THE METHODS OF ALGEBRAIC TOPOLOGY
FROM THE VIEWPOINT OF COBORDISM THEORY

S. P. NOVIKOV

ABSTRACT. The goal of this work is the construction of the analogue to the
Adams spectral sequence in cobordism theory, calculation of the ring of co-
homology operations in this theory, and also a number of applications: to
the problem of computing homotopy groups and the classical Adams spectral
sequence, fixed points of transformations of period p, and others.

INTRODUCTION

In algebraic topology during the last few years the role of the so-called extraor-
dinary homology and cohomology theories has started to become apparent; these
theories satisfy all the Eilenberg—Steenrod axioms, except the axiom on the homol-
ogy of a point. The merit of introducing such theories into topology and their first
brilliant applications are due to Atiyah, Hirzebruch, Conner and Floyd, although in
algebraic geometry the germs of such notions have appeared earlier (the Chow ring,
the Grothendieck K-functor, etc.). Duality laws of Poincaré type, Thom isomor-
phisms, the construction of several important analogues of cohomology operations
and characteristic classes, and also relations between different theories were quickly
discovered and understood (cf. [2, 5, 8, 9, 11, 12]).

These ideas and notions gave rise to a series of brilliant results ([2]-[13]). In time
there became manifest two important types of such theories: (1) theories of “K
type” and (2) theories of “cobordism type” and their dual homology (“bordism”)
theories.

The present work is connected mainly with the theory of unitary cobordism. It is
a detailed account and further development of the author’s work [19]. The structure
of the homology of a point in the unitary cobordism theory was first discovered by
Milnor [15] and the author [17]; the most complete and systematic account together
with the structure of the ring can be found in [18]. Moreover, in recent work of
Stong [22] and Hattori important relations of unitary cobordism to K-theory were
found. We freely use the results and methods of all these works later, and we refer
the reader to the works [15, 17, 18, 22] for preliminary information.

Our basic aim is the development of new methods which allow us to compute
stable homotopy invariants in a regular fashion with the help of extraordinary ho-
mology theories, by analogy with the method of Cartan—Serre-Adams in the usual
classical Z,-cohomology theory. We have succeeded in the complete computation of
the analogue of the Steenrod algebra and the construction of a “spectral sequence
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of Adams type”! in some cohomology theories, of which the most important is the
theory of U-cobordism, and we shall sketch some computations which permit us
to obtain and comprehend from the same point of view a series of already known
concrete results (Milnor, Kervaire, Adams, Conner—Floyd, and others), and some
new results as well.

In the process of the work the author ran into a whole series of new and tempting
algebraic and topological situations, analogues to which in the classical case are
either completely lacking or strongly degenerate; many of them have not been
considered in depth. All this leads us to express hope for the perspective of this
circle of ideas and methods both for applications to known classical problems of
homotopy theory, and for the formulation and solution of new problems from which
one can expect the appearance of nontraditional algebraic connections and concepts.

The reader, naturally, is interested in the following question: to what extent
is the program (of developing far-reaching algebraic-topological methods in extra-
ordinary cohomology theory) able to resolve difficulties connected with the stable
homotopy groups of spheres? In the author’s opinion, it succeeds in showing some
principal (and new) sides of this problem, which allow us to put forth arguments
about the nearness of the problems to solution and the formulation of final answers.
First of all, the question should be separated into two parts: (1) the correct selec-
tion of the theory of cobordism type as “leading” in this program, and why it is
richer than cohomology and K-theory; (2) how to look at the problem of homotopy
groups of spheres from the point of view of cobordism theory.

The answer to the first part of the question is not complicated. As is shown in
Appendix 3, if we have any other “good” cohomology theory, then it has the form
of cobordism with coefficients in an Q2-module. Besides, working as in §§ 9 and 12,
it is possible to convince oneself that these give the best filtrations for homotopy
groups (at any rate, for complexes without torsion; for p = 2 it may be that the
appropriate substitute for MU is MSU). In this way, the other theories lead to
the scheme of cobordism theory, and there their properties may be exploited in our
program by means of homological algebra, as shown in many parts of the present
work.

We now attempt to answer the second fundamental part of the question. Here
we must initially formulate some notions and assertions. Let A [AY] be the
ring of cohomology operations in U;-theory [U*, respectively], A, = U;(P), A =
U*(P), P = point, Q, = p-adic integers.? Note that A C AY. The ring over Q,,
A®zQ, DAy, liesin AV ®7Q, D Ag, and A ®z @y, is a local ring with maximal
ideal m C A @z Qp, where A ®z Qp/m = Z,. Note that A, is an AY-module and
Ag is also a left A,-module.

It may be shown that the Adams spectral sequence is the generalization specifically for S-
categories (see § 1) of “the universal coefficient formula,” and this is used in the proofs of Theo-
rems 1 and 2 of Appendix 3.

2U;—theory is a direct summand of the cohomology theory U* ® Qp, having spectrum M, such
that H*(Mp, Zp) = A/(BA+ AB) {where A is the Steenrod algebra over Z),, and 3 is the Bokstein
operator} (see 8§ 1, 5, 11, 12).
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Consider the following rings:
mp,=mnN»A,, Ay/m, =2,

o i, it
AP*Zmp/mp ’

i>0
i_ AU _ i AU J i+l AU
A—Ap —ZmpAp/mp Ap7
i>0

where j_Xp is an A-module.

In this situation arises as usual a spectral sequence (ET, Jr), where
E,. \, Extyv (A, A) @z Qp, Er = Ext7 (Ap, Ap),
P

determined by the maximal ideal m, C A, and the induced filtrations.
It turns out that for all p > 2 the following holds:

Theorem. The ring Ext{' (Ap, Ap) is isomorphic to Ext’y (Z,, Z,), and the alge-

braic spectral sequence (Er, ci,) 1s associated with the “geometric” spectral sequence
of Adams in the theory H*( ,Z,). Here p > 2 and A is the usual Steenrod algebra
for Zy-cohomology.

We note that E*** is associated with Ext’7 (A, A) ®z Q, (more precisely stated
in § 12). A priori the spectral sequence (Er, Jr) is cruder than the Adams spectral

sequence in H*( , Z,)-theory and Eg * is bigger than the stable homotopy groups
of spheres; on account of this, the Adams spectral sequence for cobordism theory

constructed in this work can in principle be non-trivial, since E, is associated with
Ext v (A A) @z Qp.

We now recall the striking difference between the Steenrod algebra modulo 2
and modulo p > 2. As is shown in H. Cartan’s well-known work, the Steenrod
algebra for p > 2 in addition to the usual grading possesses a second grading (“the
number of occurrences of the Bokstein homomorphism”) of a type which cannot be
defined for p = 2 (it is only correct modulo 2 for p = 2). Therefore for p > 2 the
cohomology Exta(Zp, Z,) has a triple grading in distinction to p = 2. In § 12 we
show:

Lemma. There is a canonical algebra isomorphism

B = Ext5i (Ap, Ay) = Bxt7(Z,,2,) forp>2.

From thi§ it follows that the algebra 1%'2 for the “algebraic Adams spectral

sequence” E, is not associated, but is canonically isomorphic to the algebra
Exta(Zy, Z,) which is the second term of the usual topological Adams spectral
sequence.

If we assume that existence of the grading of Cartan type is not an accidental
result of the algebraic computation of the Steenrod algebra A, but has a deeper
geometric significance, then it is not out of the question that the whole Adams
spectral sequence is not bigraded, but trigraded, as is the term

Ey = Exty " (Zp, Zp), p#2.
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From this, obviously, would follow the corollary: for p > 2 the algebraic Adams

spectral sequence (ET, d,) coincides with the topological Adams spectral sequence

(Ey,d,), if the sequence (E,,d,) is trigraded by means of the Cartan grading, as is

(E,,d,). Therefore the orders |ry;(S™)| would coincide with | 3 Ext:"; (A, A)‘
t—s=1

up to a factor of the form 2".

Moreover, this corollary would hold for all complexes without torsion (see § 12).

The case p = 2 is more complicated, although even there, there are clear algebraic
rules for computing some differentials. This is indicated precisely in § 12.

In this way it is possible not only to prove the nonexistence of elements of Hopf
invariant one by the methods of extraordinary cohomology theory as in [4] (see also
§8 9, 10), but also to calculate Adams differentials.

The content of this work are as follows: in §§ 1-3 we construct the Adams spectral
sequence in different cohomology theories and discuss its general properties.

86 4, 5 are devoted to cohomology operations in cobordism theory. Here we
adjoin Appendices 1 and 2. This is the most important part of the work.

§§ 6, 7 are largely devoted to the computations of U* (M SU) and ExtyV (U*(MSU), A).

§ 8 has an auxiliary character; in it we establish the facts from K-theory which
we need.

88 10, 11 are devoted to computing Ext’v (A, A).

86 9, 12 were discussed above; they have a “theoretical” character.

Appendices 3 and 4 are connected with the problems of fixed points and the
problem of connections between different homology theories from the point of view
of homological algebra. Here the author only sketches the proofs.

The paper has been constructed as a systematic exposition of the fundamental
theoretical questions connected with new methods and their first applications. The
author tried to set down and in the simplest cases to clarify the most important
theoretical questions, not making long calculations with the aim of concrete appli-
cations; this is explained by the hope mentioned earlier for the role of a similar
circle of ideas in further developments of topology.

§ 1. THE EXISTENCE OF THE ADAMS SPECTRAL SEQUENCE IN CATEGORIES

Let S be an arbitrary additive category in which Hom(X,Y") are abelian groups
for X,Y € 5, having the following properties:
1. There is a preferred class of sequences, called “short exact sequences” (0 —

AﬁBLCHO),suchthatf-g:Oandalso:
a) the sequence (0 — 0 — 0 — 0 — 0) is short exact;
A—B B—C

b) for commutative diagrams J/ \L or \L J/ there exists a unique map
A — B B — ('
or short exact sequences
0 A B C 0
0 A B’ c’ 0

{extending the given square};
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c¢) for any morphism f: A I, B there exist unique short exact sequences 0 —

C”—>AL>B—>OandO—>ALB—>C—>O,WheretheobjectsCandC’are
related by a short exact sequence 0 — C’ — 0 — C' — 0 and C and C’ determine
each other.

We introduce an operator E in the category S by setting ¢! = E~'C, or C =
EC’, and we call E the suspension.

Let Hom'(X,Y) = Hom(X, E'Y) and Hom*(X,Y) = 3. Hom'(X,Y).

2. For any short exact sequence 0 — A L.B% - 0and any T € S there are
uniquely defined exact sequences

9, Hom!(T, A) L= Hom!(T, B) £ Hom'(T, ') % Hom' (T, A)
and

%, Hom'(C, T) 2> Hom' (B, T) £ Hom' (A, T) % Hom'(C, T),
which are functorial in 7" and in (0 — A — B — C — 0). Here the homomorphisms
fe> g«, [*, g* are the natural ones and the homomorphisms 0, § are induced by the
projection C' — EA in the short exact sequence 0 — B % €' — EA — 0 according
to the above axiom 1.

3. In the category there exists a unique operation of direct sum with amalga-
mated subobjects: pairs X,Y € S and morphisms Z — X, Z — Y define the
sum X +z Y and the natural maps X — X +2zY and Y — X 4+, Y such that the
following sequences are exact:

0-X—>X+zY —>C; —0,

0—-Y ->X+2Y —-Cy—0
(where Cy and Cs are defined by the exact sequences 0 — Z — X — Cy — 0 and
0—Z—Y — Cy — 0). By definition we regard X +9Y = X +Y {where 0 is the
point object}.

Definition. We call two objects X,Y € S equivalent if there exists a third object
Z € S and morphisms f: X — Z and ¢g: Y — Z inducing isomorphisms of the
functor Hom*(Z, ) with Hom™*(X, ) and Hom*(Y; ) and of the functor Hom*( , Z)
with Hom*( , X)) and Hom"( ,Y’). We call the maps f, g equivalences.

The transitivity of equivalences follows from the diagram
X Y H
Z T
Z+,T
where all morphisms are equivalences (by virtue of the axiom on direct sums).

A spectrum in the category S is given by a sequence (X, f), where

fn: EX,, — X,41  (direct spectrum),

fn: Xnt1 — EX,, (inverse spectrum).

By virtue of axioms 1 and 2 in the category S there is a canonical isomorphism

Hom™(X,Y) = Hom"(EX, EY).
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Therefore for spectra there are defined the compositions
Jotk—1--- fn: Ean — Xntk (direCt)
Fooo frabe1: Xnpx — E*X,,  (inverse)

which allow us to define passage to the cofinal parts of spectra.
For spectra X = (X,,, fr) and Y = (Y, g») we define

Hom™(X,Y) = lim lim Hom™ (X, Y,5,)

n m

in the case of direct spectra and

Hom™(X,Y) = lim lim Hom™ (X, Y,,,)
m n

in the case of inverse spectra. Here, of course, let us keep in mind that in taking
limits the grading in Hom™( , ) is taken in the natural way. As usual, remember
that the dimension of a morphism EYT — X, is equal to n + ng — v, where ng
is a fixed integer, given together with the spectrum, defining the dimension of the
mappings into X,,, and usually considered equal to zero. In addition, Hom and Ext
here and later are understood in the sense of the natural topology generated by
spectra.

Thus arise categories S (direct spectra over S) and S (inverse spectra). There
are defined inclusions S — S and S — S. We have the simple

Lemma 1.1. In the categories S and S there exist short ezact sequences 0 — A —
B—C —0, where A, B,C €S orA, B,C€eS, satisfying axiom 1 of the category
S and aziom 2 for the functor Hom™(T, ) if A, B, C € S and T € S, and aziom 2
for Hom*( ,T) if A, B, C € S and T € S. In the categories S and S there exist
direct sums with amalgamation satisfying axiom 3.

Proof. The existence of direct sums with amalgamation in the categories S and S
is proved immediately.

Let us construct short exact sequences in S. Let A, B S and f:A— Bbea
morphism in S. By definition, f is a spectrum of morphisms, hence is represented
by a sequence A,,, — By, of maps. Consider the set of short exact sequences

(0 —Cyp, — An, = B, —0) and (0— A,, — By, — C,'nk — 0).

By axiom 1 of the category S we have spectra in S, C' = (Cy,, ) and C' = (Cr)
and morphisms C — A and B — C’. The corresponding sequences 0 — C —
A— B —0and 0 - A — B — C’ — 0 we call exact. Since passage to direct
limit is exact, we have demonstrated the second statement of the lemma. For S
analogously. Note that the spectra C' and C’ are defined only up to equivalences of
the following form: in S the equivalence is an isomorphism of functors Hom™* (T, C')
and Hom* (T, C'); in § an isomorphism of Hom*(C,T) and Hom*(C”,T).

Obviously ¢/ = EC. This completes the proof of the lemma. ([l

Definitions. a) Let X € §. The functor Hom*( ,X) is called a “cohomology
theory” and is denoted by X*.

b) Let X € S. The functor Hom*(X, ) is called a “homology theory” and is
denoted by X,.
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¢) The ring Hom*(X, X) for X € S is called “the Steenrod ring” for the co-
homology theory X*. Analogously we obtain the Steenrod ring Hom™*(X, X) for
XesS (homology theory).

d) The Steenrod ring for the cohomology theory X* is denoted by AX, for the
homology theory by Ax. They are graded topological rings with unity.

Note that an infinite direct sum Z = > X; of objects X; € S lies, by definition,
in S, if we let Z,, = > X, and Z,, — Z,,_1 be the projection. Obviously, X*(>_ X;)

i<n

is an infinite-dimensional free AX-module, being the limit of the direct spectrum
Hom*(Z,,X) — Hom"(Z,41, X),

where X € § C g, all X; are equivalent to the object X or EY X, and FE is the
suspension.

For an homology theory, if X € S, an infinite direct sum Y X; is considered as
the limit of the direct spectrum

'HZXi_) Z Xi— ...,

i<n i<n+1

where X; is 7 X, and therefore lies in S, and the Ax-module Hom* (X,>X,) is
free.

By X-free objects for X € S we mean direct sums > X, where X; = E" X for
arbitrary integers ;. Finite direct sums belong to S.

There are simple properties which give the possibility of constructing the Adams
spectral sequence by means of axioms 1-3 for the category S.

For any object T' € S and any X-free object Z € S we have

Hom* (T, Z) = Hom’yx (X*(Z), X*(T)).

Let us give some definitions.
1) For an object Y € S we understand by a filtration in the category an arbitrary
sequence of morphisms

) NDELIS VAPIES VAP VAP
2) The filtration will be called X-free for X € S if Z; € S are X-free objects
such that there are short exact sequences
0-Y &5y 25 2,0, Vo, =Y.

3) By the complexes associated with the filtration, for any T € S , are meant the
complexes (Cy,d,) and (Br,dr), where (C,); = X*(Z;) and (Br)* = T.(Z;) and
the differentials 0: (Cy); — (Cy)i—1 and d7(Br); — (Br);+1 are the compositions

Ox: X*(Z) 25 X* (Vi) & X*(Zily)
and
5r: Tu(Zi) S T (Vi) 25 T (Ziys).
4) An X-free filtration is called acyclic if (Cy,d,) is acyclic in the sense that
Hy(Cp) =X*(Y) and H;(C,) =0 for i > 0.
From the properties (axioms 1 and 2) of the category S and Lemma 1.1 we obtain
the obvious
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Lemma 1.2. 1) Each filtration (Y «— Yy «— Y1 « ...) defines a spectral sequence
(E,,d,) with term Ey = Br, di = dr, associated with Hom™ (T,Y) in the sense that
there are defined homomorphisms qo: Hom*(T,Y) — E%*, ¢;: Kerq;_1 — EL*,
where the filtration (Kergq;) in Tw(Y) = Hom™(T,Y") is defined by the images of
compositions of filtration maps Ty (Y;) — T (Y).

2) If the filtration is X -free, the complex (B, dT) is precisely Hom’ x (Cy, X*(T))
{with differential Hom gx (04, 1)}.

3) If the filtration is X -free and acyclic, then E3* in this spectral sequence coin-
cides precisely with Ext’r (X*(Y), X*(T)).

Lemma 1.2 follows in the obvious way from axioms 1, 2 of the category S and
Lemma 1.1.

However, the problem of the existence of X-free and acyclic filtrations is nontriv-
ial. We shall give their construction in a special case, sufficient for our subsequent
purposes.

Definition 1.1. The spectrum X € S will be called stable if for any T' € S and any
J there exists an integer n such that Hom®(T, X,,) = Hom™ (T, X) for all m > n,
52> 7.

Definition 1.2. The cohomology theory X*, X € S , defined by a stable spectrum
X will be called Noetherian if for all T € S the AX-module X*(7T) is finitely
generated over AX.

We have

Lemma 1.3. If X* is a Noetherian cohomology and Y € S, then there exists a
filtration
Y Yy =Y, 1Y, — ...

such that Z; = Y;_1/Y; is a direct sum Z; = ZXnJ for large n; and the complex
J

C =S X*(Z;) is acyclic through large dimensions. Here X = (X,,) € S.
Proof. Take a large integer n and consider a map ¥ — ZXr(f) such that

X* <Z Xn) — X*(Y) is an epimorphism, where X* is a Noetherian cohomology
i
theory.
By virtue of the stability of the spectrum X, for Y € S there is an integer n
such that the map Y — )~ X factors into the composition YV’ ELR X, — S EX,
i

where X,, — X is the natural map. Therefore X*(>_ X,,,) — X*(Y) KX)o (Y)

is an epimorphism. Consider the short exact sequence

0-Y" -y 3" x, —o.

Obviously X*(YO(”)) = Ker X*(fy) and YO(") € S. Now take a large number ny > n
and do the same to Yo(n) as was done to Y, and so on. We obtain a filtration

Y Yo(n) — Yl(n’nl) — YQ(n’nl’Tm) — ..

where the Z; are sums of objects of the form > X,,,, with my, very large.
By definition, C' = )~ X*(Z;) is an acyclic complex through large dimensions. O
i
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Definition 1.3. A stable spectrum X = (X,,) in the category S is called acyclic if
for each object T' € S we have the equalities:
a) Ext’ (X*(X,), X*(T)) = 0,i >0, t—i < f,(i), where f, (i) — 0o as n — o0;
b) Hom’yx (X*(X,,), X*(T)) = Hom"(T, X) for t < f,, and f,, — 00 as n — oc.

The so-called Adams spectral sequence (F,,d.) with FEs-term E, =
Extiyx (X*(Y), X*(T)) arises in the following cases:

1. If in the category S there exists an X-free acyclic filtration Y = Y_; «+ Yy «
Y, «— -« Y, 1 <« Y;..., on the basis of Lemma 1.2. However, such a filtration
does not always exist, since the theory X™* in the category S does not have the
exactness property.

2. If Y € S, T € S and the theory X* is stable, Noetherian and acyclic, then,
by virtue of Lemma 1.3, there exists a filtration

Y 1=Y«—Yy—Y «— Y, — ...,

where the Y;/Y;;1 are sums of objects X,,, for numbers n which may be taken as
large as we want, with the filtration acyclic through large gradings. For such
a filtration, the corresponding spectral sequence (F,,d,) has the term ES’t =
Ext yxs.e (X*(Y), X*(T)) through large gradings, by the definition of acyclicity for
the theory X*.

In this way we obtain:

Theorem 1.1. For any stable Noetherian acyclic cohomology theory X € S and
objects Y, T € S, one can construct an Adams spectral sequence (E,,d,), where
Y) in

dy: ESY — ESTHUTL and the groups >, ES! are conmected to Hom™ (¢,
t—s=m
the following way: there exist homomorphisms

qi: Kergi—1 — EXT™, i >0,
where
qo: Hom™(T,Y) — Hom{x (X*(Y), X*(T))
is the natural homomorphism.

The Adams spectral sequence is functorial in T and Y .

Remark 1.1. The homomorphism ¢;: Ker gy — Extz’; (X*(Y), X*(T)) is called
the “Hopf invariant.”

Remark 1.2. For objects T,Y € S and a stable Noetherian acyclic homology
theory X € S one can also construct an Adams spectral sequence (E,., d,.) such that
Ey = Exty’ (X«(T),X.(Y)). In this spectral sequence, d,: EP4 — EP~—Tatrtl
and the homomorphisms ¢; are such that

¢i: Kergi—1 — Eé&f+na
where
¢o: Hom"™(T,Y) — Hom'} x (X*(Y), X*(T))
is the natural homomorphism and Ax is the Steenrod ring of the homology theory

X,

The proof of Theorem 1.1 is a trivial consequence of Lemmas 1.1-1.3 and stan-
dard verifications of the functoriality of the spectral sequence in the case where the
filtration is X-free and acyclic.
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We shall be specially interested in those cases when the Adams spectral sequence
converges exactly to T (Y) = Hom™(T,Y). Let us formulate a simple criterion for
convergence:

(A) If there exists an X-free filtration Y_; =Y « Yy « --- — Y (not necessarily
acyclic) such that for any 7,1 there exists a number ¢ > [, depending on j and [, for

which Hom"(T,Y;) = 0, then the Adams spectral sequence converges exactly
k<j

to Hom™(T,Y). Criterion (A) does not appear to be the most powerful of those

possible, but it will be fully sufficient for the purposes of the present work.

§ 2. THE S-CATEGORY OF FINITE COMPLEXES WITH DISTINGUISHED BASE
POINTS. SIMPLEST OPERATIONS IN THIS CATEGORY

The basic categories we shall be dealing with are the following:

1. The S-category of finite complexes and the categories S and S over it.

2. For any flat Z-module G (an abelian group such that ® zG is an exact functor)
we introduce the category S ®z G, in which we keep the old objects of S and let
Hom(X,Y)®z G be the group of morphisms of X to Y in the new category S®zG.
Important examples are: a) G = Q, b) G = @, (p-adic integers). The respective
categories will be denoted by Sy for G = @ and S, for G = @), p a prime.

3. In S (or S, for p > 0) we single out the subcategory D (or D, C Sp)
consisting of complexes with torsion-free integral cohomology. It should be noted
that the subcategories D and D, are not closed with respect to the operations
entering in axiom 1 for S-categories.

These subcategories, however, are closed with respect to the operations referred
to, when the morphism f: A — B is such that f*: H*(B,Z) — H*(A,Z) is an
epimorphism.

Therefore the category D is closed under the construction of X-free acyclic reso-
lutions (only acyclic), and it is possible to study the Adams spectral sequence only
for X,Y € D (or Dy).

The following operations are well known in the S-category of spaces of the ho-
motopy type of finite complexes (with distinguished base points):

1. The connected sum with amalgamated subcomplex X +7 Y, becoming the
wedge X VY if Z =0 (a point).

2. Changing any map to an inclusion and to a projection (up to homotopy type):
axiom 1 of § 1.

3. Exactness of the functors Hom*(X, ) and Hom™( , X).

4. The tensor product X @ Y = X xY/X VY.

5. The definition, for a pair X,Y € S, of X®zY, given multiplications X ® Z —
Xand Z@Y —Y.

6. Existence of a “point”-pair P = (SY ) such that X ® P = X and X ®, Y =
X®Y.

All these operations are carried over in a natural way into the categories Sp, Sp,
§, §, §p and §p.

The cohomology theory X™* will be said to be multiplicative if there is given a
multiplication

XX —>X, XeS.

The cohomology theory Y* is said to act on the right [left] of the theory X* if
there is given a multiplication X @ Y — X or Y @ X — X.
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The previously mentioned theory P*, generated by the point spectrum P =
(89, %), operates on all cohomology theories and is called “cohomotopy theory.” Its
spectrum, of course, consists of the spheres (S™). It is obviously multiplicative,
because P® P = P.

We now describe an interesting operation constructed on a multiplicative coho-
mology theory X = (X,,) € S of a (not necessarily stable) spectrum of spaces.

Let (H!) be the spectrum of spaces of maps H! = Q" 'X,, = Map(S"~*, X,,).
Since X is multiplicative and P ® P = P, we have a multiplication

H! x H), — H.

m—+n-
Let now ¢ = j = 0. Then
H® x HY — HY

m—+n-*

Suppose that the cohomology ring X*(X) and all X*(K) have identities (the
cohomology theory contains scalars with respect to multiplication X ® X — X).
Consider in the space Hg the subspace H, C Hg = Q" X, which is the connected
component of the element 1 € X°(P). We have a multiplication

H, x H, — H,

L

HO x H® — > H?

induced by the inclusion H,, C HC.
Let w(K, L) be the homotopy classes (ordinary, non-stable) of maps K — L, and
let I7Y(K) = lim n(K, H,). Obviously II"}(K) is a semigroup with respect to
n—oo

the previously introduced multiplication. We have

Lemma 2.1. II7}(K) is a group, isomorphic to the multiplicative group of elements
of the form {1+xz} € X°(K), where x ranges over the elements of the group X°(K)
of filtration > 0.

The proof of Lemma 2.1 easily follows from the definition of the multiplication
H, x H,, — Hp, 4, by means of the multiplication in the spectrum X.

Therefore the spectrum (H,) defines an “H-space” and the spectrum
BH = (BH,) has often been defined. The set of homotopy classes n(K, BH) =
lim (K, BH,) we denote by °(K), while I(EK) = TI7'(K) by definition,

vs?here FE is the suspension.

The following fact is. evident:

If K = E%L, then II°(K) = X!(K); therefore in the S-category I1°(K) is simply
X1(K). As we have already seen by Lemma 2.1, this is not so for complexes which
are only single suspensions, where II°(EL) consists of all elements of the form
{1 + 2z} in X°(L) under the multiplication in X°(L).

An important example. Let X = P = (5", ). Then the spectrum H,, with
multiplication H,, x H, — H, is homotopic to the spectrum H, (maps of degree
+1 of S — S™ with composition H,, x H, — fIn)

The J-functor of Atiyah is the image of K(L) — II°(L) in our case X = P. In
particular, in an S-category L = E?L’ we have that 1I°(L) is P*(L); in the case
L = EL', I°(L) depends on the multiplication in P*(L’).
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Besides the enumerated facts relating to the S-category of finite complexes one
should also mention the existence of an anti-automorphism o: S — S of this S-
category which associates to a complex X its S-dual complex (complement in a
sphere of high dimension). The operator ¢ induces

U:§—>§, a:§—>§, o?=1.

