The Geometry of Pure Spinor Superfield Formalism

GTP Seminar - NYUAD

Simone Noja

Universität Heidelberg

11/12/2024

Motivations & Premises

The construction of supersymmetric field theories faces essential difficulties, e.g. supersymmetry is only represented on-shell ℓ up to gauge transformations.

Motivations & Premises

The construction of supersymmetric field theories faces essential difficulties, e.g. supersymmetry is only represented on-shell / up to gauge transformations.

- Quantization: desirable for the symmetry to act on the full space of fields without regard to the dynamics;
- Geometrization: reasonable to think of supersymmetry as arising from the action of particular geometric symmetry on an appropriate (super)space;

 \leadsto extending the space of fields / superfield formulation

How to... Superfield Formulations

Harmonic Superspace (Galperin, Ivanov, Ogievetsky, Sokatchev...), Rheonomy (Castellani, D'Auria, Fre...), Pure Spinors (Nillson & Howe, Berkovits...)

Motivations & Premises

A View on Pure Spinors Superfield Formalism

Provide a view on pure spinor superfield formalism

- ' amenable to mathematicians;
- ' yields susy "multiplets" as understood by physicists.

Motivations & Premises

A View on Pure Spinors Superfield Formalism

Provide a view on pure spinor superfield formalism

- ' amenable to mathematicians;
- ' yields susy "multiplets" as understood by physicists.

Structure of the talk

- 1. Definition of multiplet;
- 2. Nilpotence variety and pure spinor superfield formalism;
- 3. Examples;
- 4. (If time permits: general results and considerations).
	- \bullet arXiv2404.07167 w/ R. Eager, R. Senghaas, J. Walcher;
	- \bullet arXiv:2206.08388 w/ F. Hahner, I. Saberi, J. Walcher;
	- \bullet see also arXiv: 2111.01162

Multiplets - a first encounter in physics

A multiplet is a representation of the supersymmetry algebra g of a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one into another under the action of g: they are the building blocks of actions of physical theories.

Multiplets - a first encounter in physics

A multiplet is a representation of the supersymmetry algebra g of a physical theory.

Concretely, a multiplet is given by a collection of fields transforming one into another under the action of g: they are the building blocks of actions of physical theories.

A minimal supersymmetric Lagrangian in $d = 4$ reads

$$
\mathscr{L}_{\text{chiral}}\, = -\partial\bar{\varphi}\cdot\partial\varphi + i\bar{\psi}\partial\!\!\!/\psi + \bar{F}F
$$

 \rightarrow The triplet (φ, ψ, F) is a multiplet, called *chiral multiplet*. \rightarrow Supersymmetry transformations of (φ, ψ, F) read

$$
\delta_s \phi = \epsilon \psi, \quad \delta_s \psi = i \bar{\epsilon} \phi \phi + \epsilon F, \quad \delta_s F = -i \epsilon \phi \psi
$$

Multiplets - toward a mathematical definition

Obviously, a multiplet is a representation-theoretic notion, though it is not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V, some pieces of data should be part of our definition:

- ' Bosonic and Fermionic fields are sections of vector bundles on the spacetime V (with parity / $\mathbb{Z}/2$ -grading);
- ' Supersymmetry transformations are given by an action of a certain (super)algebra on these sections.

Multiplets - toward a mathematical definition

Obviously, a multiplet is a representation-theoretic notion, though it is not obvious how to provide a rigorous - and encompassing - definition!

Working on a flat (possibly complexified) spacetime V, some pieces of data should be part of our definition:

- ' Bosonic and Fermionic fields are sections of vector bundles on the spacetime V (with parity / $\mathbb{Z}/2$ -grading);
- ' Supersymmetry transformations are given by an action of a certain (super)algebra on these sections.

On the other hand, attention must be paid...

In relevant examples, the representation of the supersymmetry algebra is not strict!

The $\mathcal{N} = 1$, $d = 4$ Vector Multiplet

This multiplet consists of the following collection of fields:

- 1. $A \in \Omega^1(\mathbb{R}^4)$ is a connection 1-form;
- 2. $(\lambda, \bar{\lambda}) \in C^\infty(\mathbb{R}^4, \Pi(\mathcal{S}_+ \oplus \mathcal{S}_-))$ are spinors of opposite chirality;
- 3. $D \in C^{\infty}(\mathbb{R}^{4})$ is an auxiliary field;
- 4. $c \in C^\infty(\mathbb{R}^4)$ is a ghost field (of ghost degree $-1 \leadsto$ gauge).
	- The ghost field has a non-zero differential:

$$
c \stackrel{d}{\longrightarrow} dc \iff \delta_{\text{first}} A_{\mu} = \partial_{\mu} c
$$

' The ghost field has higher-order supersymmetry transformation:

$$
Q\otimes \bar{Q}\otimes A\stackrel{\rho^2}{\longmapsto} \iota_{\{Q,\bar{Q}\}}A\quad \leftrightsquigarrow\quad \delta_s c=(\epsilon\sigma^\mu\bar{\epsilon})A_\mu.
$$

The $\mathcal{N} = 1$, $d = 4$ Vector Multiplet

g-module structure on the vector multiplet

In physics lingo, the higher-order transformation of c is a *closure term* for the supersymmetry action: in this case, we say that "the supersymmetry action only closes up to gauge transformations".

Setting
$$
\rho^i : \mathfrak{g}^{\otimes i} \longrightarrow End(\mathcal{E})[1 - i]
$$
, we have
\n
$$
\rho^1
$$
-terms\n
$$
\longleftrightarrow \begin{cases}\n\delta_s A_\mu = \epsilon \sigma_\mu \bar{\lambda} + \psi \sigma_\mu \bar{\epsilon}, \\
\delta \lambda_s = \epsilon D, \quad \delta_s \bar{\lambda} = -\bar{\epsilon} D, \\
\delta_s D = 0,\n\end{cases}
$$
\nThe relation between ρ^1 and ρ^2 is given by\n
$$
[\rho^1(x), \rho^1(y)] - \rho^1([x, y]) = -[d, \rho^2(x, y)].
$$

In other words, ρ^2 provides a **homotopy** for the failure of ρ^1 to be a strict g-action \rightsquigarrow we should consider weaker / L_{∞} -action!

