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Abstract. The goal of this work is the construction of the analogue to the

Adams spectral sequence in cobordism theory, calculation of the ring of co-
homology operations in this theory, and also a number of applications: to

the problem of computing homotopy groups and the classical Adams spectral

sequence, fixed points of transformations of period p, and others.

Introduction

In algebraic topology during the last few years the role of the so-called extraor-
dinary homology and cohomology theories has started to become apparent; these
theories satisfy all the Eilenberg–Steenrod axioms, except the axiom on the homol-
ogy of a point. The merit of introducing such theories into topology and their first
brilliant applications are due to Atiyah, Hirzebruch, Conner and Floyd, although in
algebraic geometry the germs of such notions have appeared earlier (the Chow ring,
the Grothendieck K-functor, etc.). Duality laws of Poincaré type, Thom isomor-
phisms, the construction of several important analogues of cohomology operations
and characteristic classes, and also relations between different theories were quickly
discovered and understood (cf. [2, 5, 8, 9, 11, 12]).

These ideas and notions gave rise to a series of brilliant results ([2]–[13]). In time
there became manifest two important types of such theories: (1) theories of “K
type” and (2) theories of “cobordism type” and their dual homology (“bordism”)
theories.

The present work is connected mainly with the theory of unitary cobordism. It is
a detailed account and further development of the author’s work [19]. The structure
of the homology of a point in the unitary cobordism theory was first discovered by
Milnor [15] and the author [17]; the most complete and systematic account together
with the structure of the ring can be found in [18]. Moreover, in recent work of
Stong [22] and Hattori important relations of unitary cobordism to K-theory were
found. We freely use the results and methods of all these works later, and we refer
the reader to the works [15, 17, 18, 22] for preliminary information.

Our basic aim is the development of new methods which allow us to compute
stable homotopy invariants in a regular fashion with the help of extraordinary ho-
mology theories, by analogy with the method of Cartan–Serre–Adams in the usual
classical Zp-cohomology theory. We have succeeded in the complete computation of
the analogue of the Steenrod algebra and the construction of a “spectral sequence
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of Adams type”1 in some cohomology theories, of which the most important is the
theory of U -cobordism, and we shall sketch some computations which permit us
to obtain and comprehend from the same point of view a series of already known
concrete results (Milnor, Kervaire, Adams, Conner–Floyd, and others), and some
new results as well.

In the process of the work the author ran into a whole series of new and tempting
algebraic and topological situations, analogues to which in the classical case are
either completely lacking or strongly degenerate; many of them have not been
considered in depth. All this leads us to express hope for the perspective of this
circle of ideas and methods both for applications to known classical problems of
homotopy theory, and for the formulation and solution of new problems from which
one can expect the appearance of nontraditional algebraic connections and concepts.

The reader, naturally, is interested in the following question: to what extent
is the program (of developing far-reaching algebraic-topological methods in extra-
ordinary cohomology theory) able to resolve difficulties connected with the stable
homotopy groups of spheres? In the author’s opinion, it succeeds in showing some
principal (and new) sides of this problem, which allow us to put forth arguments
about the nearness of the problems to solution and the formulation of final answers.
First of all, the question should be separated into two parts: (1) the correct selec-
tion of the theory of cobordism type as “leading” in this program, and why it is
richer than cohomology and K-theory; (2) how to look at the problem of homotopy
groups of spheres from the point of view of cobordism theory.

The answer to the first part of the question is not complicated. As is shown in
Appendix 3, if we have any other “good” cohomology theory, then it has the form
of cobordism with coefficients in an Ω-module. Besides, working as in §§ 9 and 12,
it is possible to convince oneself that these give the best filtrations for homotopy
groups (at any rate, for complexes without torsion; for p = 2 it may be that the
appropriate substitute for MU is MSU). In this way, the other theories lead to
the scheme of cobordism theory, and there their properties may be exploited in our
program by means of homological algebra, as shown in many parts of the present
work.

We now attempt to answer the second fundamental part of the question. Here
we must initially formulate some notions and assertions. Let AU

p [AU ] be the
ring of cohomology operations in U∗

p -theory [U∗, respectively], Λp = U∗
p (P ), Λ =

U∗(P ), P = point, Qp = p-adic integers.2 Note that Λ ⊂ AU . The ring over Qp,
Λ⊗Z Qp ⊃ Λp, lies in AU ⊗Z Qp ⊃ AU

p , and Λ⊗Z Qp is a local ring with maximal
ideal m ⊂ Λ⊗Z Qp, where Λ⊗Z Qp/m = Zp. Note that Λp is an AU

p -module and
AU

p is also a left Λp-module.

1It may be shown that the Adams spectral sequence is the generalization specifically for S-

categories (see § 1) of “the universal coefficient formula,” and this is used in the proofs of Theo-
rems 1 and 2 of Appendix 3.

2U∗
p -theory is a direct summand of the cohomology theory U∗⊗Qp, having spectrum Mp such

that H∗(Mp, Zp) = A/(βA+Aβ) {where A is the Steenrod algebra over Zp and β is the Bokštĕın

operator} (see §§ 1, 5, 11, 12).
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Consider the following rings:

mp = m ∩ Λp, Λp/mp = Zp,

Λ̄p =
∑
i≥0

mi
p/mi+1

p ,

Ā = ĀU
p =

∑
i≥0

mi
pA

U
p /mi+1

p AU
p ,

where Λ̄p is an Ā-module.

In this situation arises as usual a spectral sequence ( ˜̃Er,
˜̃
dr), where

˜̃Er ↘ Ext∗∗AU (Λ,Λ)⊗Z Qp,
˜̃E2 = Ext∗∗∗ĀU

p
(Λ̄p, Λ̄p),

determined by the maximal ideal mp ⊂ Λp and the induced filtrations.
It turns out that for all p > 2 the following holds:

Theorem. The ring Ext∗∗∗ĀU
p

(Λ̄p, Λ̄p) is isomorphic to Ext∗∗A (Zp, Zp), and the alge-

braic spectral sequence ( ˜̃Er,
˜̃
dr) is associated with the “geometric” spectral sequence

of Adams in the theory H∗( , Zp). Here p > 2 and A is the usual Steenrod algebra
for Zp-cohomology.

We note that ˜̃E∗∗∗
∞ is associated with Ext∗∗∗AU (Λ,Λ)⊗Z Qp (more precisely stated

in § 12). A priori the spectral sequence ( ˜̃Er,
˜̃
dr) is cruder than the Adams spectral

sequence in H∗( , Zp)-theory and ˜̃E∗∗∗
∞ is bigger than the stable homotopy groups

of spheres; on account of this, the Adams spectral sequence for cobordism theory
constructed in this work can in principle be non-trivial, since ˜̃E∞ is associated with
ExtAU (Λ,Λ)⊗Z Qp.

We now recall the striking difference between the Steenrod algebra modulo 2
and modulo p > 2. As is shown in H. Cartan’s well-known work, the Steenrod
algebra for p > 2 in addition to the usual grading possesses a second grading (“the
number of occurrences of the Bokštĕın homomorphism”) of a type which cannot be
defined for p = 2 (it is only correct modulo 2 for p = 2). Therefore for p > 2 the
cohomology ExtA(Zp, Zp) has a triple grading in distinction to p = 2. In § 12 we
show:

Lemma. There is a canonical algebra isomorphism

˜̃E∗∗∗
2 = Ext∗∗∗ĀU

p
(Λ̄p, Λ̄p) = Ext∗∗∗A (Zp, Zp) for p > 2.

