by the \mathfrak{g}_0 -valued set of equations $\{Q, Q\} = 0.$

Then we call

- $Y_{g} := \operatorname{Spec}(R/I) \subset \operatorname{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \operatorname{Proj}(R/I) \subset \operatorname{Proj}(R)$ is the projective nilpotence variety.

 \longrightarrow *Mathematically*, the nilpotence variety of g can be seen as a "moduli space of cohomologies"...

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Nilpotence Variety

Definition (Nilpotence Variety of g)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let *R* be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1]);$
- 2. let I be the ideal defined by the \mathfrak{g}_0 -valued set of equations $\{Q, Q\} = 0.$

Then we call

- $Y_{g} := \operatorname{Spec}(R/I) \subset \operatorname{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \operatorname{Proj}(R/I) \subset \operatorname{Proj}(R)$ is the projective nilpotence variety.

 \longrightarrow *Mathematically*, the nilpotence variety of g can be seen as a "moduli space of cohomologies"...

 \longrightarrow *Physically*, these cohomologies are called **twists** of the related (g-invariant) physical theories.

Multiplets 000000 Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Super Poincaré Algebra \mathfrak{p} of V

As a super Lie algebra comes with a $\mathbb{Z}/2\text{-}\mathsf{grading}\ \mathfrak{p}=\mathfrak{p}_0\oplus\mathfrak{p}_1\text{:}$

1. The **fermionic part** p_1 is the tensor product of a spin representation S with an auxiliary vector space U

$$\mathfrak{p}_1=S\otimes U,$$

Recall that there are either one S or two S_{\pm} representations of $Spin(V_{/\mathbb{C}}).$

- Depending on the dimension, *U* can be equipped with a symmetric or antisymmetric bilinear form.
- The "degree of supersymmetry" ${\cal N}$ is $\dim(U)$ as a multiple of its smallest possible dimension.
- The bosonic part p₀ arises from *translations V*, *Lorentz transformations* so(V) and *R-symmetry* r:

$$\mathfrak{p}_0 = (V \rtimes \mathfrak{so}(V)) \times \mathfrak{r},$$

where $\mathfrak{r} = {\mathfrak{gl}(U), \mathfrak{so}(U), \mathfrak{sp}(U)}$, for U the auxiliary vector space.

• The *R*-symmetry arises as automorphisms of *U*.

Multiplets 000000 Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Supertranslations (aka Supersymmetry) Algebra t

It is a subalgebra of $\mathfrak{p}.$ As a super Lie algebra it reads

 $\mathfrak{t} = \mathfrak{t}_0 \oplus \mathfrak{t}_1 = V \oplus \mathfrak{p}_1.$

More precisely, it is a central extension of p_1 the form

 $0 \longrightarrow V \longrightarrow \mathfrak{t} \longrightarrow \mathfrak{p}_1 \longrightarrow 0,$

the bracket on $\mathfrak t$ is given by the equivariant map

$$\Gamma: Sym^2(S) \to V$$

for S a spin representation.

It might be convenient to look at the super Poincaré algebra as graded algebra $\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_1 \oplus \mathfrak{p}_2$, in a way such that supertranslations read $\mathfrak{t} := \mathfrak{p}_{>0}$ and $\{\cdot, \cdot\} : Sym^2(\mathfrak{p}_1) \to \mathfrak{p}_2$ is \mathfrak{p}_0 -equivariant.

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

$$d = 4$$
, $\mathcal{N} = 1$ Nilpotence Variety

• The super Poincaré algebra reads

$$\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_1 = (V \rtimes \mathfrak{so}(V)) \oplus (S_+ \oplus S_-)$$

where S_{\pm} are chiral Weyl spinor representations of Spin(V).

- Γ defines an isomorphism $\Gamma : S_+ \otimes S_- \xrightarrow{\cong} V$.
- This implies that $\{Q, Q\} = 0 \iff Q \in S_+$ or $Q \in S_-$.
- $Y(d = 4, \mathcal{N} = 1)$ consists in two \mathbb{C}^2 -planes in \mathbb{C}^4 intersecting at the origin:

$$Y(4,1) = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-.$$

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

d = 4, $\mathcal{N} = 1$ Nilpotence Variety

The computation can be repeated in coordinates!

• A general supercharge can be written

$$Q = \lambda^{lpha} Q_{eta} + ar{\lambda}^{\dot{eta}} ar{Q}_{\dot{eta}}$$

as decomposed in its S_- and S_+ components.

