Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Can an Inhomogeneous Universe mimic Dark Energy?

Alessio Notari¹

CERN

June 2009, Heidelberg

¹In collaboration with: Tirthabir Biswas, Stephon Alexander, Deepak Vaid, Reza Mansouri, Wessel Valkenburg, Isabella Masina.

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

= 900

Outline

Void vs Dark Energy

Motivations

- LTB metrics
 - Building the model
 - Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

(日)

- Gpc Void
- Other observations

- The Cold Spot
- Redshift (low-ℓ)
- Lensing (high- ℓ)

The need for Dark Energy

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations
- The Cold Sp Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- In Standard Cosmology we use the FLRW model.
- We compute D_L (or D_A) and z
- We use this to interpret several observations (SNIa, Hubble constant, CMB, Baryon Acoustic Oscillations, Matter Power Spectrum...)

(日)

 To fit the observations we need a p < 0 term ("Dark Energy").

The need for Dark Energy

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrai WMAP BAO Large-Scale Structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- In Standard Cosmology we use the FLRW model.
- We compute D_L (or D_A) and z
- We use this to interpret several observations (SNIa, Hubble constant, CMB, Baryon Acoustic Oscillations, Matter Power Spectrum...)
- To fit the observations we need a p < 0 term ("Dark Energy").
- Problem: We do not understand
 - the amount (why of the same amount as Matter today)?
 - its nature (is it vacuum energy?)

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- SNIa is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them not exactly as standard candles

²Blanchard et al. '03, Sarkar and Hunt '04, '07 () () () () ()

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrai WMAP BAO Large-Scale structure(LRG)

Gpc Void

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- SNIa is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them not exactly as standard candles
- CMB: best-fit with power-law (k^{ns}) primordial spectrum has Ω_Λ ~ 0.7. But good fit² also with Ω_M = 1:
 - Iow-h (0.45)
 - non-standard primordial spectrum

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG)

Gpc Void Other observation

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- SNIa is incompatible with deceleration (independently on other observations)
 - Assuming them as standard candles.
 - Assuming them not exactly as standard candles
- CMB: best-fit with power-law (k^{ns}) primordial spectrum has Ω_Λ ~ 0.7. But good fit² also with Ω_M = 1:
 - Iow-h (0.45)
 - non-standard primordial spectrum
- The two dataset,
 - SNIa
 - CMB together with measured *h*: $0.55 \lesssim h \lesssim 0.8$ are strong evidence for $\Omega_{\Lambda} \sim 0.7$.

²Blanchard et al. '03, Sarkar and Hunt '04, '07 () () () () ()

Void vs Dark Energy

Motivations

- SNIa is incompatible with deceleration (independently) on other observations)
 - Assuming them as standard candles.
 - Assuming them not exactly as standard candles
- CMB: best-fit with power-law (k^{ns}) primordial spectrum has $\Omega_{\Lambda} \sim 0.7$. But good fit² also with $\Omega_M = 1$:
 - - Iow-h (0.45)
 - non-standard primordial spectrum
- The two dataset.
 - SNIa
 - CMB together with measured h: $0.55 \le h \le 0.8$

are strong evidence for $\Omega_{\Lambda} \sim 0.7$.

Other observations (BAO and LSS...) fit consistently

²Blanchard et al. '03, Sarkar and Hunt '04, '07 () () ()

Is there any alternative?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Look for other logical possibilities, in usual GR.
- Especially: can we rule out any other explanation, even if radical, based on observations?

Is there any alternative?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Look for other logical possibilities, in usual GR.
- Especially: can we rule out any other explanation, even if radical, based on observations?

(日)

• What happens to observations when we have departure from a *homogeneous* model?

Is there any alternative?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Look for other logical possibilities, in usual GR.
- Especially: can we rule out any other explanation, even if radical, based on observations?
- What happens to observations when we have departure from a *homogeneous* model?
- An opportunity to observationally test the Copernican principle

Homogenous Universe: a good approximation?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagraf WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

 At z ≫ 1 (CMB epoch, for example) tiny density fluctuations on all observed scales.

It is a good approximation

- ..at late times $\delta \equiv \frac{\delta \rho}{\rho} > 1$ for all scales $L \lesssim \mathcal{O}(10)/h \operatorname{Mpc}(1\% \text{ of Hubble radius})$
- Superclusters upto few hundreds of Mpc (10% of Hubble radius), nonlinear objects ("cosmic web")

SDSS data ("The cosmic web")

Motivations

SDSS data

Motivations

LTB metrics Building the mode Results

LOCAI VOIC: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

SDSS data

Void vs Dark

Energy

Motivations

Scale of Homogenity

Void vs Dark Energy

Motivations

- LTB metrics Building the model Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Coro Moid
- Other observation

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Scale of convergence in SDSS data?

• 70Mpc/h: P.Sarkar et al 2009; J.Yadav et al. 2005; Hogg et al. 2005

▲□▶▲□▶▲□▶▲□▶ □ のQ@

No convergence: Sylos Labini et al. 2007 & 2009

Three physical effects of inhomogeneities

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG)

Gpc Void

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

In general:

Backreaction

perturbations affect the background

Light propagation

Light travels through voids and structures. Do they compensate?

• Large local fluctuation

What if we live in a local void?

A local fluctuation?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- Suppose that we live in a peculiar local region
- ⇒ low z observations may be very different from average.
- Acceleration is inferred comparing low z with high z...
- Can this mimic acceleration ³?

³Tomita '98, Tomita '00, Celerier '01, Wiltshire '05, Moffat '05, Alnes et al. '05, Mansouri et al. '06, Biswas & A.N.'07, Garcia-Bellido and Haugboelle '08, Zibin et al. '08 ...

Qualitatively

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

 Consider a "compensated Void" : a spherical Void plus an external shell of matter (on average same density as "external" FLRW)

(日)

Assumption: we live near the center

Qualitatively

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Vold
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- Consider a "compensated Void" : a spherical Void plus an external shell of matter (on average same density as "external" FLRW)
- Assumption: we live near the center
- A void expands faster than the "external" FLRW
 - \Rightarrow So, nearby objects inside the void redshift more

(日)

 \Rightarrow This can mimic acceleration (as we will see...)