Since Hom(X,Y) = Hom(cY,0X) and 0X is a homology theory in S if X is a
cohomology theory, then the duality law of Alexander—Pontrjagin is, obviously, the
equality X*(K) = 0X,(cK), and by an X-homology manifold is meant a complex
K such that X*(K) = 0K,_;(K) in the presence of some natural identification
of 0 X.(K) with 0X,(0cK); for example, if K is a smooth manifold, then o(K)
according to Atiyah [6] is the spectrum of the Thom complex of the normal bundle
in a sphere. In the presence of a functorial Thom isomorphism in X*-theory for
some class of manifolds, we obtain Poincaré—Atiyah duality.

Let Xe S, YeS Tel In § 1 we constructed the Adams spectral sequence
with By term equal to Ext’yx (X*(Y), X*(T)).

The law of duality for Adams spectral sequences reads:

The cohomology Adams spectral sequence (F,,d,) with term FE, =
Ext 4x (X*(Y),X*(T)) is canonically isomorphic to the homology Adams spectral
sequence (E!,d.) with term Ej = Exta,, (6X.(0Y),0X.(0cT)). The homology
Adams spectral sequence for X = ¢X = P was investigated by A. S. Mis¢enko
[16].

Let us introduce the important notion of (m — 1)-connected spectra.

Definition 2.1. The spectrum (X, f,,) = X (direct) is called (m — 1)-connected
if each object X,, is (n + m — 1 + ng)-connected, where the integer ng is defined
in § 1. Analogously for inverse spectra.

Usually np = 0 and X, is (n + m — 1)-connected, f,,: EX,, — X, 41 for direct
spectra. Analogously for inverse.
Finally, we should formulate two obvious facts here, which will be used later.

Lemma 2.2. a) If X € S, the cohomology theories EX and X have the same
Adams spectral sequences for any Y and T for which the sequences exist (here
YeS Tebs).

b) Furthermore, if X = S, EVX is a direct sum, where v; — oo for i — o0,
then the theory X* defines the same Adams spectral sequence as the theory X*.

Proof. Since each X-free acyclic resolution is at the same time an X-free resolution,
the lemma at once follows from the definitions. O

From the lemma follows

Corollary 2.1. For any stable Noetherian acyclic cohomology theory X € S and
anyY € S and T € S, all groups Ext’{x (X*(Y), X*(T)) ®z Q =0 for s > 0.

Proof. Since a stable spectrum X in the category Sy = S®zQ is equivalent to a sum
S EYK(Z) of Eilenberg-MacLane spectra for 7 = Z, and since for X' = K(Z)
the ring A% ®5 Q is trivial, it follows that all Extix(, )®zQ = 0for s > 0, since
BExt’x ®zQ(, ) =0 for s > 0 and by virtue of Lemma 2.2. O
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§ 3. IMPORTANT EXAMPLES OF COHOMOLOGY AND HOMOLOGY THEORIES.
CONVERGENCE AND SOME PROPERTIES OF ADAMS SPECTRAL SEQUENCES
IN COBORDISM THEORY

We list here the majority of the most interesting cohomology theories.

1. X = K(r), where X,, = K(m,n). This theory is multiplicative if 7 is a ring,
and X* = H*( , 7). The case m = Z,, is well known, having been studied in many
works [1, 9, 15, 17, 18]. The spectral sequence was constructed by Adams in [1],
where its convergence was proved (m = Z,). The ring AX is the usual Steenrod
algebra over Z,,. Here the commonly studied case is p = 2. The case p > 2 was
first studied in [24].%

The criterion (A) for the convergence of the Adams spectral sequence applies
easily in the category S, = S ®z @, under the condition that Y is a complex
with 77 (Y') ®z Qp finite groups, in which case there is a nonacyclic resolution (the
Postnikov system) which is X-free.

In the case m = Z, as is easy to see, the applicability of criterion (A) in the
category S itself again easily follows from the properties of the usual contractible
spaces and Postnikov systems (see, for example, [16]).

2. Homotopy and cohomotopy theories. Let P be the point in S, where
P, = S™. The theory P, is that of stable homotopy groups, and P* that of stable
cohomotopy groups. The (Eckmann—Hilton) dual of this spectrum is K (Z) and the
theory H*( , Z). Similarly, the spectra P,,y = P/mP (m an integer) are Eckmann-
Hilton duals of the spectra K(Z,,).

For the homology theory P, (X) the proof of convergence of the homology Adams
spectral sequence with term E, = Ext’" is similar to the proof for the cohomology
spectrum K (Z) by virtue of Eckmann—Hilton duality and follows from criterion (A)
of § 1.

The proof of convergence for the theory P,,). analogously proceeds from the
method of Adams for K(Z,,). These theories were investigated in [16].

By virtue of the law of duality for the Adams spectral sequence (cf. § 2) and the
fact that oP = P and o P(,,) = F(,,), we obtain convergence also in cohomotopy
theory, where o is the S-duality operator.

3. Stable K-theory.

a) Let k = (k,), where Q?"ky,, = BU x Z, and the complexes k,, are (n — 1)-
connected. Then ks, is the (2n — 1)-connected space over BU and the inclusion
x: kop — kop_o is defined by virtue of Bott periodicity.

Here k' = K for i < 0 for K* the usual complex K-theory, and if H*(L, Z) has
no torsion, then k% (L) is the subgroup of K2(L) consisting of elements of filtration
> i.

b) Let kO = (kO,,), where Q87kOg,, = BOx Z, and all kO,, are (n—1)-connected.
We have kOl = (kOL) where Q37k0L) . = BO x Z, kOl = kO and the kO

8n—1i
are (n — 1)-connected. Here ¢ is to be taken mod 8.

3In Theorem 2 of the author’s work [24] there are erroneous computations, not influencing
the basic results. We note also the peculiar analogues, first discovered and applied in [24], to
the Steenrod powers in the cohomology of a Hopf algebra with commutative diagonal. It turns
out that for all p > 2 these “Steenrod powers” Stp’ are defined and nontrivial for i = 0, 1
(mod p — 1), ¢ > 0. These peculiar operations have never been noted in more recent literature
on these questions, although they are of value; for example, they reflect on the multiplicative
formulas of Theorem 2 in [24] for p > 2.
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It is easy to show that in the category S ®, Z[1/2] all spectra kOl coincide
up to suspension, and the spectrum k is a sum of two spectra of the type k =
kO + E?kOPI,

4. Cobordism. Let G = (G,) be a sequence of subgroups of the groups Oy (y)
where a(n + 1) > a(n) and a(n) — oo for n — oo with G,, C Gp41 under the
inclusion Oy () C Og(ny1)- There arise natural homomorphisms BG,, — BGj 41
and a direct spectrum (not in the S-category) BG. With this spectrum BG is
connected the spectrum of Thom complexes MG = (MG,,) in the category S.

Examples:

a) The spectrum G = (e), e C O,,; then MG = P;

b) G = O, SO, Spin, U, SU, Sp; then MG = MO, MSO, M Spin, MU,
MSU, M Sp have all been investigated. All of them are multiplicative spectra and
the corresponding cohomology rings have commutative multiplication with identity.
Let us mention the known facts:

1) MO =Y ENK(Z);

2) MSO®zQy=>» EMNK(Z)+Y EMK(Zy) (see 17,18, 23));
J q

3) MG®zQp=> EMMy),
k
where H* (M), Z,) = A/BA+ AB, A is the Steenrod algebra over Z, and (3 is the
mod p Bokstein homomorphism. This result holds for G = SO, U, Spin, Sp for
p>2 G=Ufor p>2 and G = SU for p > 2 with reduction of the number of
terms Ay corresponding to certain partitions w (see [15, 17, 18, 26])

4) MSpin®zQ2 =Y E™K(Z)+ Y E"kO+Y» E"kOP.

q l

Facts (1) and (2) are known, and fact (4) is given in a recent result of Anderson—
Brown—Peterson [10].

¢) G =T, where T" = G,, C U,, C Os, is the maximal torus. This leads to MG,
again a multiplicative spectrum since MT™*" = MT™ @ MT™.

Let us mention the structure of the cohomology M, (P), where P = (89, %) is a
point, M(*p)(P) = Qplr1,..., 2, ...] (polynomials over @) with dimz; = -2, +2
and M(Op)(P) the scalars Q.

The ring U*(P) for G = U (spectrum MU) is Z[y1,...,Y:,-..], where dimy; =
—21.

For the spectra M X and MU = X we have the important, simply derived

p) —

Lemma 3.1. If a € AX is some operation for X = My € S ®z Qp or X =

MU € S which operates trivially on the module X*(P), then the operation a is
itself trivial.

Proof. Since a € Hom™ (X, X), the operation a is represented by a map X — E7X.
Since 7. (X)®zQp and H*(X, Q) for X = M) and X = MU do not have torsion,
it follows from obstruction theory in the usual fashion that the map a: X — E7X
is completely determined by the map a,: m«(X) — m(X), which represents the
operation a on X*(P), for X ~%(P) = 77 (X). End of proof of lemma. O
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Since MU ®z Q, = Y. E** M (p), we have the following fact:
e

Extgx (X*<K)7X*(L)) ®z Qp = Extay (Y*<K)7Y*(L))7

where X = MU, X* = U*, and Y = M, Y* = U(*p) = M(*p); we denote M(*p)
by U, (*p) and MU* by U*. Both are multiplicative theories. This fact, that the Ext

terms and more generally the Adams spectral sequences coincide, follows from the
fact that MU ®z Qp = ZE’\"M(I,), as indicated in § 2, since MU ®@z @), is a sum
E

of suspensions of a single theory M, and Q) is a flat Z-module.

For any multiplicative cohomology theory X* there is in the ring AX the opera-
tion of multiplication by the cohomology of the spectrum P, since the spectrum P
acts on every spectrum: P® X = X. In this way there is defined a homomorphism
X*(P) — A%, where X*(P) acts by multiplication. From now on we denote the
image of X*(P) — AX by A C AX| the ring of “quasiscalars.”

For spectra X = M(,), X = MU we have the obvious

Lemma 3.2. LetY € ﬁp be a stable spectrum. Then X*(Y') is a free A-module,
where the minimal dimension of the A-free generators is equal to n, if Y = (Yy,) is
a spectrum of (n + m)-connected complexes Yo, .

The lemma obviously follows from the fact that in the usual spectral sequence in
which Ey = H*(Y, X*(P)) = H*(Y,A) for X = M(,), MU all differentials d,, = 0
for r > 2, and the sequence converges to X*(Y).

Now let Y satisfy the hypotheses of Lemma 3.2. We have

Lemma 3.3. There exists an X -free acyclic resolution for X = M), MU:Y «
Yo — Y] — - <Y, — ..., where the stable spectra Y; € D, are (m + 2i — 1)-
connected, if Y is a stable (m — 1)-connected spectrum in 51, Furthermore, if
X = My, the spectrum Y; is (m + 2i(p — 1) — 1)-connected.

Proof. Since Y is an (m — 1)-connected stable spectrum, the minimal A-free gen-
erator of the module X*(Y) has dimension m, and the set of m-dimensional A-free
generators corresponds to the generators of the group H™ (Y, Q),).

Choose in correspondence with this system of A-free generators an X-free object
Cy and construct in a natural way a map fy: Y — Cj such that

fO* : Hm+k (Y, Qp) — dm+k (007 Qp)

is an isomorphism for & < 1. Obviously Cjy is also (m — 1)-connected. Then the
object Yy such that 0 — Yy — Y — Cy — 0 is a short exact sequence has the
property that it is also a stable spectrum in 5p. Furthermore, since fy, is an
isomorphism on the groups H,,4+,(Y,@,) for k < 1, the object Y} is m-connected
in 5p. If X = M), then it may be shown furthermore that in constructing Co
in correspondence with A-free generators in X*(Y') the map fo.: H;(Y,Qp) —
H;(Cy,Qp) is an isomorphism for j < m + 2p — 3 and a monomorphism for j =
m+2p — 2.

Therefore Y, will be (m+2p —3)-connected if Y is (m —1)-connected. The result
for X = MU in the category D is obtained by substituting the minimal p = 2. This
process we continue further, and obviously obtain the desired filtration. The lemma
is proved. ([
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Now let T' € S be a finite complex. By virtue of Lemma 3.3 we have that
Hom’ (T,Y;) = 0 for large i. Therefore the Adams spectral sequence converges to
Hom™(T,Y) by virtue of criterion (A) in § 1.

From these lemmas follows

Theorem 3.1. For any stable (m — 1)-connected spectrum Y € DcS, X =MU
and any finite complex T € S of dimension n, the Adams spectral sequence (E,,d,)
with term Ey = Extyx (X*(Y), X*(T)) exists and converges exactly to Hom* (T, Y);
moreover Extil’ﬁ( (X*(Y),X*(T)) =0 fort—s < s+m —n. Furthermore, the p-
primary part Exti{; (X*(Y),X*(T))®zQp=0 fort <2s(p—1)+m—n.

The proof follows immediately from the fact that if 7' is an n-dimensional
complex and Y is a k-connected spectrum, then Hom’x (X*(Y), X*(T)) = 0 for
1 < k —n and from Lemma 3.3 for X = MU.

The statement about the p-components of the groups Ext follows from
Lemma 3.3 for the spectrum M), since

MU @z Qp =Y _EM(p).
k

The theorem is proved.

Note that for X = MU, M, stable spectra Y and finite complexes 7', all groups
Exti"ﬁ( are torsion groups for s > 0, as derived in § 2.

Let X = My,, Y € 5,, be a stable spectrum, and T € S ®z (Q)p, where the
cohomology H*(Y, Q,) and H*(T,Q,) is different from zero only in dimensions of
the form 2k(p — 1).

Under these hypotheses we have

Theorem 3.2. a) The groups Hom’yx (X*(Y), X*(T)) are different from zero only
fori=0 mod 2p — 2;

b) AX is a graded ring in which elements are non-zero only in dimensions of the
form 2k(p — 1);

c) The groups Ext:’; (X*(Y),X*(T)) are different from zero only for t = 0
mod 2p — 2;

d) In the Adams spectral sequence (Ey,,d,) all differentials d, are equal to zero
forr #1 mod 2p — 2.

Proof. Since the ring X*(P) (P a point) is nontrivial only in dimensions of the form
2k(p — 1), statement (b) follows from Lemma 3.1. Statement (a) follows from (b)
and the hypotheses on X*(T"). From (b) it follows that it is possible to construct
an A*-free acyclic resolution for X*(Y') in which generators are all of dimensions
divisible by 2p — 2. From this (c¢) follows. Statement (d) comes from (c) and the
fact that d.(E3t) C ESTri+r=1 Q.E.D. O

Corollary 3.1. For X = MU,Y = P, T = P the groups EXtZ’; (X*(P),X*(P))®z
Qp =0 fort <2s(p—1) and fort #0 mod 2p — 2, and the differentials d, on the
groups E, ®z Q, are equal to zero for r #1 mod 2p — 2.

From now on we always denote the cohomology X* for X = MU by U* and the
Steenrod ring AX by AY. In the next section this ring will be completely calculated.

As for the question about the existence of the Adams spectral sequence in the
theory U* and category S, we have
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Lemma 3.4. The cohomology theory U* is stable, Noetherian, and acyclic.

Proof. The stability of the spectrum MU = (MU,) is obvious. Let T be a finite
complex. We shall prove that U*(T) is finitely generated as a A-module, so of course
as an AY-module, where A = U*(P) ¢ AV. Consider the spectral sequence (E,., d,.)
with term Ep = H*(T, A), converging to U*(T'). Since T is a finite complex, in this
spectral sequence only a finite number of differentials d,, ..., d; are different from
zero, d; = 0 for i > k. Note that all d,, commute with A, and E., as a A-module
is associated with U*(T'), where Fo, = Fj. The generators of the A-module F5 lie
in H*(T,Z); A° = Z and they are finite in number: u(T) ...,ul(:) e E3Y. Note
that d,.(EP9) C EPt™4~ 7Tl Denote by Ay C A the subring of polynomials in
generators of dimension < 2N, A = U*(P) = Qu. The ring Ay is Noetherian.
Similarly, let AN C A be the subring of polynomials in generators of dimension
> 2N. Obviously, A = Ay ®z AN and A has no torsion.

Assume, by induction, that the A-module E, has a finite number of A- generators
UY), . (r) and there exists a number N,. such that E, = E, ®; AN, where E, is

a A, —module with the finite number of generators u( ) .. ul(T) above. Consider

d(u (T)) Z)\(T)u,(:), where )\kj € A. Let dim )\I(er) < N,n for all k,j. Set N,y1 =

By virtue of the Noetherian property of the ring

r+1°

Max (N, NT). Then A\ € Ay
An, ., the module H(E,®z AM+1 d,) is finitely generated, where Ay, is generated

by polynomial generators of dimension N, < k < N,4; and AR/ Nrt1 Rz AN+ = AN,
Since

H(E,,d,) = Epy1 = H(E, @7 AN, d,) = H(E, @7 Ay @ AN+ d,)
_ H(ET ®A%:H,dr) ®ANT+17

if we set E~T+1 = H(ET®A%:+1 ,dy), then E, 1 is a finitely generated Ay, , ,-module,
and ET+1 = ET+1 Rz ANrJrl.

Taking Ny = 0, we complete the induction, since for some k, E, = FE is a
finitely generated A-module. Therefore the module U*(T) is finitely generated and
the theory U* is Noetherian.

Let us prove the acyclicity of the theory U* in the sense of § 1. Since the (4n—2)-
skeletons X5, of the complexes MU, do not have torsion, by virtue of the lemma
for these complexes in the category D the spectral sequence exists; moreover, the
module U*(X5,) is a cyclic AV-module with generator of dimension 2n and with
the single relation that all elements of filtration > 2n in the ring AV annihilate
the generator. From this and the lemma it follows that Extfj‘tU (U*(Xap)) = 0 for
t < 2n — dim T, and Hom’u (U*(X2,), ) = Hom*( , X3,) = Hom*(,X) in the
same dimensions. From this the lemma follows easily. ([

Lemma 3.4 implies

Theorem 3.3. For any Y,T € S there exists an Adams spectral sequence (Ey,d,.)
with term E, = Extyv (U*(Y),U*(T)).

A. S. Miscenko proved the convergence of this spectral sequence to Hom™(7,Y)
(see [16]).
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§ 4. O-COBORDISM AND THE ORDINARY STEENROD ALGEBRA MODULO 2

As an illustration of our method of describing the Steenrod ring AY (see §§ 5,
6) we exhibit it first in the simple case of the theory O*, defined by the spectrum
MO isomorphic to the direct sum MO = Y. E* K(Z,), where w = (a1,...,as),

Sa; = Ao, a; # 2 — 1, or w = 0. The Steenrod ring A® is an algebra over
the field Zs. Let A be the ordinary Steenrod algebra. The simplest description
of the algebra A? is the following: A® = GL(A) consists of infinite matrices
a = (ay,), where w,w’ are nondyadic partitions (a1, ..., as), (a.,...,as),auw € A
and dima = A\, — A, +dima,, .- is the dimension of the matrix. The ring GL(A)
is, by definition, a graded ring. This describes the ring A more generally for all
spectra of the form Y E* K (Z5).

In the ring GL(A) we have a projection operator 7 such that 7A°7 = A, 72 = 1,
7€ A = GL(A).

Another description of the ring A© is based on the existence of a multiplicative
structure in O*(K, L). Let A = O*(P) =~ Qo be the unoriented cobordism ring,
O'(P) = Q.

1. There is defined a multiplication operator

x—ar, z€O*(K,L), aeA=0"P).

This defines a monomorphism A — A©.

2. We define “Stiefel-Whitney characteristic classes” W;(€) € O'(X), where ¢ is
an O-bundle with base X:

a) for the canonical O;-bundle £ over RP> we set:

Wz(g):()? Z#Oala
Wo(€) =1, Wi(€) = DRP" ' c O"YRP"),

n large, D the Atiyah duality operator. } :

b) If n = & @ &, then W(n) = W (&)W (&), where W = > W;.

These axioms uniquely define classes W; for all O-bundles.

As usual, the classes W; define classes W,, for all w = (a1,...,as) such that
W, = Wl,“.,l- In O-theory there is defined the Thom isomorphism ¢: O*(X) —
O*(ME, x), where M¢ is the Thom complex of . Let X = BO,,, M{ = MO,,. Let
u=¢(1) € O*(MO,,). We define operations

Sq¥: OY(K,L) — 09K L)

by setting Sq*(u) = ¢(W.,), where W, € O*(BO,)).
Under the homomorphism i* - j*: O*(MO,,) — O*(BO,) — O* <H RP,?O)
k=1

the element u = ¢(1) goes into i*j*(u) = wy...u,, where u; € OY(RP®) is
the class Wl(fi), & the canonical O;-bundle over RP, defined above, and
Sq¥(uy ... up) = SY(u1, ..., Up)U1 ... Uy, where S, is the symmetrized monomial
Sult.ooouls s <n.

There is defined the subset Map(X, MO;) C O'(X) and a (non-additive) map
v: OYX) — HYX, Zy) — Map(X, MO1), where : O* — H*( , Z5) is the natural
homomorphism {defined by the Thom class}. The operations Sq* have the following
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properties:
a) Sq“(zy) = Sq”(2)Sq*(y);
(wy,w2)=w

b) if 2 = y(z'), then Sq“(z) = 0, w # (k) and Sq¥(z) = zF*1;

¢) the composition Sq“* 0 Sq“? is a linear combination of the form Y A, Sq”,
Ao € Za, which can be calculated on v = ¢(1) € O*(MO,,) or on i*j*(u) =
Uy ...y € OF(RP® X -+ X RPX),u; € Im~;

d) there is an additive basis of the ring A9 of the form Y \;a; Sq*%, \; € Za, a
an additive basis of the ring A = O*(P) ~ Qo. Thus A is a topological ring with
topological basis «; Sq*, or

AC = (A-9)",
where A means completion and S is the ring spanned by all Sq*.

We note that the set of all Sq such that w = (ay,...,as), where a; = 27 — 1,
is closed under composition and forms a subalgebra isomorphic to the Steenrod
algebra A C S C AC.

How does one compute a composition of the form Sq* oo, where oo € A? We
shall indicate here without proof a formula for this (which will be basic in § 5,
where the ring AY is computed).

Let (X, &) be a pair (a closed manifold and a vector bundle &), considered up to
cobordism of pairs, i.e. (X,£) € O*(BO). In particular, if £ = —7x, where 7x is
the tangent bundle, then the pair (X, ) € Qo = O.(P).

We define operators (“differentiations”)

W O*(BO) — O*(BO),

Ww*: QO — Qo,
by Setting Ww*(Xv 5) = (Ywaf:;(g_‘_TX)_TYw)v where (Ywa fw: Y, — X) is DWw(g) €
0.(X).

We also have multiplication operators
a: 0,(BO) — 0.(BO),

Qo Qo — 907

where (X,§) — (X x M, & x (—7a)) and (M, —7p1) € Qo represents a € o.

In particular, we have the formula

Wioa= > Wi(a) Wi

wa?
w=(w1,w2)

where o € Qo, W (a) € Qo.
It turns out that the following formula holds:

Sqa= Y W(a)-Sq*,
w=(w1,w2)
where o € A = Q.
We also have a diagonal
A: A9 — A% @q,, A°,
where A(a) = a®1 = 1®a, and ASq” = Y Sq*' ®Sq*?, so that A9 ®q,, A°

w=(w1,w2)

may be considered as an A%-module via A; A ®q, AC = O* (MO ® MO), and A
arises from the multiplication in the spectrum, MO ® MO — MO.



20 S. P. NOVIKOV

We note that the homomorphisms W/ coincide with the Stiefel characteristic
residues if n = dimw.

We also note that any characteristic class h € O*(BO) defines an operation h €
AO if we set h(u) = ¢(h), where u € O*(MO) is the Thom class and ¢: O*(BO) —
O*(MO) is the Thom isomorphism.

In particular we consider the operations

A(u) = p(hy), where hy = y(W1),
A(u) = p(hs), where hy = y(W1)2.

It turns out that 0> = 0, A9 = 0 and the condition hi(¢) = 0 defines an
SO-bundle, since hy = ~v(W7).

Further, it turns out that O*(MSO) is a cyclic A°-module with a single gen-
erator v € O*(MSO), given by the relations d(v) = 0, A(v) = 0, and we have a
resolution

(o C—... Lo L S 0 (MSO) = 0) =,
where Cy = A© (generator ug), C; = A9 + A9 (generators u;,v;, i > 1), and
d(u;) = Qui—y, 121,
d(v;) = Au;_q.

The homomorphisms 9* and A*: Qp — Qo coincide with the homomorphisms of
Rohlin [20], [21] and Wall [23].

We consider the complex Hom%o (C, O*(P)) with differential d* defined by the
operators 0* and A* on O*(P) =~ Q. The homology of this complex is naturally
isomorphic to Ext’o (O*(MSO),0*(P)) or the Es term of the Adams spectral
sequence.

It is possible to prove the following:

1) all Adams differentials are zero;

2) Ext'5 (0*(MSO), O*(P)) = Qs0/2Qs0 C Qo where Q50/20s0 = Kerd* N
Ker A* by definition of the complex C;

3) EX‘LZ’JS =0, for s # 4k;

4) EX‘GZ@“(O*(MSO), O*(P)) is isomorphic to Zg +- - -+ Z2, where the number
of summands is equal to the number of partitions of £ into positive summands
(k1y - ks)y D ki = k;

5) there exists an element hy € Ext}é{}) associated with multiplication by 2 in F,

h : ) , o .
such that Extgl’é =2, Extz’ffl is an epimorphism, t = 4k, and Ext%’ =% Ext’ !

is an isomorphism, ¢ > 1.
These facts actually are trivial since

Ext 40 (0*(X),0(Y)) = Exta(H* (X, Zo), H* (Y, Z5))

and H*(MSO, Z,), as was shown by the author [17, 18] and by Wall [23], is
H*(Y. E1K(Zy)) + H*(3. E*K(Z)), where there are as many summands of the
form K (Z) as would be necessary for (4) and (5).

We have mentioned these facts here in connection with the analogy later of M SO
with MSU and the paper of Conner and Floyd [13].

In the study of Ext v (U*(MSU)) all dimensions will be doubled, the groups
Ei8F+i for 1 <4 < 3 will be constructed in an identical fashion, but the element
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ho € Ext"! will be replaced by an element h € Extz’lz, and the Adams differential
ds will be non-trivial (see §§ 6, 7).

We note that the construction described here gives us a natural representation
of the ring A = (A o S)* on the ring Qo by means of the operators W (“differ-
entiation”) and the multiplication on A.

In a certain sense the operators W} generalize the ordinary characteristic num-
bers. They can be calculated easily for [RP?"] € Qo and

WiaB)= Y Wi()Weu(5)

(w1,w2)=w

(the Leibnitz formula). Completing their calculation would require that they be
known also for “Dold manifolds.”

It is interesting that the ring A C A®, where A C S, is also represented
monomorphically by the representation W on Q¢.

In conclusion, we note that the lack of rigor in this section is explained by the
fact that O*-theory will not be considered later and all assertions will be established
in the more difficult situation of U*-theory.

§ 5. COHOMOLOGY OPERATIONS IN THE THEORY OF U-COBORDISM

In this section we shall give the complete calculation of the ring AY of coho-
mology operations in U*-cohomology theory. We recall that for any smooth qua-
sicomplex manifold (possibly with boundary) there is the Poincaré—Atiyah duality
law

UNX)=U,_(X,0X) and U(X)=U""%X,0X),
where quasicomplex means a complex structure in the stable tangent (or normal)
bundle. Here there is also the Thom isomorphism ¢: U*(X) — U?"T¢(ME, ) where
¢ is a complex U,-bundle of dimension 2n, and M¢ is its Thom complex. We denote
the Poincaré-Atiyah duality operator by D. There is defined a natural homomor-
phism e: U.(X) — U.(P), where P is a point and Qy = U.(P) = Z[z1,..., i, ... ],
dimz; = 21.