• The equation $\{Q, Q\} = 0$ reduces to four quadratic equations

$$\lambda^{\alpha}\bar{\lambda}^{\dot{\beta}}\Gamma^{\mu}_{\alpha\dot{\beta}} = 0 \iff \begin{cases} \lambda^{1}\bar{\lambda}^{1} + \lambda^{2}\bar{\lambda}^{2} = 0, \\ \lambda^{1}\bar{\lambda}^{1} - \lambda^{2}\bar{\lambda}^{2} = 0, \\ \lambda^{1}\bar{\lambda}^{2} + \lambda^{2}\bar{\lambda}^{1} = 0, \\ \lambda^{1}\bar{\lambda}^{2} - \lambda^{2}\bar{\lambda}^{1} = 0. \end{cases}$$

Adding and subtracting one finds

$$\lambda^1\bar{\lambda}^1=\lambda^2\bar{\lambda}^2=\lambda^1\bar{\lambda}^2=\lambda^2\bar{\lambda}^1=0 \quad \textrm{\longrightarrow} \quad \lambda^\alpha=0 \ \lor \ \bar{\lambda}^{\dot{\beta}}=0.$$

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

d = 3, $\mathcal{N} = 1$ Nilpotence Scheme

• The super Poincaré algebra reads

$$\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_1 = (V \rtimes \mathfrak{so}(V)) \oplus S$$

where S is in the fundamental representation of Spin(3).

- Γ defines an isomorphism $\Gamma : Sym^2(S) \xrightarrow{\cong} V$.
- This implies that $\{Q, Q\} = 0 \iff Q = 0.$
- $Y(3,1) = \{0\} \subset \mathbb{C}^2...$ as an algebraic set!

Multiplets 000000 Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

d = 3, $\mathcal{N} = 1$ Nilpotence Scheme

• The super Poincaré algebra reads

$$\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_1 = (V \rtimes \mathfrak{so}(V)) \oplus S$$

where S is in the fundamental representation of Spin(3).

- Γ defines an isomorphism $\Gamma : Sym^2(S) \xrightarrow{\cong} V$.
- This implies that $\{Q, Q\} = 0 \iff Q = 0.$
- $Y(3,1) = \{0\} \subset \mathbb{C}^2...$ as an algebraic set!
- As a scheme, it is a **fat point**! Indeed expanding $\{Q, Q\} = 0$ one has

$$(\lambda^1)^2 = \lambda^1 \lambda^2 = (\lambda^2)^2 = \mathbf{0}.$$

• It follows that $Y(3,1) = \operatorname{Spec}(\mathbb{C}[\lambda^1,\lambda^2]/((\lambda^1)^2,\lambda^1\lambda^2,(\lambda^2)^2)),$

d = 6, $\mathcal{N} = (1,0)$ Projective Nilpotence Variety

- In d = 6, $\mathcal{N} = (1,0)$ we have symplectic spinors \cdots $\mathfrak{t}_1 = S_+ \otimes U$, with (U, ω) a symplectic vector space.
- The nilpotence ideal $I = (\lambda_i^{\alpha} \Gamma^{\mu}_{\alpha\beta} \omega^{ij} \lambda_j^{\beta})$ is a determinantal ideal

$$I = \left\{ (2 \times 2) \text{-minors of } [L] := \begin{pmatrix} \lambda_1^1 & \lambda_1^2 & \lambda_1^3 & \lambda_1^4 \\ \lambda_2^1 & \lambda_2^2 & \lambda_2^3 & \lambda_2^4 \end{pmatrix} \right\} \dashrightarrow \qquad \text{``rank 1 locus''} \text{ of } [L]$$

If follows that the nilpotence variety has a very nice a nice projective model, in fact the projective nilpotence variety $\mathbb{P}Y(6,(1,0))$ is a Segre 4-fourfold (sitting in \mathbb{P}^7):

$$Y(6;(1,0)) = \mathbb{P}^1 imes \mathbb{P}^3 \hookrightarrow \mathbb{P}^7$$

www bundles are easily available on this (smooth!) variety...

Multiplet 000000 Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Relations between Nilpotence Varieties

19/36

Multiplet

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Pure Spinor Superfield Formalism

In a nutshell, pure spinor superfield formalism constructs p-multiplets starting from the geometric data of modules on Y_p .

Pure Spinor Superfield Formalism

• Identifying the spacetime $V = \mathfrak{p}_2$ we consider the **supermanifold** X

$$\mathcal{O}(X) = C^{\infty}(\mathfrak{p}_{>0}) = C^{\infty}(V) \otimes_{\mathbb{C}} \wedge^{\bullet}(\mathfrak{p}_{1}^{\vee}) = C^{\infty}(\mathbb{C}^{d}) \otimes_{\mathbb{C}} \wedge^{\bullet}(\mathfrak{p}_{1}^{\vee})$$

and call local coordinates $x^{\mu}|\theta^{\alpha}$ and $\mathcal{O}(X)$ the algebra of free superfields.

Pure Spinor Superfield Formalism

• Identifying the spacetime $V = \mathfrak{p}_2$ we consider the **supermanifold** \mathfrak{X}

$$\mathcal{O}(X) = C^{\infty}(\mathfrak{p}_{>0}) = C^{\infty}(V) \otimes_{\mathbb{C}} \wedge^{\bullet}(\mathfrak{p}_{1}^{\vee}) = C^{\infty}(\mathbb{C}^{d}) \otimes_{\mathbb{C}} \wedge^{\bullet}(\mathfrak{p}_{1}^{\vee})$$

and call local coordinates $x^\mu|\theta^\alpha$ and $\mathcal{O}(X)$ the algebra of free superfields.