Qualitatively

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Void
- The Cold Spot Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

- Consider a "compensated Void" : a spherical Void plus an external shell of matter (on average same density as "external" FLRW)
- Assumption: we live near the center
- A void expands faster than the "external" FLRW
 - \Rightarrow So, nearby objects inside the void redshift more
 - \Rightarrow This can mimic acceleration (as we will see...)
- How much contrast δ and how large *L* is needed?

	V/- ' - I -
ADOUT	Voids
7.0000	voluo

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Large Voids?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagral WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Inoue and Silk '06': some features of the low multipole anomalies in the CMB data could be explained by a pair of huge Voids ($L \sim 200 \text{ Mpc/}h, \delta \sim -0.3$)

- The CMB has a Cold Spot (M. Cruz et al. ('06 and '07)): it could be explained by another similar Large Void (Inoue and Silk '06)
- The Cold Spot in the CMB claimed to be correlated with an underdense region in the LSS, Radio sources (Rudnick, Brown and Williams '07, but see Smith & Huterer '08...)
- It could be detected via lensing (s. Das and D. Spergel '08, I.Masina and A.N '08-'09) and via non-gaussian coupling Rees-Sciama effect - lensing (I.Masina and A.N '09)

Observational Status

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Some observational evidence for a local large underdense region (~ 25% less dense, r ~ 200 Mpc/h) from number counts of galaxies (2MASS) (Frith et al. '03)
- It would represent a 4σ fluctuation, at odds with Λ CDM.

(日)

Observational Status

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Vold
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Some observational evidence for a local large underdense region ($\sim 25\%$ less dense, $r \sim 200 \,\mathrm{Mpc}/h$) from number counts of galaxies (2MASS) (Frith et al. '03)
- It would represent a 4σ fluctuation, at odds with Λ CDM.
- Many Large Voids identified via ISW effect in the SDSS LRG catalog (about 100 Mpc/h radius) (Granett et al. '08)
- Also in contradiction with Λ CDM: $P < 10^{-8}$ (Sarkar & Hunt '08)

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spc Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Figure: Granett, Neyrinck & Szapudi '08

Large bulk motion?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrai WMAP BAO Large-Scale Structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

 Recent measurement (Kashlinsky et al.'08): very large coherent motion on 300Mpc/h scale, inconsistent with ΛCDM

 Could be due to very large scale inhomogeneous matter distribution

 Watkins, Feldman & Hudson '08: use peculiar velocities of various (4500) objects in a 100 Mpc/h radius. Find 400 km/sec (expected 100 km/sec)

A "Minimal" Void ?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• What is the size we need to mimic DE?

A "Minimal" Void ?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- What is the size we need to mimic DE?
- It will turn out that a Minimal Void needs at least the same size (for Riess '07 SNIa and WMAP)
- $r_{\rm Void} \sim 200 250 \,{\rm Mpc}/h$ and $\delta \sim -0.4$

On this scale the typical contrast is: $\delta \sim 0.03 - 0.05$, using *linear* and *Gaussian* spectrum

(日)

A "Minimal" Void ?

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- What is the size we need to mimic DE?
- It will turn out that a Minimal Void needs at least the same size (for Riess '07 SNIa and WMAP)
- $r_{\rm Void} \sim 200 250 \,{\rm Mpc}/h$ and $\delta \sim -0.4$
 - On this scale the typical contrast is: $\delta \sim 0.03 0.05$, using *linear* and *Gaussian* spectrum
- A Gpc Void seems required to fit all observations

Which primordial origin?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Can we get huge Voids?

- Percolation of Voids?
- Non-gaussianity (for example of primordial spherical shape)?
- Nucleation of primordial Bubbles (first order phase transition during inflation)

• Main tuning: why observer at centre?

LTB exact solutions

Void vs Dark Energy

Motivations

LTB metrics

Building the r Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

 Consider Lemaître-Tolman-Bondi exact solutions of E.E. (with p = 0) which is

inhomogeneous

- nonlinear
- Spherically symmetric
- LTB sphere embedded in FLRW ("Swiss-Cheese")
- We study null geodesic in this metric

Earlier literature

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Mustapha, Hellaby, Ellis '97: show that LTB can reproduce any $D_L - z$ curve

Celerier '99: showed that LTB can mimic ΛCDM

• Tomita '01: Compensated Void $200 - 300 \, \mathrm{Mpc}/h$ scale

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Outline

Void vs Dark Energy

Motivation

LTB metrics Building the model Results

- Local Void: Fitting the data SNIa Hubble diag WMAP BAO
- Large-Scale structure/LR(
- Gpc Void
- . Other observatio

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

LTB metrics

Building the model

Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)
- Gpc Void
- Other observations

The Cold Spot

- Redshift (low-ℓ)
- Lensing (high-*l*)

Lemaître-Tolman-Bondi metrics

Void vs Dark Energy

Motivations

a

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other chementions

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$$ds^{2} = -dt^{2} + \frac{R'^{2}(r,t)}{1+2r^{2}k(r)}dr^{2} + R^{2}(r,t)(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

with comoving coordinates (r, θ, φ) and proper time t.

Einstein equations:

$$\frac{1}{2}\frac{\dot{R}^2(r,t)}{R^2(r,t)} - \frac{GM(r)}{R^3(r,t)} = \frac{r^2k(r)}{R^2(r,t)},$$

$$4\pi\rho(r,t) = \frac{M'(r)}{R'(r,t)R^2(r,t)},$$

LTB metrics

Void vs Dark Energy

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$$ds^{2} = -dt^{2} + rac{R'^{2}(r,t)}{1+2r^{2}k(r)}dr^{2} + R^{2}(r,t)(d\theta^{2} + \sin^{2}\theta d\varphi^{2})$$

It has the solutions:

• For k(r) > 0 (k(r) < 0), $R = \frac{GM(r)}{2r^2|k(r)|} [\cos h(u) - 1], \quad (2.1)$ $t - t_b(r) = \frac{GM(r)}{[2r^2|k(r)|]^{3/2}} [\sin h(u) - u].$

• k(r) = 0,

$$R(r,t) = \left[\frac{9GM(r)}{2}\right]^{1/3} [t-t_b(r)]^{\frac{2}{3}}.$$

5900

< ∃→
Choosing the functions

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• $t_b(r) = 0$ for our purposes, and "Gauge" choice: $M(r) \propto r^3$

Choosing the functions

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- $t_b(r) = 0$ for our purposes, and "Gauge" choice: $M(r) \propto r^3$
- k(r) contains all the physical information about the profile.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• k = 0 flat FLRW, $k = \pm 1$ open/closed FLRW.