Multiplet - a (tentative) mathematical definition

Definition (g-Multiplet)

Let (E, D) be an affine dgs vector bundle on $\mathcal{V} = \mathbb{R}^d$, let $\mathfrak g$ be a super L_{∞} -algebra together with an injective map $\iota : \mathfrak{Aff}(V) \to \mathfrak{g}$.

A g-multiplet is a local g-module structure (E, D, ρ) on (E, D) such that the pullback of the module structure along $\iota : \mathfrak{Aff}(V) \to \mathfrak{g}$ agrees with the natural action on sections.

- 1. Affine : the total space of E carries an action of $\mathfrak{Aff}(V) = \mathbb{R}^d \rtimes \mathfrak{so}(d)$ such that its projection $\pi : E \to V$ is equivariant with respect to the action of $\mathfrak{Aff}(V)$ on V ;
- 2. dgs vector bundle (E, D) : $\mathbb{Z} \times \mathbb{Z}_2$ -graded vector bundle $\mathcal{E} = \bigoplus_k (E_+^k \oplus E_-^k)$ equipped with a collection of differential operators $D: \mathcal{E}^k_\pm \to \mathcal{E}^{k+1}_\pm$ such that $D \circ D = 0$, where $\mathcal{E}^k_\pm := \Gamma(X, E^k_\pm)$ are the C^{∞} -sections of E_{\pm}^{k} .
- 3. Local g-module structure : super L_{∞} -map $\rho : \mathfrak{g} \to (\mathcal{D}(\mathcal{E}), [D, -])$ with $\mathcal{D}(\mathcal{E}) := \{x \in \mathsf{End}(\mathcal{E}) : x \text{ is a differential operator}\} \subset \mathsf{End}(\mathcal{E}).$

Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras p , but - as defined - the notion is broader

- 1. Let h be a Lie algebra and let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{R}$ ff (V) . A g-multiplet contains a collection of fields transforming in a local representation of $h \rightarrow$ "flavor symmetry" multiplets.
- 2. The Lie algebra $\mathfrak{Conf}(V)$ of (super)conformal transformations on V contains $\mathfrak{Aff}(V) \rightsquigarrow \mathfrak{Conf}(V)$ -multiplets.

Multiplet - Examples

Multiplets lead to study (super)algebras that contain the affine algebra as a subalgebra.

We are interested in the case of the super Poincaré algebras p , but - as defined - the notion is broader

- 1. Let h be a Lie algebra and let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{R}$ ff (V) . A g-multiplet contains a collection of fields transforming in a local representation of $h \rightarrow$ "flavor symmetry" multiplets.
- 2. The Lie algebra $\mathfrak{Conf}(V)$ of (super)conformal transformations on V contains $\mathfrak{Aff}(V) \rightsquigarrow \mathfrak{Conf}(V)$ -multiplets.

Question: how to construct – and possibly "classify" – multiplets? (i.e. how to provide the building blocks for supersymmetric theories?)

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

The cornerstone of the construction is the algebraic variety Y_a , which makes sense for any super Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

The cornerstone of the construction is the algebraic variety Y_a , which makes sense for any super Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

Let $\mathfrak{g} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra and let $Q \in \mathfrak{g}_1$.

The equations $Q^2 := \frac{1}{2} \{ Q, Q \} = 0$, defines a set of quadrics, whose zero locus is called nilpotence variety $Y_{\mathfrak{g}}\subseteq \mathbb{A}^{\dim \mathfrak{g}_1}.$

Pure Spinor Superfield Formalism & Nilpotence Variety

The Pure Spinor Superfield formalism is a machinery that

The cornerstone of the construction is the algebraic variety Y_{α} , which makes sense for any super Lie algebra $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$.

Let $\mathfrak{g} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra and let $Q \in \mathfrak{g}_1$.

The equations $Q^2 := \frac{1}{2} \{ Q, Q \} = 0$, defines a set of quadrics, whose zero locus is called nilpotence variety $Y_{\mathfrak{g}}\subseteq \mathbb{A}^{\dim \mathfrak{g}_1}.$

The equations are homogeneous, hence their space of solutions descends to a projective variety $\mathbb{P} Y_\mathfrak{g} \subseteq \mathbb{P}^{\dim \mathfrak{g}_1 - 1},$ the $\mathsf{projectivized}$ nilpotence variety of g.

Nilpotence Variety

Definition (Nilpotence Variety of \mathfrak{g})

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let R be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1])$;
- 2. let I be the ideal defined by the set of equations $\{Q, Q\}$.

Then we call

- $Y_g := \text{Spec}(R/I) \subset \text{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \text{Proj}(R/I) \subset \text{Proj}(R)$ is the projective nilpotence variety.

Nilpotence Variety

Definition (Nilpotence Variety of \mathfrak{g})

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let R be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1])$;
- 2. let I be the ideal defined by the set of equations $\{Q, Q\}$.

Then we call

- $Y_g := \text{Spec}(R/I) \subset \text{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \text{Proj}(R/I) \subset \text{Proj}(R)$ is the projective nilpotence variety.

Very concretely, for super Poincaré algebras, expanding $Q = \lambda^a Q_a$ and identifying $R = \mathbb{C}[\lambda^a]$, if we denote Γ^{μ}_{ab} the structure constant of the bracket $\{Q_a, Q_b\} \sim \Gamma^{\mu}_{ab} p_{\mu}$, we have

$$
R/I = \mathbb{C}[\lambda^a]/(\lambda^a \Gamma^\mu_{ab} \lambda^b).
$$

Nilpotence Variety

Definition (Nilpotence Variety of g)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let R be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1])$;
- 2. let I be the ideal defined by the g_0 -valued set of equations $\{Q, Q\} = 0.$

Then we call

- $Y_g := \text{Spec}(R/I) \subset \text{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \text{Proj}(R/I) \subset \text{Proj}(R)$ is the projective nilpotence variety.

 \rightarrow Mathematically, the nilpotence variety of g can be seen as a "moduli space of cohomologies"...

Nilpotence Variety

Definition (Nilpotence Variety of g)

Let $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ be a super Lie algebra.

- 1. let R be the polynomial ring $Sym^{\bullet}(\mathfrak{g}_{1}^{\vee}[-1])$;
- 2. let I be the ideal defined by the g_0 -valued set of equations $\{Q, Q\} = 0.$

Then we call

- $Y_g := \text{Spec}(R/I) \subset \text{Spec}(R)$ is the affine nilpotence variety;
- $\mathbb{P}Y_{\mathfrak{g}} := \text{Proj}(R/I) \subset \text{Proj}(R)$ is the projective nilpotence variety.