• There are two **commuting** action of the supersymmetry algebra, $(\ell, r) : \mathfrak{p}_1 \rightarrow End(X)$:

$$\ell(Q_{\alpha}) \equiv \hat{Q}_{\alpha} := \partial_{\theta^{\alpha}} - i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}$$
$$r(Q_{\alpha}) \equiv \hat{\mathcal{D}}_{\alpha} := \partial_{\theta^{\alpha}} + i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}$$

Pure Spinor Superfield Formalism

• Identifying the spacetime $V = \mathfrak{p}_2$ we consider the **supermanifold** \mathfrak{X}

$$\mathcal{O}(\mathcal{X}) = C^{\infty}(\mathfrak{p}_{>0}) = C^{\infty}(V) \otimes_{\mathbb{C}} \wedge^{\bullet}(\mathfrak{p}_{1}^{\vee}) = C^{\infty}(\mathbb{C}^{d}) \otimes_{\mathbb{C}} \wedge^{\bullet}(\mathfrak{p}_{1}^{\vee})$$

and call local coordinates $x^\mu|\theta^\alpha$ and $\mathcal{O}(X)$ the algebra of free superfields.

• There are two **commuting** action of the supersymmetry algebra, $(\ell, r) : \mathfrak{p}_1 \rightarrow End(X)$:

$$\ell(Q_{\alpha}) \equiv \hat{Q}_{\alpha} := \partial_{\theta^{\alpha}} - i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}$$
$$r(Q_{\alpha}) \equiv \hat{D}_{\alpha} := \partial_{\theta^{\alpha}} + i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}$$

 Take a (graded p₀-equivariant) module M on the nilpotence variety Y. This means that M is a graded p₀-equivariant R/I-module, for

$$R/I = \mathbb{C}[\lambda^{\alpha}]/I$$

where I is the ideal cut out by $\{Q, Q\} = 0$.

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Pure Spinor Superfield Formalism

• **Crucial step:** tensor the algebra of free superfields $\mathcal{O}(X)$ with the R/I-module M as to get a cochain complex

$$\mathcal{A}^{\bullet}(M) := (M \otimes_{\mathbb{C}} \mathcal{O}(X), \ \mathcal{D}),$$

where $\mathcal{D} := \lambda^{\alpha} \otimes r(Q_{\alpha}) = \lambda^{\alpha} \widehat{\mathcal{D}}_{\alpha}$ and λ^{α} acts via the R/I-module structure.

$$\mathcal{D}^{2} = \lambda^{\alpha} \lambda^{\beta} r(Q_{\alpha}) r(Q_{\beta}) = \frac{1}{2} \lambda^{\alpha} \lambda^{\beta} \{ r(Q_{\alpha}), r(Q_{\beta}) \} =$$
$$= \frac{1}{2} \lambda^{\alpha} \lambda^{\beta} r(\{Q_{\alpha}, Q_{\beta}\}) = \frac{1}{2} \underbrace{\lambda^{\alpha} \Gamma^{\mu}_{\alpha\beta} \lambda^{\beta}}_{=0 \text{ on } Y_{\mathfrak{p}}} r(p_{\mu}) = 0.$$

Multiplets

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Pure Spinor Superfield Formalism

• **Crucial step:** tensor the algebra of free superfields O(x) with the R/I-module M as to get a cochain complex

$$\mathcal{A}^{\bullet}(M) := (M \otimes_{\mathbb{C}} \mathcal{O}(X), \ \mathcal{D}),$$

where $\mathcal{D} := \lambda^{\alpha} \otimes r(Q_{\alpha}) = \lambda^{\alpha} \widehat{\mathcal{D}}_{\alpha}$ and λ^{α} acts via the R/I-module structure.

$$\mathcal{D}^{2} = \lambda^{\alpha} \lambda^{\beta} r(Q_{\alpha}) r(Q_{\beta}) = \frac{1}{2} \lambda^{\alpha} \lambda^{\beta} \{ r(Q_{\alpha}), r(Q_{\beta}) \} =$$
$$= \frac{1}{2} \lambda^{\alpha} \lambda^{\beta} r(\{Q_{\alpha}, Q_{\beta}\}) = \frac{1}{2} \underbrace{\lambda^{\alpha} \Gamma^{\mu}_{\alpha\beta} \lambda^{\beta}}_{=0 \text{ on } Y_{\mathfrak{p}}} r(p_{\mu}) = 0.$$

A[•](M) has the structure of a dgs vector space (→→ Z × Z₂-graded)

$$\operatorname{\mathsf{deg}}(\lambda^\alpha)=(1,-)\quad \operatorname{\mathsf{deg}}(x^\mu)=(0,+),\quad \operatorname{\mathsf{deg}}(\theta^\alpha)=(0,-).$$

In fact, $\mathcal{A}^{\bullet}(M)$ can be viewed as the global sections of an **affine dgs** vector bundle $\pi : E \to V = \mathfrak{p}_2$, with typical fiber $E_x^k = (M)^k \otimes \wedge^{\bullet} \mathfrak{g}_1^{\vee}$ \rightsquigarrow multiplet!