Choosing the functions

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagral WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- $t_b(r) = 0$ for our purposes, and "Gauge" choice: $M(r) \propto r^3$
- *k*(*r*) contains all the physical information about the profile.
- k = 0 flat FLRW, $k = \pm 1$ open/closed FLRW.
- The idea is to describe structure formation (start with $\delta(r, t_l) \ll 1$ and end up with $\delta(r, t_{now}) \gg 1$)

• We play with k(r) to describe $\delta(r, t_l)$.

LTB merged to FLRW

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Matching of an LTB sphere (of radius *L*) to FLRW:

$$k'(0) = k'(L) = 0,$$

 $k(L) = \frac{4\pi\Omega_k}{3(1-\Omega_k)}$

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

LTB merged to FLRW

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Matching of an LTB sphere (of radius *L*) to FLRW:

$$k'(0) = k'(L) = 0,$$

 $k(L) = \frac{4\pi\Omega_k}{3(1-\Omega_k)}$

We use:
•

$$k(r) = k_{max} \left[\left(\frac{r}{L} \right)^4 - 1 \right]^2$$
 (for $r < L$)
 $k(r) = 0$ (flat) (for $r > L$)

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <目</p>

• Two parameters, *L* and *k*_{max}.

The density

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Roughly: $ho(r,t)\simeq rac{\langle ho angle(t)}{1+(t/t_0)^{2/3}\epsilon(r)}\,,$ $ho_{ ho}^{M_{ ho}^2}$

where
$$\langle \rho \rangle(t) \equiv \frac{M_{\rho}^2}{6\pi t^2}$$
, and $\epsilon(r) \equiv 3k(r) + rk'(r)$.

• $\epsilon \ll 1$ linear growth

• ϵ not small: δ grows rapidly (as in Zel'dovich approx)

• We work at most with $\delta \sim \mathcal{O}(1)$.

The density profile

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Redshift

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Solve for t(r) along a $ds^2 = 0$ trajectory

• Then solve for z(r)

$$\frac{dz}{dr} = \frac{(1+z(r))\dot{R}'(r,t(r))}{\sqrt{1+2r^2k(r)}} \,.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Redshift

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Solve for t(r) along a $ds^2 = 0$ trajectory

• Then solve for z(r)

$$\frac{dz}{dr} = \frac{(1+z(r))\dot{R}'(r,t(r))}{\sqrt{1+2r^2k(r)}}$$

- The result z(r) can be found numerically
- We also have some very good analytical approximations

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

• Always in GR, luminosity distance and angular distance:

$$D_L = D_A (1 + z)^2$$
.

$$D_A^2 \equiv rac{dA}{d\Omega} = rac{d heta_S d\phi_S \sqrt{g_{ heta\theta}g_{\phi\phi}}}{dar{ heta}_O dar{\phi}_O} R^2|_S \,,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Luminosity (Angular) Distance

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Always in GR, luminosity distance and angular distance:

$$D_L = D_A (1+z)^2 \, .$$

$$D_A^2 \equiv \frac{dA}{d\Omega} = \frac{d\theta_S d\phi_S \sqrt{g_{\theta\theta}g_{\phi\phi}}}{d\bar{\theta}_O d\bar{\phi}_O} R^2|_S \,,$$

If observer in the center:

$$D_A^2 = R^2|_S$$
.

For generic observer (but radial trajectory):

$$D_A = R_S \left(R_O \int_{r_O}^{r_S} \frac{R'(r, t(r))}{(1 + 2E(r))(1 + z(r))R(r, t(r))^2} dr \right) ,$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Analytical approximation

Void vs Dark Energy

Motivations

LTB metrics Building the model Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spc Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$$f \equiv \frac{\sqrt[3]{2}(\cosh(u) - 1)}{3^{2/3}(\sinh(u) - u)^{2/3}} - 1$$
 (2.2)

$$u_0 = 6^{1/3} (\sinh(u) - u)^{1/3}$$
. (2.3)

Then, one can use this function in the following equations:

 π

$$\tau(r) = \tau_0 - \frac{\pi}{9} \gamma^2 \bar{M} r [1 + f(\gamma^2 \tau_0^2 k(r))], \qquad (2.4)$$

$$1 + z(r) = \left(\frac{\tau_0}{\tau(r)}\right)^2 \exp\left[\frac{4\pi\gamma^2 \bar{M}r}{9}f(\gamma^2 \tau_0^2 k(r))\right]$$
(2.5)

$$D_{L}(r) = \frac{\pi}{3} \gamma^{2} r \tau(r)^{2} [1 + f(\gamma^{2} \tau_{0}^{2} k(r))] [1 + z(r)]^{2} \quad (2.6)$$

$$\tau_{0} = \left(\frac{2\bar{M}}{3H_{0}}\right)^{1/3} \quad (2.7)$$

$$\gamma = \left(\frac{9\sqrt{2}}{2}\right)^{1/3} \quad (2.8)$$

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

Outline

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diag WMAP BAO Large-Scale

structure(LRG

Other observatio

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

LTB metrics

Building the model

Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Gpc Void
- Other observations

The Cold Spot

- Redshift (low-*l*)
- Lensing (high-*l*)

Observer outside: z

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Net effect from one hole⁴ : $\frac{\Delta z}{1+z} \approx (L/r_H)^3 f(\delta)$
- At 2nd order usual Rees-Sciama effect $(L/r_H)^3 \delta^2$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing: $N_{\text{holes}} \times \mathcal{O}(L/r_H)^3 \sim \mathcal{O}(L/r_H)^2$
- Still small (for late acceleration)
- Interesting in the CMB, as a Rees-Sciama effect.