 \rightarrow Mathematically, the nilpotence variety of g can be seen as a "moduli space of cohomologies"...

 \rightarrow Physically, these cohomologies are called twists of the related (g-invariant) physical theories.

Super Poincaré Algebra p of V

As a super Lie algebra comes with a $\mathbb{Z}/2$ -grading $\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_1$:

1. The **fermionic part** p_1 is the tensor product of a spin representation S with an auxiliary vector space U

$$
\mathfrak{p}_1 = \mathcal{S} \otimes \mathcal{U},
$$

Recall that there are either one S or two S_{+} representations of $Spin(V_{/\mathbb{C}})$.

- \bullet Depending on the dimension, U can be equipped with a symmetric or antisymmetric bilinear form.
- The "degree of supersymmetry" N is dim(U) as a multiple of its smallest possible dimension.
- 2. The **bosonic part** p_0 arises from *translations* V, Lorentz transformations $\mathfrak{so}(V)$ and R-symmetry \mathfrak{r} :

$$
\mathfrak{p}_0 = (\mathsf{V} \rtimes \mathfrak{so}(\mathsf{V})) \times \mathfrak{r},
$$

where $\mathfrak{r} = \{ \mathfrak{gl}(U), \mathfrak{so}(U), \mathfrak{sp}(U) \}$, for U the auxiliary vector space.

 \bullet The R-symmetry arises as automorphisms of U.

Supertranslations (aka Supersymmetry) Algebra t

It is a subalgebra of p. As a super Lie algebra it reads

 $t = t_0 \oplus t_1 = V \oplus p_1.$

More precisely, it is a central extension of \mathfrak{p}_1 the form

 $0 \longrightarrow V \longrightarrow {\frak t} \longrightarrow {\frak p}_{1} \longrightarrow 0,$

the bracket on t is given by the equivariant map

 $\Gamma: Sym^2(S) \to V$

for S a spin representation.

It might be convenient to look at the super Poincaré algebra as graded algebra $\mathfrak{p} = \mathfrak{p}_0 \oplus \mathfrak{p}_1 \oplus \mathfrak{p}_2$, in a way such that supertranslations read $\mathfrak{t}:=\mathfrak{p}_{>0}$ and $\{\cdot,\cdot\}: Sym^2(\mathfrak{p}_1)\to \mathfrak{p}_2$ is \mathfrak{p}_0 -equivariant.

$$
d = 4, \, \mathcal{N} = 1
$$
 Nilpotence Variety

• The super Poincaré algebra reads

$$
\mathfrak{p}=\mathfrak{p}_0\oplus\mathfrak{p}_1=(V\rtimes\mathfrak{so}(V))\oplus (S_+\oplus S_-)
$$

where S_+ are chiral Weyl spinor representations of $Spin(V)$.

- Γ defines an isomorphism $\Gamma : S_+ \otimes S_- \stackrel{\cong}{\longrightarrow} V$.
- This implies that $\{Q, Q\} = 0 \iff Q \in S_+$ or $Q \in S_-$.
- $Y(d = 4, \mathcal{N} = 1)$ consists in two \mathbb{C}^2 -planes in \mathbb{C}^4 intersecting at the origin:

$$
\textstyle Y(4,1) = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = \textstyle S_+ \cup_{\{0\}} \textstyle S_-.
$$

$d = 4$, $\mathcal{N} = 1$ Nilpotence Variety

The computation can be repeated in coordinates!

' A general supercharge can be written

$$
Q = \lambda^{\alpha} Q_{\beta} + \bar{\lambda}^{\dot{\beta}} \bar{Q}_{\dot{\beta}}
$$

as decomposed in its $S_$ and S_+ components.

• The equation $\{Q, Q\} = 0$ reduces to four quadratic equations

$$
\lambda^{\alpha} \bar{\lambda}^{\dot{\beta}} \Gamma^{\mu}_{\alpha \dot{\beta}} = 0 \quad \forall \lambda \quad \begin{cases} \lambda^1 \bar{\lambda}^1 + \lambda^2 \bar{\lambda}^2 = 0, \\ \lambda^1 \bar{\lambda}^1 - \lambda^2 \bar{\lambda}^2 = 0, \\ \lambda^1 \bar{\lambda}^2 + \lambda^2 \bar{\lambda}^1 = 0, \\ \lambda^1 \bar{\lambda}^2 - \lambda^2 \bar{\lambda}^1 = 0. \end{cases}
$$

Adding and subtracting one finds

$$
\lambda^1\bar{\lambda}^1=\lambda^2\bar{\lambda}^2=\lambda^1\bar{\lambda}^2=\lambda^2\bar{\lambda}^1=0\ \ \text{and}\ \ \lambda^\alpha=0\ \ \text{or}\ \ \bar{\lambda}^{\dot{\beta}}=0.
$$

$d = 3$, $\mathcal{N} = 1$ Nilpotence Scheme

• The super Poincaré algebra reads

$$
\mathfrak{p}=\mathfrak{p}_0\oplus\mathfrak{p}_1=(V\rtimes\mathfrak{so}(V))\oplus S
$$

where S is in the fundamental representation of $Spin(3)$.

- Γ defines an isomorphism $\Gamma: Sym^2(S) \stackrel{\cong}{\longrightarrow} V$.
- This implies that $\{Q, Q\} = 0 \iff Q = 0$.
- $Y(3, 1) = \{0\} \subset \mathbb{C}^2 ...$ as an algebraic set!

$d = 3$, $\mathcal{N} = 1$ Nilpotence Scheme

• The super Poincaré algebra reads

$$
\mathfrak{p}=\mathfrak{p}_0\oplus\mathfrak{p}_1=(V\rtimes\mathfrak{so}(V))\oplus S
$$

where S is in the fundamental representation of $Spin(3)$.