From this it follows that the algebra ˜̃E2 for the “algebraic Adams spectral
sequence” ˜̃Er is not associated, but is canonically isomorphic to the algebra
ExtA(Zp, Zp) which is the second term of the usual topological Adams spectral
sequence.

If we assume that existence of the grading of Cartan type is not an accidental
result of the algebraic computation of the Steenrod algebra A, but has a deeper
geometric significance, then it is not out of the question that the whole Adams
spectral sequence is not bigraded, but trigraded, as is the term

E2 = Ext∗∗∗A (Zp, Zp), p 6= 2.
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From this, obviously, would follow the corollary: for p > 2 the algebraic Adams
spectral sequence ( ˜̃Er,

˜̃
dr) coincides with the topological Adams spectral sequence

(Er, dr), if the sequence (Er, dr) is trigraded by means of the Cartan grading, as is

( ˜̃Er,
˜̃
dr). Therefore the orders |πN+i(SN )| would coincide with

∣∣∣∣ ∑
t−s=i

Exts,t
AU (Λ,Λ)

∣∣∣∣
up to a factor of the form 2h.

Moreover, this corollary would hold for all complexes without torsion (see § 12).
The case p = 2 is more complicated, although even there, there are clear algebraic

rules for computing some differentials. This is indicated precisely in § 12.
In this way it is possible not only to prove the nonexistence of elements of Hopf

invariant one by the methods of extraordinary cohomology theory as in [4] (see also
§§ 9, 10), but also to calculate Adams differentials.

The content of this work are as follows: in §§ 1–3 we construct the Adams spectral
sequence in different cohomology theories and discuss its general properties.
§§ 4, 5 are devoted to cohomology operations in cobordism theory. Here we

adjoin Appendices 1 and 2. This is the most important part of the work.
§§ 6, 7 are largely devoted to the computations of U∗(MSU) and Ext∗∗UA (U∗(MSU),Λ).
§ 8 has an auxiliary character; in it we establish the facts from K-theory which

we need.
§§ 10, 11 are devoted to computing Ext∗∗AU (Λ,Λ).
§§ 9, 12 were discussed above; they have a “theoretical” character.
Appendices 3 and 4 are connected with the problems of fixed points and the

problem of connections between different homology theories from the point of view
of homological algebra. Here the author only sketches the proofs.

The paper has been constructed as a systematic exposition of the fundamental
theoretical questions connected with new methods and their first applications. The
author tried to set down and in the simplest cases to clarify the most important
theoretical questions, not making long calculations with the aim of concrete appli-
cations; this is explained by the hope mentioned earlier for the role of a similar
circle of ideas in further developments of topology.

§ 1. The existence of the Adams spectral sequence in categories

Let S be an arbitrary additive category in which Hom(X, Y ) are abelian groups
for X, Y ∈ S, having the following properties:

1. There is a preferred class of sequences, called “short exact sequences” (0 →
A

g−→ B
f−→ C → 0), such that f · g = 0 and also:

a) the sequence (0→ 0→ 0→ 0→ 0) is short exact;

b) for commutative diagrams
A //

��

B

��
A′ // B′

or
B //

��

C

��
B′ // C ′

there exists a unique map

or short exact sequences

0 // A //

��

B

��

// C //

��

0

0 // A′ // B′ // C ′ // 0

{extending the given square};
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c) for any morphism f : A
f−→ B there exist unique short exact sequences 0 →

C ′ → A
f−→ B → 0 and 0 → A

f−→ B → C → 0, where the objects C and C ′ are
related by a short exact sequence 0 → C ′ → 0 → C → 0 and C and C ′ determine
each other.

We introduce an operator E in the category S by setting C ′ = E−1C, or C =
EC ′, and we call E the suspension.

Let Homi(X, Y ) = Hom(X, EiY ) and Hom∗(X, Y ) =
∑

Homi(X, Y ).

2. For any short exact sequence 0→ A
f−→ B

g−→ C → 0 and any T ∈ S there are
uniquely defined exact sequences

∂−→ Homi(T,A)
f∗−→ Homi(T,B)

g∗−→ Homi(T,C) ∂−→ Homi+1(T,A)

and
δ−→ Homi(C, T )

g∗−→ Homi(B, T )
f∗−→ Homi(A, T ) δ−→ Homi+1(C, T ),

which are functorial in T and in (0→ A→ B → C → 0). Here the homomorphisms
f∗, g∗, f∗, g∗ are the natural ones and the homomorphisms ∂, δ are induced by the
projection C → EA in the short exact sequence 0→ B

g−→ C → EA→ 0 according
to the above axiom 1.

3. In the category there exists a unique operation of direct sum with amalga-
mated subobjects: pairs X, Y ∈ S and morphisms Z → X, Z → Y define the
sum X +Z Y and the natural maps X → X +Z Y and Y → X +Z Y such that the
following sequences are exact:

0→ X → X +Z Y → C1 → 0,

0→ Y → X +Z Y → C2 → 0

(where C1 and C2 are defined by the exact sequences 0 → Z → X → C2 → 0 and
0→ Z → Y → C1 → 0). By definition we regard X +0 Y = X + Y {where 0 is the
point object}.

Definition. We call two objects X, Y ∈ S equivalent if there exists a third object
Z ∈ S and morphisms f : X → Z and g : Y → Z inducing isomorphisms of the
functor Hom∗(Z, ) with Hom∗(X, ) and Hom∗(Y, ) and of the functor Hom∗( , Z)
with Hom∗( , X) and Hom∗( , Y ). We call the maps f , g equivalences.

The transitivity of equivalences follows from the diagram

X

��?
??

??
? Y

��?
??

??
?

����
��

��
H

����
��

��

Z

��?
??

??
T

����
��

�

Z +y T

where all morphisms are equivalences (by virtue of the axiom on direct sums).
A spectrum in the category S is given by a sequence (Xn, fn), where

fn : EXn → Xn+1 (direct spectrum),

fn : Xn+1 → EXn (inverse spectrum).

By virtue of axioms 1 and 2 in the category S there is a canonical isomorphism

Hom∗(X, Y ) = Hom∗(EX, EY ).
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Therefore for spectra there are defined the compositions

fn+k−1 . . . fn : EkXn → Xn+k (direct)

fn . . . fn+k−1 : Xn+k → EkXn (inverse)

which allow us to define passage to the cofinal parts of spectra.
For spectra X = (Xn, fn) and Y = (Yn, gn) we define

Hom∗(X, Y ) = lim←−
n

lim−→
m

Hom∗(Xn, Ym)

in the case of direct spectra and

Hom∗(X, Y ) = lim←−
m

lim−→
n

Hom∗(Xn, Ym)

in the case of inverse spectra. Here, of course, let us keep in mind that in taking
limits the grading in Hom∗( , ) is taken in the natural way. As usual, remember
that the dimension of a morphism EγT → Xn is equal to n + n0 − γ, where n0

is a fixed integer, given together with the spectrum, defining the dimension of the
mappings into Xn, and usually considered equal to zero. In addition, Hom and Ext
here and later are understood in the sense of the natural topology generated by
spectra.