⁴T. Biswas-A. N. '06-'07

Observer outside: Distance

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Net effect scales as $\frac{\Delta z}{1+z} \approx (L/r_H)^2 f(\delta)^5$
- $f(\delta)$ does *not* compensate the suppression for $\delta \gg 1$
- Tight packing: $N_{\text{holes}}\mathcal{O}(L/r_H)^3 = \mathcal{O}(L/r_H)$
- Not so small...
- But it should have zero angular average (unlike z)⁶

(日)

⁵Brouzakis-Tetradis-Tzavara '06, Kolb-Matarrese-Riotto '07, T. Biswas-A. N. '07

⁶S. Weinberg '76, Brouzakis et al. '06-'07

Observer outside: Beyond LTB?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Reliable result or limited by the symmetries of the model?

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• LTB model swiss-cheese: special case

Observer outside: Beyond LTB?

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Vold
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels no backreaction by construction

(日)

Observer outside: Beyond LTB?

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- Reliable result or limited by the symmetries of the model?
- LTB model swiss-cheese: special case
- The cheese feels no backreaction by construction
- What happens without spherical symmetry?
- Szekeres swiss-cheese model with asymmetric holes (Bolejko '08)
- But still special: the cheese feels *no backreaction* of the holes

Outline

Void vs Dark Energy

SNIa Hubble diagram

Motivation

- LTB metrics
 - Building the model
 - Results

3

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

(日)

- Gpc Void
- Other observations

(4) Tł

- The Cold Spot
- Redshift (low- ℓ)
- Lensing (high-ℓ)

High and low z

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data
- SNIa Hubble diagram WMAP BAO
- structure(LRG
- Gpc Void
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- Evidence for acceleration comes from mismatch between:
 - measurements at low redshift ($0.03 \le z \le 0.08$)
 - high-z SN (roughly $0.4 \leq z \leq 1$)
- We choose large r_{void}
- \Rightarrow The Local Bubble is different from the average.

Outside just FLRW curve (plus small corrections $\mathcal{O}(\frac{L}{rhor})^2$)

Roughly

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- At high z ($z \gtrsim 0.1$), just FLRW
- At low z "open-like" Universe with a different H
- Two Hubble parameters: h and hout
- Rapid transition near the shell-like structure

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Δm for different models

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale structure(LRG) Gpc Vold

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Magnitude is $m \equiv 5Log_{10}D(z)$
- The open "empty" Universe is subtracted ($\Omega_{\mathcal{K}} = -1$)

m-z diagram: Riess data

Finding the best fit

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagram WMAP BAO Large-Scale
- structure(LRG) Gpc Void
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- We fix several values of L
- What matters is just the Jump: $\mathcal{J} \equiv \frac{h}{h_{OUT}}$
- This is also related to the central density contrast: $\mathcal{J} = 2 (1 \delta_0)^{1/3}$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• We vary \mathcal{J} and compute the χ^2 .

Fitting SNIa with a Jump

Void vs Dark Energy

SNIa Hubble diagram

• Outside $\Omega_M = 1$

Riess et al. dataset, astro-ph/0611576 (182 SNIa)

Figure: Red dashed lines: 10% and 1% goodness-of-fit (182 data points)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LTB Void fit

Figure: Full LTB model. We show 1σ , 2σ , 3σ and 4σ intervals (using likelihood $\propto e^{-\chi^2/2}$).

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagram

BAC

Large-Scale structure(LRG

Ope void

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Table: Comparison with data (full data set of Riess et al.)

Model	χ^{2} (181 d.o.f.)
Λ CDM (with $\Omega_M = 0.27, \Omega_{\Lambda} = 0.73$)	160
EdS (with $\Omega_M = 1, \Omega_{\Lambda} = 0$)	274
Void ($\sqrt{\langle \delta^2 angle} pprox 0.4$ on $L=250/h{ m Mpc}$)	182

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagram

WMAP

BAO

Large-Scale structure(LRG) Gpc Void

Other observation

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Table: Comparison with data (full data set of Riess et al.)

Model	χ^{2} (181 d.o.f.)
Λ CDM (with $\Omega_M = 0.27, \Omega_{\Lambda} = 0.73$)	160
EdS (with $\Omega_M = 1, \Omega_{\Lambda} = 0$)	274
Void ($\sqrt{\langle \delta^2 \rangle} pprox 0.4$ on $L = 250/h{ m Mpc}$)	182

Remarks:

- With instrumental error only: no smooth curve can give a good fit
- Estimated error from intrinsic variability added in quadrature
- Not as good as ACDM
- Becomes better including curvature Ω_k outside
- SDSS-II will improve a lot: $\Delta \chi^2 \sim 60$

Outline

Void vs Dark Energy

WMAP

Motivation

- LTB metrics
 - Building the model
 - Results

3

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

- Gpc Void
- Other observations

sions

- The Cold Spot
- Redshift (low- ℓ)
- Lensing (high-ℓ)

The WMAP data

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- We look at TT and TE correlations, using CosmoMC
- In principle: we should compute propagation in EdS from z = 1100 to z ~ 0.1, and then in the Bubble

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The WMAP data

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale Structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- We look at TT and TE correlations, using CosmoMC
- In principle: we should compute propagation in EdS from z = 1100 to z ~ 0.1, and then in the Bubble
- "Secondary" effect in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$

(日)

- Relevant only for Gpc Void
- Small because of compensation

We ignore:

The WMAP data

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- We look at TT and TE correlations, using CosmoMC
- In principle: we should compute propagation in EdS from z = 1100 to z ~ 0.1, and then in the Bubble
- "Secondary" effect in the Bubble:
 - Small offset to D_A and T_0 of $\mathcal{O}(r_{\text{Void}}/r_{\text{Hor}})^2$
 - Relevant only for Gpc Void
 - Small because of compensation
 - We ignore:
 - Off-center location: dipole
 - Non-sphericity (again effect on low-I)