- Γ defines an isomorphism $\Gamma: Sym^2(S) \stackrel{\cong}{\longrightarrow} V$.
- This implies that $\{Q, Q\} = 0 \iff Q = 0$.
- $Y(3, 1) = \{0\} \subset \mathbb{C}^2 ...$ as an algebraic set!
- As a scheme, it is a **fat point**! Indeed expanding $\{Q, Q\} = 0$ one has

$$
(\lambda^1)^2 = \lambda^1 \lambda^2 = (\lambda^2)^2 = 0.
$$

• It follows that $Y(3, 1) = \text{Spec}(\mathbb{C}[\lambda^1, \lambda^2]/((\lambda^1)^2, \lambda^1\lambda^2, (\lambda^2)^2)),$

 $d = 6$, $\mathcal{N} = (1, 0)$ Projective Nilpotence Variety

- In $d = 6, \mathcal{N} = (1, 0)$ we have symplectic spinors $\leadsto t_1 = S_+ \otimes U$, with (U, ω) a symplectic vector space.
- \bullet The nilpotence ideal $I=(\lambda_i^\alpha\Gamma^\mu_{\alpha\beta}\omega^{\bar{y}}\lambda_j^\beta)$ is a *determinantal ideal*

$$
I = \left\{ (2 \times 2) \text{-minors of } [L] := \begin{pmatrix} \lambda_1^1 & \lambda_1^2 & \lambda_1^3 & \lambda_1^4 \\ \lambda_2^1 & \lambda_2^2 & \lambda_2^3 & \lambda_2^4 \end{pmatrix} \right\} \rightsquigarrow \text{ "rank 1 locus" of } [L]
$$

If follows that the nilpotence variety has a very nice a nice projective model, in fact the projective nilpotence variety $\mathbb{P}Y(6,(1,0))$ is a Segre 4-fourfold (sitting in \mathbb{P}^7):

$$
Y(6;(1,0))=\mathbb{P}^1\times\mathbb{P}^3\hookrightarrow\mathbb{P}^7
$$

 \rightarrow bundles are easily available on this (smooth!) variety...

Relations between Nilpotence Varieties

Pure Spinor Superfield Formalism

In a nutshell, pure spinor superfield formalism constructs p-multiplets starting from the geometric data of modules on Y_p .

 \bullet Identifying the spacetime $V = \mathfrak{p}_2$ we consider the **supermanifold** X

$$
\mathcal{O}(\mathcal{X}) = C^\infty(\mathfrak{p}_{>0}) = C^\infty(V) \otimes_\mathbb{C} \wedge^\bullet(\mathfrak{p}_1^\vee) = C^\infty(\mathbb{C}^d) \otimes_\mathbb{C} \wedge^\bullet(\mathfrak{p}_1^\vee)
$$

and call local coordinates $x^\mu|\theta^\alpha$ and $\mathcal O(X)$ the algebra of free superfields.

 \bullet Identifying the spacetime $V = \mathfrak{p}_2$ we consider the **supermanifold** X

$$
\mathcal{O}(\mathcal{X}) = C^\infty(\mathfrak{p}_{>0}) = C^\infty(V) \otimes_\mathbb{C} \wedge^\bullet(\mathfrak{p}_1^\vee) = C^\infty(\mathbb{C}^d) \otimes_\mathbb{C} \wedge^\bullet(\mathfrak{p}_1^\vee)
$$

and call local coordinates $x^\mu|\theta^\alpha$ and $\mathcal O(X)$ the algebra of free superfields.

• There are two **commuting** action of the supersymmetry algebra, $(\ell, r) : \mathfrak{p}_1 \to \mathsf{End}(\mathfrak{X})$:

$$
\ell(Q_{\alpha}) \equiv \hat{Q}_{\alpha} := \partial_{\theta^{\alpha}} - i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}
$$

$$
r(Q_{\alpha}) \equiv \hat{\mathcal{D}}_{\alpha} := \partial_{\theta^{\alpha}} + i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}
$$

 \bullet Identifying the spacetime $V = \mathfrak{p}_2$ we consider the **supermanifold** X

$$
\mathcal{O}(\mathcal{X}) = C^\infty(\mathfrak{p}_{>0}) = C^\infty(V) \otimes_\mathbb{C} \wedge^\bullet(\mathfrak{p}_1^\vee) = C^\infty(\mathbb{C}^d) \otimes_\mathbb{C} \wedge^\bullet(\mathfrak{p}_1^\vee)
$$

and call local coordinates $x^\mu|\theta^\alpha$ and $\mathcal O(X)$ the algebra of free superfields.

• There are two **commuting** action of the supersymmetry algebra, $(\ell, r) : \mathfrak{p}_1 \to \mathsf{End}(\mathfrak{X})$:

$$
\ell(Q_{\alpha}) \equiv \hat{Q}_{\alpha} := \partial_{\theta^{\alpha}} - i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}
$$

$$
r(Q_{\alpha}) \equiv \hat{\mathcal{D}}_{\alpha} := \partial_{\theta^{\alpha}} + i\Gamma^{\mu}_{\alpha\beta}\theta^{\beta}\partial_{x^{\mu}}
$$

 \bullet Take a (graded p₀-equivariant) module M on the nilpotence variety Y. This means that M is a graded \mathfrak{p}_0 -equivariant R/I -module, for

$$
R/I = \mathbb{C}[\lambda^{\alpha}]/I
$$

where *I* is the ideal cut out by $\{Q, Q\} = 0$.

Pure Spinor Superfield Formalism

Crucial step: tensor the algebra of free superfields $\mathcal{O}(X)$ with the R/I -module M as to get a cochain complex

$$
\mathcal{A}^{\bullet}(M) := (M \otimes_{\mathbb{C}} \mathcal{O}(X), \mathcal{D}),
$$

where $\mathcal{D}:=\lambda^\alpha\otimes r(Q_\alpha)=\lambda^\alpha \widehat{\mathcal{D}}_\alpha$ and λ^α acts via the R/I -module structure.

$$
\mathcal{D}^2 = \lambda^{\alpha} \lambda^{\beta} r(Q_{\alpha}) r(Q_{\beta}) = \frac{1}{2} \lambda^{\alpha} \lambda^{\beta} \{r(Q_{\alpha}), r(Q_{\beta})\} =
$$

= $\frac{1}{2} \lambda^{\alpha} \lambda^{\beta} r (\{Q_{\alpha}, Q_{\beta}\}) = \frac{1}{2} \underbrace{\lambda^{\alpha} \Gamma_{\alpha \beta}^{\mu} \lambda^{\beta}}_{=0 \text{ on } Y_{p}} r(p_{\mu}) = 0.$