Pure Spinor Superfield Formalism

- We still have a *left* action $\ell!$ In particular one can argue that:
 - 1. $\ell(\mathfrak{p}_{>0})$ commutes with $\mathcal{D} \Rightarrow$ it defines a $\mathfrak{p}_{>0}$ -module structure on $\mathcal{A}^{\bullet}(M)$;
 - 2. it is equivariant with respect to $\mathfrak{p}_0 \Rightarrow$ can be extended to a full \mathfrak{p} -action

$$\tilde{\ell}:\mathfrak{p}\to\mathcal{A}^{\bullet}(M);$$

 $\rightsquigarrow \mathcal{A}^{\bullet}(M)$ is endowed with the structure of a p-multiplet!

Pure Spinor Superfield Formalism

- We still have a *left* action $\ell!$ In particular one can argue that:
 - ℓ(p_{>0}) commutes with D ⇒ it defines a p_{>0}-module structure on A[•](M);
 - 2. it is equivariant with respect to $\mathfrak{p}_0 \Rightarrow$ can be extended to a full \mathfrak{p} -action

$$\tilde{\ell}:\mathfrak{p}\to\mathcal{A}^{\bullet}(M);$$

 $\rightsquigarrow \mathcal{A}^{\bullet}(M)$ is endowed with the structure of a p-multiplet!

...from Superspace to Space(time)...

We would like to have the "ordinary" presentation of multiplet as collections of vector bundles on the spacetime V out of $\mathcal{A}^{\bullet}(M)$.

A *spectral sequence* argument allows for the connection:

 $\{\mathfrak{p}\text{-multiplet } \mathcal{A}^{\bullet}(M)\} \iff \{\text{vector bundles over spacetime}\}$

Pure Spinor Superfield

Filtration and Associated Spectral Sequence

1. We consider the filtered complex $F^{\bullet}A^{\bullet}(M)$ according to the filtered weights in the above table;

	homological deg	intrinsic parity	filtered weight
x	0	+	0
θ	0	-	1
λ	1	-	1

2. The differential does not respect the weight grading:

$$\mathcal{D} = \mathcal{D}_0 + \mathcal{D}_1 = \underbrace{\lambda^{\alpha} \partial_{\theta^{\alpha}}}_{w=0} + \underbrace{\lambda^{\alpha} \Gamma^{\mu}_{\alpha\beta} \theta^{\beta} \partial_{x^{\mu}}}_{w=2}.$$

3. The associated graded complex reads

 $\operatorname{Gr} \mathcal{A}^{\bullet}(M) = (C^{\infty}(V) \otimes_{\mathbb{C}} (M \otimes_{\mathbb{C}} \mathbb{C}[\theta^{\alpha}]), \mathcal{D}_{0} = \lambda^{\alpha} \partial_{\theta^{\alpha}}) \cong C^{\infty}(V) \otimes_{\mathbb{C}} \mathcal{K}^{\bullet}(M)$ where $\mathcal{K}^{\bullet}(M)$ is the Koszul complex of M:

$$\mathcal{K}^{\bullet}(M) := (M \otimes_{\mathbb{C}} \mathbb{C}[\theta^{\alpha}], \mathcal{D}_{0} = \lambda^{\alpha} \partial_{\theta^{\alpha}}).$$

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Koszul Homology and Component Fields

In short, the Koszul homology of M ($\longleftrightarrow E_1^{\bullet}$) determines the component field description as known in the physics literature:

 $E_1^{\bullet} = H^{\bullet}(\operatorname{Gr} \mathcal{A}^{\bullet}(M)) \quad \longleftrightarrow \quad \left\{ \begin{array}{c} \operatorname{Component Fields} \\ \operatorname{in} \mathcal{A}^{\bullet}(M) \end{array} \right\}$

- *M* is a graded p₀-equivariant module ∽→ *H*[•](*K*[•](*M*)) gives finite dimensional representations of the Lorentz and *R*-symmetry algebra.
- H•(GrA•(M)) determines a (graded) vector bundle over the spacetime V with fibers

$$(E'_x)^k = H^{\bullet}(\mathcal{K}(M))^{(k)}$$

- \mathcal{D}_1 induces a new differential \mathcal{D}' and the p-module structure transfer as well.
- \leadsto this "page 1 multiplet" (E',\mathcal{D}',ρ') determines a new multiplet defined over spacetime!