	Priors (ACDM)
Void vs Dark Energy	
Motivations	
LTB metrics Building the model Results	The usual prior set is:
Local Void: Fitting the data	• Allow for nonzero Ω_{Λ} .
WMAP BAO Large-Scale structure(LRG)	• Power-law spectrum with index n_s and running α_s .
Gpc Void Other observations	• $P(k) \propto k^{n_s(k_0) + \frac{1}{2} ln(k/k_0)\alpha_s}$
The Cold Spot	

Conclusions

Priors: without Λ Void vs Dark Energy A different prior set, that we use: • Not allow for Ω_{Λ} . • Power-law spectrum with index n_s and running α_s ... WMAP • $P(k) \propto k^{n_s(k_0) + \frac{1}{2}ln(k/k_0)\alpha_s}$

Conclusions

(we also allow for some curvature)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Fit to WMAP3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Goodness-of-fit

Result for parameters

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

The EdS model, with running, has:

- low h_{OUT} (about ~ 0.45)
 It has to be consistent with the SNIa analysis and the local measurements of h
- low n_S (about ~ 0.73) and large negative α_s (about ~ -0.16)
- larger value of Ω_M/Ω_b (around 10 instead of 6)
- $\Omega_b h_{out}^2$ (~ 0.018^{+0.001}_{-0.002}) consistent with BBN constraint (which is 0.017 $\leq \Omega_b h_{out}^2 \leq 0.024$, at 95% C.L.)

Parameter likelihood

Figure: likelihoods to WMAP 3-yr for the run "EdS with α_s "

Parameter likelihood

Motivations

LTB metrics Building the mod Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spc Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Figure: Contour likelihood plots to WMAP 3-yr for the run "EdS with $\alpha_{\rm s}$ "

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Low H_0

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void
- The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- low *h*_{OUT} (~ 0.45)⁷
- We get a constraint on local $h (\sim 0.55)$

7 As in A. Blanchard et al.'03 and P. Hunt & S. Sarkar '07 ← □ > ← □ > ← □ > ← Ξ > ← Ξ > ← Ξ > → Ξ → ○ へ (?)

Low H_0

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- low *h*_{OUT} (~ 0.45)⁷
- We get a constraint on local h (~ 0.55)
- Compatible with local observations?
 - $h = 0.72 \pm 0.08$ from HST (Freedman *et al.*, Astrophys. J. 553, 47 (2001))
 - *h* = 0.62 ± 0.01 ± 0.05 from HST with corrected Cepheids (A. Sandage *et al.*, Astrophys. J. **653**, 843 (2006))
 - h = 0.59 ± 0.04 from Supernovae (Parodi, Saha, Sandage and Tammann, arXiv:astro-ph/0004063.)
 - $h = 0.54^{-.03}_{+.04}$ SZ effect (z \approx 1) (Reese *et al.* Ap. J. 581, 53 (2002))
 - $h = 0.48^{+.03}_{-.03}$ from lensing (0.3 $\lesssim z \lesssim 0.7$) (c. S. Kochanek and P. L. Schechter, arXiv:astro-ph/0306040.)

Parameter Contours

Figure: 1- σ and 2- σ Contour plots for *h* vs. *h*_{out}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Summarizing the constraints

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

(

LOCAI VOId: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

At 95% C.L. we have (for $L \approx 250/h$ Mpc) :

▶ 1.17
$$\leq \mathcal{J} \leq$$
 1.25 \Rightarrow 0.42 $\leq |\delta_0| \leq$ 0.58

(but note that the average $\sqrt{\langle \delta^2 \rangle}$ is smaller)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $0.44 \le h_{\text{out}} \le 0.47$

● 0.51 ≤ *h* ≤ 0.59

Outline

Void vs Dark Energy

BAO

Motivation

- LTB metrics
 - Building the model
 - Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

= nar

- Gpc Void
- Other observations

4 Th

- Redshift (low-ℓ)
- Lensing (high- ℓ)

Baryon Acoustic Oscillations

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagn WMAP BAO

Large-Scale structure(LRG) Gpc Void Other observation

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at z = 0.35

(日)

Baryon Acoustic Oscillations

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data
- SNIa Hubble diagram WMAP BAO
- Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Measurement of baryon acoustic peak in the galaxy distribution (Eisenstein et al., 2005).
- The position of the peak measures the ratio of the sound horizon at recombination vs. angular distance at z = 0.35
- It constrains two quantities: $\Omega_m h^2$ and $D_A(0.35)$
- But it also depends on the spectral index *n*_s:

$$D_V = 1370\pm 64$$
 and $\Omega_m h^2 = 0.130 \, (n_s/0.98)^{-1.2} \pm 0.011$

- Caveat:
 - Constraints are derived using ACDM

UNION data and BAO

(日)

Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

UNION fit with 2 Gpc

The Cold Spc Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Figure: Taken from Garcia-Bellido & Haugboelle '08 (similar fits also in Zibin et al. '08)

UNION data and BAO

Problem 1

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagr
- BAO Large-Scale structure/LRG
- structure(LRG) Gpc Void Other observatio
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- Combining BAO+CMB+SN
- Problematic even adding curvature:

• BAO+CMB+HST+SN (Riess) void: 3100 BAO+CMB+HST+SN(Riess) Λ CDM: 2968 • $\Delta\chi^2 \sim 140$

(日)

Outline

Void vs Dark Energy

Large-Scale structure(LRG)

Motivation

- LTB metrics
 - Building the model
 - Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO

Large-Scale structure(LRG)

(日)

- Gpc Void
- Other observations

The Cold Sp

- Redshift (low-*l*)
- Lensing (high- ℓ)

Galaxy power spectrum

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gao Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

SDSS-main sample $z \lesssim 0.2$ Luminous Red Galaxies $0.2 \lesssim z \lesssim 0.5$

If the Void is small ($z \sim 0.1$), at least the LRG are in the outer region.

Problem 2: Galaxy power spectrum

• WMAP prefers flat/closed universe. LRG prefers $\Omega_M < 1$.