We counsider the group U, (K) given by pairs (X, f), where X is a manifold and
f: X — K. Let « be arbitrary characteristic class, « € U*(BU). For any complex
K in the category S, the class a defines an operator

a: Ul (K) — Ul(K),

if we set a(X,f) = (Ya,f - fo), where (Y, fo) € U.(X) is the element hav-
ing the form Da(—7x), where 7x € K(X) is the stable tangent U-bundle of X.
{Da(=7x) = D((-7x)"(a)).}

As we know, the operation of the class a on U,(K) can be defined in another
way: since U*(MU) = U*(BU) by virtue of the Thom isomorphism ¢, we have
#(a) = a € U*(MU) = AY. We consider the pair L = (K U P, P) in the S-
category; then U, (K) = Hom™ (P, MU ® L) by definition, where P is the spectrum
of a point. Every operation a = ¢(«) defines a morphism ¢(a): MU — MU and,
of course, a morphism

pl@)®@1: MU® L — MU ® L.

Hence there is defined a homomorphism a*: U.(K) — U,.(K) by means of ¢(a) ®1.
We have the simple
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Lemma 5.1. The operators o* and &* coincide on U, (K).

The proof of this lemma follows easily from the usual considerations with Thom
complexes, connected with t-regularity.

Thus there arises a natural representation of the ring AV on U,(K) for any K,
where a — [¢p~(a)]* = a*, ¢: U*(BU) — U*(MU).

We have

Lemma 5.2. For K = P, the representation a — [¢~*(a)]* of the Steenrod ring AY
in the ring of endomorphisms of U,(P) = Qu is dual by Poincaré—Atiyah duality
to the operation of the ring AY on U*(P) and is a faithful representation.

Proof. Since K = P and MU ® P = MU, the operation of the ring AV on
Hom™ (P, MU) is dual to the ordinary operation, by definition. By virtue of
Lemma 3.1 of § 3, this operation is a faithful representation of the ring AY. The
lemma is proved. ([

We now consider the operation of the ring AY on U, (P) and extend it to another
operation on U,(BU). Let z € U,(BU) be represented by the pair (X,¢), £ €
K°(X). We set

a(x) = a(X,§) = (Yo, fa(€ +7x) = 7v,);
where a = ¢~(a), a € U*(MU) and (Y, fo) is the element of U,(X) equal to
Da(€), a € U.(BU), and 7 is the stable tangent U-bundle of M.

If £ = 7x, then fX(£ + 7x) — 7y, = —7y, and hence the pair (X, —7x) goes to
(Yo, —7v, ), i.e., the subgroup U.(P) C U,(BU) is invariant under the transforma-
tion a.

We have the obvious

Lemma 5.3. The representation a — a of the ring AV on U,(BU) is well-defined
and is faithful.

Proof. The independence of the definition of @ from the choice of representative
(X, &) of the class x follows from the standard arguments verifying invariance with
respect to cobordism of pairs (X, ) and properties of Poincaré—Atiyah duality for
manifolds with boundary.

The fidelity of the representation a follows from the fact that it is already faithful
on U,(P) C U.(BU) by the preceding lemma, where a coincides with [¢~!(a)]*.
The only thing that remains to be verified is that a is a representation of the ring
AY and not of some extension of it. For this however, we note that the composition
of transformations ab is also induced by some characteristic class and hence has the
form @b = é. Whence follows the lemma. (|

Remark 5.1. It is easy to show that the transformation @ has the form ¢ 'a,¢,
where ¢: U, (BU) — U,(MU) and a,: U, (MU) — U,(MU) is the transformation
induced by a: MU — MU. In the future we shall use the geometric meaning of
the transformation @ = ¢ 'a.¢ and hence we have given the definition of @ in a
geometric form.

The transformation @ induces a transformation o*: Qy — Qu = U.(P), where
U;(P)=Qf =U(P).

We shall also denote by a* the dual transformation U*(P) — U*(P), U*(P) =
A= QU.
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We shall now indicate the set of operations needed, from which we can construct
all the operations of the Steenrod ring AY.

1. Multiplication operators. For any element a € U*(P) = A there is
defined the multiplication operator x — az. Hence A C AY. The corresponding
transformation a: U,(BU) — U,(BU) has the form:

(ng) - (X X Yq, & % (_TYEL))a

where (Y,, —7y, ) represents the element Da € U, (P) = Q.

2. Chern classes and their corresponding cohomology operations. As
Conner and Floyd remarked in [11], if in the axioms for the ordinary Chern classes
one replaces the fact that c¢;(¢) for the canonical U;-bundle over CPY is the ho-
mology class dual to CPY =1, by the fact that the “first Chern class” oy (£) is the
canonical cobordism class o3 € U2(CPY) which is dual, by Atiyah, to [CPN 1],
then there arise classes o;(¢) € U?(X) with the following properties:

1.0;=0,1<0;00=1; 0, =0, ¢ >dim¢ &

2. 0i(§+m) = § 0i(§)ok(n);

] =1

3. 01(€) € Map(X, MU) C U%(X), if £ is a U;-bundle;

4. v(o;) = ¢;, where v: U* — H*(,Z) is the map defined by the Thom class.

We note that in the usual way (by the symbolic generators of Wu) the charac-
teristic classes o; determine classes 0,(¢), w = (k1,...,ks), such that o,(§+7n) =

Z Ow, (6)0402 (77)’ with 0(1,...,1) = 0j.

w=(w1,w2)
In the usual way the classes o, determine elements S, = ¢o, € U*(MU) and,
as was shown earlier, homomorphisms ¢ : Qy — Qu and S,,: U.(BU) — U,(BU).
We have the important

Lemma 5.4. The following commutation formula is valid:

Sw-x = Z o (2)S.,, x€A=U*(P)cC AY.

w1
w=(w1,w2)

Proof. This formula can be established easily for the operation on U,(BU) by the
faithful reprentation which we constructed earlier. Let (X, &) represent an element
of U.(BU) and (M, —7ps) represent an element x of {2y. We consider

Suod(X,8) = SUX. &) x (M,—ma)l = D 05 (2)5u, (X, €)

w=(wi,w2)

= Z (leaf;1(§+7—x) - TYMI) X (ng *TNu,z)

w=(w1,w2)

by definition. Here (Y,,, f.,) represents the element Do, (£), and similarly for
N,,. The lemma is proved. (]

In order that the formula derived above be more effective, we shall indicate
exactly the action of the operator ¢ on the ring .

It is known that by virtue of the Whitney formula the classes o, (—¢) are linear
forms in the classes o,,(£) with coeflicients which are independent of €. Let 7,,(§) =
0,(—¢) and let 67 be the homomorphism associated with this linear form.
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If (X, —7x) represents an element a of Q, then the classes 7 (a), represented
by eDa,(—7x) € Qu {where ¢ is induced by X — P} are the characteristic classes
of the tangent bundle.

Let X =CP"and u, = Y, tfll .. .tfj (the sum over all symmetrizations, w =
ij<n+1
(k1,...,ks)). Let A, be the number of summands in the symmetrized monomial

Uy, k = > k;. We have the simple
Lemma 5.5. If X = [CP"], then 5%(X) = Ao [CP"*] and

gh(ab) = > 65, (a)an,(b), a,b€Qp.

w=(w1,w2)

Hence the above formula completely determines the action of the operators o,
and & on the ring Q.

Proof. Since for X = [C'P™] we have that 7x +1 = (n+1)¢, where £ is the canonical
U;-bundle, the Wu generators for 7x are u = t; = --- = t,,;.1 = DCP""1 € U?(X).
Therefore 57 [CP"] = A\, uF, where k = dimw.

We note that by virtue of the structure of the intersection ring U,(CP™) we
have: u¥ = DCP"~*. Hence

eDG![X] = eN,CP"F = N\ [CP" ¥ € Qu

{where e: U,(CP™) — U.(P) is the augmentation}. The Leibnitz formula for
&) (ab) follows in the usual way from the Whitney formula. The lemma is proved.
O

We shall now describe the structure of the ring S generated by the operators S,,,.
We consider the natural inclusions

CP¥® x - x OP> % BU, L MU,
and homomorphisms
J*: UN(MU,) — U*(BUy),
i*: U"(BU,) - U*(CP>® x --- x CPX).

We note that U*(CP® x .-+ x CP) has generators u; € U?(CP®), and an
additive basis of U*(CP® x - - - x CP?) has the form ) AqzqPy(u1, ..., uy,), where
xzq € A = U*(P), the )\, are integers and P, are polynomials. We have the following
facts:

1. The image Im i* consists of all sums of the form > Agxy P, (u1, ..., uy), where
P, is a symmetric polynomial and dim x;P; = constant (the series is taken in the
graded ring).

2. The image Im(i*j*) consists of the principal ideal in Imi* generated by the
element uy ... u,.

3. The i*oy = 04(us, ..., u,) are the elementary symmetric polynomials, o, the
characteristic classes.

4. For any a € U*(BU,,) we have the usual formula i*(a)(uy ... u,) = i*j*¢(a),
where ¢ is the Thom isomorphism.

From these facts easily follows

Lemma 5.6. The operations S,, € AY have the following properties:
1. If « € Map(X, MU,) C U*(X), then Sgyo = &' and S, (o) = 0 if w # (k).
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2. Su(a,B) = > Suy(@)Su,(B) for all o, B € U

w=(w1,w2)

3. IF KD < n,w = (K, kD), SEY = k9 and a = S NS, then
J

ap(l) = au = 0 is equivalent to a = 0.

4. The composition of operations S,, - Sw, s a linear combination of operations
of the form S, with integral coefficients, so that an additive basis for the ring S
consists of all S,,.

Proof. Let X = BU; = CP*°. Since MU; = C'P*, it is sufficient to prove prop-
erty 1 for the element u € U%(CP*°) equal to o1 () for the canonical U;-bundle &.
By definition, we have: u = j*¢(1) € U?(CP>) and S, (u) = j*S,¢(1) = j*ukF+!
(if w = (k)) and 0,(§) = 0, if w # (k), since o; = 0, ¢ > 2, for Us-bundles &. This
proves property 1.

Property 2 follows obviously from the Whitney formula for the classes o, to-
gether with the remark that ¢(1) € U*(MU,) as n — oo represents the universal
element corresponding to the operation 1 € AY.

Property 3 is clear. Property 4 follows from the fact that on the basis of prop-
erties 1 and 2 it is possible to compute completely S, - S, (u) = D> AwS,(u) and
then use property 3. Whence it will follow for large n that S, 0 S,, = > AuS..

The lemma is proved. (]

Further, we note the obvious circumstance: An additive topological basis of the
ring AY has the form x;S,,, where z; is an additive homogeneous basis for U*(P),
Ui(P) = Q.

The topology of AU is defined by a filtration. This means that the finite linear
combinations of the form > \;z;S,,, are dense in AV and the completion coincides
with AY, which thus consists of formal series of the form > Xix;Sw,, where the \;
are integers and dim x;S,,, = constant, since AV is a graded ring.

Thus we have:

AV = (A-S)",
where the sign A denotes completion. Here A = Z[zy,...,2;,...], dimz; = —24.
The ring S is completely described by Lemma 5.6, and the commutation properties
by Lemmas 5.4, 5.5.
We note that S is a Hopf ring with symmetric diagonal A: S — S x S, where

ASL) = Y. Suy @S,
(w1,wz)=w
Since MU is a multiplicative spectrum MU ® MU — MU, the ring AY has a
“diagonal”
A: AV — AV g, AY,
where A(S,) = Y. S, ®S,, and za®b=a®xb=2(a®Db) for x € Qy = A.
w=(w1,w2)

The Kiinneth formula for Ky, Ky € D {complexes without torsion} has the form:
U*(K; x Ky) = U*(K;) @5 U*(K>),

and hence AV ® AV is an AV-module with respect to the diagonal A.

Moreover, we remark that AV has a natural representation * on the ring Q,
where Q}, = U~%(P), under which the action of the ring A goes over to the multi-
plication operators A ~ Qy and the S, — o.



26 S. P. NOVIKOV

We now define an important map v: U? — U? (nonadditive), such that vy(z) =
v(z), v: U* — H*( ,Z) is defined by the Thom class, and v(x) € Map(X, MU;) C
U%(X), for x € U*(X).

We consider important examples of cohomology operations related to the class
g1q.

1. Let A, ko) € AU be the cohomology operation such that

Ay ko) = oly(—o1)F (o)) € U*(MU),

where oy € U%(BU), v: U? — U2.

In particular, A o) will be denoted by d and Ay 1) by A.

We shall describe the homomorphisms Af, » and A(k‘z,k2):

a) if (X, &) represents an element of U.(BU) and i1: Y7 — X, is: Yo — X are
submanifolds which realize the classes Dc;(€), —Deci(€) € Hp_2(X), then their

normal bundles in X are equal respectively to &, and &1, where ¢1(£1) = —c1(&1) =
—c1(&1) = ei(§).
Let

Yigh =Y1...Y1-Y2... Y,
—_—— ——
k1 ko
be the self-intersection in U, (X) with normal bundle
FG e atb e+ 6) =W,

kl k'2

where i: Yy, r, — X.

We set Ak, k) (X, &) = (Yisy ko), 7 (€ + W)).

b) If £ = —7x, then the A, 1,y define homomorphisms A?k17k2): Qu — Qp for
which the image of 9* consists only of SU-manifolds. The operations 0* and A*
on Qp were studied earlier in [13],

2. The classes and operations x(i, r,)- Just as was the case for the oper-
ations A, k,) and classes v(o¥)y(=01)*2, the operations X (k1 ko) and the classes
corresponding to them will be defined for a bundle £ only as functions of ¢;(§) or
of v(c1(€)). We define these classes for one-dimensional bundles £ over CP™.

We consider the projectivization P(§+k) — CP™, where k is the trivial k-plane
bundle.

It is obvious that 7(P({ + k)) = p*7(CP™) + 7/, where 7/ consists of tangents to
the fiber. Over P(£ 4 k) we have the following fibrations:

1) the Hopf fibration p in each fiber;

2) The fibration & = p*¢.

It is easy to see that the stable bundle 7 is equivalent to the sum

k times
_ e N
P =pf + T+ +peK(PE+E)).
We set {here ki + ky = k}

/

Tl k) = HE + R+ kaft,

which functorially introduces a U-structure into the bundle T(/kl ko) such that
T‘T(/kl o) = r7’ where r is the realification of a complex bundle.
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P(¢+ k) has the induced U-structure p*7(CP") + 7, . We denote the result

by P#1:k2) (¢ + k). We denote the pair (P*1:52) (¢ + k), p) € U, (CP™) by DX (1, 1)
where X (k, k) € U*(CP").

For any fibration { over X we set X (i, k,)(§) = X(ki,k2) (§1), Where ¢1(§) = c1(&1)
and &; is a Uj-bundle.

There arise classes X(x, k,) € U*(BU), operations OX(k1,k2) = Y(ky,ks), and ho-
momorphisms We, . and ‘i’(kl,kz)~

We note that x(g,1) = 0. We denote the operation x(;,0) by x and the operation
X(1,1) by ¥.

The homomorphism ¥*: Qy — Qp was studied by Conner and Floyd (see [13]).

It is easy to establish the following equations:

a) Ak, ky) ©0 = 0 (in particular, 0% =0, A0 =0);

b) AU =1, [0,x] =2, x0 = z1 0, where z; = [CP'] € A C AY; 0¥ = 0.

We shall prove these equations. Since Im0* C Qp is represented by SU-
manifolds, A?kh,w) o 0* = 0 by definition; since * is a faithful representation of
the ring AY by virtue of Lemma 3.1, Ay ky) © 0 =0, where 0 = Ay ).

The equations A*¥* = 1, 9*U* = (0 were proved by direct calculation in [13].
Hence AV =1 in AY. Since Im 0* consists of SU-manifolds, it is easy to see that
X*0* = x1 0 9*. This means that y0 = x10. The equation [y, 9] = 2 follows easily
from the fact that for one-dimensional bundles £ over X such that ¢ (§) = —c1(X),
we have:

a(P(v+1)) = =2c(p) = -2,
and the class DC is realized by the submanifold X = P(§) C P(§ +1).

Remark 5.2. Equations of the type [a,b] = Ao 1 arise frequently in the ring AY.
For example, if aj, = Sy, and by, = [C'P*], then [ag,br] = (k + 1) o 1 by Lemma 5.5.

Remark 5.3. The operation m = [A, U] = 1 — UA is the “projector of Conner—
Floyd” 72 = 7. (Conner and Floyd studied 7*.)

This projector has the property that it allows the complete decomposition of the
cohomology theory U* into a sum of theories m;U*, where Y 7; = 1, m; € AV, with
7o =1—VA and m; = WA — WL AIFL Later on we shall meet other projectors
of this same sort.

3. We consider still another important example of a cohomology operation in
U*-theory, connected with the following question:

Let &,71 be U-bundles. How does one compute the class o1(£ @ n)?

We have

Lemma 5.7. a) For any U,-bundle & there is a cohomology operation v, € AV
such that o1 (A_1(€)) = Yn_1(0,(£)), where A\_1 = >_(=1)*A? and the A* are the
exterior powers.
b) If ui,...,u, € U?(X) are elements in the subset Im~ = Map(X, MU;) C
U?(X), then we have the equation
Yn—1(u1 .. un) =y1(ur - y(uz -1y (Un—1 - un)) ... ),

where 1 is such that for a pair of Ui-bundles &,m we have the formula

o1(§®@n) = 01(&) + o1(n) + 11 (o1(§)o1(n)).
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The proof of this lemma follows from the definition of the operation ;. Let
X = CP> x CP* and let £, 7n be the canonical U;-bundles over the factors. Since
vor((®@n) = c(E®@n) = c1(§) + c1(n) and oy € Map(X, MU,) it is possible to
calculate the class 01(€ ® i) completely as a function of o1 (¢) and o1 (n). Namely:

—01(§) —o1(n) +o1(f@n) = Z '1:1]01 Tl), Tij € A
i>1,7>1
Since the bundle A\ (¢ + n) lies in a natural way in K°(MUs) and A (€ + 1) =
E®@n—&—n+1, the difference —o1(§) — 01(n) + 01(€ ® n) + 1 has the form v u,
where u € U*(MUs) is the fundamental class u = ¢(1).
The operation 7; can be written in the form

MU = Z.’IJiJS(iJ)(UlUg)’ U= ujus,

where uy = 01(§), us = o1(n).

Let w = (k1,...,ks), where s > 2. Then S,,(u) = 0. Hence v, is uniquely defined
(mod z,5,).

We set v—1 = 71 (u1 ... 71 (Up—1uy)...) on the element u = uy . =¢(1) €
U*(MU,). The operation 7,1 is well defined mod z,,S,, where w = (k‘l, ooy ks)
s > n. By definition, we have the formula o1 A_1(§) = v,,—10,(&) for a U,-bundle &.

The lemma is proved.

)

Remark 5.4. It would be very useful, if it were possible, to define exactly an
operation v; € AY ® Q so as to satisfy the equations v{ = +;. The meaning of this
will be clarified later in § 8.

We now consider analogues of the Adams operations and the Chern character in
the theory of U-cobordism which are important for our purposes.

We have already considered above how the class o1 (£®n) is related to the classes
o1(€) and o4 (n) for U;-bundles &, 7. Namely

o1(§®@n) =u+ v+ (uwv),

where u = 01(£), v = 01(n) and

1 (uv) Zx Wt 4 ity ’+1 + Zx“ i+l ’+1 x5 € Qu.

i>0 >0

3=0

i#]
We set u+ v + 71 (u,v) = f(u,v). Then we have the “law of composition” u @ v =
f(u,v) for u,v € Im~; = Map(X, MUy ), which turns Map(X, MU;) into a formal
one-dimensional commutative group with coefficients in the graded ring ¢, while
dimw,v, f(u,v) = 2. As A. S. Miscenko has shown, if we make the change of
variables with rational coefficients

i>0

where [CP'] € Q2 = A=2%, then the composition law becomes additive:

9(u®v) = g(f(u,v)) = g(uv) + g(v)
(see Appendix 1). This allows the introduction of the “Chern character”:
a) We set oh(€) = €9 where u = 01 (¢) for U;-bundles &;
b) if § = &1 + &2, then oh(§) = oh(§) = ah(&1) + oh(&2);
c) if £ =& @ &, then oh(€) = ah(&1)oh(&2).
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Thus, we have a ring homomorphism
och: K(X)—=>U*(X)®Q.
We now consider an operation a € AY such that
Aa=a®ac AY @, AY.

We already know some examples of such operations:

a:ZSw,
&:ZS(L

i>0

The Chern character gives a new example of such an operation a € AV @ Q: We
consider the “Riemann—Roch” transformation )\(_"1) : U?" — K which is defined by
the element A"} € K(MU,), and let A = (A\")), n — co. Let ®™ = ghn o A",
and ® = (®(). The operation ® obviously has the property that A® = & @ &
since oh and A_; are multiplicative, and if the element £ € K(X) has filtration m
and the element 7 has filtration n, then ch™" (£ ® n) = oh™(£)oh™(n). Tt is easy
to verify that the operator ® has the following properties:

1) 2 = 9,

2) (1) =1,

3) ®*(z) =0,dimx <0, x € A, A=U*(P), ®*: A — A, where

iz €Z; . .
_§ i T g = (i, i),
h+1l 1 w= (1, 0)

Hence, the operation ® associated with the Chern character oh defines a projection
operator, which selects in the theory U* ® @ the theory H*( ,Q) = ®(U* ® Q).

A multiplicative operation a € AY is uniquely defined, obviously, by its value
a(u) € U*(CP*>), where u € Map(C P>, MU,) is the canonical generator, a(u) =
w(l+...).

Conversely, the element a(u) € U* (CPOO) can be chosen completely arbltrarlly
For example, for a =3 S,,, a(u) = (% forapy = > S, a(u) = u(l+u).

w w=(k,...,k)

For our subsequent purposes the following operations will be important:

1) The analogues of Adams operations U7, € AY @5 Z[1/p].

2) Projection operators which preserve the multiplicative structure.

All these operations are given by series a(u) € U*(CP*), since Aa =a ® a.

We define the Adams operations \Iflfj, which arise from the requirements:

1) Wi (zy) = Ui (2)Pu(y), =,y € U™ _

2) UF -z = kzé- \IJ’Béwhere re AN =07,

u DEEY ’LL

3) Uy(u) = ————
and @ is composition in Map(X, MU;) C U%(X).
Lemma 5.8. a) The series U5, (u) has the form

Wh() = S = o S )

b) V¥ (z) = k'z, x € A=2" = U~%(P) = Q%
c) AUY, =UF @ UF, A: AV — AY @, AY;

(k times), where u € U%(CP>) is the canonical element
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G pl =l =
e) for a prime p, all \;,\; € A=%, such that

\I/I[)J(’U/):U+)\2u2+"'+)\iui+..., u € Map(X, MUy ),

are integral for i < p. Hence the element p"W7 (uy...uy), where uy...u, €
U(MU,) is a universal element, is integral, and so the operation Py for el-
ements of dimension 2n is “integral,” if the dimension of the complex is < 2pn.
(See Appendix 2 for proof.)

4. We now consider the projection operators. The condition defining a projection
operator m € AY is obviously 72 = =, or 7*2 = 7*, where 7*: A — A is the natural
representation. We shall consider only those 7 for which n(2y) = n(x)r(y) and

m(u) = > \ul € U*(CP>). Let

i>1
r; =[CPY, w(u)= |1+ Z)\iui u,
i>1
where the \; € A®(Q are polynomials in x; with rational coefficients, dim \; = —2i.

It is easy to show that 7*()\;) = 0, since 72 = 7.

We shall be especially interested in the case when there exists a complete system
of orthogonal projectors (;), mjm, = 0, j # k, which split the cohomology theory
U* into a direct sum of identical theories.

Let y € Aand Ay € AU © @ be the “operator of division by y,” which has the
following properties:

1) Ay(ab) = Ay(a)b+ aA,(b) — yAy(a)Ay(b),

2) Ay(y) = 1.
Let ®, =yA,, ¥, =1-3, € AU®Q. It is easy to see that CIDfI = <I>y,' \Ili =",
and ®, o ¥, = 0. Moreover, the collection of projectors m; = y*Aj — y't1 is such

that 77, = 0, j # k, and it decomposes the theory U* ® () into a sum of identical
theories. ‘

Let y; € A=% = Qng be a system of polynomial generators, and ®; = y;AA,,. We
note that ®;(y;) = 0for j < i. Let g = yy for k < jand g, = (1—&:)*yr = VI (yx).
Obviously, ®F(gx) =0 for k # i and ®F(g;) = yi = ;.

Since (1 —®;)*(y;) = y; for j <iand y; —y; Ay, (y;) = (1 — ¢i)*y; for j > i, the
collection of elements gy, is a system of polynomial generators.

The projectors m; =y A; — nyAJy'jl clearly are such that 7*f: A — A carries
monomials of the form yfﬂil, ..y Ti,, § > 0, into themselves for iy,...,is # ¢, and
all other monomials into zero. This means that

Imﬂ-;f :yiQ(g177:’ju)

and

KeI"/T; = U ySQ(gla s ,?jia cee )
g
In particular, 1 — )" 7; and 741 = y;m;A,,. Hence Ay, mj1(x) = m;(y;z) for all
J
x € U*, and all theories 7;(U ® Q) are isomorphic.

The projector mp = 1 — y;A,, has the following properties:
a) mo(zy) = mo(x)mo(y), i-e., o is multiplicative.



METHODS OF ALGEBRAIC TOPOLOGY FROM COBORDISM THEORY 31

b) The cohomology ring of a point for the theory mo(U* ® @) has the form
QW1s---»Yis--- ), where m5(y;) = g, for j # i.

¢) All theories 74(U* ® Q) are canonically isomorphic to the theory mo(U* ® Q)
by means of the operator of multiplication by y7, and their defining spectra differ
only by suspension.

Examples of operators A,: ifdimy = 2k, ie., y € Q¥ (P) = U~2¢(P), and
U(*k)y = —\ # 0, then we set

(—1)yst
Ay = Sk .
qzl )\q q times
For the generators y; € Q7 we have [\| =1 fori#p’ —1land [\ =pfori=p' —1
for any prime p. Hence

Ay, = Zyg_lsa,...,i) (i #£p —1)

q>1

and
qg—1

Ay = Z pd Sty (i=p" —1).

q>1

It is easy to see that for i + 1 # p/ for given p,A,, € AV @7 Q,; for i +1 = p/
and p > 2, A,, € AY ® Q, where @, is the p-adic integers.

Now let y; be a collection of polynomial generators of 2y and let p be prime.
We consider all numbers i # p’ — 1 in the natural order, iy < s < --- < i < ....
Let @ = (1 — y;, Ay%), where k is some sufficiently large integer. The projector
®;, is such that the ring ®;A C A has as a system of polynomial generators all ¥;
for i # iy, and ®}y;, = 0.

Obviously, the operator ®; commutes with the operator of multiplication by y;
for j <y since @, =1 —y;, Ay, , and Ay, commutes with y;,j < ix.

We consider the operator <I>;€Ayik71 ® = Aj_;. Since ¥y, is multiplicative, A4
is the operator of division by ®y;, , Px. Hence in the cohomology theory @ (U*)
the operator Ak_l has all the properties making 1 —y;, , o Ak_l = ®,_1 a multi-
plicative projector, and @Eill) = yfkilﬁiil — yf:ill Afctll forms a complete system
of orthogonal projectors. R

Thus, (I)k—l = ‘I)k_yik71q>koAyik,l O‘I)k = (I)k(l_yikflAyik,l)(Dk and (I)k—lq)k =

®,_1, while
Dp g = DDy Py,

where &, =1 — Z‘/ikAyik~ If &y =1—y; Ay, then we set:

g, 3l — I

where égf] = &y, or:

g eeey
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The projector ® is obviously such that

S P
Joo s+ 1=p fors<ip,

b) ol c AV @, Q,.

The collection of ®* with k — oo is such that ®*+ is independent of k when it

operates on Q and hence the sequence ® as k — oo, or the series 3 (®F+1] —
k>1

®lF) = @ defines a projector ® € AV @, Qp which is multiplicative and such that:

* 07 S#pjfla
a) o')={ " 7P
Ys, S=D _17

b) @2 =9,

c) the theory U*® 7 Q) splits into a sum of identical theories of the form ®(U*®z
@p) up to a shift of grading (suspension).