$(\mathcal{A}^{ullet}(M),\mathcal{D})$
\downarrow \downarrow
$(H^{\bullet}(\operatorname{Gr} \mathcal{A}^{\bullet}(M)), \mathcal{D}')$ free over spacetime
\downarrow
$(H^{ullet}(\mathcal{A}^{ullet}(M)),0)$ — not necessarily free

Mathematics	Physics
First page complex	Field content
First page differential	BRST / BV differential
Action of \mathcal{Q}_{lpha} on representatives	SUSY transformations
Second page complex	gauge invariant (on-shell) fields

Properties of Modules and Properties of Multiplets

Module	Multiplet
$M = \mathcal{O}(S)$ for S hyperplane in Y	Exterior algebra in <i>S</i> (chiral / free superfields)
$M = \mathcal{O}_Y$ complete intersection of quadratic equations	Exterior algebra identified with $\Omega^{\bullet}(\mathbb{R}^d)$ $(\mathcal{O}_Y \text{ for } d = 4, \mathcal{N} = 4)$
M is Gorenstein	$\begin{array}{l} BV \ datum \\ (\mathcal{O}_Y \ for \ d = 10 \ SYM) \end{array}$
<i>M</i> is Cohen-Macaulay	BRST datum & antifield multiplet $(\mathcal{O}_Y \text{ for } d = 6, \mathcal{N} = (1,0))$
<i>M</i> is not Cohen-Macaulay	BRST datum & no antifield multiplet $(\mathcal{O}_Y \text{ for } d = 4, \mathcal{N} = 1)$

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module) Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its ring of function R/I is a Cohen-Macaulay ring of (Krull) dimension d.

Then the antifield multiplet $\mathcal{A}^{\bullet}(R/I)^{\vee}$ of $\mathcal{A}^{\bullet}(R/I)$ is given by

$$\mathcal{A}^{\bullet}(R/I)^{\vee} = \mathcal{A}^{\bullet}(\omega_{R/I})$$

where $\omega_{R/I} = Ext_R^{n-d}(R/I, R)$ is the **dualizing module** of R/I and n is the (Krull) dimension of ambient ring R.

Antifield multiplets $\mathcal{A}^{\bullet}(M) \iff$ Dualizing modules of M

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module)

Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its ring of function R/I is a Cohen-Macaulay ring of (Krull) dimension d. Then the antifield multiplet $\mathcal{A}^{\bullet}(R/I)^{\vee}$ of $\mathcal{A}^{\bullet}(R/I)$ is given by

$$\mathcal{A}^{\bullet}(R/I)^{\vee} = \mathcal{A}^{\bullet}(\omega_{R/I})$$

where $\omega_{R/I} = Ext_R^{n-d}(R/I, R)$ is the **dualizing module** of R/I and n is the (Krull) dimension of ambient ring R.

Antifield multiplets $\mathcal{A}^{\bullet}(M) \iff$ Dualizing modules of M

Warning: Dualizing Complexes & Pure Spinors

If Y is **not** Cohen-Macaulay, then one has a dualizing complex $\omega_{R/I}^{\bullet}$ instead of a single module, hence the PS formalism is not capable of producing the antifield multiplet of R/I.

Nilpotence Varieties

Pure Spinor Superfield

Examples •0000000

d = 4, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

• Recall that the nilpotence variety is $Y = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-$.

d = 4, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

- Recall that the nilpotence variety is $Y = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-.$
- Choose $M = \mathbb{C}[\bar{\lambda}^{\dot{lpha}}]$ and construct the PS complex

$$(\mathcal{A}^{\bullet}(\mathcal{M}), \mathcal{D}) = \left(\mathcal{C}^{\infty}(\mathfrak{t}) \otimes_{\mathbb{C}} \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D} = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}} + \bar{\lambda}^{\dot{\alpha}} \Gamma^{\mu}_{\alpha \dot{\alpha}} \theta^{\alpha} \partial_{\mu} \right)$$

• Compute the relevant Koszul homology: using $\mathfrak{t}_1=S_+\oplus S_-$ one has

$$\mathcal{K}^{\bullet}(M) = \left(\wedge^{\bullet} S_{+} \otimes \wedge^{\bullet} S_{-} \otimes \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D}_{0} = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}} \right)$$

with θ^{α} are coordinates for S_+ and $\bar{\theta}^{\dot{\alpha}}$ are coordinates for S_- .

d = 4, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

- Recall that the nilpotence variety is $Y = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-.$
- Choose $M = \mathbb{C}[\bar{\lambda}^{\dot{lpha}}]$ and construct the PS complex

$$(\mathcal{A}^{\bullet}(M), \mathcal{D}) = \left(\mathcal{C}^{\infty}(\mathfrak{t}) \otimes_{\mathbb{C}} \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D} = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}} + \bar{\lambda}^{\dot{\alpha}} \Gamma^{\mu}_{\alpha \dot{\alpha}} \theta^{\alpha} \partial_{\mu} \right)$$

- Compute the relevant Koszul homology: using $\mathfrak{t}_1=S_+\oplus S_-$ one has

$$\mathcal{K}^{\bullet}(M) = \left(\wedge^{\bullet} S_{+} \otimes \wedge^{\bullet} S_{-} \otimes \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D}_{0} = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}} \right)$$

with θ^{α} are coordinates for S_+ and $\bar{\theta}^{\dot{\alpha}}$ are coordinates for S_- .