Outline

Void vs Dark Energy

Motivation

- LTB metrics
 - Building the model
 - Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

▲□▶▲□▶▲□▶▲□▶ □ クタペ

- Gpc Void
 - Other observations

The Cold Spo

- Redshift (low-*l*)
- Lensing (high- ℓ)

Motivation

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagi

BAO

Large-Scale

Gpc Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

A Larger Void?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagral WMAP BAO Large-Scale structure(LRG) **Gpc Vold**

Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• If we consider $L \gtrsim 1 \mathrm{Gpc}/h$

A Larger Void?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) **Gpc Void**

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- If we consider $L \gtrsim 1 \, {\rm Gpc}/h$
- SN data fits better Alnes et al. '07, Garcia-Bellido & Haugboelle '07, Zibin et al.'08,...

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CMB first peak fits well Alnes et al. '07

A Larger Void?

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale
- structure(LRG)
- Other observation
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- If we consider $L \gtrsim 1 \mathrm{Gpc}/h$
- SN data fits better Alnes et al. '07, Garcia-Bellido & Haugboelle '07, Zibin et al.'08,...

(日)

- CMB first peak fits well Alnes et al. '07
- Galaxy power spectrum could fit well (the data are inside...and inside the matter density is lower)
- BAO scale also changes
- Large monopole correction
- Work in progress... (A.N., T. Biswas, W. Valkenburg)

Radial BAO

Void vs Dark Energy

- Motivations
- LTB metrics Building the model Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• It is possible to look (Gaztanaga et al.'08) for the BAO scale only for the radial direction as Δz (model-independent)

 Zibin, Moss & Scott '08: it does not fit (*Gpc* Void) together with full CMB (which they fit with very low *h* and non-compensated Void)

 Garcia-Bellido & Haugboelle '08: it fits as well as ΛCDM(Gpc Void), but only first peak location and SN Union (no full CMB).

Outline

Void vs Dark Energy

Motivation

- LTB metrics
 - Building the model
 - Results

Local Void: Fitting the data

- SNIa Hubble diagram
- WMAP
- BAO
- Large-Scale structure(LRG)

(日)

- Gpc Void
- Other observations

The Cold Spo

- Redshift (low- ℓ)
- Lensing (high- ℓ)

Motivation

LTB metrics Building the mode Results

LOCAI VOID: Fitting the data SNIa Hubble diag

BAO

Large-Scale structure(LR

Gpc Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

CMB Dipole

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG)
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

• How much Observer can be off-center?

Observer at Distance d_O

•
$$\frac{\delta T}{T} \sim V_{\rm O} \sim \dot{d}_{\rm O}$$

CMB Dipole

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diage WMAP BAO
- Large-Scale structure(LRG)
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- How much Observer can be off-center?
- Observer at Distance d_O

•
$$\frac{\delta T}{T} \sim V_{\rm O} \sim \dot{d}_{\rm O}$$

• CMB dipole $\leq 10^{-3}$ if $d_{0} \sim 15-20\,{
m Mpc}$ (Tomita et al., Alnes et al.)(06)

▲□▶▲□▶▲□▶▲□▶ □ のQ@

CMB Dipole

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagr WMAP
- Large-Scal
- Gpc Void
- Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- How much Observer can be off-center?
- Observer at Distance d_O

•
$$\frac{\delta T}{T} \sim V_{\rm O} \sim \dot{d}_{\rm O}$$

- CMB dipole $\leq 10^{-3}$ if $d_{0} \sim 15-20\,{
 m Mpc}$ (Tomita et al., Alnes et al.)(06)
- Bulk dipole of the same size of our dipole 600km/s (Kashlinsky et al. '08: 600 – 1000km/s)

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Goc Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• All objects inside the Void have some peculiar velocity

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• This gives rise to $\frac{\delta T}{T} \sim \frac{v}{c}$ and spectrum distortions (kinetic SZ effect)

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- All objects inside the Void have some peculiar velocity
- This gives rise to $\frac{\delta T}{T} \sim \frac{v}{c}$ and spectrum distortions (kinetic SZ effect)
- Goodman '95: $v/c \lesssim$ 0.01 (at $z \sim$ 0.2)
- Caldwell-Stebbins '07-'08: rule out Voids with $z_b \gtrsim 0.9$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void

Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Garcia-Bellido & Haugboelle: using 9 clusters ($0.2 \le z \le 0.6$) with detection of spectral distortion one finds: $\bar{v} = 320 \text{ km/sec}$ and $\sigma = 1600 \text{ km/sec}$ (σ expected is only about 400 km/sec!)

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG)

Gpc Void

Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Garcia-Bellido & Haugboelle: using 9 clusters ($0.2 \le z \le 0.6$) with detection of spectral distortion one finds: $\bar{v} = 320 \text{ km/sec}$ and $\sigma = 1600 \text{ km/sec}$ (σ expected is only about 400 km/sec!)

(日)

• Exclude L > 1.5 Gpc, with $\Omega_{IN} = 0.23$.

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG)
- Gpc Void Other observations
- Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

• Garcia-Bellido & Haugboelle: using 9 clusters ($0.2 \le z \le 0.6$) with detection of spectral distortion one finds: $\bar{v} = 320 \text{ km/sec}$ and $\sigma = 1600 \text{ km/sec}$ (σ expected is only about 400 km/sec!)

• Exclude L > 1.5 Gpc, with $\Omega_{IN} = 0.23$.

 But Kashlinsky et al. measure high ^v/_c ~ 1000km/sec on 300 Mpc/h (they assume kSZ, but do not see spectral distortions).

Anisotropy of H

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diag WMAP BAO Large-Scale structure(LRG)
- structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)
- Conclusions

- Similarly the expansion is anisotropic if d_0 nonzero⁸.
- Two papers claim significant anisotropy in *H*:
 - D.Schwarz & Weinhorst '07: in the SNIa dataset (> 95%C.L.)
 - McClure & Dyer '07: in the Hubble Key Project data (9 - 20km/sec)
- In addition this should be correlated with CMB dipole
- Also to be explored: non-sphericity of Void

⁸Tomita (2000), Alnes et al. ('06)

Anomaly in the CMB?

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIA Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot

- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

• The CMB has a Cold Region ("Cold Spot") (M. Cruz et al. ('06 and '07)), with diameter about 15°

◆□ > ◆□ > ◆三 > ◆三 > 三 のへぐ

The Cold Spot

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void Other observation:

The Cold Spot

- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

Figure: From Eriksen et al. 108 - () + () + () + ()

The Cold Spot

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot

Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

Possible Explanations

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot

- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

A Statistical accident?