Pure Spinor Superfield Formalism

Crucial step: tensor the algebra of free superfields $\mathcal{O}(X)$ with the R/I -module M as to get a cochain complex

$$
\mathcal{A}^{\bullet}(M) := (M \otimes_{\mathbb{C}} \mathcal{O}(X), \mathcal{D}),
$$

where $\mathcal{D}:=\lambda^\alpha\otimes r(Q_\alpha)=\lambda^\alpha \widehat{\mathcal{D}}_\alpha$ and λ^α acts via the R/I -module structure.

$$
\mathcal{D}^2 = \lambda^{\alpha} \lambda^{\beta} r(Q_{\alpha}) r(Q_{\beta}) = \frac{1}{2} \lambda^{\alpha} \lambda^{\beta} \{r(Q_{\alpha}), r(Q_{\beta})\} =
$$

= $\frac{1}{2} \lambda^{\alpha} \lambda^{\beta} r (\{Q_{\alpha}, Q_{\beta}\}) = \frac{1}{2} \underbrace{\lambda^{\alpha} \Gamma^{\mu}_{\alpha \beta} \lambda^{\beta}}_{=0 \text{ on } Y_{p}} r(p_{\mu}) = 0.$

• $\mathcal{A}^{\bullet}(M)$ has the structure of a dgs vector space $(\leadsto \mathbb{Z} \times \mathbb{Z}_2\text{-graded})$

$$
\mathsf{deg}(\lambda^{\alpha}) = (1,-) \quad \mathsf{deg}(x^{\mu}) = (0,+), \quad \mathsf{deg}(\theta^{\alpha}) = (0,-).
$$

In fact, $\mathcal{A}^\bullet(M)$ can be viewed as the global sections of an affine dgs **vector bundle** $\pi : E \to V = \mathfrak{p}_2$, with typical fiber $E^k_x = (M)^k \otimes \wedge^{\bullet} \mathfrak{g}_1^{\vee}$ \rightsquigarrow multiplet!

Pure Spinor Superfield Formalism

- \bullet We still have a left action $\ell!$ In particular one can argue that:
	- 1. $\ell(\mathfrak{p}_{>0})$ commutes with $\mathcal{D} \Rightarrow$ it defines a $\mathfrak{p}_{>0}$ -module structure on $\mathcal{A}^{\bullet}(M)$;
	- 2. it is equivariant with respect to $\mathfrak{p}_0 \Rightarrow$ can be extended to a full p-action

$$
\tilde{\ell} : \mathfrak{p} \to \mathcal{A}^{\bullet}(M);
$$

 \rightsquigarrow $\mathcal{A}^{\bullet}(M)$ is endowed with the structure of a p-multiplet!

- \bullet We still have a left action $\ell!$ In particular one can argue that:
	- 1. $\ell(\mathfrak{p}_{>0})$ commutes with $\mathcal{D} \Rightarrow$ it defines a $\mathfrak{p}_{>0}$ -module structure on $\mathcal{A}^{\bullet}(M)$;
	- 2. it is equivariant with respect to $p_0 \Rightarrow$ can be extended to a full p-action

$$
\tilde{\ell} : \mathfrak{p} \to \mathcal{A}^{\bullet}(M);
$$

 \rightsquigarrow $\mathcal{A}^{\bullet}(M)$ is endowed with the structure of a p-multiplet!

...from Superspace to Space(time)...

We would like to have the "ordinary" presentation of multiplet as collections of vector bundles on the spacetime V out of $\mathcal{A}^\bullet(M).$

A spectral sequence argument allows for the connection:

 p -multiplet $\mathcal{A}^{\bullet}(M)$ ù ␣ vector bundles over spacetime(

Filtration and Associated Spectral Sequence

1. We consider the filtered complex $F^{\bullet} \mathcal{A}^{\bullet}(M)$ according to the filtered weights in the above table;

2. The differential does not respect the weight grading:

$$
\mathcal{D} = \mathcal{D}_0 + \mathcal{D}_1 = \underbrace{\lambda^{\alpha} \partial_{\theta^{\alpha}}}_{w=0} + \underbrace{\lambda^{\alpha} \Gamma^{\mu}_{\alpha \beta} \theta^{\beta} \partial_{x^{\mu}}}_{w=2}.
$$

3. The associated graded complex reads

 $Gr \mathcal{A}^{\bullet}(M) = (C^{\infty}(V) \otimes_{\mathbb{C}} (M \otimes_{\mathbb{C}} \mathbb{C}[\theta^{\alpha}]), \mathcal{D}_{0} = \lambda^{\alpha} \partial_{\theta^{\alpha}}) \cong C^{\infty}(V) \otimes_{\mathbb{C}} \mathcal{K}^{\bullet}(M)$ where $\mathcal{K}^\bullet(M)$ is the **Koszul complex** of M :

$$
\mathcal{K}^{\bullet}(M) := (M \otimes_{\mathbb{C}} \mathbb{C}[\theta^{\alpha}], \mathcal{D}_0 = \lambda^{\alpha} \partial_{\theta^{\alpha}}).
$$

Koszul Homology and Component Fields

In short, the Koszul homology of M $(\leftrightarrow \rightarrow E_1^{\bullet})$ determines the component field description as known in the physics literature:

 $E_1^{\bullet} = H^{\bullet}(\text{Gr} \mathcal{A}^{\bullet}(M))$ end " Component Fields in $\mathcal{A}^\bullet(M)$ *

- \bullet M is a graded \mathfrak{p}_0 -equivariant module $\leadsto H^\bullet(\mathcal{K}^\bullet(M))$ gives finite dimensional representations of the Lorentz and R-symmetry algebra.
- \bullet $H^{\bullet}(\mathsf{Gr}\mathcal{A}^{\bullet}(M))$ determines a (graded) vector bundle over the spacetime V with fibers

$$
(E'_x)^k = H^{\bullet}(\mathcal{K}(M))^{(k)}
$$

- \mathcal{D}_1 induces a new differential \mathcal{D}' and the p-module structure transfer as well.
- \leadsto this "page 1 multiplet" $(E', \mathcal{D}', \rho')$ determines a new multiplet defined over spacetime!

Pure Spinor Formalism, in a Nutshell

Properties of Modules and Properties of Multiplets

Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module)

Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its ring of function R/I is a Cohen-Macaulay ring of (Krull) dimension d. Then the antifield multiplet $A^{\bullet}(R/I)^{\vee}$ of $A^{\bullet}(R/I)$ is given by

$$
\mathcal{A}^{\bullet}(R/I)^{\vee} = \mathcal{A}^{\bullet}(\omega_{R/I})
$$

where $\omega_{R/I} = Ext_R^{n-d}(R/I, R)$ is the **dualizing module** of R/I and n is the (Krull) dimension of ambient ring R.