We note that the elements 3, = ®*(y,) for s = p/ — 1 have the property that all
o5 (7s) =0 mod p for all w, dimw = 2s.

The cohomology theory ®(U* ®z Q) is given by a spectrum M), where
H*(My,), Z,) = A/BA + AB, A the Steenrod algebra and 3 the Bokstein
homomorphism.

Thus, we have shown

Lemma 5.9. a) There exists a multiplicative projector ® € AV @ Qp such that the
cohomology theory ®(U @z Qy) is given by a spectrum My, where H* (M), Z,) =
A/AB + BA, and the homomorphism ®*: A — A annihilates all polynomial gener-
ators of the ring A = U*(P) =~ Qu of dimension different from p/ — 1.

b) The theory U* @z Q, decomposes into a direct sum of theories of the form
M(*p) = U, and their suspensions.

§ 6. THE AY-MODULES OF COHOMOLOGY OF THE MOST IMPORTANT SPACES

In this section we shall give the structure of the module U*(X) for the most
important spectra X = P (a point), X = CP", X = RP?>", X = RP>""! X =
MSU, X =S*1/7, X = BG, G = Z,.

1. Let X = P. The AY-module U*(P) is given by one generator u € U°(P)
and the relations S,,(u) = 0 for all w > 0. An additive basis for U*(P) is given by
the fact that U*(P) is a free one-dimensional A-module, where A ~ ;. We shall
denote the module U*(P) by A.

Clearly, we have:

Hom’ (AY, A) = U.(P) = Q.

If d: AY — AU is a map such that d(1) = a € AY, then it is easy to see that
d*(hy) = hg=(z), where h, € Hom v (AY,A), x € A, and h, is such that hy(1) = z.

In particular, for a = S, we have a* = ¢, and for a = 9, A we have a* = 0* or
A*, the known homomorphisms of the ring Q.

These remarks are essential for computing

Ext o (,U*(P)) = Ext v ( ,A)

2. Let X = CP" = (E*CP") € S. Tt is easy to see that U*(X) is a cyclic
module with generator u € U?(X) satisfying the relations:
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a) Su(u) =0, w # (k),

These results are easily derived from the properties of the ring U*(C'P") and the
properties of the operations S, given in Lemma 5.6.

3. x\M = gtz — (ERS2H 7)€ 5, X{Y = RP2H. U*(X) has two
generators u € UZ(X,i”))7 v € UPTL(X},), satisfying the relations:

a) Su(u) =0, w # (q),

b) S(q)(u) =0,q>n,

c) (kUE)(u) =0, u € Map(Xy, MU,),

d) S,(v) =0,w > 0.

These results follow from [7] for K*(BG), G = Z,, and the o1: K — U? and
the ring U*(BG).

4. For X = RP*, BG, the module U*(X) is described as follows:

a) U*(RP?") = U*(RP?"*1) Jv.

b) U*(BZ) = lim[U*(X™)].

5. We now consider the case X = MSU. Since U*(MSU) = ¢U*(BSU) and
SU-bundles are distinguished by the condition ¢; = 0, which is equivalent to the
condition yo; = 0, we have U*(MSU) = U*(MU)/¢J(yo1), where J is the ideal
spanned by (yo1), J C U*(BU).

The natural map U*(MU) — U*(MSU) is an epimorphism. Hence U*(M SU)
is a cyclic AV-module with generator u € U°(MSU) and au = 0 if and only if
a € ¢J(yo1).

In particular, au = 0 for a = A, 1,)-

We have the important

Theorem 6.1. a) The module U*(MSU) is completely described by the relations
d(u) =0, A(u) =0.

b) The left annihilator of the operation O consists of all operations of the form
ad +bA, a,b e AV,

Proof. We consider the module N = AV /AY A+ AV9 and the natural map f: N —
U*(MSU). We shall show that this map is an isomorphism. Since for the operation
A there exists a right inverse ¥ such that AW = 1 and 0¥ = 0, the module AVA is
free, and it is not possible to have a relation of the form aA + b9 if a # 0 or b9 # 0.

We now consider AY9. We shall establish the following facts:

1) The left annihilator of the operation d consists precisely of the operations of
the form ¢.J(yoy) C AY.

2) The operations of the form AY9 form a direct summand in the free abelian
group of operations AY under addition.

We consider the representation a — a on U,(BU). Let £ be an SU-bundle. It is
easy to see that we have the equation

(Xv g) = 5[(Xv é) ® (OP177’)]7

where ¢ (n) is the basic element of H2(CP'). It is also obvious that Im d consists
only of pairs (X,¢) € U,(BU), where £ is an SU-bundle. Hence Im 9 is precisely
U.(BSU). Whence follows fact (1).

For the proof of (2) we note that U,(BSU) is a direct summand in U, (BU).
We decompose U*(BU) into a direct sum U*(BU) = U*(BSU) + J(vyo1). Then
U*(MU) = AY decomposes into a direct sum A + B, where B is the annihilator of
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U.(BSU) with respect to the representation a. Obviously, AY0 = (B + A)d = Ad.
If the operation @ € A is such that ad is divisible by the integer ), then ad is
divisible by ), and hence for all SU-bundles ¢ the characteristic class ¢~1a(¢) is
divisible by A. Hence this class is a A-multiple class in U*(BSU) and (up to J(yo1))
a A-multiple class in U*(BU). Whence follows fact (2).

We deduce from (1) and (2) that the map f: N — U*(MSU) is a monomor-
phism. Since N = AV /AVA + AY9, it follows from (1) and (2) that the kernel
Ker f is a direct summand. Since AYA is a free module and AV is a module
isomorphic to U*(M SU) with shifted dimension (see (1)), the equation Ker f = 0
follows from the calculation of ranks in the groups

(AYAop 2)F = HFY(MU, ), (A8 ®, Z2)* = H*2(MSU, Z),
(U*(MSU) ® Z)* = H*(MSU, 7).
Thus, U*(MSU) = AV /AYA + AV 9. Since the left annihilator of the operation 9
is precisely the left annihilator of the element u € U°(MSU), it follows by what

was proved for U*(MSU) that this left annihilator is precisely AYA + AY9. The
theorem is proved. [

§ 7. CALCULATION OF THE ADAMS SPECTRAL SEQUENCE FOR U*(M SU)

In this section we shall compute the ring
Exthu (U (MSU), A)

and all differentials d; of the Adams spectral sequence (F,,d,), where
Ey = Extyu(U*(MSU),A). In particular, it turns out that d; = 0 for
i#3,d3#0,and B = By =0 for i > 3.

For the calculation of Ext’% we consider the complex of AY-modules

C=UMSU)< Cok oy & ;.. ),

where the generators are denoted by w; € C; for i > 0 and v; € C; for i > 1,
Co = AY and C; = AY + AU for i > 1. We set d(uz) = Ou;—1 and d(”Ui) = Au;_1.
Since 9% = 0 and AJ = 0, d?> = 0. It follows from the theorem above that C is an
acyclic resolution of the module U*(MSU) = Hy(C).

We now consider the complex Hom%u(C,A), where A = U*(P). Since
Hom’ v (AY, A) = Qp, we obtain the complex

Hom’yo (C,A) = (Q 5 Qu + Qv 5 Qp +Qp T ),

where d* = 9* + A*: Qu — Quy + Qp.
Since A* is an epimorphism, the complex Hom’v (C, A) reduces to the following:

w=w S wlw ),

where W = Ker A* C Qp
From this we deduce the following assertion.

Lemma 7.1. a) For all s > 1, we have isomorphisms
Ext’; (U (MSU),A) = Hy_as(W,0%).
b) Ext’; (U*(MSU), A) = Ker 9* N Ker A* C Qp.
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c)Ifh e Ethg(U*(MSU),A) = Zsy is the nonzero element, then the homomor-

phism o — ha: Exti’lfj LN Extf:rul’* is an epimorphism with kernel Im 9* for i =0,

and an isomorphism for i > 1 (we recall that the spectrum MSU is multiplicative).

Proof. Statements (a), (b) of the lemma obviously follow from the structure of
the complex W, in which the grading of each term is shifted by 2 from the one
before by the construction. For the proof of (c), we note that h = $0*(z1), where
r1 = [CPY] € Qu, x1 € W, and 0*(z1) = —2. Further, we note that 9% (z1y) = —2y
if 0*(y) = 0. Hence the element hy is represented by the element $0*(yx1) for a
representative of y € H*(W,9*). But since 19*(yz1) = y under the condition
0*y = 0, statement (c) is proved, and therewith the lemma. a

We consider the element K = 927 — 8z5 € QF, where z1 = [CP!], 2o = [CP?.
Clearly, 0* K = A*K = 0. The element K is a generator of the group
Ext'; (U*(MSU),A) = Kerd* NKer A* = Z.

Since A[K] = +1, where A = e~“/2T and T is the Todd genus, by virtue of the
Riemann—Roch theorem there is an ¢ such that d;(K) # 0 in the Adams spectral
sequence, since for all 4-dimensional SU-manifolds the A-genus is even (see [20]).
It follows from dimensional considerations that da(K) = 0 and d3(K) = h>.
We note that from dimensional considerations it follows trivially that dox = 0
(see theorem in § 2). Consider the differential

dg: BP9 — EET3at?
where d3(K) = h3. We have

Lemma 7.2. If a € EY? for p > 3, and ds(a) = 0, then o = ds(3). Hence
EV? =0 forp >3, and Ex = Ej.
Proof. Let ds(a) = 0; since a = i:gﬁ from Lemma 7.1, d3(a) = dg(}?ﬁ) = 0. Hence

d3(B) = 0 since multiplication by h: E5* — EF*™* is a monomorphism for p > 0.
This means that o = d3(K3). Since

> ERT = Exth (UT(MSU), A)
P23 =3
is the ideal generated by the element h, we have EY'? =0 for p > 3.

From dimensional considerations it follows that E}* = E**.

Since EX* = E%* + EL* + E%* is associated with Qg = 7. (M SU), and EL* =
hEY*, E%* = hEL* = h2E%* we obtain O
Corollary 7.1. a) Q! = hQ2k; b) h2Q%, = Tor Q%

The equality (a) was first established in [18] by other methods, and (b) in [12].

Corollary 7.2. a) The image of Qsy in Qu is singled out within the intersection
Ker 0* Nker A* by setting equal to zero a certain collection of linear forms mod 2,
generated by the homomorphism

dsz: (Ker 0" NKer A*)zk = Eg’% — E§’2k+2
= h*(Ker 0" N Ker A*)*F=4 = R332 =" 7,
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b) The group Extz’gk = H(W, d*) is isomorphic to the direct sum Q%’E_l —&—Q?g%_s,
and this isomorphism comes from the differential d3:
-3
0— Q?E_l — Extzgk W s, Q?E_s — 0,
where Extz’gk = E21’2k = B3 5 Q7! = Kerds, h=3d3 is well-defined since h®
is a monomorphism on Extz’gk%, and the image Imh~3ds = Kerds = Q??fs C
Fxtl2k—4
xt,o .

Corollary 7.2 follows from Lemma 7.2.

Remark 7.1. Part (b) of the corollary explains the meaning of the “Conner—Floyd
exact sequence” (see [13])

0— Q%' — Hopo(W,0%) — Q%% — 0,
since Hop_o(W,8*) = Exth2"(U*(MSU), A).
We note now that the groups H, (W, 9*) are computed in [13]: namely, Hg (W) =

Hgprs(W) = Zo + - -+ + Z5 (the number of summands is equal to the number of
partitions of the integer k), H;(W) = 0, i # 8k, 8k + 4. Whence we have:

Ext 52U (MSU), A) = Ext i35 6 (U* (MSU), A)

and
Ext’l, (U*(MSU),A) =0, i # 8k + 2,8k +6.
We have
Lemma 7.3. a) Ext;3" ™% = K Ext};3", where K € Ext%} (U*(MSU), A).

b) dg(ExtE{é) =0 fori # 8k+4, and dg(Extg’ngA) = Exti’ngrQ is defined by
the condition d3(K) = hs.

Proof. Suppose both parts of the lemma proved for kK < kg — 1. We show that
ds (Extz{f,k“) = 0. In fact, by the induction hypothesis on the groups Ext‘jl’gl€+2 the

. . . . ko d
differential d3 is a monomorphism. Hence Extg’?, °2250.

We now consider dz (K Ext?q’gk") =h3 Extg{gk”. We see that dz(K Extg’gk") is an

epimorphism onto Exti’gk”(j. Whence parts (a) and (b) of the lemma follow; on the
group Ext3#+6 the differential is trivial, and on the group Ext3®+2 5 Ker ds = 0.
The lemma is proved. (]

Thus, we obtain

Corollary 7.3. a) The image Qi;/ Tor C Qu coincides with Ker 0* N Ker A* for
1 # 8k + 4.
b) For i = 8k + 4 the image Qikj4/Tor C QSU’“+4 is picked out precisely by the
requirement of the “Riemann—Roch Theorem”:
ch(c§)A(X)[X]=0 (mod 2),
where X is an SU-manifold, £ € kO(X).

We note that (a) follows immediately from the lemma. As to (b), we note
that A[K] = 1. In [9], “Pontrjagin classes” m, € kO*[X] are introduced in kO-

theory. Consider the classes mo; € kO(X); let mg = K;. Now consider the num-
bers ch(cky, ... cry, )A(X)[X] for X € QfF/Tor € QFF. These numbers are dif-
ferent from zero mod 2 if and only if A X # 0 in Qg’?j‘l. Hence the condition
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d3(KX) = h*X # 0 in ES™* is equivalent to the fact that one of the numbers
ch(e(kiyy .-y k1)) AX)[X] # 0 (mod 2). All such numbers are in 1-1 correspon-
dence with partitions of 8k into summands (8l,...,8l;) (these facts are easily
deduced from [9]).

Since ch(cky, ... ck, ® 1)A(X x K)[X x K] = ch(eky, ... cky, )A(X)[X] o A[K],
A[K] = 1, we have found elements ky, ...k, ® 1 € kO(X x K) which do not satisfy
the Riemann—Roch theorem, and they determine 7 (k) linearly independent forms
mod 2, where (k) is the number of partitions of k. From this part (b) of the
corollary follows.

The results of the lemmas and corollaries of this section together completely
describe the Adams spectral sequence for U*(MSU).

§ 8. k-THEORY IN THE CATEGORY OF COMPLEXES WITHOUT TORSION

Here we shall consider the cohomology theory k*, defined by the spectrum k =
(k,), where 7;(k,) = 0, i < n, and Q*"ky,, = BU x Z. The spectrum k is such that
the cohomology module H*(k, Z5) is a cyclic module over the Steenrod algebra,
with a generator u € HO(k,Z), satisfying the relations Sq*(u) = Sq*(u) = 0.
Hence the spectrum k does not lie in the category D of complexes without torsion.

There is defined the “Bott operator” z: ks, — kop_o by virtue of the Bott
periodicity Q%ko, = k2,,_2, and ks, is a connective fiber of BU. Since k°(X) =
K°(X), we have on k" the Adams operations (see [2])

vk KO(X) - K°(X),

defined by morphisms W*: BU — BU such that U*: 7y, (BU) — o, (BU) is the
operator of multiplication by the integer k™ (see [2] concerning the operation of ¥*
on K°(S?") = m,,(BU)). By virtue of this, the operators ¥* can be extended to
the whole theory K* ® @, starting from the identity

kaUF = kg,

where z: K — K‘~2 is Bott periodicity.

In the category D of complexes without torsion the operator z": k**(X) —
kY(X) is such that its image consists precisely of all elements in £%(X) = K°(X)
whose filtration is > 2n; moreover, x is a monomorphism.

In the category D we define an operation (k" ¥*) by setting

(k‘n\I/k) _ xfn\pkxn’

where (K"U*): k27(X) — k2"(X).

It is easy to see that this is well defined and gives rise to an unstable opera-
tion (k"W*) such that (k"¥*) can be considered as a map kg, — ko, for which
(K"UR),: mopy0i(kon) — Tant2;(kay) is multiplication by k™ +.

Let a, =5 )\Ecn) (k"WF), where the )\,(Cn) are integers, be an unstable cohomology
k

operation and an)* multiplication by > )\;n)knﬂ.
k

Definition 8.1. The sequence a = (a,,) will be called a stable operation if for any
j there is a number n such that for all N > n the number agf,) =3 /\,(CN)kN*’j is
k

independent of N.
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Definition 8.2. If the stable operation a has a zero of order ¢ in the sense that

aSZ) =0 for j < ¢, then we also call b = (z~%a) a stable operation, where a = b,
b: K{(X) — k29(X), X € D.

We consider the ring generated by the operations so constructed and the oper-
ation = by means of composition, taking into account the facts that kzW* = Wky
and W*W! = Wk The resulting uniquely defined ring, which we denote by A% is
a ring of operations acting in the category D. In it lies the subring of operations
generated by the operations indicated in Definition 8.1 together with the periodicity
x. This ring we denote by B C A%. There is defined the inclusion BY — A%.

We shall exhibit a basis for the ring A’\},. It is easy to see that it is possible to
construct operations d; € A"}, of dimension 2i, where dp = 1, such that the elements
zk§; give an additive topological basis for the ring A% and all elements of A% can
be described as formal series Au2®8,_;, where the A, are integers. The choice of
such elements §; is of course unique only mod x A% (elements of higher filtration).

We construct these elements d; in a canonical fashion: it suffices to define opera-
tions 7; = x;6; of dimension 0. Let o = 1. Let 79
by 2. By definition, we shall take 'y»(j)

%

=0 and ’yﬁ) be multiplication

=0 for j < i and 'y(i) to be multiplication

K3
by a number 4; which is a linear combination 4; = > ,ug)k'"”, where the numbers
E

HS) are such that ug)k”” =0 for j < i. We require in addition that 4; be the
k

smallest positive integer of all linear combinations of the form u,(f)k:"“ under
k

the conditions: '
Sk =0, j<i
k

We consider the operation a;, = > M,(f)(k”\Ilk). Here n is very large compared
k

with 4. It is easy to see that the number 7; does not depend on n for large n — co.
Hence the operation is well-defined.

Consider the operations a;, for n — oo; we shall successively construct the §;
from them. We have ag, = 1; let by, = a1, + K102, + -+ + Km@myn be linear
combinations such that the homomorphisms (bmn)g ) for j < m < n are multipli-
cations by integers 7; ;, where 0 < 1 ; < ;. Clearly the numbers 7 ; are uniquely
defined. Let m — oo, n — oo; then in the limit, the sequence (by,,) gives an
operation which we denote by 1 = z1d;. It is uniquely defined by the properties
that {7 =0, 7{}) =2, and 0 < 41 < F;, 92 = Fu.s.

The operations y; are constructed in a similar fashion, and are uniquely deter-

mined by the conditions 'yi(z) =0,7 <1, 'yi(i) =7;, and 0 < 'yi(f) < Ay for k > 1.
We exhibit a table of the integers 'yz(i ) = i in low dimensions:

‘ Y0 71 72
01 0 O
211 2 0
411 0 24

By definition, §; = x~%y;. It is clear that the operations v; commute. Since 79;(BU)
is Z, the rings A% and B% are represented as operators on k*(P) = Z[z] in a natural
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way, in particular, the operations of dimension 0 by diagonal operators with integral
characteristic values; the operation x is represented by the translation operator (or
multiplication by x in k*(P)). It is easy to show that we have a transformation
x: A% — A% such that x(BY) C B and ar = za*. This transformation x is
completely determined by the condition that in k* ® Q-theory we have kx¥* = ¥ky
and *WU* = LUk,

We also indicate the following simple fact.

Lemma 8.1. The greatest common divisor of the integers 'yi(f) = (:riéi)gfn for all
1 > 0, for a fixed integer q, coincides precisely with the greatest common divisor
of the numbers k™ (k% — 1) for all k. There exist operations ay., € BY such that
aéizl* = k" for j < f(n), where f(n) — co as n — oo.

The proof of this consists of the fact that the operations z?d; = ~; are obtained
as linear combinations of the operations k™(¥* — 1) by virtue of the condition
fyi(f) = 0 for ¢ > 0, where n is large, and the determinant of the transition from
the k"(¥* — 1) to the z%0; is equal to 1. In fact, the process described above
for constructing (x'd;) is the process of reduction of the set of transformations
E™(T* — 1) to the set 7; of “triangular type” on Z[z] = k*(P). More exactly: let
n be sufficiently large that ng) =0 for j < i and W) = 4, for i < f(n), where

f(n) = occasn —ooandy;, = )\,(cili)(knlllk). Under the condition )\,(ctli)k” =0,
one can write all these operations in the form u,i"i)k"(\llk —1) and then apply to
the set k" (W% — 1) the process of reduction to “triangular form” described above
for constructing the operations (x%8;) up to high dimensions. We assert that the
passage from {k" (¥ —1)} to {v;,} is invertible. Indeed, any operation of the form
> Ak UF has the form H17Y1,n + b1, where bﬁ?} = b&) = 0. Hence the operation by
has the form by = jipy2  + b, where b)) = b5) = 552 = 0, ete.

Consequently, a = > pivi + bg(,) where b;j()n) L,=0,5 < fu If n — oo,

i<f(n) ’

then f(n) — oo and the coefficients u; stabilize, while a,, = Y p;x%6; + by if

a = (a,) € BY. Since the greatest common divisor of the homomorphisms a¥ ),

for all a € B"f, such that ago) = 0, is invariant and this invariant can be calculated
with respect to any basis of operations in B* such that aio) = 0, we have that for
the basis (x;0;) = (7;) it coincides with the greatest common divisor for the basis
(k™(U* — 1)) = by, where b} = k"(k — 1). We note that the operations (k"¥*)
are nonstable, but, by virtue of what has been said, there exist operations ay,, such
that a,(c{zl* = k"% for j < f(n), where f(n) — oo as n — oo. These operations
are obtained by the transformation from (z°d;) to (k" W¥) inverse to that described
above.
The lemma is proved.

Remark 8.1. The same operations ¥* in k* ® QQ are obtained as formal sums of
the form Y p;z'8; = W*, where p; € Q and k™, € Z for large n and i < f(n).

Example 1. Let X = P € D be the point spectrum. Then k*(P) has a single
generator ¢t as an A% module and is given by the relations §;(t) = 0, i > 0. The
module k*(P), as a BY-module, has a single generator ¢ and is given by the relations
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(p"WP)(t) = p™t for all primes p (n large). (Or: all operations a € BY which have
zeros of order one are such that at = 0.)

Example 2. Let X = MU,. Then k*(MU,) can be described by the ideal in the
ring of symmetric polynomials in the ring Afuq, ..., u,], dimu; = 2i, generated by
U= up... U, Let v; = zu;, UF(0D) = ((v; + 1)* = 1)t and UF(zy) = Uk (2)Tk(y).
The elements of k*(MU,,) have the form > A; ;2°ds, where ds = f(uy,...,uy,) is
an element of the symmetric ideal in Z[uq,. .., u,] generated by u = u; ... u,, and
x is the Bott operator. This uniquely determines k*(MU,) and k*(MU) as A%-
and B\’f,—modules.

We have the following

Lemma 8.2. The ring BY, C A% coincides exactly with the subring of A%, consisting
of operations of dimension < 0.

The only thing which must be proved is that B% contains all operations of
dimension < 0. For a pair a; € BY, as € BY of operations which have zeros of
order q1, g2 respectively, we introduce the operations x~%ay = b; and ™ %as = by
and the composition by o by in A’},. We shall show that 29 192b; o by lies in B\’f, if

x1b) € BE. Let ay, =Y. )\,(cn)k”\I/k and a9, = Z,ul(én)knkllk. We consider
k k

xQ1+qzb1n 3 b2n — 1.1111+q2m—q1 alnx_q2a2n

_ (Z )\’(fn)k(an)\I/k) (Z Mén)knqjk>
k k

{using k2292 W* = Ukz92}. We shall assume that n is very large, n — oo, ¢; and
qo are fixed. We set m =n — ¢qo. Then

k

k

= <Z ;\I(cm) km\Ifk> (Z ,u](gm)kmlpk> 7

k k

where A" = A" and g™ = ke* (™. Clearly, as m — oo we have a composition
of operations in BY which lies in BY.

The lemma is proved.

By virtue of the lemma, the rings B}\f, and A"}, contain operations which coincide
up to dimensions f(n) — oo (as n — o) with the operations (k"¥¥) in the sense
that a,(jyzh* = k"t for j < (n).

This remark allows us to use (up to any dimension) the ring B as if it were the
ring generated by (p"WP), with p prime, and by x € B% where (p"¥P)x = px(p"¥P)
and 7y, = (p"¥P) are polynomial generators. Thus, a (topological) basis here is
2% P(72,73,...), where P is a polynomial.

We consider the BY-module k*(P). We have

Lemma 8.3. The torsion part of the group Extggi(k*(P), k*(P)) is a cyclic group,
v

whose order is equal to {p™(p" —1)},, where n is large, p is prime, and { }, means
the greatest common divisor of the sequence of integers.
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Proof. We construct a B -free resolution of the module k*(P). Let n be large. Then
the module k*(P) is given by the relations (v, — p")t = 0. We choose generators
kp = (7p —p™) and 1. Then the &, are polynomial elements,

Lo Loy S R (P),
Co=Byj, C1= ZB\’EW

while du = t and du, = kp(u), where u, u, are free generators of the modules
B\’; = Cy, B\’f,’p C (1, respectively.
We consider the complex Hom*B\,; (C,k*(P)).

Let h; € HomQBig (Co, k*(P)) be elements such that h;(u) = z%(t) and hl(-p) €
Hom™(C1, k*(P)) be such that hl(-p) (up) = 2*(t) and 0 = hl(-p)(up/) for p’ # p.
Obviously, we have
(d*hiyup) = (hy, kpu) = Kpz'(t)
=p" (W7 = Dzt (t) =p"(p' — )2’ (t).

Hence, d*h; = >_p"(p® — 1)h§p). Thus, {pnd(;gih_ii)}p is a 1-cocycle for the operator
P e
{r ( D}
unique element of finite order equal to d; in the group Ext; 2l( *(P),k*(P)), d

" (' — D}p, n— oo
The lemma is proved. O

d*. Since Hom™( ,k*(P)) is a free abelian group, the element is the

Note that the computation of Ext*B*‘;; (k*(P), k*(P)) presents no difficulties, since

the module k*(P) has a BY-free resolution which coincides with the complex for
the polynomial algebra Z[ys,...,7p,...], as long as the operator z acts freely on

k*(P), B’g,.
We have

Theorem 8.1. The groups Ext'; 2Z(k*(P)Jc* (P)) are cyclic groups of order d; =
{p"(p" — 1)}p, where n is large.

Proof. Tt is easy to see that the algebra A% ®(Q is precisely the algebra of operations
in k-theory k* ® Q). Hence, by virtue of § 2, we have:
Ext?l oo (K" (P) ® Q,k"(P) ® Q) = Ext’y (k(P), k(P) ® Q) = 0

for s > 0. Hence the groups Ext A,f are all torsion. We consider the resolution

(—»ZA Ui —>k*(P)>C’,

where d(u;) = d;(u), and wu;, u are free generators of Cy and Cj.
We consider the nonacyclic complex

<...—>ZA Z-—>A’§,i>k*(P)> =0,
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where d(v;) = 2°;(v) and v;, v are free generators. We shall show that the complex
C is such that in the group

the torsion part is exactly the same as in the group
Hy(Homy, (C,k*(P)),d") = Ext i .
In fact, if h; € Hom 4, (C,k*(P)), where hj(v) = 27(t), then

(d*hj,vi) = hj(x'8:(t)) = x'6:h;(t)
= 2'0;27 (1) = 2 (6;27 (1)).

Thus, if d*h; = 3" u{ 1S, where h{”(u;) = 2777(t), then

where hgi) (v;) = 27 (t) and the numbers 7

;. are the same. We note that the order

of the group Exti"éj is precisely the greatest common divisor of the numbers ugj ) as

i varies, and a generator is d*(hj)/{ugj)}l-. Since the elements (z'5;) give a system
of relations in k*(P) over the ring BY C A% the same integers ul(-j ) give the torsion
part of Ext}g’éj ,
module k*(P). By virtue of the lemma, we get the required result. The theorem is
proved. ([l

since the complex C over A% is a segment of a BY-resolution of the

We now pass to the module £*(MU).
We have

Theorem 8.2. For any complex X € D there is a canonical isomorphism
Hom*A,\i(k*(MU), E* (X)) =U*(X).