Thus arise categories
→
S (direct spectra over S) and

←
S (inverse spectra). There

are defined inclusions S →
→
S and S →

←
S. We have the simple

Lemma 1.1. In the categories
→
S and

←
S there exist short exact sequences 0→ A→

B → C → 0, where A, B, C ∈
→
S or A, B, C ∈

←
S, satisfying axiom 1 of the category

S and axiom 2 for the functor Hom∗(T, ) if A, B, C ∈
→
S and T ∈

←
S, and axiom 2

for Hom∗( , T ) if A, B, C ∈
←
S and T ∈

→
S. In the categories

→
S and

←
S there exist

direct sums with amalgamation satisfying axiom 3.

Proof. The existence of direct sums with amalgamation in the categories
→
S and

←
S

is proved immediately.
Let us construct short exact sequences in

→
S. Let A, B ∈

→
S and f : A→ B be a

morphism in
→
S. By definition, f is a spectrum of morphisms, hence is represented

by a sequence Ank
→ Bmk

of maps. Consider the set of short exact sequences

(0→ Cnk
→ Ank

→ Bmk
→ 0) and (0→ Ank

→ Bmk
→ C ′

mk
→ 0).

By axiom 1 of the category S we have spectra in
→
S, C = (Cnk

) and C ′ = (C ′
mk

)
and morphisms C → A and B → C ′. The corresponding sequences 0 → C →
A → B → 0 and 0 → A → B → C ′ → 0 we call exact. Since passage to direct
limit is exact, we have demonstrated the second statement of the lemma. For

←
S

analogously. Note that the spectra C and C ′ are defined only up to equivalences of
the following form: in

→
S the equivalence is an isomorphism of functors Hom∗(T,C)

and Hom∗(T,C ′); in
←
S an isomorphism of Hom∗(C, T ) and Hom∗(C ′, T ).

Obviously C ′ = EC. This completes the proof of the lemma. �

Definitions. a) Let X ∈
→
S. The functor Hom∗( , X) is called a “cohomology

theory” and is denoted by X∗.
b) Let X ∈

←
S. The functor Hom∗(X, ) is called a “homology theory” and is

denoted by X∗.
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c) The ring Hom∗(X, X) for X ∈
→
S is called “the Steenrod ring” for the co-

homology theory X∗. Analogously we obtain the Steenrod ring Hom∗(X, X) for
X ∈

←
S (homology theory).

d) The Steenrod ring for the cohomology theory X∗ is denoted by AX , for the
homology theory by AX . They are graded topological rings with unity.

Note that an infinite direct sum Z =
∑

Xi of objects Xi ∈
→
S lies, by definition,

in
←→
S, if we let Zn =

∑
i≤n

Xi and Zn → Zn−1 be the projection. Obviously, X∗(
∑

Xi)

is an infinite-dimensional free AX -module, being the limit of the direct spectrum

Hom∗(Zn, X)→ Hom∗(Zn+1, X),

where X ∈
→
S ⊂

←→
S, all Xi are equivalent to the object X or EγiX, and E is the

suspension.
For an homology theory, if X ∈

→
S, an infinite direct sum

∑
Xi is considered as

the limit of the direct spectrum

· · · →
∑
i≤n

Xi →
∑

i≤n+1

Xi → . . . ,

where Xi is EγiX, and therefore lies in
←→
S, and the AX -module Hom∗(X,

∑
Xi) is

free.
By X-free objects for X ∈

→
S we mean direct sums

∑
Xi, where Xi = EγiX for

arbitrary integers γi. Finite direct sums belong to
→
S.

There are simple properties which give the possibility of constructing the Adams
spectral sequence by means of axioms 1–3 for the category S.

For any object T ∈
←
S and any X-free object Z ∈

→
S we have

Hom∗(T,Z) = Hom∗
AX (X∗(Z), X∗(T )).

Let us give some definitions.
1) For an object Y ∈ S we understand by a filtration in the category an arbitrary

sequence of morphisms

Y = Y−1
f0←− Y0 ← Y1 ← . . .

fi←− Yi ← . . . .

2) The filtration will be called X-free for X ∈
→
S if Zi ∈

→
S are X-free objects

such that there are short exact sequences

0→ Yi
fi−→ Yi−1

gi−→ Zi → 0, Y−1 = Y.

3) By the complexes associated with the filtration, for any T ∈
←
S, are meant the

complexes (Cx, ∂x) and (BT , δT ), where (Cx)i = X∗(Zi) and (BT )i = T∗(Zi) and
the differentials ∂ : (Cx)i → (Cx)i−1 and δT (BT )i → (BT )i+1 are the compositions

∂X : X∗(Zi)
gi−→ X∗(Yi−1)

δ−→ X∗(Zi−1)

and
δT : T∗(Zi)

∂−→ T∗(Yi)
gi+1

∗

−−−→ T∗(Zi+1).
4) An X-free filtration is called acyclic if (Cx, ∂x) is acyclic in the sense that

H0(Cx) = X∗(Y ) and Hi(Cx) = 0 for i > 0.
From the properties (axioms 1 and 2) of the category S and Lemma 1.1 we obtain

the obvious
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Lemma 1.2. 1) Each filtration (Y ← Y0 ← Y1 ← . . . ) defines a spectral sequence
(Er, dr) with term E1 = BT , d1 = δT , associated with Hom∗(T, Y ) in the sense that
there are defined homomorphisms q0 : Hom∗(T, Y ) → E0,∗

∞ , qi : Ker qi−1 → Ei,∗
∞ ,

where the filtration (Ker qi) in T∗(Y ) = Hom∗(T, Y ) is defined by the images of
compositions of filtration maps T∗(Yi)→ T∗(Y ).

2) If the filtration is X-free, the complex (BT , δT ) is precisely Hom∗
AX (Cx, X∗(T ))

{with differential HomAX (∂x, 1)}.
3) If the filtration is X-free and acyclic, then E∗∗

2 in this spectral sequence coin-
cides precisely with Ext∗∗AT (X∗(Y ), X∗(T )).

Lemma 1.2 follows in the obvious way from axioms 1, 2 of the category S and
Lemma 1.1.

However, the problem of the existence of X-free and acyclic filtrations is nontriv-
ial. We shall give their construction in a special case, sufficient for our subsequent
purposes.

Definition 1.1. The spectrum X ∈
→
S will be called stable if for any T ∈ S and any

j there exists an integer n such that Homs(T,Xm) = Homm(T,X) for all m ≥ n,
s ≥ j.

Definition 1.2. The cohomology theory X∗, X ∈
→
S, defined by a stable spectrum

X will be called Noetherian if for all T ∈ S the AX -module X∗(T ) is finitely
generated over AX .

We have

Lemma 1.3. If X∗ is a Noetherian cohomology and Y ∈ S, then there exists a
filtration

Y ← Y0 ← · · · ← Yi−1 ← Yi ← . . .

such that Zi = Yi−1/Yi is a direct sum Zi =
∑
j

Xnj
for large nj and the complex

C =
∑

X∗(Zi) is acyclic through large dimensions. Here X = (Xn) ∈
→
S.