Antifield multiplets $\mathcal{A}^\bullet(M) \leftrightsquigarrow$ Dualizing modules of M

Geometry & Antifield Multiplets

Theorem (Antifield Multiplet and Dualizing Module)

Let the nilpotence variety Y be Cohen-Macaulay of dimension d, i.e. its ring of function R/I is a Cohen-Macaulay ring of (Krull) dimension d. Then the antifield multiplet $A^{\bullet}(R/I)^{\vee}$ of $A^{\bullet}(R/I)$ is given by

$$
\mathcal{A}^{\bullet}(R/I)^{\vee} = \mathcal{A}^{\bullet}(\omega_{R/I})
$$

where $\omega_{R/I} = Ext_R^{n-d}(R/I, R)$ is the **dualizing module** of R/I and n is the (Krull) dimension of ambient ring R.

Antifield multiplets $\mathcal{A}^\bullet(M) \leftrightsquigarrow$ Dualizing modules of M

Warning: Dualizing Complexes & Pure Spinors

If Y is **not** Cohen-Macaulay, then one has a dualizing complex $\omega_{R/I}^{\bullet}$ instead of a single module, hence the PS formalism is not capable of producing the antifield multiplet of R/I .

$d = 4$, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

• Recall that the nilpotence variety is $Y = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-$.

 $d = 4$, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

- Recall that the nilpotence variety is $Y = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-$.
- Choose $M = \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}]$ and construct the PS complex

$$
(\mathcal{A}^{\bullet}(M), \mathcal{D}) = (C^{\infty}(\mathfrak{t}) \otimes_{\mathbb{C}} \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D} = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}} + \bar{\lambda}^{\dot{\alpha}} \Gamma^{\mu}_{\alpha \dot{\alpha}} \theta^{\alpha} \partial_{\mu})
$$

• Compute the relevant Koszul homology: using $t_1 = S_+ \oplus S_-$ one has

$$
\mathcal{K}^{\bullet}(M) = \left(\wedge^{\bullet} S_+ \otimes \wedge^{\bullet} S_- \otimes \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D}_0 = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}}\right)
$$

with θ^α are coordinates for \mathcal{S}_+ and $\bar\theta^{\dot\alpha}$ are coordinates for $\mathcal{S}_- .$

 $d = 4$, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

- Recall that the nilpotence variety is $Y = \mathbb{C}^2 \cup_{\{0\}} \mathbb{C}^2 = S_+ \cup_{\{0\}} S_-$.
- Choose $M = \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}]$ and construct the PS complex

$$
(\mathcal{A}^{\bullet}(M), \mathcal{D}) = (C^{\infty}(\mathfrak{t}) \otimes_{\mathbb{C}} \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D} = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}} + \bar{\lambda}^{\dot{\alpha}} \Gamma^{\mu}_{\alpha \dot{\alpha}} \theta^{\alpha} \partial_{\mu})
$$

• Compute the relevant Koszul homology: using $t_1 = S_+ \oplus S_-$ one has

$$
\mathcal{K}^{\bullet}(M) = \left(\wedge^{\bullet} S_+ \otimes \wedge^{\bullet} S_- \otimes \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}], \mathcal{D}_0 = \bar{\lambda}^{\dot{\alpha}} \partial_{\bar{\theta}^{\dot{\alpha}}}\right)
$$

with θ^α are coordinates for \mathcal{S}_+ and $\bar\theta^{\dot\alpha}$ are coordinates for $\mathcal{S}_- .$

 \bullet θ^{α} does not occur in \mathcal{D}_0 , hence the cohomology reads

$$
H^{\bullet}(\mathcal{K}^{\bullet}(M)) = \wedge^{\bullet}S_+ \otimes H^{\bullet}(\wedge^{\bullet}S_- \otimes \mathbb{C}[\bar{\lambda}^{\dot{\alpha}}]) \cong \wedge^{\bullet}S_+ \otimes \mathbb{C}.
$$

Reinstating the spacetime dependence one has that the \mathcal{D}_0 -cohomology reads

$$
\mathcal{C}^{\infty}(\mathbb{C}^{4})\otimes H^{\bullet}(\mathcal{K}^{\bullet}(M))\cong\mathcal{C}^{\infty}(\mathbb{C}^{4})\otimes_{\mathbb{C}}\wedge^{\bullet}S_{+}.
$$

 $d = 4$, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

Field Content: Chiral Supermultiplet

 $d = 4$, $\mathcal{N} = 1$ Chiral Multiplet via Pure Spinors

Field Content: Chiral Supermultiplet

Supersymmetry Transformations of the Chiral Multiplet

The action on the supercharges in p_1 on the representatives in cohomology gives the supersymmetry transformations:

$$
\rho(Q+\bar{Q})(\phi+\theta\psi+F\theta_1\theta_2)=(\epsilon\partial_{\theta}+i(\theta\sigma^{\mu}\bar{\epsilon})\partial_{\mu})(\phi+\theta\psi+F\theta_1\theta_2)
$$

=
$$
\underbrace{\epsilon\psi}_{\delta\phi}+\underbrace{(i\bar{\epsilon}\phi\phi+\epsilon F)}_{\delta\psi}\theta+\underbrace{(-i\epsilon\phi\psi)}_{\delta F}\theta_1\theta_2
$$

 $d = 6$, $\mathcal{N} = (1, 0)$ Multiplets via Pure Spinors

- Recall that $Y(6; (1,0)) = \mathbb{P}^1 \times \mathbb{P}^3 \hookrightarrow \mathbb{P}^7$
- All line bundles are of the form

 $\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^3}(n,m)=\pi_1^*\mathcal{O}_{\mathbb{P}^1}(n)\otimes_{\mathcal{O}_{\mathbb{P}^1\times\mathbb{P}^3}}\pi_3^*\mathcal{O}_{\mathbb{P}^3}(m)\quad(n,m)\in\mathbb{Z}^{\oplus2}.$

 \rightarrow all multiplets $A(m, n)$ coming from line bundles can be classified! ' For example, one finds:

1. $\mathcal{O}_{\mathcal{Y}}(0, 0) \rightsquigarrow$ vector multiplet: $\mathcal{O}_Y(0,0) \rightsquigarrow \mathcal{A}^\bullet(0,0) = (\Omega^0, \quad \Omega^1, \quad \mathcal{S}_- \otimes \mathbb{C}^2, \quad \Omega^0 \otimes \mathbb{C}^3)$ 2. $\mathcal{O}_Y(1, 0) \rightsquigarrow$ hypermultiplet: $\mathcal{O}_Y(1,0) \rightsquigarrow \mathcal{A}^\bullet(1,0) = (\Omega^0\otimes \mathbb{C}^2, \quad \mathsf{S}_+,\quad \mathsf{S}_-,\quad \Omega^0\otimes \mathbb{C}^2)$ 3. $\mathcal{O}_Y(2, 0) \rightarrow$ antifield multiplet of the vector multiplet:

$$
\mathcal{O}_Y(2,0) \rightsquigarrow \mathcal{A}^{\bullet}(2,0) = (\Omega^0 \otimes \mathbb{C}^3, \quad \mathcal{S}_-\otimes \mathbb{C}^2, \quad \Omega^1, \quad \Omega^0)
$$

 $d = 6$, $\mathcal{N} = (1, 0)$ Multiplets via Pure Spinors

- Recall that $Y(6; (1,0)) = \mathbb{P}^1 \times \mathbb{P}^3 \hookrightarrow \mathbb{P}^7$
- ' On the other hand, also higher-rank vector bundles can be considered, such as the conormal bundle

$$
0\longrightarrow {\mathcal N}_{\mathsf Y}^\vee\longrightarrow \Omega^1_{{\mathbb P}^7|_{\mathsf Y}}\longrightarrow \Omega^1_{\mathsf Y}\longrightarrow 0.
$$

' Remarkably, the conormal bundle is related to supergravity multiplet:

$$
\mathcal{A}^{\bullet}(\mathcal{N}_{Y}^{\vee}) \ni (\ldots, \quad Sym_{0}^{2}(V), \quad (V \otimes S_{-})_{\frac{3}{2}} \otimes \mathbb{C}^{2}, \quad \ldots \quad)
$$

The following is always true:

- 1. \mathcal{O}_Y \rightsquigarrow vector (gauge) multiplet;
- 2. $\mathcal{N}_Y^\vee \leadsto$ supergravity multiplet;
- 3. $\pi_* \mathcal{O}_Y$ \rightsquigarrow chiral multiplet(s);

$d = 1$ Supersymmetry and Pure Spinors

- • In $d = 1$ the nilpotence ideal is $I = \sum_{i=1}^{N} I_i$ $\sum_{i=1}^N \lambda_i^2$ for any amount of supersymmetry N, hence the nilpotence variety $Y(1, N)$ is a quadric hypersurface.
- The most studied $d = 1$ multiplets arise from the graph technology of Adinkras: the following is an example of the most important class of Adinkras, the valise Adinkras:

' Via pure spinors formalism, valise Adinkras corresponds to characteristic bundle on the quadric $Y(1, N)$: the spinor bundle.

Outro - toward derived geometry

At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable of accounting for all of the multiplets?

Outro - toward derived geometry

At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable of accounting for all of the multiplets?

As it turns out, the answer is no:

A relevant example is the antifield multiplet of the $d = 4, \mathcal{N} = 1$ vector multiplet $(\leftrightarrow \rightarrow \mathcal{O}_Y)$.

Geometrically, the antifield multiplet of the vector multiplet is related to the dualizing module of Y \leadsto if Y is singular, there is no dualizing module, but dualizing complex instead!

Outro - toward derived geometry

At this point, a reasonable and natural question is:

As presented, is the pure spinor superfield formalism capable of accounting for all of the multiplets?

As it turns out, the answer is no:

A relevant example is the antifield multiplet of the $d = 4, \mathcal{N} = 1$ vector multiplet $(\leftrightarrow \rightarrow \mathcal{O}_Y)$.

Geometrically, the antifield multiplet of the vector multiplet is related to the dualizing module of Y \leadsto if Y is singular, there is no dualizing module, but dualizing complex instead!

- This point in the direction of a **derived** pure spinor formalism (\rightarrow input are not single modules, but complexes of modules)!
- Pure spinor superfield formalism as an instance of **Koszul duality**: d $=0$ susy : $D^{\flat}(\mathbb{P}^{\mathcal{N}-1})\cong D^{\flat}(\Lambda^\bullet$ t-**mod**) \leadsto BGG correspondence; $\mathsf{d}{=}\mathsf{1}$ susy : $D^\flat(Q_{\mathcal{N}-1})\cong D^\flat(U(\mathfrak{t})\text{-}\mathsf{mod})\leadsto\cdots$ "deformed" BGG correspondence

Pure Spinors in $d = 1$ and Geometry of Quadrics

- 1. The N-extended supersymmetry algebra t_N in $d = 1$ is characterized by the relations $\{Q_i,Q_j\}=2\delta_{ij}H$ for $i,j=1,\ldots,N;$
- 2. The nilpotence variety of t_N is a quadric hypersurface The nilpotence variety of \mathfrak{t}_N is a quadric hyp $Y_N := \text{Spec}(\mathbf{k}[\lambda_1,\ldots,\lambda_N]/q_N)$ for $q_N := \sum_{i=1}^N q_i$ $\sum_{i=1}^N \lambda_i^2$ the standard quadratic form;

Theorem ("Deformed" BGG correspondence $\& d = 1$ SUSY) Let R/I be the ring of functions on Y_N and let $U_k(t)$ be the universal enveloping algebra of t_N . Then

$$
D^{\flat}(R/I\text{-}\mathbf{Mod}) \cong D^{\flat}(U_{\mathbf{k}}(\mathfrak{t})\text{-}\mathbf{Mod}). \tag{1}
$$

In particular, the following (Abelian) categories are mapped into each other:

$$
MCM_{gr}(R/I)
$$
 $C\ell(q_N)$ -Mod_{gr}. (2)

Thank you very much!

36/36

Multiplets and Pure Spinor Formalism

Definition (Multiplet)

A g-multiplet is a triple (E, D, ρ) , where (E, D) is an affine dgs vector bundle E on V equipped with a (local) g-module structure $\rho : \mathfrak{g} \longrightarrow \mathcal{D}(E)$, such the following commute

A morphism of multiplet is map of cochain complexes $\psi: \Gamma(E) \rightarrow \Gamma(E')$ such that $\psi \circ \rho({\sf x}) = \rho'({\sf x}) \circ \psi$ for every ${\sf x} \in \frak{g}$.