The proof of this assertion is essentially a straightforward consequence of the
result of [22] concerning the fact that the Riemann-Roch theorem on the inte-
grality of the number chT(X)[X] gives a complete set of congruence relations
on Chern numbers in Q. More precisely: if [X] € Qp indivisible element, then
there exists £ € K(X) such that ch¢T(X)[X] = 1. By virtue of the properties
of the Thom isomorphism in K-theory, this assertion is equivalent to the follow-
ing: for any indivisible element o € 7,(MU), there exists ¢ € K°(MU) such
that (ch¢, Ha) = 1, where H: m, — H, is the Hurewicz homomorphism. Let
B e Hong (k*(MU), k*(P)); then the number (ch§, 8) is also an integer by virtue
of Bott periodicity. Both groups Homzé (k*(MU),k*(P)) and m.(MU) have no
torsion. {Note that Hom 4 (k*(MU),k*(P)) C k*(P), for k*(MU) is cyclic on
Uy} Hence m,(MU) C Hoqu(;,' By virtue of what was said about the indivisibility
of the numbers (ch ¢, Ha)a € m.(MU), the group m.(MU) is indivisible in Hong.
Since the ranks of these groups coincide, the groups coincide. Thus the assertion is
proved for the point spectrum.
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Let X € D, Xy, X, € D, with X; a skeleton of X, Xy = X/X;; we have exact
sequences:

0 — U*(Xs) — U*(X) S U*(X,) — 0,
0— k" (X2) = k(X)) = k" (Xy) — 0.

We assume by induction that the theorem has been proved for X; and Xo (we
do induction on the rank of the group H.(X,Z)). Then we have a commutative
diagram of exact sequences:

0——U*(X) —=U*(X) —=U*(X;) —=0

* * * § 1,* * *
0 —— Hom; —— Hom}, —— Hom, —— ExtA,;/ (k*(MU), k*(X2)).
However, by virtue of the commutativity of the diagram we have that the homo-
morphism

Hong’(k*(MU), k(X)) — Homj‘g(k*(MU), kE*(X2))

is an epimorphism, since ¢* is an epimorphism and + is an isomorphism. Hence the
homomorphism ¢ is trivial, and hence by the 5-lemma the homomorphism v is an
isomorphism. The theorem is proved.

Remark 8.2. In what follows it will become clear that the groups Exti’lz (k*(MU), k*(P))
7

are nontrivial even for ¢ = 1, and the question of their computation is extraordi-
narily important (see § 9, 11).

By analogy with the rings A% and B it is possible to construct analogous rings
AKO and BEC. Let kO* be the theory defined by the spectrum kO such that
O8"kO,, = BO x Z (see § 3). The cohomology ring of a point kO*(P) = Ao is
described as follows: generators 1 € A, h € Aal, v E A54, w E A58; relations
2h =0, h? =0, hv =0, v? = 4w.

We have the “complexification” operator

c: kO* — k*

such that c¢(h) = 0, c¢(v) = 222, ¢(w) = 2, where z is the Bott periodicity operator.

In the theory kO* it is possible by analogy with the theory k* to introduce
operations (k"W¥*) and their combinations a = (a,), a, = Z)\fﬁn)(k”\llk), where
a%j*) does not depend on n. The ring of such operators is identical to the analogous
ring for k*-theory which lies in B,’f,. The ring B@O is composed, in a fashion identical
to that for the ring B%, from such operators a = (a,) constructed from ¥* and
from the multiplication operators on Ap = kO*(P), keeping in mind the following
commutativity relations: WFh = khUk; Uky = k2oWF; UFw = k*wlF. We denote
the resulting ring by B’{,O. Similarly, it is possible to construct a ring A]&,O also, but
we shall not consider this ring in what follows.

We consider the category B C D C S.

1) The spectral sequence (E,,,d,) | kO* is trivial in B; in B there is a subcate-
gory B’ such that:

2) the operation of the ring BC is well-defined in B’. As is easy to see, the
spheres S™ (their spectra in S) lie in B’ by definition, since kO*(S™) = kO*(P).
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If f: S"tk — 8™ is a mapping, then a necessary and sufficient condition for the
complex D"+, S™ to belong to B’ is that f* =0, f*: kO*(S™) — kO*(S"TF).

In the category B D B’ the operation of the ring BEC is well-defined, the latter
being a priori an extension B’\f,o — B since in view of the presence of torsion in
Ao = kO*(P) the operation is not defined by its own representation on kO*(P),
in contrast to k*-theory in the category D.

There is defined a homomorphism (epimorphism):

Extl*, (kO*(P), kO*(P)) — Ext%;éo(kO*(P), kO*(P))

BEO
and a Hopf invariant

q1: Kerqy — Extggo(ko*(P), EO*(P)).

It is easy to see that the complexification ¢: kO* — k* is an algebraic functor (see
Definition 9.1) from the category of BE?-modules to the category of BEC-modules.
It is also easy to show that

ExtLis (kO (P),kO*(P)) = Zay, di = {p"(0** — 1)},

BEO
and
ExtYio(Ao,Ao) = Zy for s=8k+1,8k+2.
o

We have a natural ring homomorphism 7: B§? — BY generated by the homo-
morphism ¢: kO*(P) — k*(P), and consequently a homomorphism
é: Extg;;’g (Ao, Ao) — Extggk(A, A),

A =E"(P), Ao =kO*(P),

whose image has, as is easy to see, index 1 for k = 2] and index 2 for k = 2l + 1,
in consequence of the fact that the image of the homomorphism c: kO' — k! has
index 1 for ¢t = 8] and 2 for t = 8] + 4. Later, in § 9, this homomorphism will be
considered from another point of view.

There is defined an element h € Ext?g’io
o

(Ao, Ao) such that 2h = 0, h® = 0,
while multiplication by h

1 h +2 1 1,8+1
Ext%’f?f — Ext(gfg+ and ExtB’iO — ExtB;ij;
w w w w

is a monomorphism for s = 8k, 8k + 1.
The images of the homomorphisms

qo: m(S™) — Ext%’go (Ao, Ao)

and
qu: ™ (S™) — Extyo (Ao, Ao)
v

are easy to study: namely, ¢ is an epimorphism (see [9]), and the image Im ¢y is
realized by the image of ¢, o J, where J: m,(SO) — 7,.(S™), and is nontrivial in
dimensions (1, 4k), (1,8k + 1), (1,8k + 2).
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§ 9. RELATIONS BETWEEN DIFFERENT COHOMOLOGY THEORIES. GENERALIZED
HOPF INVARIANT. U-COBORDISM, k-THEORY, Z,-COHOMOLOGY

Let X € S be a cohomology theory. Suppose given a subcategory B € S. We
define the notion of the “Steenrod ring” A% of the theory X* in the subcategory
B: the ring A% is the set of transformations f : X*(K) — X*(K) which commute
with the morphisms of the category B (according to Serre). The ring A% contains
the factor-ring A% /J(B), where J(B) consists of all operations which vanish on
the category B.

We now define “the generalized Hopf invariant:” let

g: K1 — Ky
be a morphism in B such that the object CK; Uy Ko (= 0+x, K> in the notation

of § 1, i.e., the sum with respect to the inclusions K3 2, and K ER K>) also lies
in B.
We have an exact sequence

X*(CKy Uy Ky)

N

“(Ky) —L > X*(EK))
If the homomorphism ¢* = qo(g): X*(K2) — (EK}) is trivial, then we have
0— X*(Kl) — X*(CKl Ug KQ) — X*(KQ) — 0,

where X*(K;), X*(CK; Uy K3) are modules, and our short exact sequence deter-
mines a unique element

q1(g) € Bxt )5 (X* (K1), X (K2)).
We thus obtain a mapping
q: Kergl® — Ext;% (X*(K1), X*(K>)),
where ¢qo: Hom™ (K7, K3) — Horni%;;(X*(Kg),X*(Kl))7 K{,K; € B and g €

Ker q( ) , provided CK; Uy Ko € B. This map is “generalized Hopf invariant.”
General problem: which elements of Exti{; (X*(K3), X*(K1)) ate realized geo-
B

metrically as images ¢; (Ker q( ))
If A% € A% is an arbitrary subring, then there is defined the usual homomor-
phism:
i Extz*g (X*(K3), X" (K1) — Ext}*;B( (X*(K3), X" (K1)

and we set q; = iq1, where ¢ is the “Hopf invariant” of the subring flg C A)Bf .

Examples.

1. If B consists of a single object K, then A¥ = End X*(K) and there is no
Hopf invariant.

2. If B consists of objects K1, K2, L = CK; Uy K2 and morphisms g: K; — Ko,
B: L — EK;j, a: Ko — L, where g*: X*(K3) — X*(K;) is the trivial homo-
morphism, then the ring Ag consists of all endomorphisms of X*(L) which pre-
serve the image *X*(K;) C X*(L). In this case, the Hopf invariant qu)(g) €

ExtAX* (X* (K1, X*(K2)) is defined, and is equal to zero if and only if X*(L) =
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X*(K1)+ X*(K2) (as groups). Of course, examples 1 and 2 are uninteresting. We
go on now to the examples which interest us.

3. Let B = D (complexes with no torsion) and X* = H*(,Z,). In this case
A% = A/(BA+ AB), where 3 is the Bokstein homomorphism and A is the Steenrod
algebra (over Z,,).

There is a canonical isomorphism

Ext}(Z,, Z,) = Exti’jﬁAMﬁ(Zp, Z,)

for t > 1, where Z, = H*(P,Z,), P is a point, and the Hopf invariant g¢;(D)
coincides with the Hopf invariant ¢ for K1 = Ko = P.

4. Let B= D and X* = k*. In this case A% D A% and the latter ring contains
the ring AX /.J(B) but apparently does not coincide with it. The Hopf invariant in
this theory will be discussed later; the Ext’ (k*(P), k*(P)) were computed in § 8.

A
In § 8 we considered the subring BY c A¥ and

Ext )i (k*(P), k*(P)) = tor Extix (k" (P), k*(P)).

5. For the theory X* = U* we shall also consider the category B = D and the
Hopf invariant for the whole ring AY.

The groups Extz’?j will be computed later (for Ko = MSU; see § 6).

6. In § 2 it was indicated that for complexes K = E?L the homomorphism
J: K°(X) — J(X) can be considered as a homorphism J: K°(X) — P*(X), where
P is the point spectrum or cohomotopy theory. A lower bound for the groups J (X)
can be computed in any cohomology theory Y*  if we consider the composition

a1 T KO(X) = PT(X) = Bxtyh (Y(P),Y*(X)),

where P*(X) = Hom" (X, P), defined on elements such that qéy) -J =0.

If K = EL, then in this case the computation can also be carried out by means
of Ext’y (Y*(P),Y*(X)), but here the multiplicative structure in Ext’yy y enters
by virtue of Lemma 2.1 of § 2.

We now consider two cohomology theories X*,Y* € S , a subcategory B C S
and a transformation a: X* — Y™ of the cohomology functors in the subcategory
B. Let subrings AX C A%, AL, C AY, be chosen.

Definition 9.1. We call the transformation a: X* — Y™ algebraic with respect
to the subrings A%, A%, if it induces a functor & from the category of Ax-modules
to the category of AL-modules. When A% = AX, and AL = AY we call the
transformation « algebraic.

Examples.
1. Let X*,Y* be arbitrary cohomology theories. An arbitrary element a €
Y*(X) determines a transformation of theories

a: X*—=Y*.

2. If the theory X* is such that X*(P) = 0 for i > 0 and X°(P) = m, then there
arises an augmentation functor

v: X*— H*(Y,n)
and hence for any group G a functor

vg: X" - H'(,7®QG).
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For example, for G = Z,, we have v,: X* — H*( ,m ® Z,). In the cases of interest
tous, 7 =2 and 7 ® Z, = Z,.

3. The Riemann—Roch functor. Let X* = U* and Y* = k*; we consider the
Atiyah-Hirzebruch-Grothendieck element )\gn) € KY(MU,). Tt defines a map

A: U —= K~

and \: U* — k*, where A\ = (A("), A" ¢ k2"(MU,), is the element (uniquely
defined) such that 2"\ =1 € K°(MU,,), where z is the Bott operator.

For the theory X* = U*, the augmentation functors v, v, and the Riemann-Roch
functor A preserve the ring structure of the theory.

Later it will be shown that these functors are algebraic in the category D.

Now let a: X* — Y™ be an algebraic transformation of theories in the category
B C S with respect to the subrings A%, AY. What is the connection between the
“Hopf invariants” qu) in the theories X™* and Y*?

Since a: X* — Y™ leads to a functor in the category of modules, the trivial mor-
phism g% : X*(K3) — X*(K) corresponds to the trivial morphism g3 : Y*(K3) —
Y*(K;) for K1, K>,g9 € B. Hence we have the inclusion Ker q(()i-) C Ker qég), and

the domain of definition of the Hopf invariant qg? is contained in the domain of

definition of q’ig).

Now let & be a right exact functor in the category of modules. We consider
a resolution C, of the module M = X*(K3) and the following (commutative)
diagram:

Cy <7ﬁ2 éy ‘>ﬁ1 aCx

Y*(Ks) =Y*(K2) = aM,

where Cy is an acyclic A%-free resolution of the module &M = Y*(K3),Cy is a
free complex such that H%(Cy) = aM. Let N = X*(K;), aN = Y*(K,),
By definition we have: H* (Hom}g (aCx,aN)) = R*Gn(M), where R* = > R?

q
and Gy = Hong( ,aN)oa is the composite functor, RIG is the ¢-th right derived
functor. There is defined a natural homomorphism

rgt Bxtfy (M, N) — RIGN(M), 1= > rg,
q

and homomorphisms
Bi: RIGN(M) — H®* (Hom’y (Cy,aN))
Tﬂ;
Ext%’;; (aM,aN),

where Ker 85 = 0.
We have the composite map

= (83) 7" BirL: Er(a) — Extjy (Y*(K2), Y (K1),
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where
Ei(@) C Extx (X*(K2), X* (K1),
E(@) =r'o B B3 (Extly (V' (K2), Y™ (K1),

In the following cases the group E;(@) coincides with the whole group Ext:

a) @ is an exact functor; here H'(aCx) = 0, ¢ > 0, and one can assume that

b) If in addition & is such that Extf@B/( ,eN)oe =0 fori >0, then aCx = Cy
and an isomorphism is generated:

Extj{*g (aM,aN) = R*"Gn(M).

In case (a) (@ is an exact functor) there arises a spectral sequence (E,,d,),
where EY? = 3~ RPG, v (M), which converges to Ext™ (aM,aN), and Gy n(M) =
Py

Ext?*( ,eN) oe. From this spectral sequence it follows immediately that the ho-
momorphism

B R*Gn(M) — Ext*(aM,aN)
is a monomorphism.
The basic examples which we shall consider are the subcategory D of torsion-free

complexes, the theories U*, k*, H*( , Z,), the Riemann—-Roch functor \: U* — k*
and the augmentations v,: U* — H*( , Z,). We have

Lemma 9.1. a) The functors A\: U* — k* and v,: U* — H*( ,Z,) are algebraic
in the subcategory D;

b) The functors X and v, are exact in this category.

¢) The functor X is such that R1G (M) = Ext%, (M, N), where M = U*(K3),
N =U*(K;y), M,N € D, Cy =Homx( ,AN) o X\, AN = k*(K7).

d) The functor vy, is such that RIGn (M) = Exti/ﬁAJrAﬁ(upM, vpN).

Proof. The category of AV-modules corresponding to the category D is the category
of A-free modules, where A = U*(P) = Q. On the cohomology of a point A the
functor \ is such that A 2 Z[z] and A(y) = T(y)z’, where y € Q% = U~?(P) and
T is the Todd genus.

From the group point of view we have A\M = M ®, Z[z]|, where M is A-free.
There follows the exactness of the functor A and R\ = 0, ¢ > 0. For v, we have
vpU*(P) = Zp, and in the category D, v, M = M ® Z,; since in the category D all
groups U*(K) and H*(K) are free abelian, the functor v, is exact in this category.
This proves part (d). Part (c) follows immediately from the theorem in § 7. Part (b)
follows from the well-known fact that H*(MU, Z,) is a free (A/BA + AB)-module.
We shall now prove the fundamental part (a).

Consider first the functor A\. We recall that in § 5 we constructed operations
Uy e AV ® Q. Let

UF(AE) = \UK(2), & eU"(K),
where K € D is a complex with no torsion. Since A is an epimorphism and A(y) =
T(y)x® where x is the Bott operator, the desired formula follows easily from the
construction of the Adams operations ¥* in K-theory and of the operations \IJ’fJ
in § 5. The operations (k"W¥*) have the form k:”)\\I/’f] and are “integral” for large
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n. Thus, the action of the operators (k"W*) and multiplication by z in k*-theory
are calculated by AY and \. This proves part (a) of the lemma for the functor \.

Now let o = v,: U* — H*(,Z,). In § 5 we constructed a projector & €
AY @7 Q, of the theory U* onto a smaller theory having the cohomology of a point
Ay =Qplzr,...,my, ... ], dimz; = —2(p" — 1).

We set

P*(vy7) = 1,®5,®(7),

where w = (p — 1,...,p — 1) (k times) and the P* are the Steenrod powers.
The correctness of this formula follows from the fact that all homomorphisms
(®S,®)*(y) = 0 mod p if dimw = dimy, ie., (S, P)*(y) € QY = Z. The
lemma is proved. (I

Corollary 9.1. For any K1, K3 € D the homomorphism
a=X: Exthy (U*(Ky),U*(K)) — Ext;é (k*(Ky), k* (K1)
is a monomorphism.

Proof. As was established in Theorem 8.2, the homomorphism r; is an isomorphism;
the homomorphism 3} is a monomorphism, as was shown above, while 35 = 1, since
RIXN =0, g > 0. Hence, §{r; = A is a monomorphism. O

Corollary 9.2. For any complex K = E?L the lower bound of the J-functor
aii) - J(K°(X)) € Exty; (k"(P), k*(X)

coincides with the bound
aip) - J(K°(X)) € Bxtiii (U (P), U" (X))

Corollary 9.2 follows from Corollary 9.1.

Corollary 9.3. The groups Extjlq’gi(U* (P),U*(P)) are cyclic groups — subgroups of

cyclic groups of order equal to the greatest common divisor of the integers {k™(k* —

D} for all k, for large n.

Proof. Since the groups Extz,fi(k*(P), k*(P)) by virtue of the theorem are cyclic
w

of the asserted orders, Corollary 9.3 follows from Corollary 9.1. We shall indicate a

simple fact about the connection between the Hopf invariants in different cohomol-

ogy theories X* Y™ in the presence of an algebraic transformation a: X* — Y™

with respect to the rings flg, flg in the subcategory B C S. (]
Lemma 9.2. We have the equality

=(B) _ ~ =(B)

Gy = Gix

on Ker qé?(), the group qg? (Ker qé]f()) being contained in Ey(a), the domain of def-

inition of the homomorphism & = (671 - BF - r1).

The proof of this lemma follows immediately from the fact that by construction

of the generalized Hopf invariants cjg() and (jg)

(jg?(a) and qg) (a) for any a € Ker (j(()i) C Ker (jéi).

As is easy to see, the equality

« (B * (B
B5d W (a) = B - - 4\% (a)

we can compute both quantities
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is true. This equation is equivalent to everything asserted by the lemma. The
lemma is proved.

Corollary 9.4. a) If the element v € Extjl;( does not belong to E1(a) for any

B
algebraic a: X* — Y™, then the element v is not realized as the Hopf invariant of
any element of Hom™ (K71, K5).
b) If vy € Ext%’f, does not belong to the image of the homomorphism d(Extipé)
B
and Ker q(()i) = Ker q((nB/), then the element v is not realized as the Hopf invariant
of any element of Hom* (K1, K3).

§ 10. COMPUTATION OF Extl, (U*(P),U*(P)). COMPUTATION OF HOPF
INVARIANTS IN CERTAIN THEORIES

In the preceding section the monomorphicity of the mapping
Extyo (U*(P), U*(P)) — Ext}, (k*(P),k*(P))

was established. .

We shall now bound the order of the groups Ex’c}‘{gZ from below. We consider
the resolution

(.. Lo Loy Sur(P)=A)=C,
where Cy = AU (generated by u) and C; = Y AU with generators u,,, du, = S,,(u),
w
dimw > 0. We consider the differential
d* Q2Uz N Z Q2Ui72dimw

w>0
where | |
d*(x) =Y 75, x€Qf =Hom%u(Co, A)
and | o
o5 (x) € Hom%y (C1, A) = Y Q-2 dime,
where o* (2)[uy] = 0 if w # o', and o (x)[uy,] = 0%(z) € A. These facts follow
from § 5.

Now let i be odd. We consider the element z%, where z; = [CP'] € Q%. Since
of(z1) = £2, all 0% (21) =0 mod 2, w > 0, from the properties of the homomor-
phisms o, described in § 5. Hence the cokernel Coker d* always contains an element

of order 2. Since the homomorphism Exti{é“r2 — Exti"fl+2 is monomorphic and
o

{k"(k' —1)}x =2,i=1 (mod 2), we have
Extii (U (P), U (P) = Ext i (b (P). K (P) = Z

for 1 +2=2i,i=1 (mod 2).
Thus, we have proved

1,26

Theorem 10.1. The groups Ext

(A, A) are isomorphic to Zy fori =20+ 1.

We now study the case of even ¢ = 2[. Let y; € Q%} be an indivisible element
such that some multiple Ay;, A # 0, represents an almost-parallelizable manifold
M?!, whose tangent bundle 7 is a multiple of the basic element ; of the group
K9(S?), 7 = p;ki, p; integral, where k; = f*k;, f: M* — S? a projection of
degree 1. From the requirement of the integrality of the Todd genus and the fact
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that (ch&y, M?%) = 1, it follows easily that all o}y; for all w are divisible by the
denominator of the number (B;/a; - 21), where asg41 = 1 and ass = 2, By is the
Bernoulli number entering into the Todd genus, i = 2 (see [14]). Hence Coker d*
contains a group of order of equal of the denominator of the number (B;/a; - 21).
Since this number is only half of the number {k"(k* — 1)}x(a; = 1), the image
AExty C Ext}: coincides with Ext;; for I = 2s and has index 2 in Ext';;" for
v v v
l=2s+1.
From this, for the case a; = 2, [ = 2s, follows the

Theorem 10.2. The groups Extz’gk (A,A) are isomorphic to the groups
Ext'2" (k*(P), k*(P)).
o
In the case a; = 1 there arises an uncertainty: do the groups Exti’ik*‘4 coincide
1,8k44
Af
Hence, we have the weaker

with the groups Ext or do they have index 2 in them?

Theorem 10.3. The groups ExtkikH(A, A) are cyclic groups whose order is equal
to either the denominator of the number Bagi1/(4k +2) or the denominator of the
number Bopi1/(8k +4).

Remark 10.1. In what follows it will be established that this order is in fact equal
to the denominator of Bayy1/(8k + 4) for k > 1 (however, for k = 0 it is easy to

see that Exti"é (A,A) = Z312). The basis element uy, of the group Exti;ngr4 is such
that
dy(uy) = WP Ext 5P (A, A),  h e Extli (A A) = Zo.
We now study the question of the relations among different cohomology theories

and the question of the existence of elements in the homotopy groups of spheres
with given Hopf invariant

7 € Ext 3y (X*(P), X*(P))

for the cases X* = U*, k*, kO*, H*( ,Z,), with the help of the functors a = A,
o = ¢, o = v, relating these theories.
1. The first question which we consider here is the complexification
c: kO* — k*
with respect to the rings B"f,o and B%. The structure of the groups
Ext?ro (kO*(P), kO*(P)),

BEO
where s = 0,1 is known to us, namely:
a)  ExtY,(kO*(P),kO*(P

o )
Ext{ho (kO (P), kO* (P))
b) Extli, (kO*(P),kO*(P))

kO
B\Il

Zo, t=8k+1,8k+2, k>0,

0, t#8k+1,8k+2;
:Z{kn(kqfl)}k"r...’ n — oo
Extgg’g”(ko*(P), kO*(P)) = Zo + . ..

fort=1,2;
¢) the homomorphism qq: 72 (P) — Hom*Bgo (kO*(P), kO(P)) is an epimorphism
(result of Brown—Peterson—Anderson [9]);
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d) the homomorphism ¢; - J: IgOvt(P) — Extgio(kO*(P),kO*(P)) is an epi-
w
morphism. This last fact follows from the work of Adams [3] for the groups

Extjlg’jflé (Ao, Ao); since
w

Ex t};ﬁ” ht Ex tjgi’g (t=1,2), he Ext‘;ém

the required fact follows for the groups Extgfg"’t(Ao, Ao).
2

We now consider the complexification ¢, defining homomorphisms ¢, ¢:

Extg;,:/() (Ao, Ao) —— Ext;,}; (A A) = ExtAk ,

Ext,lg’go (Ao, Ao)

Since in the groups k*(P) the image of the homomorphism ¢ has index 2 for ¢ =
8k + 4, index 1 for ¢ = 8k and is equal to zero for t # 8k, 8k + 4, we can draw
from this the conclusion that the image group Imé C Ext1 ! (A A) has index 2
for t = 8k + 4, index 1 for ¢ = 8k and is equal to zero for ¢ 7é 8k, 8k + 4, since
Imé=1Im¢é.

Consider the groups mp44x—1(S™) and the Hopf invariants in kO*- and k*-
theories. These invariants are always defined since Ext% 41 — 0. We have thus

BkO
the
Conclusion. The image of the Hopf invariant
QL p: Tnpan—1(S™) — Exth 4k(k*(P), E*(P)), n — oo,

has index 2 for k¥ = 2/ + 1 and index 1 for £ = 2I. Moreover, the image
@1,k (Tn+ak—1(S™)) coincides with the image g1, - Jmap—1(SO).

2. We now consider the Rlemann Roch functor A (]* — k* and the correspond-
ing homomorphism A: Ext LA A) — Ext 't . Since A is a monomorphism, we get

from item 1 on complex1ﬁcat10n the followmg conclusion:

The Hopf invariant ¢1p: mptak—1(S") — Ext}ﬁk is always defined, and its image
Im g1y coincides with ¢ (Jmak—1(S0O)); it coincides with Extzgk(A,A) for k =1,
k = 2l and has index 2 in the group Ext1 8+ for 1> 1.

Later we shall study Ext1 8k+2 and Ext1 8k+6.

3. We now consider the functor v,: U* — H*(,Z,) and the corresponding Hopf
invariant

Tnti—1(S™), m—o0, i>1

/\

Extlh (A, A) —>— Ext}; (Zp, Zp) = BExty (2, Z,).

A/BA+A/3

Since EXtA/BA-i—AB(ZP’ Zy,) = Exta(Z,,Z,) for i > 1 this becomes the usual Hopf
invariant. Since the homomorphism

g Jmsp—1(SO) — Ext (A, A)
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is an epimorphism, the question of the existence of elements with ordinary Hopf
invariant equal to 1 reduces to the calculation of this invariant on the group
Jma;—1(SO). For example, let p = 2, and let h; € Extz2l(z2,22) be basis ele-
ments. Since hi, hs, h3 are cycles for all Adams differentials and represent elements
in the groups Jm,(SO), it follows that, in view of the fact that Im J is closed under
composition, h; - he € Ex‘ci"*(Zg7 Z5) must represent an element of gaJm,(SO) if h;
represents an element of g1 Jw.(SO). Moreover, since gaJmyr—2(SO) = 0, we have
hoh; =0 if h; € ¢1Jm.(SO), since hy € ¢1 Jm,(SO).

However, h; - hy # 0 for ¢ > 4. We have thus the

Conclusion. For 7 > 4 the elements h; € EthQi(Z27Z2) do not belong to the
image of the homomorphism

3

vy Extzgi (A,A) — Exty? (Z2, Za).

The case p > 2 is considered analogously.
In fact, we have the purely algebraic

Theorem 10.4. The image of the homomorphism

Vp: Extz’?,pl(pfl) — EXtZ?Z7éi;2(va Zy)

is montrivial only for i =0,1,2 (p =2) and fori =10 (p > 2).
4. We now consider the homomorphism
§: Ext’y (U*(P),U*(P)) — Ext’ (U*(MSU), U*(P)).