 It could be that our Universe is peculiar in such a way that Φ has this strange feature

(日)

How strange is it?
Possible Explanations

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot
- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

- A Statistical accident?
- It could be that our Universe is peculiar in such a way that Φ has this strange feature
 - How strange is it?
 - About 1% chance from Gaussian Monte Carlo simulations of the CMB map (cruz et al:05-'06)

(日)

Other explanation

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot

- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

- Exotic explanation: it could be explained by the integrated effect along the line of sight
- There could be a very Large Void on the line-of-sight (160 Mpc/h 1.5 Gpc/h) (Tomita'05-'06, Inoue & Silk '06)
- Claimed to be correlated with underdense region in the nearby galaxy distribution (Rudnick, Brown & Williams '07). This would mean that this "hole" is close to us.
- But this has been challenged by (Smith & Huterer '08)

The Cold Spot due to a Void?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagr WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot

Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

 We assume an underdense region ("a Void"), on the line of sight with I.Masina; JCAP JCAP 0902:019,2009 and arXiv:0905.1073

▲□▶▲□▶▲□▶▲□▶ □ クタペ

The Cold Spot due to a Void?

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG)

Gpc Void

The Cold Spot

Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

- We assume an underdense region ("a Void"), on the line of sight with I.Masina; JCAP JCAP 0902:019,2009 and arXiv:0905.1073
- Two effects
- First effect (Rees-Sciama, "integrated effect"):
 - A photon enters the potential of the Void
 - During the travel the potential evolves
 - The photon comes out with slightly lower energy (redshifts)

This would give a cold region (what we see by eye)

The Lensing effect

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot

- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

Second effect (Lensing)

- If behind the Void there is a pattern, \Rightarrow distorted
- Also the very small angular scales (high ℓ) are affected

The Lensing effect

Void vs Dark Energy

Motivations

- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot

- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

Second effect (Lensing)

- If behind the Void there is a pattern, \Rightarrow distorted
- Also the very small angular scales (high ℓ) are affected

- This, we cannot see by eye...
- If we see it \Rightarrow there is something there: detection!

Outline

Void vs Dark Energy

Motivation

- LTB metrics
 - Building the model
 - Results
 - Local Void: Fitting the data
 - SNIa Hubble diagram
 - WMAP
 - BAO
 - Large-Scale structure(LRG)
 - Gpc Void
 - Other observations

Redshift (low-ℓ)

- The Cold Spot
 - Redshift (low-ℓ)
 Lensing (high-ℓ)

Shape of Temperature fluctuation

Void vs Dark Energy

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrat WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$$\Delta T/T^{(RS)}(\theta,\phi) = \begin{cases} A f(\theta) & \text{if } \theta < \theta_L \\ 0 & \text{if } \theta \ge \theta_L \end{cases}, \quad \tan \theta_L \equiv \frac{L}{D} , \\ A \sim 0.5 (L/r_{r_{hor}})^3 \delta^2 \end{cases}$$

◆□ → ◆□ → ∢ 三 → ∢ 国 → ◆□ →

Correction to the power spectrum at low- ℓ

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrai WMAP BAO Large-Scale structure(LRG) Gpc Vold

The Cold Spot Redshift (low-*ℓ*) Lensing (high-*ℓ*)

Conclusions

• Compute the
$$a_{\ell m}$$
 for this profile $\Rightarrow C_{\ell} \equiv \sum_{m} \frac{|a_{\ell m}|^2}{2\ell+1}$

- The χ^2 changes by $\mathcal{O}(1)$
- The cosmological parameters would shift by some amount $\mathcal{O}(1\%)$

Bispectrum at high- ℓ Void vs Dark Energy The presence of a Void would be highly non-gaussian • Consider $a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} = B_{\ell_1 \ell_2 \ell_2}^{m_1 m_2 m_3}$ They are zero on average for a Gaussian field Redshift (low-ℓ)

Bispectrum at high-*l*

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG)
- The Cold Spo
- Redshift (low- ℓ) Lensing (high- ℓ)
- Conclusions

• More precisely we define a rotational invariant quantity:

$$B_{\ell_1 \ell_2 \ell_3} = \sum_{m_1 m_2 m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3}$$

• We want to compute $\langle B_{\ell_1 \ell_2 \ell_3} \rangle$, in a Universe with a Void

Bispectrum at high- ℓ

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void
- Other observations
- The Cold Spc Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• More precisely we define a rotational invariant quantity:

$$B_{\ell_1 \ell_2 \ell_3} = \sum_{m_1 m_2 m_3} \begin{pmatrix} \ell_1 & \ell_2 & \ell_3 \\ m_1 & m_2 & m_3 \end{pmatrix} a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3}$$

- We want to compute $\langle B_{\ell_1\ell_2\ell_3} \rangle$, in a Universe with a Void
- Remember that $a_{\ell m}^{(P)}$ are Gaussian:

$$\langle \boldsymbol{a}_{\ell_1 m_1}^{(P)} \boldsymbol{a}_{\ell_2 m_2}^{(P)}
angle = \delta_{\ell_1 \ell_2} \delta_{m_1 m_2} \boldsymbol{C}_{\ell}$$

• Odd numbers of $a_{\ell m} \Rightarrow$ zero

Non-Gaussian correlations

Conclusions

$$\begin{split} \frac{\Delta T}{T} &= \frac{\Delta T}{T}^{(P)} + \frac{\Delta T}{T}^{(RS)} + \frac{\Delta T}{T}^{(L)},\\ a_{\ell m} &= a_{\ell m}^{(P)} + a_{\ell m}^{(RS)} + a_{\ell m}^{(L)}, \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = 釣�(♡

Non-Gaussian correlations

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spoi Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$$\frac{\Delta T}{T} = \frac{\Delta T}{T}^{(P)} + \frac{\Delta T}{T}^{(RS)} + \frac{\Delta T}{T}^{(L)},$$
$$a_{\ell m} = a_{\ell m}^{(P)} + a_{\ell m}^{(RS)} + a_{\ell m}^{(L)},$$

• Two dominant terms:

• ((*a*^(RS))³)