Definition (Category of Multiplets)

The dg-category g-Mult of g-multiplets is the (full) subcategory of local g-modules whose object are g-multiplets.

Multiplets and Pure Spinor Formalism

Definition (Poincaré Superalgebra)

A superalgebra g is of super Poincaré type if it can be written as an extension

$$
0\longrightarrow t\longrightarrow \mathfrak{g}\longrightarrow \mathfrak{g}_0\longrightarrow 0,
$$

where t is the two-step nilpotent superalgebra of supertranslations.

Definition (Pure Spinor Functor)

$$
\mathscr{PS}: C^\bullet_{\mathcal{CE}}(\mathfrak{t})\text{-}\mathsf{Mod}^{\mathfrak{g}_0}\longrightarrow \mathfrak{g}\text{-}\mathsf{Mult}.
$$

Why Pure Spinors?

- Let V a vector space of dimension $2n$ or $2n + 1$.
- Let S be a spin representation of $Spin(V)$, then S is a $Cl(V)$ -module.
- Accordingly, there is an action $V \subset S$, with $(v, Q) \mapsto v \cdot Q$
- If $Q \in S$, we consider $Ann(Q) := \{v \in V : v \cdot Q = 0\}$. Now, dim Ann $(Q) = m \leq n$.

Definition (Pure Spinor)

We say that Q is a *pure* spinor if $m = n$. Alternatively, Q is pure if $Ann(Q) \subset V$ is a maximal isotropic subspace.

In particular, for dim $V = 2n$, considering $\mathbb{P}(S)$, we have that (projective) pure spinors are given by the homogeneous space $SO(2n)/U(n)$. The pure spinor space coincides - in some relevant cases - with the nilpotence variety of super Poincaré algebras.

CM condition

Let R be a commutative, Noetherian and local ring and let M be an R-module.

We say that M is CM if depth $_R(M) = \dim_R(M)$.

There is also a homological useful characterization: namely we let R be polynomial a ring of Krull dimension n and $S \hookrightarrow R$ of Krull dimension d. Then we call $\omega_{\mathcal{S}}^{\bullet}:=\text{Ext}^{\bullet}_{R}(S,R)$ the dualizing complex of S (notice that this coincide with diff. forms of deg d if $S \hookrightarrow R$ is non-singular...). Now, S is CM if $Ext^i_R(S, R) = 0$ for every $i \neq n - d$, that is if the dualizing complex is a module.

In particular, if it is also free of rank 1, then we say that M is Gorenstein.

Typical example: plane curves with embedded points are not CM, e.g.

 $Spec \left(\mathbb{C}[X, Y]/(x^2, xy) \right)$.

Indeed $(x^2, xy) \cong (x) \cdot (xy)$: y-axis with embedded point $(0, 0)$.

Operators of a Theory

The operators of a theory consist of functionals of the fields of the theory are denoted with $\mathcal{O}(\mathcal{E})$.

For any point $x \in V$ we can define local operators via

$$
\mathcal{O}_x(\mathcal{E}) := \text{Sym}^{\bullet}(J^{\infty}E|_x)^{\vee},
$$

where $J^{\infty}E$ denotes the jet bundles of E - in other words, the local operators at x evaluate polynomials in the fields and derivatives of fields at x.

Given a map $\rho: \mathfrak{g} \leadsto \left(\mathcal{D}(E), [D, -] \right)$, the dual maps $(\rho^{(j)})^\vee$ define an action on the linear local operators, which extends to $\mathcal{O}_{\mathsf{x}}(\mathcal{E})$ via Leibniz rule.

Fixing an element $Q \in \mathfrak{g}$, we can define a map

$$
\delta_Q = \sum_j \rho^{(j)}(Q,\ldots,Q)^\vee : \mathcal{O}_X(\mathcal{E}) \to \mathcal{O}_X(\mathcal{E}),
$$

this defines the action of $Q \in \mathfrak{g}$ on the operators of the theory.

BRST Datum

A BRST datum on a multiplet (E, D, ρ) consists of:

- a local super L_{∞} structure $\{\mu_k\}$ on $L \equiv E[-1]$ such that $\mu_1 = D$, and whose associated CE differential we denote by Q_{BRST} ;
- a local functional $S_0 \in \mathcal{O}(E)$ of bidegree $(0, +)$ called BRST action action, which is Q_{BRST} -closed and invariant for the L_{∞} action ρ .

BV Datum

A BV datum on a multiplet (E, D, ρ) consists of:

- a graded antisymmetric map $\langle -, \rangle : E \otimes E \to \omega_X$ of bidegree $(-1, +)$ which is fiberwise non-degenerate and invariant for the L_{∞} action ρ ;
- A $C^{\bullet}(\mathfrak{g})$ -valued BV action of bidegree $(0, +)$ given by $S_{BV} = \sum_k S_B^k V$ where $S_B^k V \in C^k(\mathfrak{g}) \otimes \mathcal{O}(E)$, such that it satisfies the g-equivariant master equation

$$
d_{\mathfrak{g}} S_B V + \frac{1}{2} \{ S_B V, S_B V \} = 0.
$$

Here

$$
S_B^0 V(\Phi) = \int_X \langle \Phi, D\Phi \rangle + I_B V(\Phi)
$$

where $I_B V$ is at least cubic in the fields and where

$$
S_B^k V(x_1,\ldots,x_k;\Phi) = \int_X \langle \Phi, \rho^k(x_1,\ldots,x_k)\Phi \rangle
$$

Frrom BRST to BV Datum

To move from a BRST datum to a BV datum one considers

 $L_B V = L \oplus L^{\vee} [-k],$

which is equipped with a canonical evaluation pairing (of degree -k). The BRST action deforms the obvious L_{∞} structure on the direct sum, thus giving rise to an L_{∞} structure on $L_{\rm B}$ V, for which the evaluation pairing is invariant (after an application of the homological perturbation lemma).

- 1. If M is Gorenstein, its Koszul homology is naturally equipped with a perfect pairing, that equips the multiplet with a BV datum (in fact the minimal free resolution of M is self-dual if it is Gorenstein).
- 2. If M is Cohen-Macaulay, we can instead work as above: consider $L^{\vee}[-k]$ to be given by the dualizing module and look at $L \oplus L^{\vee}[-k]$ to define the BV datum.