We assume that K € Ext';; (U*(MSU),A), y € Ext5 (U*(MSU),A), and h €
Exti"?, (U*(MSU), A) are elements such that d3(K) = h3, and y € QF; is represented

by an almost-parallelizable manifold. We have

Lemma 10.1. All elements of the form h"T1 - K€ .-y™, n >0, m >0, ¢ = 0,1,
belong to Im 4.

Proof. Since h € Im 4, it suffices to show that K< -y - h belongs to Im¢. For this
it suffices to establish that all homomorphisms o (z1 - K¢ - y™) are divisible by 2.
It is easy to verify that o (z1), 05 (K) and o (y™) are divisible by 2. The general
result follows from the Leibnitz formula

oL(ab)= Y o, (a)as,(b).

w=(w1,w2)

The lemma is proved. O

As was shown in § 6, in the Adams spectral sequence for U*(M SU) we have:

a) d3(hKy") = h'y™ # 0,

b) d;(hy™) =0, i > 2.
Moreover, Brown—Peterson—Anderson showed in [9] that elements of the form hy™ €
Q%! belong to the image of the homomorphism m, (S™) — 7. (M SU,,) by a direct
construction of the elements.

We have thus the

Theorem 10.5. a) The groups Extzgk+2(A,A) = Zy are cycles for all Adams

differentials and belong to the image of the Hopf invariant

QU Tptsk+1(S™) — Ext}q’ngﬂ(A,A), n — o0o.
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b) The groups Ext’; 8]CJFG(A A) = Zs are not cycles for the differential ds.

Remark 10.2. Since Ext1 Yit2 = Ex t1 22 the analogous facts hold also for k-

theory, although basis elements here are “hot related to the J- functor, in contrast
to Ext1 Ak (here, the elements go into hy™ under the homomorphism Q. — Qgy).

We summarize the results of this section:
1) The groups Ext (A, A) were considered and also the associated homomor-
phisms

Ext (A, A) Ext Bw(kO*(P), kO*(P)) ,
Ethlé\*(va ZP) i (k* ak*(P)) //
a1 H /
Tl (Sn) q1,kO
7 (SO)

where g1 is the classical Hopf invariant, J is the Whitehead homomorphism, A is
the “Riemann-Roch” functor, ¢ is complexification, and v, is the augmentation of
U*-theory into Z,-cohomology theory.

2) The homomorphism Exths (A, A) — Extlo (U*(MSU), A) was studied.

3) Tt was established which elements of all these groups Ext' are realized as
images of the Hopf invariant ¢;. In particular, for the groups Ext’ 275(A A) this
image Im ¢y is trivial for t = 4k + 3; ¢ is an epimorphism for ¢ = 4k —1,4k; for
t=4k+2 (k>1) and t = 4k + 3 (k > 0) the Adams differential

ds: Exti"?]t(l\, A) — Extj’gt+2(A, A)
is nontrivial; it can be shown that ds(E3*") = h¥Ey*"™* for t = 4k +2 (k > 1) and
t =4k +3 (k> 0) (see § 11).
4) The nonexistence of elements with classical Hopf invariant 1 is a consequence

of the fact that ﬁg(Eth’?j) =0 for ¢ > 4. Analogously for p > 2 (see § 12).
5. For t # 8k + 4, the fact of the following group isomorphism was established:

Extlh (A, A) 2 Ext!t (k*(P),k*(P));
w
for ¢ = 4 this fact is false. For t = 8k + 4, k > 1, it is true and will be proved later
(see § 11).

§ 11. COBORDISM THEORY IN THE CATEGORY S ®z Qp

Earlier, in § 5, it was proved that in the algebra AY @, Q, there exists a pro-
jector @ € AY ®y Q, such that ®(z,y) = ®(x)®(y) and Im ®* C A is the ring of
polynomials in generators y1,...,%i,..., dimy; = 2p° — 2, where the y; are poly-
nomial generators of the ring A = Qp ®z @, such that the numbers o (y) € @,
are divisible by p and o} (y;) = p, k = p* — 1. Moreover, a complete system of
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orthogonal projectors ®(*) was constructed, 3. @) =1, &) .dU) =0, i # j, where
the @) (U* @, @) are isomorphic theories up to shift of dimensions. Hence, in the
category S®z Q) the spectrum MU is equal to the sum MU ~ E2d(“’)Mp7 where
k
w is not p-adic {i.e., w = (i1,...,ix), all {5 # p" — 1 for any r, and d(w) = )" i4}.
qg=1
If Ag is the Steenrod ring of the spectrum M,, where Ag =& . AV . @, then we
have:

A ®zQ, = GL(Ag) is the appropriately graded ring of infinite matrices of
the form (au,w,); Guw,w;, € AY, w; not p-adic and dim(ay,w,) = 2d(w;) — 2d(w;) +
dimay,w; {i.e., the right-hand side is a constant for the whole matrix and defines
the degree of the matrix}.

2) EXt:Z(U*(K)7 U(L)®zQp = Extj{g(U;(K), Uy (L)), where Uy = ®(U* ®z
@p) is the theory defined by the spectrum M,,.

3) The Adams spectral sequences (E, @ Qp,dr ® @,) in U-theory and (E~‘r7 czr)
in U,-theory coincide. These facts follow from §§ 1-3.

We note that the polynomial generators of the ring A, = U, (P) = ®*U*(P)
can be chosen to be polynomials with rational coefficients in the elements z; =
[C PP ~1] € Qp, where the polynomial generator can be identified with [CPP~1] =
21 = yp in the first nontrivial dimension, equal to p — 1.

We consider the ring A,; C A, generated by the first ¢ polynomial generators
Y1, .-.,Yi € Ap. This ring A, ; does not depend on the choice of generators.

The following fact is clear: the subring A, ; C A, is invariant with respect to the
action of all operations ® - Sy - ® on the ring A,. The proof follows from the fact
that the subring A(;) C A = Qp, generated by all generators of dimension < 2j, is
invariant with respect to S, and with respect to ®, while ®(A,i_1) = A ;.

We consider the projection operator ®; € Ag ®q, @ such that ®7: A, —
Ap i @Ay =1 and ®;(y;) = 0 for j > i. The ring @iAgtIJi will be denoted by
Ap ;. It is generated by the operators of multiplication by elements of A, ; C A, ;
and by operators of the form ®; - & - S, - & - ®;, where it is sufficient to take only
partitions w = (k1,...,ks), k; = p? — 1, while ¢; <.

We have the following general fact.

The ring ApU is generated by operators of the form ® - S, - ® for w(ky,...,ks),
k‘j =p% —1.

This fact follows easily from properties of the projector ® and the structure of
the spectrum M,,.

However, if w = (p&* —1,...,p% — 1) and at least one ¢; > 4, then clearly
0w(Ap,;) = 0. Hence in the ring @iqu)i it suffices to consider only ®;-®-S,, - P - P,
for w = (pP* —1,...,p% — 1), where all ¢; <.

Additive bases for the rings AY and A, ;:

a) AJ = (A, - S,)", where w is p-adic and A denotes completion (by formal
series).

b) Ap,i = (Ap,i . Sw)/\, w = (pjl - ].7 [N ’pjs - ].), ]k S i.

We consider the operations e; x = S(pi—1,... pi—1) (k times), regarded as elements
of the ring A, ;, i.e., ;1 = ®;25,PP;. Clearly, we have:

1) Ales k) = >, eis e,y (the projectors ®; and @ preserve the diagonal);
k=l+s
2) €] p(Api—1) =0
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3) €f1(yi) = p, where y; € A, ; C A, is the polynomial generator of dimension
pt—1.

We denote by & C A, ; the subring generated by the elements (e; ), k < 1.

We denote by D; the subring of A, ; spanned by &; and the operator of multi-
plication by the generator y;, i.e., D; = Qp[y:]&;.

We have the following

Lemma 11.1. a) The subring & commutes with all operators of multiplication
Ay i—1 C A, and all operators ®; 95,99, for allw = (p’* —1,...,p/s — 1), where
Jr<i—1

b) In the ring & we have the relations

k+s
€ik€is = s *€ik+sy

ek -yl = D elmy?) - eis,

s+m=i

where e, (y?) = (4,) "y

c) The ring Api—1 is obtained from the ring A,; by discarding the polynomial
generator y; and then factoring the remaining subring B,; C A,; by the ideal
spanned by the central subalgebra & of By, ;, where

Bpi={Api-1 (®;95,09,)}"
for all p-adic w.

The proof of all parts of Lemma 11.1 follows easily from what has preceded.

Thus, the ring A, ; is obtained from the ring A, ;_1 in the following way (in two
steps):

Step 1. Without altering the “ring of scalars” A, ;_1, we make a central exten-
sion of & 41 by Ap;:

0—& — By — Ap,i—l — 0,
with &; acting trivially on Ap;_i.

Step 2. We adjoin to the ring of scalars A, ;—1 a polynomial generator y; of
dimension p’ — 1, setting e}, (y;) = (})p*y?~* with all the consequences derived
from this.

The ring Q,[y;] - Bp.i coincides with A, ;, while the commutation rules for y; and
®;S,,®; are derived from part (b) of Lemma 11.1.

In particular, the action of the operators ®;5,,®; for w = (p’* — 1,...,p* — 1)
and for j, < i can also turn out to be nontrivial.

We shall denote ®S,® by P¥ when w = (p—1,...,p— 1) (k times).

We denote ®; P¥®; by P*. For p = 2 we set P* = qu.

As in the ordinary Steenrod algebra mod p, we have here the following fact:
the operations P* together with A, generate the entire ring Ag (it suffices to take
PP"). This follows easily from the fact that for the ring Ag ® Zy, it is easily derived
from the properties of the ordinary Steenrod algebra. Hence, it suffices to determine
only the action of the operators P* on the generators y; (and even only of the PP").

We now consider the ring D;, operating on the module Q,[y;], and the groups

Ethi (Qplyil, Qplys]). We set
=t = Ext3 (Qplyil, Qplyi]).
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We consider the groups I'** @ A, ;_1. We have

Lemma 11.2. a) There is a well-defined graded action of the ring Ap,—1 on
NIt ® A, i1 such that:

1) )\(l’ ®:u) =r® )‘/1'7 )‘7/1' € Ap,ifl - Ap,ifl;

2) if €1 = PiS, P,

€iw 6Ap,ifly w:(pi_]-v"'vpjs _1)a jj <7;»

then
oz = > e, (@) @6,

w=(w1,w2)

where €, (Api—1) is the ordinary action and €, () € T* ® Ap; 1 for x € T?,

1% € Ap,z?l;
b) we have the equality

Homzp)iﬂ (Ap’ifl, Fs’t & Ap’ifl)
=Homu, , ,(A4pi-1,Api-1) ® EXtSDl;t(Qp[yi}v Qplyil)-

Proof. Part (b) is obvious. To construct the action of A,; 1 on I'* ® A, ;1 we
note that the ring B; acts on A, ; = Q,[y] ® A, ;—1 naturally, while the action is
trivial on Aj,;—1. From this follows the natural action of the factor-ring A, ;1 on
the groups

Extp, (Ap,i, @plys]) = Extp, (Qp[y], Qply]) ® Api-1,
where D; = Qp[y] - £1. It is now easy to derive part (a). O

We note that the ring B; is a free right module over &;.
We have the following

Theorem 11.1. There exists a spectral sequence (Es,d,.), where:

a) Ey is associated with Exta, ,(Ap i, Api);

b) E¥? coincides with Extip i_l(Ap,i—l7Fq ® Api—1), where 7T ® Ap ;1 is a
Ayp.i—1-module by virtue of Lemma 11.2;

¢) d.: BP9 — EPTHa="+Ll gll differentials d, preserve the dimension of elements
induced by the dimension of rings and modules;

d) ES’O = EXtip,i_l(Ap,i—la Api-1);

e) the spectral sequence (E,,d,) is a spectral sequence of rings, where the multi-
plicative structure is induced by the diagonal A of the ring A, ;.

The proof of this theorem is more or less standard and is constructed by starting
from the double complex corresponding to the central extension B; of the rings
&, Api—1. We shall not give it here.

For what follows it will be useful to us to compute Ext}y (Qp[y], Q@p[y]). We note
that A, 1 = D1, and the calculation of these groups gives certain information about
the ring

Ext v (U*(P),U*(P)) @z Qp.

Lemma 11.3. Let C be a bigraded differential ring over Qp, which is associative
and is generated by elements

re 00,2171?2’ h; € Cl,2j(pi*1)’ j>1,
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such that:
1) phj+1 = [I,hj] = .CChj — hjdf;
2) d(z) = phy;

+1 )
3) d(h1) =0, d(hj41)= Z (J i )thrlk chi, 321
k=1
4) d(uwv) = (du)v + (—1)*u(dv) where u € C*. Here, d is the differential in the
ring C**.
Then the cohomology ring H**(C) is canonically isomorphic to the ring
Extp, (@plyil, @plyil)-

The proof of the lemma consists in constructing a D;-free acyclic resolution F of
the module Q[y;+1], having the form Q,[y] - F, where F is a standard resolution
over &; of the trivial module Q, = &;/ &;, where &; is the set of elements of positive
dimension and &; is described in Lemma 11.1. The ring &; has a diagonal, as
do D; and Q,ly]. Hence the complex HomJ (F, @Q,[y]) is a ring, which coincides
exactly, as is easy to verify, with the ring C' together with the differential operator
d. Whence the lemma follows.

From Lemma 11.3 it is easy to derive

J

Lemma 11.4. a) For p = 2 the cohomology ring H**(C ® Z3) is isomorphic to
the polynomial algebra Zs[x] ® Zalhy, ha, ..., hor] with Bokstein homomorphism 3
of the following form:

1) B(x) = ha; '

2) B(hor) = B2y, k> 1, & € HY2@' =D hyo € H2W ' -10(C @ Zy).

b) For p > 2 the ring H**(C ® Zy,) is isomorphic to the ring

Zplx] @ Ahy, by, oo hyey o ] @ Zp (Vs oo Vi -+ ),

where
hye € HY2P" 0 =D(0; @ Z,),
€ H>?'@0'-0(C; @ 7,),
r € HO?' 22(C; @ Z,)
and the Bokstein homomorphism B has the following:
1) B(x) = hy;
2) ﬁ(hpk) =, k> 1.
¢) The group Ext5'(Qplyil, Qplui]) is nontrivial for ¢ = 2p(p —2), q > 1,

and is isomorphic to the cyclic group Zg), where f(q) — 1 is equal to the
largest power of p which divides q. We shall denote the generator of the group

Extp. """ (Qply], Qply)) by -
d) The image of the homomorphism of “reduction modulo p,”

a: Ext"2P D (Q,ly], Qply)) — HY9P'-D(C; @ Z,)

is generated by the following elements:
1) hiz?t for p > 2 and all q,
2) hiz? ! forq=2 and ¢ =1 mod 2,
3) hix?™ ! 4+ hoz?2 for p=2 and ¢ =0 mod 2.



METHODS OF ALGEBRAIC TOPOLOGY FROM COBORDISM THEORY 59

e) For allt > 1, in the groups HY*(C; ® Z3) the kernel Ker 8 coincides with the
image Im 3. Hence, the homomorphism of reduction modulo p,

ap: Ext (Qulyil, Qplyi]) — HY(Ci © Z,)
is an isomorphism on the kernel Ker 8 = Im 8 and none of these groups has ele-
ments of order p>.

The proof of (a) and (b) follows easily from the form of the ring C' — in particular,
from the fact that C'® Z, is commutative, C' is obtained from the standard &;-
resolution and & ® Z, has a system of generators {l; ,; }, while

H™(C; ® Zp) = Zp[x] ® EXt&-@Zp(va Zp)-

The structure of the Bokstein homomorphism S is derived immediately from
Lemma 11.3.
Part (c) follows from the fact that e, (yf) = > (#)p*x77", as was shown in
E>1

Lemma 11.1, and from the construction of the standard &-resolution F for the
module &;/&; = @, and the differential d* in the complex Hom™(Qp[yi] - F, Qplyi])-

Namely, we have:
d*(:Z?q) = Z (Z) pkhkzqik.

E>1
Part (d) is derived from the fact that ﬁd(xq) mod p is equal to hyx9~! for p > 2
orp=2,q=2s+1, and is equal to hyzd~ ! + hox?2 for p = 2, ¢ = 2s.

We shall now prove part (e). Since the homomorphism £ is a differential operator,
it suffices to show that H'(H*(C; ® Z,),3) = 0 for t > 1. The structure of the
homomorphism /3 was determined in parts (a) and (b) of Lemma 11.4, and the
required fact is easily derived from the usual homological arguments. The lemma
is proved.

1. The ring structure in Extp (Qp[y], @ply]) completely follows from Lemma
11.4, since the homomorphism of reduction modulo p,

Qp: EXtB; (Qp[y]7 Qp[y]) — H™(C; ® Zp)v

is a monomorphism on Ker 8 and in dimensions > 2; hence, from a,(zy) = 0 it
follows that xy = 0 for elements x,y of positive dimension. The image of the
homomorphism a,(Ext}; ) coincides with Ker § in all dimensions > 1, although
Ker a, is nontrivial in dimension 1 [see parts (c¢) and (d)].

2. The product Ext}:;j ® Ext}:;j (Qply], @ply]) is identically equal to zero for p > 2.

3. A basis for the group Ext%j (Qply], @ply]) is completely given by the set of
elements:

a) a,(cm) = B(hxz™), k>1, m >0 where p > 2, where

B(hyra™) = (yez™ — mhyrhy) € Ext%Ekarzm)(le),
b) af' = Blhgea™) = (hgk,lxm + mhgrh1z™ 1) where p = 2,k > 2,m > 0.
4. For p = 2 the product Extp* ® Ext;;" — Ext};" is defined by the formulas:

a) Ogg41 - 0241 = a§2q”l),
b) 62q+1 . 62l _ a52q+2l71)7
0) G- o = Q20H2D) | ((2a2=0)
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In particular, we shall denote the element §; by h € Ext"?. Hence, from (a) and
(b) it follows that

52q+1 . (;m = h52q+m for all q,m.
We note that Dy = A, ; and there is defined a natural homomorphism

t

. ® . .
Extp’ (Qplya], Qplyn]) = Exti (U™(P),U™(P)) ©z Qy.
From Lemma 11.4 and the results of §§ 7, 8 is derived the following
Theorem 11.2. a) For t = 1 the homomorphism 'yél) is @ monomorphism.

b) For all p > 2 the homomorphism 'y}(jl) is an isomorphism.

(1)

c¢) For p = 2 the homomorphism ~p ' is an isomorphism on the groups Ext!??

for ¢ = 2 and for q odd; for ¢ = 2s, s > 2, the image of the homomorphism 751)

nas index 1 or 2 in Exti"gq ®zQ2 and in fact index 2 for all ¢ =4s, s > 1.

d) For all g =4s+1 and ¢ = 4s + 2 the image Im ’ygl) coincides with the image
of the Hopf invariant ¢¥ (m.(S™)) = ¢¥ (Jm.(SO)). For p > 2 the image Im%(,l)
coincides with the image of the Hopf invariant ¢¢ (7.(S™)) = ¢V (J7.(S0)).

In the formulation of Theorem 11.2 the calculation of the group Extif,k'|r4 ®zQp
not complete — is the homomorphism 'yél) an epimorphism or does Im~3 have
index 27

For the study of this question we shall use the spectral sequence (E,,d,) de-
scribed in Theorem 11.1, which converges to the groups Ext 4, , (A22, A2 2). Namely,

we must compute the groups Eg 1 and the differential
dy: Byt — EY° m Exty, (Ao, Aoy) = Exth (Qaly1], Q2ly]).

The groups Ex‘c%1 were computed in Lemma 11.4 for all p > 2. We may assume
that y; = [CPP~!] € Qp and

e = (1O NP = aa + el
where x; = [CPpi_l]. Moreover, by the integrality of the Todd genus we can set
A=p—1and ) .
Y2 = 5(582 +p-1237), p=a1
We have:

Apr = Qplin],  Ap2 = @plyr, v2).
The action of the operation ® - P¥ - ® on A, ; and A, 5 is given by the formulas:

vt aial) = (1)t

0, k#p, p+1,
2
P
r1, k=p,
O P*B(xy) = (p) 1 p

2
P
L k=p+1.
(p+1> P

As a consequence of this we have
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Lemma 11.5. The action of the operators P* on the generators yi of the ring A, »
is given by the following formula:

(@PF ) () = 3 yg—’f®< ) Pll<y2>o--~oplk<y2>> o (Z)]

k>1 ;>0
1. >0
S =k
where (la, ..., l;) is an ordered partition of the integer k and
1 p+1 _
) Plm) = 2(Pe) + (o= P ) = = 0 (7T ptat ™ ot £,
p+1

=3 ()5
o (7))

We note that P'(ys) is divisible by p for 1 # p and PP(yz) is not divisible by p.

Now we can describe the action of the ring A,; on I'' @ A,;, where
e = EXti’)j(Qp[yﬂ»Qp[yz]) and A\p1 = Qplyn] = Qplza], 21 = [CPP.
The groups I''* were computed in Lemma 11.4, part (c). The generator of
the group Extl’q(pz_l)(Qp[yg],Qp[yg]) is obtained as d*(z?)/p’(¥ in the com-
plex Homp,, (F,Qp[y2]) where F is a Ds-free acyclic resolution of the module
Qply2], 27 € Hom™ (D2, Qply2]) is an element such that x%(1) = i, f(q) — 1 is
the maximal power of p which divides ¢, and d* is the differential in the complex
Homp, (F, Qp[y2])-

We set .
Pryd) => yi e,
k=1
where
q
ag = Z PZ(Z/2)~-PZS(y2)(k>
> li=
;>0

by virtue of Lemma 11.5 and ax € Qp[y1], ar = \*y;*. From what has been said it
is easy to derive

Lemma 11.6. The action of the ring A, 1 = D1 on T' ® Qplys] is described in the
following fashion:
g—1
Pk(aq) — Zaqik ® pfa=k=1(0) o g, .
k=1
where , )
aq € TV200° =) = Ext 120 (@, [ya], Qply2))

are generators (their orders are p'9) and aj, € Q,[y1] is described in Lemma 11.4.

Lemma 11.6 follows easily from Lemma 11.4 and the definition of the generators
ag = d*z?/p’ @ where 27 € Hom*(F,Q,[ys]) is such that z9(1) = yd € Qp[ya)-
Further, we compute Homzp 1(Ap72,].—‘1 Q@ Ap1) = Eg’l in the spectral sequence
(FE3,d3) of Theorem 11.1, which converges to Extj\*p‘z (Ap2,Ap2); here Ay, = Dy

and Ap 1 = Qply1].
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We have the following

Lemma 11.7. The groups HomtAm (Ap1, 7T @Ay 1) are spanned by generators ki 4

of dimension 2p*(p? — 1) +2q(p — 1) for all i > 0, q¢ > 0, where the order of the
generator K; g 1S p.

The proof of the lemma follows easily from Lemma 11.5 and 11.6 by direct
calculation.
Since Hom} , (Ap 1, I ®A,1) = Ey', our problem is to calculate dy: ES' —

E3Y = Extip_l(Ap71,Ap71), where the latter groups are computed in Lemma 11.4
and in the conclusions drawn from it.
Direct calculation proves

Lemma 11.8. The differential dy: ES' — E2° of the spectral sequence (E,.,d,.)
converging to Exta, ,(Ap 2, Ap2) is given by the following formula:

do(kit) = Blhyiria? 4 hya? ), i>0, >0,

where hy,: and x are in the notation of Lemma 11.4, and (3 is the Bokstein homo-
morphism H**(C') — Extp, (Qplz1]) described in Lemma 11.4.

From Lemma 11.8 follows the important

Corollary 11.1. a) For p > 2, the kernel Ker d2|E8’1 18 trivial;
b) For p = 2, the kernel Ker dg|E§"1 is generated by elements

R0,2t4+1 S HOIH%:IS(APJ; Fl ® Ap’l), t Z 0.
Hence, the image of the homomorphism

EthA’jf;rg(ApJ? Ap1) = EthlaétJrS(Ap,?? Ap2)
has index 2 for all t > 0.

Parts (a) and (b) of the corollary are derived in an obvious way from the structure
of the homomorphism 3, which was completely described in Lemma 11.4. The sharp
distinction between the cases p = 2 and p > 2 is explained by the fact that for p > 2
we have h? = 0 and B(h12°) = 0 for all s > 0, while for p = 2, B(hyz25t1) # 0.

Comparing part (b) of Corollary 11.1 with Theorem 11.2, we obtain the following
result.

Theorem 11.3. a) In all dimensions t # 4, the order of the cyclic

group Extz’f,(U*(P),U*(P)) coincides exactly with the order of the group

Ext114’£ (K*(P),K*(P)), and this isomorphism is induced by the Riemann—Roch
v

functor .
b) The Hopf invariant

@1 Tryt—1(S™) — Extz’f, (U*(P),U*(P))

is an epimorphism for t = 8k, t = 8k + 2 and t = 4, and the image Im q; has
index 2 inExtz’f,, fort=8k+6,k>0, andt=8k+4, k> 1.
Corollary 11.2. The generators a, of the groups Ext 700 (U*(P), U*(P)) are cycles

AU
for all Adams differentials d; for ¢ = 4s, 4s+ 1, s > 0, and ¢ = 2, and are not
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cycles for all differentials for ¢ = 4s—1, 4s+2, s > 1 (the elements 2ay are cycles
for all differentials)*.

Supplementary remark. It is possible in all dimensions to prove the formula
ds(ag) = h3 -y for ¢ = 4s — 1, 4s +2, s > 1, where h = oy € Ext;’?}. In
particular, for ¢ = 4s + 2 this follows from the fact that h3a,_o # 0 in Extiu,

while at the same time o> is realized by the image of the J-homomorphism, and
we must have in Eo that h3ay_o = 0.

§ 12. THE ADAMS SPECTRAL SEQUENCE AND DOUBLE COMPLEXES.
COMPARISON OF DIFFERENT COHOMOLOGY THEORIES
We assume that there is given a complex Y =Y_; € S and a filtration
Y —Yy—Yi— =Y, — ...
where the complex of AX-modules {X*(Y;,Y;41) = M;}

9

M={My &M — My — ... &M — ..}

is acyclic in the sense that H;(M) =0, i > 0, and Ho(M) = X*(Y). The modules
M; are not assumed to be projective. In the usual way a double complex of AX-free
modules N = (N,;) is constructed.

Nio N1 Nio
dy ldl ldl

do do
No,o No No2

such that (a) didy = —dady; (b) {— -+ — Nij 2 Ny_y; — ...} for all j is
an AX-free acyclic resolution of the module M;; (c) if Qx = . N;; and d =
j+i=k

dy +da: Qr — Qp—1, then the complex {Qy 4, Qr—1 — ...} is an AX-free acyclic
resolution of the module X*(Y); (d) the complex N; = {— N, ; &, i1 = e}
is such that Hy(N;) = 0 for k > 0, Ho(N;) is a free AX-module and the complex
{... Ho(Nyg) 4, Ho(Ny_1) — ...} represents an AX-free acyclic resolution of the
module X*(Y).

As usual, there arises a spectral sequence of the double complex (E%?, d,.), where

. tq t+r,q—r+1
dr: BV — EY

and
EYY = Extlyx (M, L),

“We take this opportunity to note the small computational error in parts (3) and (4) of Theo-
rem 5 of the author’s paper [19], which is completely corrected in Theorem 11.3 and Corollary 11.2
of the present paper.
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with L an arbitrary AX-module; this spectral sequence converges to Ext 4x (X*(Y), L).