Proof. Take a large integer n and consider a map Y →
∑
i

X
(i)
n such that

X∗
(∑

i

Xn

)
→ X∗(Y ) is an epimorphism, where X∗ is a Noetherian cohomology

theory.
By virtue of the stability of the spectrum X, for Y ∈ S there is an integer n

such that the map Y →
∑

Xi factors into the composition Y
f0−→
∑
i

Xn →
∑

EiX,

where Xn → X is the natural map. Therefore X∗(
∑

Xni
)→ X∗(Y )

X∗(f0)−−−−→ X∗(Y )
is an epimorphism. Consider the short exact sequence

0→ Y
(n)
0 → Y

f0−→
∑

i

Xn → 0.

Obviously X∗(Y (n)
0 ) = Ker X∗(f0) and Y

(n)
0 ∈ S. Now take a large number n1 � n

and do the same to Y
(n)
0 as was done to Y , and so on. We obtain a filtration

Y ← Y
(n)
0 ← Y

(n,n1)
1 ← Y

(n,n1,n2)
2 ← . . . ,

where the Zi are sums of objects of the form
∑

Xmk
, with mk very large.

By definition, C =
∑
i

X∗(Zi) is an acyclic complex through large dimensions. �
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Definition 1.3. A stable spectrum X = (Xn) in the category
→
S is called acyclic if

for each object T ∈ S we have the equalities:
a) Exti,t

AX (X∗(Xn), X∗(T )) = 0, i > 0, t−i < fn(i), where fn(i)→∞ as n→∞;
b) Homt

AX (X∗(Xn), X∗(T )) = Homt(T,X) for t < fn, and fn →∞ as n→∞.

The so-called Adams spectral sequence (Er, dr) with E2-term E2 =
Ext∗∗AX (X∗(Y ), X∗(T )) arises in the following cases:

1. If in the category
→
S there exists an X-free acyclic filtration Y = Y−1 ← Y0 ←

Y1 ← · · · ← Yi−1 ← Yi . . . , on the basis of Lemma 1.2. However, such a filtration
does not always exist, since the theory X∗ in the category

→
S does not have the

exactness property.
2. If Y ∈ S, T ∈ S and the theory X∗ is stable, Noetherian and acyclic, then,

by virtue of Lemma 1.3, there exists a filtration

Y−1 = Y ← Y0 ← Y1 ← · · · ← Yi ← . . . ,

where the Yi/Yi+1 are sums of objects Xn, for numbers n which may be taken as
large as we want, with the filtration acyclic through large gradings. For such
a filtration, the corresponding spectral sequence (Er, dr) has the term Es,t

2 =
ExtAXs,t (X∗(Y ), X∗(T )) through large gradings, by the definition of acyclicity for
the theory X∗.

In this way we obtain:

Theorem 1.1. For any stable Noetherian acyclic cohomology theory X ∈
→
S and

objects Y, T ∈ S, one can construct an Adams spectral sequence (Er, dr), where
dr : Es,t

r → Es+r,t+r−1
r and the groups

∑
t−s=m

Es,t
∞ are connected to Homm(t, Y ) in

the following way : there exist homomorphisms

qi : Ker qi−1 → Ei,i+m
∞ , i ≥ 0,

where
q0 : Homm(T, Y )→ Homm

AX (X∗(Y ), X∗(T ))
is the natural homomorphism.

The Adams spectral sequence is functorial in T and Y .

Remark 1.1. The homomorphism q1 : Ker q0 → Ext1,∗
AX (X∗(Y ), X∗(T )) is called

the “Hopf invariant.”

Remark 1.2. For objects T, Y ∈ S and a stable Noetherian acyclic homology
theory X ∈

←
S one can also construct an Adams spectral sequence (Er, dr) such that

E2 = Ext∗∗AX
(X∗(T ), X∗(Y )). In this spectral sequence, dr : Ep,q

r → Ep−r,q+r+1
r ,

and the homomorphisms qi are such that

qi : Ker qi−1 → Ei,i+n
∞ ,

where
q0 : Homn(T, Y )→ Homn

AX (X∗(Y ), X∗(T ))
is the natural homomorphism and AX is the Steenrod ring of the homology theory
X∗.

The proof of Theorem 1.1 is a trivial consequence of Lemmas 1.1–1.3 and stan-
dard verifications of the functoriality of the spectral sequence in the case where the
filtration is X-free and acyclic.
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We shall be specially interested in those cases when the Adams spectral sequence
converges exactly to T∗(Y ) = Hom∗(T, Y ). Let us formulate a simple criterion for
convergence:

(A) If there exists an X-free filtration Y−1 = Y ← Y0 ← · · · ← Yi (not necessarily
acyclic) such that for any j, l there exists a number i > l, depending on j and l, for
which

∑
k≤j

Homk(T, Yi) = 0, then the Adams spectral sequence converges exactly

to Hom∗(T, Y ). Criterion (A) does not appear to be the most powerful of those
possible, but it will be fully sufficient for the purposes of the present work.

§ 2. The S-category of finite complexes with distinguished base
points. Simplest operations in this category

The basic categories we shall be dealing with are the following:
1. The S-category of finite complexes and the categories

→
S and

←
S over it.

2. For any flat Z-module G (an abelian group such that ⊗ZG is an exact functor)
we introduce the category S ⊗Z G, in which we keep the old objects of S and let
Hom(X, Y )⊗Z G be the group of morphisms of X to Y in the new category S⊗Z G.
Important examples are: a) G = Q, b) G = Qp (p-adic integers). The respective
categories will be denoted by S0 for G = Q and Sp for G = Qp, p a prime.

3. In S (or Sp for p > 0) we single out the subcategory D (or Dp ⊂ Sp)
consisting of complexes with torsion-free integral cohomology. It should be noted
that the subcategories D and Dp are not closed with respect to the operations
entering in axiom 1 for S-categories.

These subcategories, however, are closed with respect to the operations referred
to, when the morphism f : A → B is such that f∗ : H∗(B,Z) → H∗(A,Z) is an
epimorphism.

Therefore the category D is closed under the construction of X-free acyclic reso-
lutions (only acyclic), and it is possible to study the Adams spectral sequence only
for X, Y ∈ D (or Dp).

The following operations are well known in the S-category of spaces of the ho-
motopy type of finite complexes (with distinguished base points):

1. The connected sum with amalgamated subcomplex X +Z Y , becoming the
wedge X ∨ Y if Z = 0 (a point).

2. Changing any map to an inclusion and to a projection (up to homotopy type):
axiom 1 of § 1.

3. Exactness of the functors Hom∗(X, ) and Hom∗( , X).
4. The tensor product X ⊗ Y = X × Y/X ∨ Y .
5. The definition, for a pair X, Y ∈ S, of X⊗Z Y , given multiplications X⊗Z →

X and Z ⊗ Y → Y .
6. Existence of a “point”-pair P = (S0, ∗) such that X ⊗ P = X and X ⊗p Y =

X ⊗ Y .
All these operations are carried over in a natural way into the categories S0, Sp,

→
S,

←
S,

→
Sp and

←
Sp.

The cohomology theory X∗ will be said to be multiplicative if there is given a
multiplication

X ⊗X → X, X ∈
→
S.