• $heta^{lpha}$ does not occur in \mathcal{D}_0 , hence the cohomology reads

$$H^{\bullet}(\mathcal{K}^{\bullet}(M)) = \wedge^{\bullet}S_{+} \otimes H^{\bullet}(\wedge^{\bullet}S_{-} \otimes \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}]) \cong \wedge^{\bullet}S_{+} \otimes \mathbb{C}.$$

- Reinstating the spacetime dependence one has that the $\mathcal{D}_0\text{-}\mathsf{cohomology}$ reads

$$C^{\infty}(\mathbb{C}^4) \otimes H^{ullet}(\mathcal{K}^{ullet}(M)) \cong C^{\infty}(\mathbb{C}^4) \otimes_{\mathbb{C}} \wedge^{ullet}S_+.$$

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

d = 4, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

Field Content: Chiral Supermultiplet

Field	\mid Representative in the \mathcal{D}_0 -cohomology
ϕ	$ \phi$
ψ	$ $ $\psi heta$
F	$ $ $F\theta_1\theta_2$

Nilpotence Varieties

Examples 00000000

d = 4, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

Field Content: Chiral Supermultiplet

Field	Representative in the \mathcal{D}_0 -cohomology
ϕ	ϕ
ψ	$\psi heta$
F	$F heta_1 heta_2$

Supersymmetry Transformations of the Chiral Multiplet The action on the supercharges in p_1 on the representatives in cohomology gives the supersymmetry transformations:

$$\begin{split} \rho(Q + \bar{Q})(\phi + \theta\psi + F\theta_1\theta_2) &= (\epsilon\partial_\theta + i(\theta\sigma^\mu\bar{\epsilon})\partial_\mu)(\phi + \theta\psi + F\theta_1\theta_2) \\ &= \underbrace{\epsilon\psi}_{\delta\phi} + \underbrace{(i\bar{\epsilon}\bar{\phi}\phi + \epsilon F)}_{\delta\psi}\theta + \underbrace{(-i\epsilon\bar{\phi}\psi)}_{\delta F}\theta_1\theta_2 \end{split}$$

d = 6, $\mathcal{N} = (1,0)$ Multiplets via Pure Spinors

- Recall that $Y(6;(1,0)) = \mathbb{P}^1 \times \mathbb{P}^3 \hookrightarrow \mathbb{P}^7$
- All line bundles are of the form

 $\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^3}(\textit{n},\textit{m})=\pi_1^*\mathcal{O}_{\mathbb{P}^1}(\textit{n})\otimes_{\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^3}}\pi_3^*\mathcal{O}_{\mathbb{P}^3}(\textit{m})\quad(\textit{n},\textit{m})\in\mathbb{Z}^{\oplus 2}.$

→ all multiplets A(m, n) coming from line bundles can be classified!
For example, one finds:

1. $\mathcal{O}_{Y}(0,0) \dashrightarrow$ vector multiplet: $\mathcal{O}_{Y}(0,0) \dashrightarrow \mathcal{A}^{\bullet}(0,0) = (\Omega^{0}, \Omega^{1}, S_{-} \otimes \mathbb{C}^{2}, \Omega^{0} \otimes \mathbb{C}^{3})$ 2. $\mathcal{O}_{Y}(1,0) \dashrightarrow$ hypermultiplet:

 $\mathcal{O}_{\boldsymbol{Y}}(1,0) \dashrightarrow \boldsymbol{\mathcal{A}}^{\bullet}(1,0) = (\Omega^0 \otimes \mathbb{C}^2, \quad \boldsymbol{S}_+, \quad \boldsymbol{S}_-, \quad \Omega^0 \otimes \mathbb{C}^2)$

3. $\mathcal{O}_{\mathbf{Y}}(2,0) \rightsquigarrow$ antifield multiplet of the vector multiplet:

$$\mathcal{O}_Y(2,0) \dashrightarrow \mathcal{A}^{\bullet}(2,0) = (\Omega^0 \otimes \mathbb{C}^3, \quad S_- \otimes \mathbb{C}^2, \quad \Omega^1, \quad \Omega^0)$$

d = 6, $\mathcal{N} = (1,0)$ Multiplets via Pure Spinors

- Recall that $Y(6; (1,0)) = \mathbb{P}^1 \times \mathbb{P}^3 \hookrightarrow \mathbb{P}^7$
- On the other hand, also higher-rank vector bundles can be considered, such as the *conormal bundle*

$$0 \longrightarrow \mathcal{N}_{Y}^{\vee} \longrightarrow \Omega^{1}_{\mathbb{P}^{7}|_{Y}} \longrightarrow \Omega^{1}_{Y} \longrightarrow 0.$$

• Remarkably, the conormal bundle is related to supergravity multiplet:

$$\mathcal{A}^{\bullet}(\mathcal{N}_{Y}^{\vee}) \ni (\ldots, Sym_{0}^{2}(V), (V \otimes S_{-})_{\frac{3}{2}} \otimes \mathbb{C}^{2}, \ldots)$$

The following is always true:

- 1. $\mathcal{O}_Y \dashrightarrow$ vector (gauge) multiplet;
- 2. $\mathcal{N}_{Y}^{\vee} \leadsto$ supergravity multiplet;
- 3. $\pi_* \mathcal{O}_Y \leadsto$ chiral multiplet(s);

Nilpotence Varieties

Pure Spinor Superfield

Examples 000000000

d = 1 Supersymmetry and Pure Spinors

- In d = 1 the nilpotence ideal is $I = \sum_{i=1}^{N} \lambda_i^2$ for any amount of supersymmetry \mathcal{N} , hence the nilpotence variety $Y(1, \mathcal{N})$ is a quadric hypersurface.
- The most studied *d* = 1 multiplets arise from the graph technology of *Adinkras*: the following is an example of the most important class of Adinkras, the *valise* Adinkras:

 Via pure spinors formalism, valise Adinkras corresponds to characteristic bundle on the quadric Y(1, N): the spinor bundle.