Definition 12.1. By a geometric realization of the double complex N = (N;;) in
the category S or S ®z Q) is meant a set of objects (Z;;), ¢ > —1, j > —1, and
morphisms

Z 1,1 Z 1,0 Z_11
Zo,-1 Z0,0 Zo,1
Z1, 1 Z1 Z11

with the following properties:

a) Z_1-1=Y,Y; =Z_;, and the filtration Z_; _; < Z_1 ... coincides with
the filtration Y « Yy « -+ « Y; «— ...

b) The filtration

Yi/Yis1 =Z_1,/Z 1,41 — 20/ Z0,i+1 — 21,/ 2141 — - - -
represents a geometric realization of the AX-free resolution of the module
X*(Yi/Yiq1) = M,
(M; & No; &2 Ny, &2 )

and hence X*(Zk,i/Zk,i+1 @] Zk+1,i) = Ny,

¢) The differentials dy: Ny ; — Ni_1,; and dg: N ; — Ny ;—1 coincide with the
natural homomorphisms

* d *

X (Zri) Zris1 U Ziyri) = X (Zi-1,i/Zki U Zi—1,i41),
* d *

X (Zri) Zris1 U Zigri) = X (Ziyio1/Zki U Zigr,i-1)-

We make some deductions fromi the properties of the geometric realization of a
double complex:

1. The filtration Z_1 1 =Y < Zy, 1+ Z1,_1 < -+ < Z;, 1 < ... represents
the geometric realization of the AX-free resolution {H*(Ny) L2 ppe (N1) «— ...}
2. The filtration Y «— Z_19UZp—1 <« --- U Z;; < ... represents the
iti=k—1

geometric realization of the AX-free resolution
X*(Y) < Noo <2 Noy+ Nijg e - Z Nij,
i+j=Fk
where d = di + ds.

3. The double complex (Z) defines two Adams spectral sequences:
a) the Adams spectral sequence E,. x in the theory X*, induced by the filtration

Y<—Z07_1UZ_1,0<—---<— U G, T e
i+j=k—1

with term E§ = Ext®x (X*(Y), X*(K)) for any K € S;
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b) the spectral sequence £, of the filtration

with term E; = {Hom*(K,Y;/Y;41)}.

In view of the presence of the double filtration (Z;;) of the complex Y in all terms
of both Adams spectral sequences there arises yet another filtration: in the first
case it is equal to ¢(x), * € E¥, where ¢(z) coincides in E% with the filtration in
Ext” « (X*(Y), X*(K)) induced by the non-free resolution X*(Y') «— My «— M; «—

., and in E* is induced by the geometric filtration

U Zi,jD"'D U Zi,jD"'DZ,Lk.
i+j=k—1 i+j=k—1
i<k i<k—p(x)
c) For the second Adams spectral sequence the filtration in £¥ and E¥_ is induced
by the geometric filtration

Z71’]cDZ(),kD"~DZ5’kD....

We shall denote it by ¥(y), y € E,..

In addition, each of the indicated spectral sequences defines in the groups of
homotopy classes of mappings Hom™ (K, Y") the usual filtration i(z), whose corre-
sponding index i is such that the element z € Hom*(K,Y) is nontrivial in EY and
trivial in EJ_ for j > i. For the Adams spectral sequence of the theory X* we
shall denote this filtration by ix. We have the double filtration [ix (x), ¢(x)] where
x € Hom"(K,Y), ¢(x) < i,(z).

The second Adams spectral sequence for Hom* (K, Y), induced by the filtration

Y—Yy—Y— - =Y — ...

also induces a double filtration in Hom*(K,Y"): [i(z), U(z)].
From the construction of the double complex it is obvious that we have

Lemma 12.1. The filtrations described above are related by
i(z) < ¢(z) < ix(z) <i(x) + ¥(2)

for all x € Hom™(K,Y) in the presence of a geometric realization of the double
complex defining both Adams spectral sequences.

By standard methods one proves

Lemma 12.2. If X* is the theory of Z,-cohomology, then for any acyclic filtration
Y =Y 1« Yy« Y] « ... there exists a geometrically realizable A-free double
complex (Z), where A is the ordinary Steenrod algebra.

The proof of this lemma is obtained easily by the methods of [1].

The most important example which we consider here is the theory of cobordism
in the category S ®z Qp:

a) Y € D, i.e., H*(Y, Q) has no torsion.

b) X = H*( ,Z,), AX = A.

c¢) The filtration Y D Yy D Y7 D ... is an acyclic free filtration in the theory
U* @z Qp or in the theory U,y C U* ®z Q. By virtue of the exactness of the
functor Uy — H*(,Zp) in the category D, the filtration Y D Y5 D ... is also
acyclic (although not free) in the theory X = H*( ,Z,).

In this example, the filtration i(z) is a homotopy invariant, with i(x) = iy, (z),
where Uy is cobordism theory. Moreover, we have
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Lemma 12.3. a) All the filtrations ix, iy,, ¢, ¥, for X* = H*(,Z,), a U;-
free acyclic filtration Y D Yy D Y1 D ... in the category S ®z Qp and any X™*-free
acyclic double complex (Z) are homotopy invariants of Y, and we have the following
inequalities:
ivy () < ¢(x) <ip-( z,)(x) <ivs(z) + ¥(2),

where i = ius, ix =1lg=(,z) are the respective filtrations in the theories U™ @z Q)
and H*( ,Z,).

b) The second Adams spectral sequence E,. coincides in this case with the Adams
spectral sequence in the theory U* ®z Q, for r > 2.

c) Both Adams spectral sequences E, in the theories X* = H*( ,Z,) and U* ®y
Qp (or U;) in our case preserve, respectively, the filtrations ¢ and .

d) The Adams spectral sequence in the theory H*( , Z,) is such that each differ-
ential d,. for r > 2 raises the filtration ¢ at least by 1, i.e.,

o(dry) > o(y) +1, yeE,.

For the proof of (a) we note that the Uy-filtration Y > Yy D Y3 D ... depends
functorially on the Up,-free resolution and is uniquely determined by it. For a fixed
Up-filtration the same thing is true with respect to the double complex N and the
double filtration (Z) defined by it. Parts (b) and (c) are obvious. Part (d) follows
immediately from the fact that the complex Y; /Y11 is a direct sum of spectra M,
of the theory U, up to suspension. For such objects the Adams spectral sequence
has zero differentials for » > 2, as was proved by Milnor and the author [15, 17, 18].

The lemma is proved.

We now consider the graded ring A, C Qu®zQ,, where A, = Qp[z1,..., T4y ...],
dim z; = 2p’ —2. The ring A, is alocal ring: it has a unique maximal ideal m C A,

such that A,/m = Z,. Hence the bigraded ring A, = Y m’/m**! is an algebra over
_ i=0

Zy, and Ay = Zplho, h1, ..., h;,...], where hg is associated with multiplication by

p and dim h; = (1,2p* — 1), i.e., h; € m/m?. Clearly (\m® = 0 and, by [15, 17, 18],

we have:

Ap = Exty (H* (M, Zp), Zy).

As was established in § 11, the action of the ring ApU on A, = Uj(P) preserves
the filtration generated by the maximal ideal m. Hence it defines an action on A,
which is described as follows:

1) the action of A, on A, is defined by multiplication;

2) the action of P* on A, is defined so that

PP (hi) = h;_y and P/(hg) =0, j>1, Pab)= Y  P'(a)P*(b).
l+s=k

We consider the ring A associated to AJ by the filtration AY > mAY > ... 5
miAg D .... We note that in the ordinary Steenrod algebra A there is a normal
(exterior) subalgebra @ C A, Q@ = A(Qo,...,Qi,...), dimQ; = 2p° — 1, such
that A//Q is isomorphic to the quotient A/BA U AB and Ext(H*(M,, Z,)) =
EXtQ(Zp, Zp) = Ap = Zp[h,o7 h17 ey hi7 . ]

From the results of § 11 and the structure of the Steenrod algebra A follows

Lemma 12.4. The algebra A associated to the ring Ag 18 isomorphic to (j_Xp~
A//Q)", where the commutation law ah = Y al(h)a; is given by the action of
i
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A//Q on A, defined by the formulas PP (h,) = hy_1, 7 > 1, P*(ho) = 0 for k > 0,
and Aa =3 a; ® a;, where A: A//Q — A//Q® A//Q is the diagonal and Pk s

7
the ordinary Steenrod power.

We note now the following identity:
Ext (Ap, A}) = Ext’y/ /o (Zp, AL) = Ext?y ) 1o (Zy, Ext(Zy, Zy))
(here, ¢ is the dimension in A, defined by the filtration Al, = m!/m'*!). Moreover,
if Y C Dy, then for LP = U;(Y) and M = H*(Y, Z,) = L/mL we have:
a) M is an A//D-module;
b) there exists the identity
Ext% (L, A,) = Ext) ) o (M, Extg(Zy, Z,)),

where L = 3" m'L/m'*1L is an A-module and, clearly, a A,-free module.

Two spectral sequences (E,.), (E,.) arise, both with the term
By = Ey = Exta//q(M,Exto(Zy, Zp)).

These sequences have the following properties:
1) In the first, which converges to Ext4(M, Z,), we have

7 . st [s+r,t—r+1
d.: B3t = B .

2) In the second, which is induced by the filtrations in A, Ag , L and which
converges to ExtAg(L, A,), we have:

L st Pl tdr—1
dr: B — E7 .

3) dy =dy and E3' = E3" = Bxt}y /o (M, Exty(Zp, Zy)). ) )
4) In both spectral sequences there is yet another grading ES' = >~ E59 and
q

Ef’t = ZEﬁ’t’q7 induced by the dimensions in all modules and algebras which
q
appear, and connected to the spectral sequences as follows:

a) the third grading ¢ is preserved by all differentials d, of the spectral sequence
E, which converges to Ext 4 (M, Z,);
. _t7 . . . . .
b) since tigm AL is associated to A}, the third grading ¢ in the second spec-

tral sequence E’T, which converges to ExtAg(L, Ap), is increased by r — 1 by the

differential d,.:
d,: Ef’t’q N Eerr,tfrJrl,q’

. s,t,q :s+1,t+r71,q+r71
dp: B — B .

5). a) The group 3. E%H9 is associated with
s+t=m

ExtT™(M, Z,) = Ext™ Y (H*(Y, Z,), Z,).

b) The group Y. E259 is associated with
q—t=l

Extyy (L, Ap) = Extyyy (U(Y), U (P)) @z Qy,
where L = U*(Y), A, = U;(P).
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Thus, in the groups

= Bt oM, Bxt 2 2)

we have two “dimensions”: (m,q) = (s+1,q) is the “cohomological” and (s,q—t) =
(s,1) is the “unitary” (in U-cobordism). The “geometric” dimension (of the homo-
topy groups) isequaltog—m=1—s=q—s—t.

We note the important fact: the dimension of the element Jr(y) for the element
y of “unitary” dimension (s,!) is equal to (s + r,l + r — 1), where | = g — ¢; and,
conversely, Jr(y) of an element of “cohomological” dimension (m,¢) has “cohomo-
logical” dimension (m+7r,q+7r—1), m = s+t. This means that both these spectral
sequences have the form of the Adams spectral sequence, although they are defined
purely algebraically by the ring Ag .

Up to this point there has been no difference between p = 2 and p > 2, if
we speak of the results if this section. However, the following theorem shows the
comparative simplicity of the case p > 2.

Theorem 12.1. For any p > 2 and complexY C D,,, the spectral sequence (Er, CZT)
has all differentials d,. = 0 for r > 2. The groups

> EStT= Y Extyd o (M, Extg(Z,, Zp))
s+t=m s+t=m
are isomorphic to Ext")*"(M, Z,), where M = H*(Y, Z,),
Ext()(Zp, Zp) = Zplho, - .., hi,...], dimh; = (1,2p" — 1),

and the algebra A//Q generated by the Steenrod powers PP acts on Extq(Z,, Zp)
in the following way: PP (hiy1) = hi, P*(hg) = 0 for k > 0, and P*(zy) =
> P x)P(y).

i+j=k
From Theorem 12.1 follows

Corollary 12.1. For any complez Y € D,, where p > 2, there is defined an “alge-
braic Adams spectral sequence” (E,.,d,.), where E5"? = Ext%?, (M, Ext()(Zp, Zp)),

N - AllQ °
the group > E~§’t’q = E~£n’q is associated to Ext’\""(M,Z,), d,: Eﬁ’t*q —
s+t=m
Esttttr=Latr=1"und the group Y. E;)j,q is associated to EXtZ}}(U;(Y), Uy (P)),
t—q=l P
M = H*(Y, Z,).

We prove Theorem 12.1. In the Steenrod algebra A for p > 2 there is defined a
second grading — the so-called “type in the sense of Cartan,” equal to the number
of occurrences of the homomorphism 3 in the iteration. We shall denote by 7(a) >
0 the type of the operation a € A, with A = > A7, where 7 is the type and

T

A™ . AT C ATtz By the same token, for any Y € D, there is an extra grading
— the type 7 — in the groups Ext (M, Z,), and

Exty' (M, Z,) = > Ext}' " "(M, Z,),

>0
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where [ —7 =0 mod 2p — 2. We note that for Q C A, 7(Q,.) = 1 and 7(P*) = 0.
It is also obvious that 7(h;) =1, h; € Exté?(Zp7 Z.), and the type is an invariant
of the spectral sequence (CZ,., E,.) for r > 1.

Since the type is trivial on the ring A//Q, and A//Q C A, all d, =0 for r > 2,
since on the groups Exti;?/Q(Zp,Extﬁg(Zp, Z,)) the type 7 =t and 7(d,y) = 7(y)
for r > 1.

This implies the isomorphism

Exty (M, Z,) = > Exty? (M, Exty(Zp, Z,))
s+t=m

and E~I2 = Eoo. The theorem is proved.
From the proof of Theorem 12.1 follows

Corollary 12.2. The second term of the “algebraic Adams spectral sequence”

(ET,JT) of Corollary 12.1 is canonically isomorphic to the sum ZESt 9. where

EyY = Ext%"(M, Z,), t is the Cartan type, M = H*(Y,Z,) for Y € D,, and
S Ext%M(M, Z,) = Ext’y (M, Z,).

t+s=m
In this spectral sequence

7. Psita Frs+1,t4r—1,q+r—1
dr: E2" — E7

and the group > E” 7 is associated to Ext®; (U*( ), Uy (P)).
t—q=l

From the geometric realization of double complexes as defined above, Theo-
rem 12.1 and Corollaries 12.1, 12.2, there follows

Theorem 12.2. The “algebraic Adams spectral sequence” (ET, (L) 1s associated to
the Adams spectral sequence (E,,d,) in H*( , Z,)-cohomology theory for all p > 2
in the following sense:

1) E;mq _ Z Ew;,t,q — EX‘GZL’q(M, Zp);

s+t=m
2) if for some y € B9 we have d;(y) = 0 fori < k and dk(y) # 0, then there is
a g such that o(y—7g) > ¢(g)+1, d;(g) =0 fori < k, and di(3) # 0, and moreover
O(dig) = ¢(§) + 1, where () = ¢(y) =t and ¢(drf — dry) > $(7) + 1
3) if y € Ext\"1(M, Z,) is such that d;(g) = 0 for i < k and ¢(dy) > ¢(y) + 1

then for the projection y of the element ¥ in Extzl_(b('g)"b(ﬂ)’q(M,Zp) we

have the equation Jl(y) = 0 for i < k (we note that for elements y €
> Ext}"(M, Zp), 0(y) = ).

t>a

The groups Ext1 0 (U*( ), Uy (P)) were computed in previous sections; they are
cyclic for s = 2]<:(p— 1) of order Pf(*) where f(k)—1 is the exponent of the greatest
power of p which divides k.

Corollary 12.3. The generator ay, of the group Ext1 2k (p= 1)(A Ap) has filtration
(1,k— f(k)) or, in other words, ¢(ay) =k — f(k) in the term E of the “algebraic
Adams spectral sequence” (Er,cir) for p > 2. Since Exti’g, (Ap,Ap) consists of
cycles for all Adams differentials in Uy -theory, di(ar) =0, i > 2, and there is an
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associated element &y, € T, (S™); we have ¢p(ax) =k — f(k), iv(ar) =1, ig(ay) <
k— f(k)+1.

Proof. As was shown in § 11, the homomorphism Extb1 (Ap1,Ap1) —
Extlo (Ap,Ap) is an epimorphism for p > 2. For the ring D; and the mod-
ule A;l = @Qp[zr1] the ring C = Hom™(F, A, 1) was determined (see Lemma 11.4),
where ¢(z) = 1, ¢(h;) = 0, ¢(p) = 1 and d(z*) > (’;)pjxk’jhj. The element ay
was represented by ap = (1/pf*)d(z*).

From this we have:

) = min j Mf) Fik—j— f)] =k = f(B)

Thus, the filtration ¢ of the element oy, is equal to k — f(k), since the filtration ¢
is induced by the filtration in the ring A,. The Corollary is proved. O

As is known, the groups Exti{s(Zp, Z,) are equal to Z, for s = 1 or s = 2p/ (p—1)
and are generated by elements u;, j > 0, of type 0 for s = 2p7(p — 1) and hg €

Ext?q’l’1 of type 1 in the sense of Cartan.

Hence, u; € Bxt}*?' @V (7, 7y and hy € Ext} ' (Z,, Z,), where Ext7? =

4}: Exti;t’q and t is the type. In the groups Exti’% ‘®=1 {here are nonzero
S =m
elements y;,¢ > 1, having type 0.

Corollary 12.4. In the “algebraic Adams spectral sequence” we have the equation
da(ui) = hovi, fori>1.

The proof, by analogy with the proof of Corollary 12.3, follows easily from the
structure of the homomorphism 5 in H(C ® Z,), where G(hpi) = ~y; for ¢ > 1 (see
Lemma 11.4).

Thus, we see that with the help of the “algebraic Adams spectral sequence” it is
not only possible to prove the absence of elements with Hopf—Steenrod invariant 1,
but also to compute (ordinary) Adams differentials by purely algebraic methods
which come from the ring AY.

Conjecture. For p > 2 the “algebraic Adams spectral sequence,” which con-
verges to Ext v (U*(P),U*(P)) ®z @p, coincides with the “real” Adams spectral
sequence, and the homotopy groups of spheres m,.(S™) ®z @, are associated to
Ext v (U*(P),U*(P)) @z Qp. {Equivalently: all differentials d,., r > 2, are zero in
the Adams spectral sequence over U;j.}

We now consider p = 2. As was indicated earlier, here there are two spectral se-
quences (E,,d,) and (E,,d,), where Ey = FEy = Extasq(M,A), M = H*(X, Z),
and Ay = Ext(y(Z2, Z2) is associated to U (P) = Ay. The sequence (E,,d,) con-
verges to Ext 4u (U3 (X), A2) and (E,,d,) converges to Ext (M, Zs).

By analogy with Theorem 12.2 for p > 2, here we have

Theorem 12.3. The differentials JI are associated with the Adams differentials
in Cobordism theory on the group E. associated with Ext v (U3 (X), A2).  The

diﬁerential{j?« are associated with the Adams differentials in H*( , Zy)-theory on
the groups Eo associated with Ext o (H*(X, Zs), Zs), where X € D.
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The proof of Theorem 12.3, as of 12.2, follows immediately from the properties
of the geometric realization of the double complex.

Thus, for p = 2, it is possible to compute the Adams differentials in H*( , Z3)-
theory, starting from cobordism, and conversely.

Question. Do the algebraic Adams spectral sequences E, and E, define the
real Adams spectral sequences in both theories?

In any case in all examples known to the author all Adams differentials are
subsumed under this scheme.

Example. Let X = MSU. We consider Exta,/q(M, A), where M =
H*(X, Z). We write an A//Q-resolution of the module M:

We recall that M = F + > M,,, where F is A//Q-free and Mw has one generator

u,, for all w = (4ky,...,4k,) and is given by the relations Sq*u, = 0 over A//Q,
where dimu,, = 8 k;. Hence one can assume that C = C(F)+ > C(M,,), where
C(F) = F and C(M, ) has the form:

CM)=(—... 5 4//Q%A4//Q— ... 5 A4//)Q 5 M,),

where u; is a generator of C;(M,,) and du; = Sq2 u;_1. The action of Sq2 on A,
was indicated earlier: Ay = Zs[hg, ..., hi,...], dimh; = (1,271 — 1), i > 0, while
Sq2 h1 = ho.
There follows straightforwardly (by direct calculation)

Lemma 12.5. Ext}}) o (M., As) for w = (0) has a system of multiplicative gener-
ators:

ho € Ext®t 2 e Extb®? h; e Exto’l’y“_l, 1>2, yE Ext%26
and is given by the relation hoxy = 0.

We note that the dimension of Ext®"? in H*( , Z,) is equal to (s +t,¢) and the
dimension in Uj-theory is equal to (s,q —t) (see above).

We now describe the spectral sequences E, \, Ext4 and E, \, Ext AU

Lemma 12.6. a) The spectral sequence (ET,CZT) 18 such that:
ds(y) = 2%, ds(ho) = ds(x1) = ds(hs) = ds(v, = 0),
d~3|HomA//Q(F,/_X2) =0

and all d, =0 forr=3.

b) The spectral sequence

(Ey,d,) is such that:
J (V@) = T1hisa, 020,
da (1) = da(hs) = 52@) = dyvo) =0, k#2,
dy(Hom 4/ (F, As)) = 0
M=F+Y M,,
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where F is A//Q-free, c?T = 0 for r < 2 (we note that v, is conjugate to the
generator u,, of the module M,,, w = (k1,...,ks), dimu, = 8> k;) and v,v., =
V(wwy) bY virtue of the diagonal in the module M).

The proof of Lemma 12.6 for E, follows easily from the calculations [18] for
Ext (M, Zy). For the case (E,,d,), part (b) of Lemma 12.6 follows from the fact
that the elements , hi2 must be zero in Ext v (U3 (U3 (MSU), A2) on the basis
of § 7.

Corollary 12.5. For MSU, the Adams spectral sequence (in U-cobordlsm and
H*( , Zy)-theory) determined by the algebraic spectral sequences E, and E,.

In analogous fashion it can be shown that all known Adams differentials for
X = P in both homology theories (the case of the homotopy groups of spheres) are
also determined by E,, E, and dy, dy.

By analogy with the case p > 2, bounds can be determined here also for the
filtrations of elements ExtYv (see Corollary 12.3).

APPENDIX 1. ON THE FORMAL GROUP OF “GEOMETRIC” COBORDISM
(THEOREM OF A. S. MISCENKO)

We consider an arbitrary complex X, the group U*(X) and its subgroup
Map(X, MU;) C U?(X). In what follows we shall denote Map(X, MU;) by
V(X). Since MU, = CP* is an H-space, V(X) becomes a group, which is
communicative, and with respect to this law of multiplication we obviously have:

V(X)~ H*(X, Z).

How is this multiplication in V(X) connected with operations in U*(X) D V(X)?
As was already indicated in § 5, we have

Lemma 1. a) If u,v € V(X) and @ is the product in V(X), then the law of
multiplication u ® v = f(u,v) has the form

uRQU= u—i—v—l—in,juivi,
i>1
Jj=1
where x;; € A0 = Q?](Hj*l) are coefficients independent of u, v,
b)udv=vPu,
) (uev)Pw=ud (vew),
d) there ezists an inverse element 4, where 4 @ u = 0.

The proof of this lemma follows in an obvious way from the fact that V(X) ~
H?(X,Z) and the possibility of computing all the coefficients on the universal
example X = C'P>. We note that z; 1 = [CP!].

Thus, we have a commutative formal group with graded ring of coefficients A,
and dimu = dimv = 2. As is known, the structure of such a group is completely
determined by a change of variables g over the ring A @z Q,u — g(u) = > y;u'™,

i>0
Yo = 1, such that
9(u®u) = g(u) + g(v).

We have the following
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Theorem (A. S. Miscenko). The change of variables u — g(u), where g(u) =

>

?u"“, r, = [CP"] € A", reduces the formal group V @z Q to linear
n>0 T

form g(u ®v) = g(u) + g(v). Hence, the change u — g(u) reduces to linear form
the formal group V(X) ® Q for all X and uniquely determines the structure of the
one-dimensional formal group V' over the ring A.

Proof. We consider the ring U*(CP*>) = A[[u]] and the multiplication CP> x
CP*> — CP*, sending the one-dimensional canonical U;-bundle £ over C'P* into
&1 ® &9, where &1,& are canonical bundles over CP x C'P. This multiplication
induces a diagonal A: U*(CP>®) — U*(CP>) ®, U*(CP>), which gives the mul-
tiplication in V(CP).

Let v’ = g(u) > \ul, where A(u') = v/ ®1+1®v’. Then g is the desired change
of variables.

We compute the coefficients A;. Let Sy € AV (see § 5).

We have the easy

Lemma 2. The operations Sy form a system of multiplicative generators for the

ring S® Q. If oj(x) =0 for all k,x € A, then x = 0.

Proof. We order the partitions w naturally (by length) and consider

S(k)Sw(ul cee Un) = S(k) Zuflﬂ .. ufﬁ'*lusﬂ O+ 0Up,

w = (k‘l,...,kjs),
Sy Sw(ur .. uy) = Z a; Sy, (U1 - Up) + a0 S(pw) (U1 - - Un),

where ag # 0, w; = (k1,..., ki +k,kiy1,...,ks). Since by the induction hypothesis
all S, can be expressed by the S ), the same is true for S, x). Since all S, can
be expressed by the S(), the lemma is proved. (]

We note the following equation:

S(k)ui = Z S(k)()\iui) = Z(O’Z()\Z)uz + i)\iui+k)

i

We set
Wk = Z )\l(_k)ui’ uF = ZMEMU“’ Z /\Ek)uy) — 5;;.
Obviously, Sy Au' = AS(pyu', since Au’ = v ®1+1®w'. Since

St = (0h ) + (= E)iu’ =33 (0 (A) + (i = k) Ai—o)u{ u,
i g

%
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we have

ASyu' = Saydu’ =33 (05 (M) + (i = )\l (0 @ 1+ 1@ ')
i g

_ * ) . ) () a+ /6 Lo 18
D) DA (CAUSEAGRESILY I ol (e FEEY
i a+p=j
=Sk @1l+1ed).
It obviously follows that for a # 0, 5 # 0 we have:
Z(Ufk)& + (i — k)/\i_k)uf) =0, j=a+pB2>2

7

Since p(li) =0 for all ¢ > 2, ugi) =1, =1and O’Ekk) + (@ =KXk =0,k >1,
we have _
S (ofhi + (= Bl =0

K2

for all j > 1, and since Z@“A@ = (5;, we have

J
SN @hdi + = B =)l AD = ol A + (i = B)Ai—k = 0.
i

Hence,
O'Ekk))\i = —(i - k))\i,k.
Further, since o7}, [CP"] = —(n+ 1)[CP™¥] (see § 5, Lemma 5), it follows that

N = i 1/i, z; = [CP] € A~27 gatisfies the condition O’Ekk)Ai = —(1 — k)N for

all i, k. By Lemma 2, \; = )\;, and the theorem is proved. ([
Remark. For a quasicomplex manifold X, the group V(X) is isomorphic
to Hap—2(X) and the meaning of the sum w @ v is such that the homology
class v(u)v(v) is realized by the inclusion of the submanifold Vi ® Vs, where
u € Usp—2(X), v € Ugy—o are realized by the submanifolds V4, V5 C X. Then the
series
udv=utv+---= f(u,v)
must be considered in the intersection ring U, (X).

APPENDIX 2. ON ANALOGUES OF THE ADAMS OPERATIONS IN U*-THEORY

Analogues of the Adams operations U¥ € AV ® 7 Z[(1/k)] were defined in § 5 in
the following way:

2) Wh () = W (o)W (1),

b) kUF(x) =2 @ --- @z (k times), where z € V(X).

Thus, the series \Iﬂfj has the form:

kUG (@) = g7 (kg(2) = [(2, f (@, f(2,0),0),
where f(u,v) is the law of addition in the formal group V(X) and

x .
glr) =Y e a = [OP), 2 eV(X),
k>0

the basis of Appendix 1, g~ 1(g(z)) = .
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From the associativity of the law of multiplication in V(X)) follows the equation:

U (Y (x) = W (2).
Hence, always \IJ’[“Jo\I/lU = \I/’fjl in AY®,Q, since for any n — oo and u = uy ... uy,
we have WF ¥ (u) = UF by virtue of properties (a) and (b).
Of the assertions in Lemma 5.8, only part (d) is nontrivial, and it asserts that
Uyt (y) = Ky, y € A% = QF.