The cohomology theory Y ∗ is said to act on the right [left] of the theory X∗ if
there is given a multiplication X ⊗ Y → X or Y ⊗X → X.
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The previously mentioned theory P ∗, generated by the point spectrum P =
(S0, ∗), operates on all cohomology theories and is called “cohomotopy theory.” Its
spectrum, of course, consists of the spheres (Sn). It is obviously multiplicative,
because P ⊗ P = P .

We now describe an interesting operation constructed on a multiplicative coho-
mology theory X = (Xn) ∈

→
S of a (not necessarily stable) spectrum of spaces.

Let (Hi
n) be the spectrum of spaces of maps Hi

n = Ωn−iXn = Map(Sn−i, Xn).
Since X is multiplicative and P ⊗ P = P , we have a multiplication

Hi
n ×Hj

m → Hi+j
m+n.

Let now i = j = 0. Then
H0

n ×H0
m → H0

m+n.

Suppose that the cohomology ring X∗(X) and all X∗(K) have identities (the
cohomology theory contains scalars with respect to multiplication X ⊗ X → X).
Consider in the space H0

n the subspace Hn ⊂ H0
n = ΩnXn which is the connected

component of the element 1 ∈ X0(P ). We have a multiplication

Hn ×Hn
//

����

Hn

��
H0

n ×H0
n

// H0
n

induced by the inclusion Hn ⊂ H0
n.

Let π(K, L) be the homotopy classes (ordinary, non-stable) of maps K → L, and
let Π−1(K) = lim

n→∞
π(K, Hn). Obviously Π−1(K) is a semigroup with respect to

the previously introduced multiplication. We have

Lemma 2.1. Π−1(K) is a group, isomorphic to the multiplicative group of elements
of the form {1+x} ∈ X0(K), where x ranges over the elements of the group X0(K)
of filtration > 0.

The proof of Lemma 2.1 easily follows from the definition of the multiplication
Hn ×Hm → Hm+n by means of the multiplication in the spectrum X.

Therefore the spectrum (Hn) defines an “H-space” and the spectrum
BH = (BHn) has often been defined. The set of homotopy classes π(K, BH) =
lim−→
n

π(K, BHn) we denote by Π0(K), while Π0(EK) = Π−1(K) by definition,

where E is the suspension.
The following fact is. evident:
If K = E2L, then Π0(K) = X1(K); therefore in the S-category Π0(K) is simply

X1(K). As we have already seen by Lemma 2.1, this is not so for complexes which
are only single suspensions, where Π0(EL) consists of all elements of the form
{1 + x} in X0(L) under the multiplication in X0(L).

An important example. Let X = P = (Sn, ∗). Then the spectrum Hn with
multiplication Hn ×Hn → Hn is homotopic to the spectrum H̃n (maps of degree
+1 of Sn → Sn with composition H̃n × H̃n → H̃n).

The J-functor of Atiyah is the image of K̄(L) → Π0(L) in our case X = P . In
particular, in an S-category L = E2L′ we have that Π0(L) is P ∗(L); in the case
L = EL′, Π0(L) depends on the multiplication in P ∗(L′).
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Besides the enumerated facts relating to the S-category of finite complexes one
should also mention the existence of an anti-automorphism σ : S → S of this S-
category which associates to a complex X its S-dual complex (complement in a
sphere of high dimension). The operator σ induces

σ :
→
S →

←
S, σ :

←
S →

→
S, σ2 = 1.

Since Hom(X, Y ) = Hom(σY, σX) and σX is a homology theory in
←
S if X is a

cohomology theory, then the duality law of Alexander–Pontrjagin is, obviously, the
equality X∗(K) = σX∗(σK), and by an X-homology manifold is meant a complex
K such that Xi(K) = σKn−i(K) in the presence of some natural identification
of σX∗(K) with σX∗(σK); for example, if K is a smooth manifold, then σ(K)
according to Atiyah [6] is the spectrum of the Thom complex of the normal bundle
in a sphere. In the presence of a functorial Thom isomorphism in X∗-theory for
some class of manifolds, we obtain Poincaré–Atiyah duality.

Let X ∈
→
S, Y ∈ S, T ∈

←
S. In § 1 we constructed the Adams spectral sequence

with E2 term equal to Ext∗∗AX (X∗(Y ), X∗(T )).
The law of duality for Adams spectral sequences reads:
The cohomology Adams spectral sequence (Er, dr) with term E2 =

ExtAX (X∗(Y ), X∗(T )) is canonically isomorphic to the homology Adams spectral
sequence (E′

r, d
′
r) with term E′

2 = ExtAσX
(σX∗(σY ), σX∗(σT )). The homology

Adams spectral sequence for X = σX = P was investigated by A. S. Mǐsčenko
[16].

Let us introduce the important notion of (m− 1)-connected spectra.

Definition 2.1. The spectrum (Xn, fn) = X (direct) is called (m − 1)-connected
if each object Xn is (n + m − 1 + n0)-connected, where the integer n0 is defined
in § 1. Analogously for inverse spectra.

Usually n0 = 0 and Xn is (n + m − 1)-connected, fn : EXn → Xn+1 for direct
spectra. Analogously for inverse.

Finally, we should formulate two obvious facts here, which will be used later.

Lemma 2.2. a) If X ∈
→
S, the cohomology theories EX and X have the same

Adams spectral sequences for any Y and T for which the sequences exist (here
Y ∈

→
S, T ∈

←
S).

b) Furthermore, if X̃ =
∑

EγiX is a direct sum, where γi → ∞ for i → ∞,
then the theory X̃∗ defines the same Adams spectral sequence as the theory X∗.

Proof. Since each X̃-free acyclic resolution is at the same time an X-free resolution,
the lemma at once follows from the definitions. �

From the lemma follows

Corollary 2.1. For any stable Noetherian acyclic cohomology theory X ∈
→
S and

any Y ∈ S and T ∈ S, all groups Extst
AX (X∗(Y ), X∗(T ))⊗Z Q = 0 for s > 0.

Proof. Since a stable spectrum X in the category S0 = S⊗ZQ is equivalent to a sum∑
EγiK(Z) of Eilenberg–MacLane spectra for π = Z, and since for X ′ = K(Z)

the ring AX′ ⊗Z Q is trivial, it follows that all Exts
AX ( , )⊗Z Q = 0 for s > 0, since

Exts
AX′ ⊗Z Q( , ) = 0 for s > 0 and by virtue of Lemma 2.2. �
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§ 3. Important examples of cohomology and homology theories.
Convergence and some properties of Adams spectral sequences

in cobordism theory

We list here the majority of the most interesting cohomology theories.
1. X = K(π), where Xn = K(π, n). This theory is multiplicative if π is a ring,

and X∗ = H∗( , π). The case π = Zp is well known, having been studied in many
works [1, 9, 15, 17, 18]. The spectral sequence was constructed by Adams in [1],
where its convergence was proved (π = Zp). The ring AX is the usual Steenrod
algebra over Zp. Here the commonly studied case is p = 2. The case p > 2 was
first studied in [24].3

The criterion (A) for the convergence of the Adams spectral sequence applies
easily in the category Sp = S ⊗Z Qp under the condition that Y is a complex
with π∗i (Y )⊗Z Qp finite groups, in which case there is a nonacyclic resolution (the
Postnikov system) which is X-free.

In the case π = Z, as is easy to see, the applicability of criterion (A) in the
category S itself again easily follows from the properties of the usual contractible
spaces and Postnikov systems (see, for example, [16]).