Nilpotence Varieties

Pure Spinor Superfield

Examples 000000000

Outro - toward derived geometry

At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable of accounting for all of the multiplets?

Nilpotence Varieties

Pure Spinor Superfield

Examples 000000000

Outro - toward derived geometry

At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable of accounting for all of the multiplets?

As it turns out, the answer is **no**:

A relevant example is the antifield multiplet of the d = 4, N = 1 vector multiplet (←→→ O_Y).

Geometrically, the antifield multiplet of the vector multiplet is related to the dualizing module of $Y \leadsto$ if Y is singular, there is no dualizing module, but dualizing **complex** instead!

Nilpotence Varieties

Pure Spinor Superfield

Examples 000000000

Outro - toward derived geometry

At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable of accounting for all of the multiplets?

As it turns out, the answer is **no**:

 A relevant example is the antifield multiplet of the d = 4, N = 1 vector multiplet (←→→ O_Y).

Geometrically, the antifield multiplet of the vector multiplet is related to the dualizing module of $Y \leadsto$ if Y is singular, there is no dualizing module, but dualizing **complex** instead!

- This point in the direction of a derived pure spinor formalism (
 input are not single modules, but complexes of modules)!

Nilpotence Varieties

Pure Spinor Superfield

Examples 00000000

Pure Spinors in d = 1 and Geometry of Quadrics

- 1. The *N*-extended supersymmetry algebra \mathfrak{t}_N in d = 1 is characterized by the relations $\{Q_i, Q_j\} = 2\delta_{ij}H$ for i, j = 1, ..., N;
- 2. The nilpotence variety of \mathfrak{t}_N is a quadric hypersurface $Y_N := \operatorname{Spec}(\mathbf{k}[\lambda_1, \dots, \lambda_N]/q_N)$ for $q_N := \sum_{i=1}^N \lambda_i^2$ the standard quadratic form;

Theorem ("Deformed" BGG correspondence & d = 1 SUSY) Let R/I be the ring of functions on Y_N and let $U_k(t)$ be the universal enveloping algebra of t_N . Then

$$D^{\flat}(R/I\operatorname{-Mod}) \cong D^{\flat}(U_{\mathbf{k}}(\mathfrak{t})\operatorname{-Mod}).$$
 (1)

In particular, the following (Abelian) categories are mapped into each other:

$$\mathsf{MCM}_{gr}(R/I) \underbrace{\mathcal{C}\ell(q_N)}_{\mathcal{C}\ell(q_N)} \mathsf{Mod}_{gr}. \tag{2}$$

Multiplet 000000 Nilpotence Varieties

Pure Spinor Superfield

Examples 0000000

Thank you very much!

Multiplets and Pure Spinor Formalism

Definition (Multiplet)

A g-multiplet is a triple (E, D, ρ) , where (E, D) is an affine dgs vector bundle E on V equipped with a (local) g-module structure $\rho : \mathfrak{g} \leadsto \mathcal{D}(E)$, such the following commute

A morphism of multiplet is map of cochain complexes $\psi: \Gamma(E) \to \Gamma(E')$ such that $\psi \circ \rho(x) = \rho'(x) \circ \psi$ for every $x \in \mathfrak{g}$.

Definition (Category of Multiplets)

The dg-category \mathfrak{g} -**Mult** of \mathfrak{g} -multiplets is the (full) subcategory of local \mathfrak{g} -modules whose object are \mathfrak{g} -multiplets.

Multiplets and Pure Spinor Formalism

Definition (Poincaré Superalgebra)

A superalgebra ${\mathfrak g}$ is of super Poincaré type if it can be written as an extension

$$0 \longrightarrow \mathfrak{t} \longrightarrow \mathfrak{g} \longrightarrow \mathfrak{g}_0 \longrightarrow 0,$$

where t is the two-step nilpotent superalgebra of supertranslations.

Definition (Pure Spinor Functor)

$$\mathscr{PS}: C^{\bullet}_{\mathscr{CE}}(\mathfrak{t})\text{-}\mathsf{Mod}^{\mathfrak{g}_0} \longrightarrow \mathfrak{g}\text{-}\mathsf{Mult}.$$

Why Pure Spinors?

- Let V a vector space of dimension 2n or 2n + 1.
- Let S be a spin representation of Spin(V), then S is a Cl(V)-module.
- Accordingly, there is an action $V \subset S$, with $(v, Q) \mapsto v \cdot Q$
- If $Q \in S$, we consider $Ann(Q) := \{v \in V : v \cdot Q = 0\}$. Now, dim $Ann(Q) = m \leq n$.