Theorem 1. ° If a € AY is an arbitrary cohomology operation of dimension 2m,
then we have the following commutation law:

alf, = k™0 oa.
Proof. Let a,, = S(m) € AV and v € V(CP>) C U?(CP>). Then

A (u) = ™,

m m 1
U (amu) = U (™) = U ()" = s

= T Om ( k ) = kmam\IlU(u),

since u @ ---©u € V(CP™). Hence, for the operations a(,,) = S(mm) the theorem is
proved. From this Theorem 1 follows for all operations S, since by Lemma 2 of
Appendix 1 the ring S ®z Q is generated by the operations S(y.

Now let a € A=2™ = U~2m(P). We assume by induction that for all operations
in A=%/, j < m, the theorem is proved. This means that for b € A=27, j < m, we
have:

(u@...@u)m+l

U (b) = kb
In view of the fact that Wj;* (bybg) = W};* (by) W} (by), the theorem is also proved for
all decomposable elements of A~2™. Let a € A~?™ be an indecomposable element.

We consider \IIIE’*UZ(a) = km—dime@s* (g) by induction, for w # (0). Since

S, =k~ 4meS,
we have
U0k (a) = o (k™a).
Hence, U*(a) = k™a, since Do Kero} = 0. O

Since Theorem 1 is proved for A and S, it is also proved for AV = (AS)".

Thus, all assertions of Lemma 5.8 are proved.

We now consider an arbitrary ring K, the group of units U, C K and AV @, K.
We define the following semigroups in AY ®, K:

1. The semigroup of multiplicative operations a € AV ® z K, where Aa = a®a €
AV o AV @, K.

2. The semigroup of multiplicative operations of dimension 0,

A% c Agx c AY @4 K.
3. The center Zx C A% of the semigroup Ag.

5From Theorem 1 it follows easily that all operations \I/’fJ are well-defined over the integers on
U%(X), as in K-theory.
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4. The “Adams operations” W{, € A%, where ¢ € Uy (the group of units),
defined by the requirements of Theorem 1:

Ul (a) = ¢ ™a¥}, dima=2m,
vhwl = gl

Just as earlier, a multiplicative operation a € A is defined by a series a(u),u €
U2(CP>) ®z K the canonical element, a(u) € Ag[[u]], Ax = A @7 K.

We now consider the question of defining the Adams operation. Let K = Q[t],
Ax = A®z K. We consider for all integral values ¢ the series t¥},(u) € U*(CP>),
defining the series t¥y(u) € U*(CP>®) @z K.

Remark. If K is an algebra over @, then the Adams operations U§ € AV K are
always defined, since the series t ¥}, is divisible by ¢ and ¥}, (u) € U*(CP) ®z K.

We have the following

Theorem 2. a) For any algebra K over Q) without zero divisors and for K = Qp, Z,
the “Adams operations” U € AU @7 K are defined, where o € K* in the Q-algebra
case and o € Uy, in the case K = Q) {i.c., Uy = Uq,}, a = £1 in the case K = Z,
such that:

1) U = o,

2) U™ A® — AR ds multiplication by o

3) U& oa=a 'aVy, where a € AY @z K is of dimension 2i.

4) The series a¥%(u) for u € V(CP™) makes the operation of raising to the
power o, o € K*, well-defined in the formal group V.

b) The collection of all Adams operations forms a semigroup K* ~ V(K) for a
Q-algebra K, U(K) = U, for K = Qp, V(Z) = Zs, which coincides precisely with
the center Zy of the semigroup A% of multiplicative operations of dimension 0 in
the ring Ay ® K for K = Qp, Z, while for a Q-algebra K the center consists of
U(K) and the operator ®, where ®(u) = g(u).

Remark. Although a € Ak is such that Aa = a®a and is given by a formal series
beginning with 1, where a(u) = u + ..., still the coefficients of the series lie in A
or A ® K, while the law of super-position of series a; - as(u) takes into account the
representation of AY ® K on A ® K. Hence Ak is not a group (as usual in formal
series of this kind), but a semigroup. An example of a “noninvertible” element
a € A° + K is given by the series

Bu) = 30 0 = gu),

where ®2 = ® and ®*(y) =0, y € A% for j > 0.

We prove Theorem 2. Part (a) was essentially already proved above. In order
to establish that U(K) = Zg, we consider an arbitrary element a € Zx and we
shall show that a € ¥(K). Since the series a(u) = u + ..., we have a*|A° = 1 and
a*|A? is multiplication by a number a € K. If a*|A=% = 0 for all j > 0, then it
follows that a* = ®* and hence a = ®, while ® ¢ AV ®; Q,. It will be assumed
that for some j, a*|A=% #£ 0, j > 0. If a*|A=2% is the operator of multiplication
by a number k;, then it is easy to see that k; = k{ and a = \Il]fj, where k; € K*
or k; € U,. We shall show that for all j the operator a* is multiplication by a
number k;. If jo is the first number for which a*|A=2% is not multiplication by
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a number, then, nevertheless, on the decomposable elements A=2%0 C A=200 g*
is multiplication by a number in view of the fact that a*(zy) = a*(x)a*(y). If
y € A% is an indecomposable element then a*(y) = Ay + 4, ¥ C A and § = 0.
Let b € AY% be such that b*(y) = py + §, where §j € A, § # 0. Then b*a* # a*b* on
A~2J0_which is impossible. The theorem is proved.

APPENDIX 3. CELL COMPLEXES IN EXTRAORDINARY COHOMOLOGY THEORY,
U-COBORDISM AND k-THEORY

Let X be a homology theory with a multiplicative stable spectrum, X®X* — X,
and let A* = X*(P) be the cohomology ring of a point. We require that A* be
a ring with identity. We note that A = X, (P) is also a ring, and we have the
formulas A = Hom}.(A*, A*) and A* = Hom} (A, A). Obviously, the rings A and
A* are isomorphic and A" = A*~, A’ =0, i < 0.

Let K be a cell complex and K* C K be its skeleton of dimension i. We construct
a “cell complex of A-modules” Sx (K):

a) if dim K = 0, then Sx(K) is a free complex > A(P), where the P are the

P

vertices of K and A(P) is a one-dimensional free module with generator up: we set
5UP =0.

b) Suppose that for all K7, j < i, Sx(K7) has been constructed so that O\ = A3,
A € A, and the generators of Sx(K7) are in one-one correspondence with the cells
of K7.

We consider the pair (K7, K‘~1), where K?/K'~! is a bouquet of spheres S Vv
-V 8. We adjoin to Sx(K'~') free generators uy,...,u,, of dimension 7. A
differential in the complex Sx (K*~1)+A(u1)+- -+ A(ug,) is introduced as follows:

1) OA=Xd, A € A

2) Qu; = z; € Sx (K1), where z; is such that 9z; = 0 in Sx(K*"') and the
homology class [z;] € X.(K*~!) is represented by the element equal to du;, where
d: X.(S{v---VvSi) — X.(K'')is the boundary homomorphism of the pair
(K*, K'"') and u; € X,(K*/K*"') corresponds to the sphere S.

Thus, a complex Sx (K) of free modules arises.

Lemma 1. The complex Sx (K) is uniquely defined up to the choice of the system
of generators, and the differential 9 in Sx coincides up to higher filtration with the
homology one. Obviously, H(Sx(K),0) = X.(K) as A-modules.

For a cellular map Y7 — Y5, there is defined analogously a morphism of free
complexes Sx(Y2) — Sx(Y2), also unique.

Let Y = Y] x Y5 with the natural cellular subdivision.

Question. When is there defined a pairing

Sx (Y1) ®a Sx(Y2) — Sx (Y1 x Y2),

which is an isomorphism of complexes?
Now let X =U.

Conjecture. For a pair Y1,Ys, the complex Sy (Y1 X Y3) is homo topic ally equiv-
alent to the tensor product

Su (Y1) ®q, Svu(Ya).
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Let A be an arbitrary Qy-module. The homology of the complex Sy ® QuA
we shall denote by U.(Y, A), and the homology of the complex Homg, (Su, A) by
U*(Y, A) (cohomology with coefficients in A).

We shall indicate important examples:

1. A = Qp is a one-dimensional free module.

2. A = Zz], dimz = 2, and the action of Qy on A is such that y(z™) =
T(y)z™ ", where y € Qp, 2i = dimy, and T(y) is the Todd genus. Here A is a ring
and there is defined a homomorphism \: Qpy — Z[z], such that A(y) = T(y)z".

3. A= Z[x,z7 ], where dimz = 2, dimz~! = —2 and 2zz~! = 1. Here A is a
ring, while Qr acts on A just as in example 2: y(a™) = T(y)z™ ", —00 < m < c0.

4. A = Z, where Z = QU/Qﬁ,Qg is the kernel of the augmentation Qy — Z
and the action of Q; on Z is the natural one.

Conjecture. For the Qu-modules A = Qu, Z|z|, Z[x,x_1], Z, the corresponding
cohomology groups U*( , A) are isomorphic, respectively, to the cobordism theory
U* for A = Qu, to stable k*-theory for A = Z[z], to unstable K-theory K* for
A = Z[z, 27| and to the theory H*( ,Z) for A = Z. The homology theories
Ul ,A) for A = Qu, Z[z], Zx, 27, Z, are isomorphic, respectively, to U,, k.,
K. and H.( ,2).

Theorem 1. Since the complex (Sy(Y),d) is a complex of free Qy-modules, there
exists a spectral sequence with term Eo = Extg, (U.(Y),A) which converges to
U*(Y,A), and there exists a spectral sequence with term Ey = Torg, (U.(Y), A)
which converges to U, (Y, A).

Theorem 2. Since the complezes Sy(Y) ®q, Z[z] = Sp(Y) and Sy(Y) ®qy
Zz,x71] = Sk(Y) are complexes of free A-modules for A = Z[x], Z[z,x~'], and
the ring Z[z] is homologically onedimensional, we have the following universal co-
efficient formulas:

1) 0 — Exty (k., Z[2]) — k* — Homyyy (., Z[x]) — 0,

2) 0= ki @z Z[z, 27! — K, — Torlz’[’;](k*,Z[x,x’l]) — 0,

3)0 = ke ®y Z — Ho(,Z) — Tor;[’;](k*,Z),
where in formula 1) k. and k* are connected, in formula 2) k. and K, since
Zlx, 271 is a Z[z]-module, and in formula 3) k, and H,, since Z is a Z|x]-module.5

It is possible to find a number of other formulas connecting k., k*, K., K*, H,,
H* and also Kiinneth formulas for the direct product Y; x Y3, starting with the
complex Sy ®q Z[z] as a Z[z]-module and the fact that Z[z] is one-dimensional,
as is Z.

We note also that Hom,)(Z[z], Z[z]) = Z[y], where dimy = 2.

In all the formulas of Corollary 2 one can start from the complex
Homyg, , (Sy, Z[z]), which is a complex of free Z[y]-modules for k*-theory.

With the help of the complex Sy (Y) it is possible to introduce, in addition to
the cohomological multiplication, also the “Cech operation” N such that (aNb,c) =
(a,bc), where c,a € U*, b € U, and aNb € U,, while (a Nb,c) € Q. Analogously
for k.- and k*-, K*- and K ,-theories.

The Poincaré-Atiyah duality law, of course, is treated in the usual way by means
of the fundamental cycle and the Cech operation.

6The author has available a derivation of Theorems 1 and 2 from the Adams spectral sequence
in cobordism theory, and hence Theorems 1 and 2 do not depend on the preceding conjectures.
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We note that the homomorphisms ¢, introduced by the author on the ring Qg
represent “characteristic numbers” with values in g, since the scalar product lies
in QU.

APPENDIX 4. U,- AND k,-THEORY FOR BG, WHERE G = Z,,.
FIXED POINTS OF TRANSFORMATIONS

In this appendix we shall consider the following questions:

1. What are the cell complexes Sy (BG) and S(BG) for G = Z,,7 What are
the A-modules U, (BG) and k,.(BG), where A = Qp and A = Z[z]?

2. How to compute in U,(BG) the following elements: let the group Z,,
act on C™ linearly, and without fixed points on C™\0, i.e., by means of di-
agonal matrices (a;;), where a;; = exp(2miz;/m) and z; is a unit in the ring
Zm. Then an action of Z,, on $?"~! is defined, and by the same token a map
Janrowy: 8?71/ 2, — BG, which represents an element of Us,—1(BG). This ele-
ment we denote by a,(z1,...,2,) € Usp—1(BG). It is trivial to find «,(1,...,1)
(“geometric bordism”) and to show that o, (z1,...,2,) # 0 for all (invertible)
Xlye.n,Tn € Zpy (see [11]),

Vo (1, 2n) 0, v:Us— Ho(,2).

This question arises in connection with the Conner—Floyd approach to the study
of fixed points (see [11]).

We consider the question of computing the cell complexes Sy (BG), Si(BG) and
Sk (BG) (see Appendix 3).

We recall the well-known result of Atiyah [7] that K1(BG) = 0 and K°(BG) =
Ry G, where Ry (G) is the ring of unitary representations. For G = Z,,, the basic
unitary representations py = 1, py = {I*>™/™}, ... pp = {I?™"*/™} ... p,._1 are
one-dimensional, while as a ring a generator is p; = p with the relation p™ = 1.
By virtue of this we can choose in K°(BG) an element ¢, corresponding to p — 1,
with the relation U™ (¢) = 0, where U7 is the Adams operator.

We consider the ring k*(P) = Hom7,(Z[z], Z[z]) = Z[y|, dimy = —2. We have
Lemma 1. The Z[y]-module k*(BG) for G = Z,, is described as follows:

a) k2t = 0.

b) k% (BQ) is isomorphic to the subgroup of k°(BG) consisting of elements of
filtration > 27, an this isomorphism is established by the Bott operator y:

k% (BG) — K°(BG).

c) The action of the rings B and A% is well defined on k*(BG).
d) There exists a natural generator u € k*(BG) such that every element of
k*(BG) has the form Y y®u% and there is the relation (m¥™)(u) = 0, or

j
U™ (yu) = 0, where yu € k° = K° is the canonical generator t € K°(BG); and we

have the equation
m _
) =3 (7 ) o
k>1

The proof of the lemma follows easily from the results mentioned about K°(BG)
and the discussion of the spectral sequence with term Ey = H*(BG, Z[y]) which
converges to k*(BG).
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We denote the expression m¥™(u) by Fn(u) = Y (7)(—y)*'u*.  From
Lemma 1 follows

Lemma 2. The cell complex Sj;(BG) = HomZ,(Sk, Z[z]) of modules over Z[y]
is a ring with multiplicative generators (over Z[y]) v (of dimension (1)) and u (of
dimension (2)) and additive basis {y*u™,yvu'}. The differential d in this complex
satisfies the Leibnitz formula, commutes with multiplication by y and has the form:

du=0, dv=Fy,(u).

The cell complex of k-theory Sk,(BG) for G = Z,, in the natural cellular subdivi-
sion has the form Sy(BG) = Homy, (S§, Z[y]), while Sy(BG) over Z[z|, Z[z] =
Hom7,(Z[yl, Z[z]), is a complex of free modules.

Lemma 2 follows easily from Lemma 1 and Appendix.
We turn now to U.- and U*-theories. For the element u € V(X) =
Map(X, MU;) C U%*(X), the series m¥(u) = g~'(mg(u)) (see Appendix 2
where g(u) = > [CP"u*1/(n + 1) is the “Misc¢enko series” (see Appendix 1

n>0

We denote the series m¥P(u) by Fr v (u). Let
A= U*(P) = Homau (QU, QU)7

);
).

and let S§;(BG) be the cell complex in U*-theory which is a complex of A-modules,
with A=2 = QF.

With the help of the Conner-Floyd homomorphism o;: k® — U?, k° = K°, we
obtain from Lemma 2

Theorem 1. The cell complex (in the natural cellular subdivision)
S[*](BG) = HOmEU (SU7 QU),
which is a complex of free A-modules, A = U*(P), with differential d, is a ring

with multiplicative generators v (of dimension (1)) and u (of dimension (2)) over
A, given in the following way:

v? =0, d(v)=Fnu(u), du)=0.
The complex Sy(BG) is isomorphic to Hom) (Sy,A), G = Z,,, where Qu =
Homj (A, A). The complexes Sj; ®q Z[z] and S* ®q Z]x,x~1] are isomorphic, re-
spectively, to the complexes S} (BG) and S;(BG) in k- and K-theories.

We pass now to the automorphisms of the complex BG — BG. Such automor-
phisms for G = Z,, are completely determined by automorphisms of the group
Zom — Zum, Which are multiplication by k, where k is a unit in Z,,.

There arise automorphisms

Ax: BG — BG,
Ak Sy (BG) — Sp(BG),
where A}, is completely determined by the images
M.(v) € S5(BG), Ni(u) € S5(BG),

since A} is a ring homomorphism which commutes with the action of A.
We have
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Theorem 2. ” The homomorphism of multiplication by k
A SH(BG) — S (BG)

for G = Z,, and (k,m) =1 is a ring homomorphism which commutes with d and
multiplication by A and is defined by the following formulas:
a) Ap(u) = Fru(u),

b) Af(o) = )

The proof of Theorem 2 is obtained from the fact that under A} (“geometric
cobordism”) u € U?(BG) must go into kW¥*(u) by definition of the operator Wk.
This implies part (a). Part (b) follows from the fact that dAj(v) = Ajdv = D(u)v,
where D(u) is a series of dimension 0 with coefficients in A.

We now pass to the question of fixed points of transformations Z,,. Let Z}, C
Zm be the multiplicative group of units, x1,...,z, € Z}, and a,(x1,...,2,) €
Uszn_1(BG) the element defined by the linear action of the group Z,, on $?"~! C
C™\ 0 by means of multiplication of the j-th coordinate by exp(2wiz;/m),x; € Z},.
There arises a function

an: Zo X oo X 20— Usp—1(BG).

Let m = p", p a prime and m; = p"~L. Then Z,,, C Z,, and there is defined a
homomorphism U,(BZ,,,) — U.(BZ,,). We have

Lemma 3. Given a quasicomplex transformation T: M™ — M™ of order m which
has only isolated fized points Py, ..., P,;, we have the equation

q
Z an(Z1j,...,Tn;) =0 mod U.(BZ,),
j=1

where the x;; are the orders of the linear representation of the group Zp, at the
point Pj (clearly, z;; € Z},).

This lemma for prime m = p was found by Conner—Floyd [11] (here, m; = 0),
and it is trivial to go over to m = p".
It is easy to show that for any (x1,...,2,) € Z), X -+ X Z%,

an(z1,...,2,) 20 mod U.(BZy,),

whence follows the theorem of Conner—Floyd—Atiyah: there does not exist a trans-
formation T" with one fixed point. For p > 2 this is also true for real transformations
T, as can be seen from the analogous application of the theory SO, ® Z[1/2].

We now pass to the question of calculating the function «,(x1,...,2,) €
Usn—1(BZ,,). We denote by vs,_1 € Us,_1(BG) the so-called “geometric bor-
dism” ap(1,...,1). In the complex Sy (BG) described in Theorem 1, the element
vap,—1 is adjoint to vu"~! € Sj(BG), i.e., (Von_1,vu" 1) =1, (vop_1,vu 1 HF) =0
for k > 0, where z € A*.

We shall calculate the function (21, ..., 2,) by the following scheme:

1) Clearly, o (z) = 2v1 € U1(BG) = Z,.

TAll homological deductions from Theorems 1 and 2 of this appendix can be justified, without
the complexes Sy7, merely from Theorems 1 and 2 of Appendix 3.
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m l
2) If > ag(z1y, - 2ki) =0, D @n—k(Yk+1,4,---+Yn,j) = 0, then we have the
j=1 j=1
equation:

E an(xljv s Thgy Yk+1,85 - - - 7yn,s) =0 mod BZml'
7,8

This follows in an obvious way from the fact that transformations T7: M k. ME
and Tp: M' — M! induce (Ty,T): M* x M™~F  where fixed points (and their
orders) correspond to each other.

3) If \;: BG — BG is induced by multiplication by © € Z},, then ay, (2, ..., z) =
Az« (Van—1), where the structure of A, . is described in Theorem 2.

As examples of the application of this scheme we shall indicate the following
simple results:
Lemma 4. Ifv: U, — H,(,Z) is the natural homomorphism, then we have the
equation

van(z, .. xn) = (X1, ... )V (Van—1),

where v(vop—1) € Hop_1(BZy) = Zpy, is the basis element.
Lemma 5. Forn =1,2,3 we have the formulas:
Az« (V1) = zV1,

Aw,* ('UQ) = $2U3,

iEB—ZCz

2

From Lemma 2, in an obvious way, follows the corollary on the impossibility of
one fixed point.

Now let m = p, where p > 2 for n = 2 and p > 3 for n = 3. Under these
conditions, by the scheme indicated above, one easily obtains from Lemmas 2 and 3

Ao x(v5) = 305 + [CPYvs.

Theorem 3. The functions oy (x1, 22, ..., zy,) for n <3 has the following form:
a1 (z) = zvy (obviously);

g (71, 22) = (T172)v3;
T1T2 + T1T3 + T2x3
3

L1ToT3 —

az(r1,T2,73) = (T17223)05 + [C P 3.

2

Suppose given a group of quasicomplex transformations Z,: M" — M" with iso-
lated fixed points P, . .., P, at which the generator T' € Z, has orders z1;,...,2Zp; €
Zp, j=1,...,q, where xy; € Z;. We consider the point (21,1,...,Zkj;---,Tng) €
ZI" up to a factor p € Z%, p # 0. Thus, (#11,...,2ne) € P! The group
Spn % Sq, where Sy, is the group of permutations of £ elements, acts on pan—1,

Definition. By the type of the action of the group Z, on M™ with isolated fixed
points we shall mean the set of orders of (211,...,%xj,...,%nq), of any generator
T € Z,, considered in the projective space P?"~! factored by the actions of the
group 5, of permutations of orders of each point and the group S, of permutations
of points.

From Theorem 3 follows the
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Corollary. For p > n and for n = 2,3, the set of types of actions of Z, on M™ 1is
given in PI"~1 by the set of equations:

de(l‘lj,...,l‘nj)zo, l‘js#o, k=2,3,...,n,
P;

where the xs; are the orders at the point P; and oy (x1j,...,Tn;) is the elementary
symmetric polynomial.

APPENDIX 5. THE CONJECTURE ON THE BIGRADATION OF ALGEBRAIC
FUNCTORS
IN S-TOPOLOGY FOR ALL PRIMES p>2

In the Introduction and also in § 12 the possibility was already discussed of the
appearance of a new categorical invariant — an additional grading, connected with
the Cartan type, in the Adams spectral sequence for ordinary cohomology mod p,
p > 2, from which it would follow (see the Introduction) that the homotopy groups
in the category of torsion-free complexes could be formally computed algebraically
by the theory of unitary cobordism. We shall formulate here more exactly the
corresponding conjecture.

First of all, we shall go to the question of the category S ®z @, for p > 2. Let
K(m) € S be the spectrum K (m,n). The following fact is known (H. Cartan): the
Steenrod algebra A = H*(K(Z,), Z,) is bigraded: A = 3" A¥# where dim = k+ 3
and [ is the type.

Conjecture: I) Let the bigradings H(X, Z,) = Y. H*? and H(Y, Z,) = > H*"
be well defined, and let the morphism f: X — Y in the S-category preserve the
bigrading. Then in the exact sequences

O—>XLY—>Z—>O

and
0-2 -xLv_o

for the objects Z, Z’ € S, the bigradings of the functors H**(Z, Z,,) and H**(Z', Z,,)
are well defined, and the exact sequence of the triple (X,Y, Z) is

s HRB(X) L gRBtL(z)  gRerL Yy I s (xy o

II) For X = K(Z,) the bigrading coincides with that of Cartan.

III) The cohomology A-module H*(X, Z,) is bigraded, if in H*(X, Z,) the bi-
grading is well defined.

IV) All these properties are fulfilled in the subcategory Sy C S ®z @, obtained
from K (Z,) inductively by means of bigraded morphisms and passage to “kernels”
and “cokernels”

O—>)(i>Y—>Z—>O7 O—>Z/—>XL>Y—>O;

here @, is the p-adic integers.

Assertion. 1. If the conjecture is true, then the spectra of points (spheres) P
and complexes without p-torsion in homology belong to the category Sy,

2. If the analogous conjecture of bigradation for other functors (for example,
homotopy groups) is true, then the entire classical Adams spectral sequence and the
stable homotopy groups of spheres for p > 2 can be completely calculated by means



84 S. P. NOVIKOV

of the theory of unitary cobordism by the scheme described in the Introduction and
in § 12. In particular, we should have the equation:

7P (V) ~ Extu (A A) ®7 Qp,  p > 2.

This means two things: a) the triviality of the Adams spectral sequence constructed
by the author in the theory of U-cobordism; b) the absence of extensions in the
term Fo = Es.

3. For p = 2, the conjecture in such a simple form is trivially false. {In the
spectral sequence for the stable groups of spheres, all powers n* # 0 for an element
n representing the Hopf map in 7 (S), hence n* for k > 4 must be killed off by
differentials. }

4.  The classical Adams spectral sequence with second term E;‘k’ﬁ =
Ext5"? (H*(X), Z,) for X € Sy, is arranged as follows:

. sk, s+r,k,B4+r—1
dr: E; — B .

We note that hgy € Ext}q’o’1 (Zp, Zp) is associated with multiplication by p (ordinarily

we have hg € Exti{l). Here, the dimension differs slightly from that described in § 12
by a simple linear substitution.

Examples of bigradation (the simplest). Let X = K(Z)+ EK(Z) and
Y = K(Zpq). From the ordinary point of view we have:

HY(X, Zp) = H*(Y, Zp) = AJAB(u) + A/AB(v),

where dimu = 0 and dimv = 1. However, for X the ordinary Adams spectral
sequence is zero, but for Y we have: dy(v*) = hiu*, where u* € Ex‘cg’0 and v* €
Ext’!, since 1, (Y) = Zpa.

From our point of view the situation is thus:

a) H*(X,Z,) = AJAB(u) + A/AB(v), where u € H*° v € H%!. Hence u* €
Ext%? v* € Ext%" and hdu* € Ext®??; by dimensional considerations, d,(v*) €
Ext%"47! and Ext?h77! =0,

b) H*(Y, Z,) = AJAB(u) + A/AB(v), u € H*?, v € H*!, then u* € Ext%"°
and v* € Extg{o’l, d;v* # 0 for i = q.

Besides the facts indicated earlier, there are subtler circumstances which corrob-
orate the conjecture:

1. From the results of the author’s series of papers on the J-homomorphism
J. C m.(S™) and the results of the present paper, it follows that Exti"f, (A A)®2Qp

consists (for p > 2) of cycles for all differentials, while elements of Extz’; are realized

by elements of wﬁp)(SN) of the same order; moreover, Wﬁp)(SN) = Extjlg, +...,

where Ext"* = J, @ Qp-
2. The Adams spectral sequence in U-theory would not have to be trivial from

dimensional considerations (obviously, only d; is zero for i — 1 = 0 mod 2p — 2).

2
There first appears an element x € Exti’gp ®=1" where dop—1(x) = ?, since

2
Extip[,+ L20°(p=D+20=2 £ () Ty reality, these elements in U-theory are “inherited”

from ordinary cohomology theory H™*(,Z,) together with the question about
dap—1(x). A few years ago L. N. Ivanovskil informed the author that with the help
of partial operations of Adams type he had succeeded in showing that dap—1(z) =0
for p > 3 (7). However, neither Ivanovskii nor the author were able to verify this
calculation, and hence this fact remained obscure. Recently Peterson informed the
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author that it has only recently been proved by the young American topologist
Cohen [25] for all p > 3 (more exactly, the analogue of this question in the classical
theory, from which, of course, it follows).

3. The fact that the “algebraic” Adams spectral sequence associated with

koK skok

the “topological” one, which begins with Ey = Ext}"**(Z,, Z,) and converges to
Extv (A, A) @z Qp (see § 12), is algebraically well-defined, is non-trivial a priori.
The situation here is that if for some spectral sequence (E,,d,) we consider the
complementary filtration in Fs and define on all the E, associated differentials
d,, then very often the d, are not included in a well-defined spectral sequence (of
algebras). Hence the fact of such a well-defined inclusion is in our case an extra geo-
metric argument for the existence of an invariant second grading in the subcategory
Sgr CS®yz Qp.
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