2. Homotopy and cohomotopy theories. Let P be the point in S, where
Pn = Sn. The theory P∗ is that of stable homotopy groups, and P ∗ that of stable
cohomotopy groups. The (Eckmann–Hilton) dual of this spectrum is K(Z) and the
theory H∗( , Z). Similarly, the spectra P(m) = P/mP (m an integer) are Eckmann–
Hilton duals of the spectra K(Zm).

For the homology theory P∗(X) the proof of convergence of the homology Adams
spectral sequence with term E2 = Ext∗∗AP

is similar to the proof for the cohomology
spectrum K(Z) by virtue of Eckmann–Hilton duality and follows from criterion (A)
of § 1.

The proof of convergence for the theory P(m)∗ analogously proceeds from the
method of Adams for K(Zm). These theories were investigated in [16].

By virtue of the law of duality for the Adams spectral sequence (cf. § 2) and the
fact that σP = P and σP(m) = P(m), we obtain convergence also in cohomotopy
theory, where σ is the S-duality operator.

3. Stable K-theory.
a) Let k = (kn), where Ω2nk2n = BU × Z, and the complexes kn are (n − 1)-

connected. Then k2n is the (2n − 1)-connected space over BU and the inclusion
x : k2n → k2n−2 is defined by virtue of Bott periodicity.

Here ki = Ki for i ≤ 0 for K∗ the usual complex K-theory, and if H∗(L, Z) has
no torsion, then k2i(L) is the subgroup of K2i(L) consisting of elements of filtration
≥ i.

b) Let kO = (kOn), where Ω8nkO8n = BO×Z, and all kOn are (n−1)-connected.
We have kO[i] = (kO

[i]
n ) where Ω8nkO

[i]
8n−i = BO × Z, kO[0] = kO and the kO

[i]
n

are (n− 1)-connected. Here i is to be taken mod 8.

3In Theorem 2 of the author’s work [24] there are erroneous computations, not influencing

the basic results. We note also the peculiar analogues, first discovered and applied in [24], to

the Steenrod powers in the cohomology of a Hopf algebra with commutative diagonal. It turns
out that for all p > 2 these “Steenrod powers” St pi are defined and nontrivial for i ≡ 0, 1

(mod p − 1), i ≥ 0. These peculiar operations have never been noted in more recent literature
on these questions, although they are of value; for example, they reflect on the multiplicative
formulas of Theorem 2 in [24] for p > 2.
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It is easy to show that in the category S ⊗Z Z[1/2] all spectra kO[i] coincide
up to suspension, and the spectrum k is a sum of two spectra of the type k =
kO + E2kO[2].

4. Cobordism. Let G = (Gn) be a sequence of subgroups of the groups Oα(n)

where α(n + 1) > α(n) and α(n) → ∞ for n → ∞ with Gn ⊂ Gn+1 under the
inclusion Oα(n) ⊂ Oα(n+1). There arise natural homomorphisms BGn → BGn+1

and a direct spectrum (not in the S-category) BG. With this spectrum BG is
connected the spectrum of Thom complexes MG = (MGn) in the category

→
S.

Examples:
a) The spectrum G = (e), e ⊂ On; then MG = P ;
b) G = O, SO, Spin, U , SU , Sp; then MG = MO, MSO, M Spin, MU ,

MSU , MSp have all been investigated. All of them are multiplicative spectra and
the corresponding cohomology rings have commutative multiplication with identity.
Let us mention the known facts:

1) MO =
∑

i

EλiK(Z2);

2) MSO ⊗Z Q2 =
∑

j

Eλj K(Z) +
∑

q

EµqK(Z2) (see [17, 18, 23]);

3) MG⊗Z Qp =
∑

k

EλkM(p),

where H∗(M(p), Zp) = A/βA + Aβ, A is the Steenrod algebra over Zp and β is the
mod p Bokštĕın homomorphism. This result holds for G = SO, U , Spin, Sp for
p > 2, G = U for p ≥ 2, and G = SU for p > 2 with reduction of the number of
terms λk corresponding to certain partitions ω (see [15, 17, 18, 26])

4) M Spin⊗ZQ2 =
∑

s

EλsK(Z2) +
∑

q

EµqkO +
∑

l

EδlkO[2].

Facts (1) and (2) are known, and fact (4) is given in a recent result of Anderson–
Brown–Peterson [10].

c) G = T , where Tn = Gn ⊂ Un ⊂ O2n is the maximal torus. This leads to MG,
again a multiplicative spectrum since MTm+n = MTm ⊗MTn.

Let us mention the structure of the cohomology M∗
(p)(P ), where P = (S0, ∗) is a

point, M∗
(p)(P ) = Qp[x1, . . . , xi, . . . ] (polynomials over Qp) with dim xi = −2pi + 2

and M0
(p)(P ) the scalars Qp.

The ring U∗(P ) for G = U (spectrum MU) is Z[y1, . . . , yi, . . . ], where dim yi =
−2i.

For the spectra M(p) = X and MU = X we have the important, simply derived

Lemma 3.1. If a ∈ AX is some operation for X = M(p) ∈
→
S ⊗Z Qp or X =

MU ∈
→
S which operates trivially on the module X∗(P ), then the operation a is

itself trivial.

Proof. Since a ∈ Hom∗(X, X), the operation a is represented by a map X → EγX.
Since π∗(X)⊗Z Qp and H∗(X, Qp) for X = M(p) and X = MU do not have torsion,
it follows from obstruction theory in the usual fashion that the map a : X → EγX
is completely determined by the map a∗ : π∗(X) → π∗(X), which represents the
operation a on X∗(P ), for X−i(P ) = πS

i (X). End of proof of lemma. �
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Since MU ⊗Z Qp =
∑
k

EλkM(p), we have the following fact:

ExtAX (X∗(K), X∗(L))⊗Z Qp = ExtAY (Y ∗(K), Y ∗(L)),

where X = MU , X∗ = U∗, and Y = M(p), Y ∗ = U∗
(p) = M∗

(p); we denote M∗
(p)

by U∗
(p) and MU∗ by U∗. Both are multiplicative theories. This fact, that the Ext

terms and more generally the Adams spectral sequences coincide, follows from the
fact that MU ⊗Z Qp =

∑
k

EλkM(p), as indicated in § 2, since MU ⊗Z Qp is a sum

of suspensions of a single theory M(p) and Qp is a flat Z-module.
For any multiplicative cohomology theory X∗ there is in the ring AX the opera-

tion of multiplication by the cohomology of the spectrum P , since the spectrum P
acts on every spectrum: P ⊗X = X. In this way there is defined a homomorphism
X∗(P ) → AX , where X∗(P ) acts by multiplication. From now on we denote the
image of X∗(P )→ AX by Λ ⊂ AX , the ring of “quasiscalars.”

For spectra X = M(p), X = MU we have the obvious

Lemma 3.2. Let Y ∈
→
Dp be a stable spectrum. Then X∗(Y ) is a free Λ-module,

where the minimal dimension of the Λ-free generators is equal to n, if Y = (Ym) is
a spectrum of (n + m)-connected complexes Ym.