Definition (Pure Spinor)

We say that Q is a *pure* spinor if m = n. Alternatively, Q is pure if $Ann(Q) \subset V$ is a maximal isotropic subspace.

In particular, for dim V = 2n, considering $\mathbb{P}(S)$, we have that (projective) pure spinors are given by the homogeneous space SO(2n)/U(n). The pure spinor space coincides - in some relevant cases - with the nilpotence variety of super Poincaré algebras.

CM condition

Let R be a commutative, Noetherian and local ring and let M be an R-module.

We say that *M* is CM if depth_{*R*}(*M*) = dim_{*R*}(*M*).

There is also a homological useful characterization: namely we let R be polynomial a ring of Krull dimension n and $S \hookrightarrow R$ of Krull dimension d. Then we call $\omega_S^{\bullet} := Ext_R^{\bullet}(S, R)$ the dualizing complex of S (notice that this coincide with diff. forms of deg d if $S \hookrightarrow R$ is non-singular...). Now, S is CM if $Ext_R^i(S, R) = 0$ for every $i \neq n - d$, that is if the dualizing complex is a module.

In particular, if it is also free of rank 1, then we say that M is Gorenstein.

Typical example: plane curves with embedded points are not CM, e.g.

Spec
$$(\mathbb{C}[X,Y]/(x^2,xy))$$
.

Indeed $(x^2, xy) \cong (x) \cdot (xy)$: y-axis with embedded point (0, 0).

Operators of a Theory

The *operators* of a theory consist of functionals of the fields of the theory are denoted with $\mathcal{O}(\mathcal{E})$.

For any point $x \in V$ we can define local operators via

$$\mathcal{O}_{x}(\mathcal{E}) := Sym^{\bullet}(J^{\infty}E|_{x})^{\vee},$$

where $J^{\infty}E$ denotes the jet bundles of E - in other words, the local operators at x evaluate polynomials in the fields and derivatives of fields at x.

Given a map $\rho : \mathfrak{g} \leadsto (\mathcal{D}(E), [D, -])$, the dual maps $(\rho^{(j)})^{\vee}$ define an action on the linear local operators, which extends to $\mathcal{O}_{x}(\mathcal{E})$ via Leibniz rule.

Fixing an element $Q \in \mathfrak{g}$, we can define a map

$$\delta_{Q} = \sum_{j} \rho^{(j)}(Q, \dots, Q)^{\vee} : \mathcal{O}_{x}(\mathcal{E}) \to \mathcal{O}_{x}(\mathcal{E}),$$

this defines the action of $Q \in \mathfrak{g}$ on the operators of the theory.

BRST Datum

A BRST datum on a multiplet (E, D, ρ) consists of:

- a local super L_{∞} structure $\{\mu_k\}$ on $L \equiv E[-1]$ such that $\mu_1 = D$, and whose associated CE differential we denote by Q_{BRST} ;
- a local functional $S_0 \in \mathcal{O}(E)$ of bidegree (0, +) called BRST action action, which is Q_{BRST} -closed and invariant for the L_{∞} action ρ .

BV Datum

A BV datum on a multiplet (E, D, ρ) consists of:

- a graded antisymmetric map (−, −): E ⊗ E → ω_X of bidegree (−1, +) which is fiberwise non-degenerate and invariant for the L_∞ action ρ;
- A $C^{\bullet}(\mathfrak{g})$ -valued BV action of bidegree (0, +) given by $S_{BV} = \sum_k S_B^k V$ where $S_B^k V \in C^k(\mathfrak{g}) \otimes \mathcal{O}(E)$, such that it satisfies the \mathfrak{g} -equivariant master equation

$$d_{\mathfrak{g}}S_{B}V+\frac{1}{2}\{S_{B}V,S_{B}V\}=0.$$

Here

$$S^0_B V(\Phi) = \int_X \langle \Phi, D\Phi \rangle + I_B V(\Phi)$$

where $I_B V$ is at least cubic in the fields and where

$$S_B^k V(x_1,\ldots,x_k;\Phi) = \int_X \langle \Phi, \rho^k(x_1,\ldots,x_k)\Phi \rangle$$

Frrom BRST to BV Datum

To move from a BRST datum to a BV datum one considers

 $L_BV = L \oplus L^{\vee}[-k],$

which is equipped with a canonical evaluation pairing (of degree -k). The BRST action deforms the obvious L_{∞} structure on the direct sum, thus giving rise to an L_{∞} structure on L_BV , for which the evaluation pairing is invariant (after an application of the homological perturbation lemma).

- 1. If *M* is *Gorenstein*, its Koszul homology is naturally equipped with a perfect pairing, that equips the multiplet with a BV datum (in fact the minimal free resolution of *M* is self-dual if it is Gorenstein).
- If M is Cohen-Macaulay, we can instead work as above: consider L[∨][-k] to be given by the dualizing module and look at L ⊕ L[∨][-k] to define the BV datum.