• $\langle a^{(P)}a^{(L)}a^{(RS)} \rangle$

・ロ・・聞・・聞・・聞・・日・

$(a^{(RS)})^3$

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spoi Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$$\mathsf{B}^{(RS)}_{\ell_1\ell_2\ell_3} = \left(\begin{array}{cc} \ell_1 & \ell_2 & \ell_3 \\ 0 & 0 & 0 \end{array} \right) \; \mathsf{a}^{RS}_{\ell_10} \; \mathsf{a}^{RS}_{\ell_20} \; \mathsf{a}^{RS}_{\ell_30} \, .$$

• It should be visible (S/N > 1) already in WMAP bispectrum at $\ell \lesssim 40$

= 990

< □ > < □ > < □ > < □ > < □ >

Outline

Void vs Dark Energy

Motivation

- LTB metrics
 - Building the model
 - Results
 - Local Void: Fitting the data
 - SNIa Hubble diagram
 - WMAP
 - BAO
 - Large-Scale structure(LRG)
 - Gpc Void
 - Other observations

Lensing (high-ℓ)

- The Cold Spot
 - Redshift (low-*l*)
 - Lensing (high-*l*)

Lensing Effect

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations
- The Cold Spot Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

• Such Void lenses primordial fluctuations

 This is present only if there is something in the line-of-sight (unique signature) (Das & Spergel '08)

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Vold

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Lensing introduces fluctuations because

$$egin{array}{lll} rac{\Delta T}{T}(\hat{n}') &\sim & rac{\Delta T^{(P)}}{T}(\hat{n}) + \partial_i rac{\Delta T^{(P)}}{T}(\hat{n}) \partial^i \Theta(\hat{n}) + \ &+ & \partial_i \partial_j rac{\Delta T^{(P)}}{T}(\hat{n}) \partial^j \Theta(\hat{n}) \partial^i \Theta(\hat{n}) + \dots. \end{array}$$

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

Lensing introduces fluctuations because

$$egin{array}{lll} \displaystyle rac{\Delta T}{T}(\hat{n}') &\sim & \displaystyle rac{\Delta T^{(P)}}{T}(\hat{n}) + \partial_i \displaystyle rac{\Delta T^{(P)}}{T}(\hat{n}) \partial^i \Theta(\hat{n}) + \ &+ & \displaystyle \partial_i \partial_j \displaystyle rac{\Delta T^{(P)}}{T}(\hat{n}) \partial^j \Theta(\hat{n}) \partial^i \Theta(\hat{n}) + \ldots. \end{array}$$

 In order to compute this, we need Θ, the so-called Lensing potential:

$$abla_{\perp}\Theta = -2\int_{ au_{LSS}}^{ au_0} d au rac{ au_0 - au}{ au_0}
abla_{\perp}\Phi$$
 ,

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other obsenutions

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Given $\Theta \Rightarrow b_{\ell m}$

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrai WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• Given $\Theta \Rightarrow b_{\ell m}$

• $a_{\ell m}^{(L)(1)}$ lensing, given by:

$$a_{\ell m}^{(L)\,(1)} = \sum_{\ell',\ell''} G_{\ell-\ell'\ell''}^{-mm_0} \frac{\ell'(\ell'+1) - \ell(\ell+1) + \ell''(\ell''+1)}{2} a_{\ell'-m}^{(P)*} b_{\ell''0}$$
 .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• We compute
$$\langle C_\ell^{(LL)}
angle \equiv \sum_{m=-\ell}^{\ell} rac{\langle a_{\ell m}^{(L)(1)} a_{\ell m}^{(L)(1)*}
angle}{2\ell+1}$$
,

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagre WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spo Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- Radius *L* large \Rightarrow signal large
- Visible in the power spectrum by the Planck satellite (ℓ ~ 2000) if L ≥ 800 Mpc/h

・ 日 ・ ・ 雪 ・ ・ 雪 ・ ・ 日 ・

ъ

Non-gaussian signal

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagrar WMAP BAO Large-Scale structure(LRG) Gpc Void Other obsenutions

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• $\langle a^{(P)}a^{(L)}a^{(RS)}\rangle$

• Coupling between RS-Primordial-Lensing effect

Void vs Dark Energy

Motivations

LTB metrics Building the mode Results

Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

$L = 800 \,{ m Mpc}/h$ $L = 400 \,{ m Mpc}/h$ $L = 200 \,{ m Mpc}/h$

Э

 Non-ambiguous signal, visible by high-resolution experiments (Planck and higher)

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagra WMAP BAO Large-Scale structure(LRG) Gpc Void

The Cold Spot Redshift (low- ℓ) Lensing (high- ℓ)

Conclusions

 A Void of at least L ~ 300 Mpc/h scale consistent with WMAP and SNIa (Riess data), and local h

(日)

 More data will discriminate (especially SDSS-II for Supernovae)

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diage WMAP
- Large-Sca
- structure(LRG
- Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- A Void of at least L ~ 300 Mpc/h scale consistent with WMAP and SNIa (Riess data), and local h
- More data will discriminate (especially SDSS-II for Supernovae)
- But in trouble when combining other observations (BAO, LRG)

(日)

Even adding curvature

Void vs Dark Energy

- Motivations
- LTB metrics Building the mode Results
- Local Void: Fitting the data SNIa Hubble diagr WMAP
- BAO
- Large-Scale
- Goc Void
- Other observations

The Cold Spot Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

- A Void of at least L ~ 300 Mpc/h scale consistent with WMAP and SNIa (Riess data), and local h
- More data will discriminate (especially SDSS-II for Supernovae)
- But in trouble when combining other observations (BAO, LRG)
- Even adding curvature
- Need for larger Void ($L \gtrsim \text{Gpc}/h$)
- Combined analyses and better data (kSZ, BAO) can rule it out

Local Void: Fitting the data SNIa Hubble diagran WMAP BAO Large-Scale structure(LRG) Gpc Vold

The Cold Spoi Redshift (low-ℓ) Lensing (high-ℓ)

Conclusions

• The Cold Spot - Void hypothesis can be ruled out by Planck and high-resolution experiments ($\ell_{max} \gtrsim 2000$)

(日)