The lemma obviously follows from the fact that in the usual spectral sequence in
which E2 = H∗(Y, X∗(P )) = H∗(Y,Λ) for X = M(p),MU all differentials dr = 0
for r ≥ 2, and the sequence converges to X∗(Y ).

Now let Y satisfy the hypotheses of Lemma 3.2. We have

Lemma 3.3. There exists an X-free acyclic resolution for X = M(p),MU : Y ←
Y0 ← Y1 ← · · · ← Yi ← . . . , where the stable spectra Yi ∈ Dp are (m + 2i − 1)-
connected, if Y is a stable (m − 1)-connected spectrum in

→
Dp. Furthermore, if

X = M(p), the spectrum Yi is (m + 2i(p− 1)− 1)-connected.

Proof. Since Y is an (m − 1)-connected stable spectrum, the minimal Λ-free gen-
erator of the module X∗(Y ) has dimension m, and the set of m-dimensional Λ-free
generators corresponds to the generators of the group Hm(Y, Qp).

Choose in correspondence with this system of Λ-free generators an X-free object
C0 and construct in a natural way a map f0 : Y → C0 such that

f0∗ : Hm+k(Y, Qp)→ Hm+k(C0, Qp)

is an isomorphism for k ≤ 1. Obviously C0 is also (m − 1)-connected. Then the
object Y0 such that 0 → Y0 → Y → C0 → 0 is a short exact sequence has the
property that it is also a stable spectrum in

→
Dp. Furthermore, since f0∗ is an

isomorphism on the groups Hm+k(Y,Qp) for k ≤ 1, the object Y0 is m-connected
in

→
Dp. If X = M(p), then it may be shown furthermore that in constructing C0

in correspondence with Λ-free generators in X∗(Y ) the map f0∗ : Hj(Y, Qp) →
Hj(C0, Qp) is an isomorphism for j ≤ m + 2p − 3 and a monomorphism for j =
m + 2p− 2.

Therefore Y0 will be (m+2p−3)-connected if Y is (m−1)-connected. The result
for X = MU in the category D is obtained by substituting the minimal p = 2. This
process we continue further, and obviously obtain the desired filtration. The lemma
is proved. �
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Now let T ∈ S be a finite complex. By virtue of Lemma 3.3 we have that
Homj(T, Yi) = 0 for large i. Therefore the Adams spectral sequence converges to
Hom∗(T, Y ) by virtue of criterion (A) in § 1.

From these lemmas follows

Theorem 3.1. For any stable (m− 1)-connected spectrum Y ∈
→
D ⊂ S, X = MU

and any finite complex T ∈ S of dimension n, the Adams spectral sequence (Er, dr)
with term E2 = Ext∗∗AX (X∗(Y ), X∗(T )) exists and converges exactly to Hom∗(T, Y );
moreover Exts,t

AX (X∗(Y ), X∗(T )) = 0 for t − s < s + m − n. Furthermore, the p-
primary part Exts,t

AX (X∗(Y ), X∗(T ))⊗Z Qp = 0 for t < 2s(p− 1) + m− n.

The proof follows immediately from the fact that if T is an n-dimensional
complex and Y is a k-connected spectrum, then Homi

AX (X∗(Y ), X∗(T )) = 0 for
i < k − n and from Lemma 3.3 for X = MU .

The statement about the p-components of the groups Ext follows from
Lemma 3.3 for the spectrum M(p), since

MU ⊗Z Qp =
∑

k

EλkM(p).

The theorem is proved.
Note that for X = MU,M(p), stable spectra Y and finite complexes T , all groups

Exts,t
AX are torsion groups for s > 0, as derived in § 2.

Let X = M(p), Y ∈
→
Dp be a stable spectrum, and T ∈ S ⊗Z Qp, where the

cohomology H∗(Y,Qp) and H∗(T,Qp) is different from zero only in dimensions of
the form 2k(p− 1).

Under these hypotheses we have

Theorem 3.2. a) The groups Homi
AX (X∗(Y ), X∗(T )) are different from zero only

for i ≡ 0 mod 2p− 2;
b) AX is a graded ring in which elements are non-zero only in dimensions of the

form 2k(p− 1);
c) The groups Exts,t

AX (X∗(Y ), X∗(T )) are different from zero only for t ≡ 0
mod 2p− 2;

d) In the Adams spectral sequence (Er, dr) all differentials dr are equal to zero
for r 6≡ 1 mod 2p− 2.

Proof. Since the ring X∗(P ) (P a point) is nontrivial only in dimensions of the form
2k(p − 1), statement (b) follows from Lemma 3.1. Statement (a) follows from (b)
and the hypotheses on X∗(T ). From (b) it follows that it is possible to construct
an Ax-free acyclic resolution for X∗(Y ) in which generators are all of dimensions
divisible by 2p − 2. From this (c) follows. Statement (d) comes from (c) and the
fact that dr(Es,t

r ) ⊂ Es+r,t+r−1
r . Q.E.D. �

Corollary 3.1. For X = MU , Y = P , T = P the groups Exts,t
AX (X∗(P ), X∗(P ))⊗Z

Qp = 0 for t < 2s(p− 1) and for t 6≡ 0 mod 2p− 2, and the differentials dr on the
groups Er ⊗Z Qp are equal to zero for r 6≡ 1 mod 2p− 2.

From now on we always denote the cohomology X∗ for X = MU by U∗ and the
Steenrod ring AX by AU . In the next section this ring will be completely calculated.

As for the question about the existence of the Adams spectral sequence in the
theory U∗ and category S, we have
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Lemma 3.4. The cohomology theory U∗ is stable, Noetherian, and acyclic.

Proof. The stability of the spectrum MU = (MUn) is obvious. Let T be a finite
complex. We shall prove that U∗(T ) is finitely generated as a Λ-module, so of course
as an AU -module, where Λ = U∗(P ) ⊂ AU . Consider the spectral sequence (Er, dr)
with term E2 = H∗(T,Λ), converging to U∗(T ). Since T is a finite complex, in this
spectral sequence only a finite number of differentials dr, . . . , dk are different from
zero, di = 0 for i > k. Note that all dr commute with Λ, and E∞ as a Λ-module
is associated with U∗(T ), where E∞ = Ek. The generators of the Λ-module E2 lie
in H∗(T,Z); Λ0 = Z and they are finite in number: u

(r)
1 , . . . , u

(r)
lr
∈ E∗,0

2 . Note
that dr(Ep,q

r ) ⊂ Ep+r,q−r+1
r . Denote by ΛN ⊂ Λ the subring of polynomials in

generators of dimension ≤ 2N , Λ = U∗(P ) = ΩU . The ring ΛN is Noetherian.
Similarly, let ΛN ⊂ Λ be the subring of polynomials in generators of dimension
> 2N . Obviously, Λ = ΛN ⊗Z ΛN and Λ has no torsion.

Assume, by induction, that the Λ-module Er has a finite number of Λ-generators
u

(r)
1 , . . . , u

(r)
lr

and there exists a number Nr such that Er = Ẽr⊗Z ΛNr , where Ẽr is

a ΛNr -module with the finite number of generators u
(r)
1 , . . . , u

(r)
lr

, above. Consider

dr(u
(r)
j ) =

∑
k

λ
(r)
kj u

(r)
k , where λ

(r)
kj ∈ Λ. Let dim λ

(r)
kj ≤ Ñr for all k, j. Set Nr+1 =

Max(Ñr, Nr). Then λ
(r)
kj ∈ ΛNr+1 . By virtue of the Noetherian property of the ring

ΛNr+1 , the module H(Ẽr⊗Z ΛNr+1
Nr

, dr) is finitely generated, where ΛNr
is generated

by polynomial generators of dimension Nr < k ≤ Nr+1 and ΛNr+1
Nr

⊗Z ΛNr+1 = ΛNr .
Since

H(Er, dr) = Er+1 = H(Ẽr ⊗Z ΛNr , dr) = H(Ẽr ⊗Z ΛNr+1
Nr

⊗ ΛNr+1 , dr)

= H(Ẽr ⊗ ΛNr+1
Nr

, dr)⊗ ΛNr+1 ,

if we set Ẽr+1 = H(Ẽr⊗ΛNr+1
Nr

, dr), then Er+1 is a finitely generated ΛNr+1-module,
and Er+1 = Ẽr+1 ⊗Z ΛNr+1 .

Taking N2 = 0, we complete the induction, since for some k,Ek = E∞ is a
finitely generated Λ-module. Therefore the module U∗(T ) is finitely generated and
the theory U∗ is Noetherian.

Let us prove the acyclicity of the theory U∗ in the sense of § 1. Since the (4n−2)-
skeletons X2n of the complexes MUn do not have torsion, by virtue of the lemma
for these complexes in the category D the spectral sequence exists; moreover, the
module U∗(X2n) is a cyclic AU -module with generator of dimension 2n and with
the single relation that all elements of filtration ≥ 2n in the ring AU annihilate
the generator. From this and the lemma it follows that Exti,t

AU (U∗(X2n)) = 0 for
t < 2n − dim T , and Hom∗

AU (U∗(X2n), ) = Hom∗( , X2n) = Hom∗( , X) in the
same dimensions. From this the lemma follows easily. �

Lemma 3.4 implies

Theorem 3.3. For any Y, T ∈ S there exists an Adams spectral sequence (Er, dr)
with term Er = Ext∗∗AU (U∗(Y ), U∗(T )).

A. S. Mǐsčenko proved the convergence of this spectral sequence to Hom∗(T, Y )
(see [16]).
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§ 4. O-cobordism and the ordinary Steenrod algebra modulo 2

As an illustration of our method of describing the Steenrod ring AU (see §§ 5,
6) we exhibit it first in the simple case of the theory O∗, defined by the spectrum
MO isomorphic to the direct sum MO =

∑
ω

EλωK(Z2), where ω = (a1, . . . , as),∑
ai = λω, ai 6= 2j − 1, or ω = 0. The Steenrod ring AO is an algebra over

the field Z2. Let A be the ordinary Steenrod algebra. The simplest description
of the algebra AO is the following: AO = GL(A) consists of infinite matrices
a = (aω,ω′), where ω, ω′ are nondyadic partitions (a1, . . . , as), (a′r, . . . , a

′
s), aω,ω′ ∈ A

and dim a = λω − λω′ + dim aω,ω′ is the dimension of the matrix. The ring GL(A)
is, by definition, a graded ring. This describes the ring AO more generally for all
spectra of the form

∑
EλωK(Z2).

In the ring GL(A) we have a projection operator π such that πAOπ = A, π2 = 1,
π ∈ AO = GL(A).

Another description of the ring AO is based on the existence of a multiplicative
structure in O∗(K, L). Let Λ = O∗(P ) ≈ ΩO be the unoriented cobordism ring,
Oi(P ) = Ωi

O.
1. There is defined a multiplication operator

x→ αx, x ∈ O∗(K, L), α ∈ Λ = O∗(P ).

This defines a monomorphism Λ→ AO.
2. We define “Stiefel–Whitney characteristic classes” W̃i(ξ) ∈ Oi(X), where ξ is

an O-bundle with base X:
a) for the canonical O1-bundle ξ over RP∞ we set:

W̃i(ξ) = 0, i 6= 0, 1,

W̃0(ξ) = 1, W̃1(ξ) = DRPn−1 ⊂ O−1(RPn),

n large, D the Atiyah duality operator.
b) If η = ξ1 ⊕ ξ2, then W̃ (η) = W̃ (ξ1)W̃ (ξ2), where W̃ =

∑
W̃i.

These axioms uniquely define classes W̃i for all O-bundles.
As usual, the classes W̃i define classes W̃ω for all ω = (a1, . . . , as) such that

W̃i = W̃1,...,1. In O-theory there is defined the Thom isomorphism φ : O∗(X) →
O∗(Mξ, ∗), where Mξ is the Thom complex of ξ. Let X = BOn, Mξ = MOn. Let
u = φ(1) ∈ O∗(MOn). We define operations

Sqω : Oq(K, L)→ Oq+d(ω)(K, L)

by setting Sqω(u) = φ(W̃ω), where W̃ω ∈ O∗(BOn).

Under the homomorphism i∗ · j∗ : O∗(MOn) → O∗(BOn) → O∗
(

n∏
k=1

RP∞
k

)
the element u = φ(1) goes into i∗j∗(u) = u1 . . . un, where ui ∈ O1(RP∞

i ) is
the class W̃1(ξi), ξi the canonical O1-bundle over RP∞

i , defined above, and
Sqω(u1 . . . un) = Sω(u1, . . . , un)u1 . . . un, where Sω is the symmetrized monomial∑

ua1
1 . . . uas

s , s ≤ n.
There is defined the subset Map(X, MO1) ⊂ O1(X) and a (non-additive) map

γ : O1(X)→ H1(X, Z2)→ Map(X, MO1), where ε : O∗ → H∗( , Z2) is the natural
homomorphism {defined by the Thom class}. The operations Sqω have the following
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properties:
a) Sqω(xy) =

∑
(ω1,ω2)=ω

Sqω1(x) Sqω2(y);

b) if x = γ(x1), then Sqω(x) = 0, ω 6= (k) and Sqk(x) = xk+1;
c) the composition Sqω1 ◦Sqω2 is a linear combination of the form

∑
λω Sqω,

λω ∈ Z2, which can be calculated on u = φ(1) ∈ O∗(MOn) or on i∗j∗(u) =
u1 . . . un ∈ O∗(RP∞

1 × · · · ×RP∞
n ), ui ∈ Im γ;

d) there is an additive basis of the ring AO of the form
∑

λiαi Sqωi , λi ∈ Z2, αi

an additive basis of the ring Λ = O∗(P ) ≈ ΩO. Thus AO is a topological ring with
topological basis αi Sqω, or

AO = (Λ · S)∧,

where ∧ means completion and S is the ring spanned by all Sqω.
We note that the set of all Sqω such that ω = (a1, . . . , as), where a1 = 2j − 1,

is closed under composition and forms a subalgebra isomorphic to the Steenrod
algebra A ⊂ S ⊂ AO.

How does one compute a composition of the form Sqω ◦α, where α ∈ Λ? We
shall indicate here without proof a formula for this (which will be basic in § 5,
where the ring AU is computed).

Let (X, ξ) be a pair (a closed manifold and a vector bundle ξ), considered up to
cobordism of pairs, i.e. (X, ξ) ∈ O∗(BO). In particular, if ξ = −τX , where τX is
the tangent bundle, then the pair (X, ξ) ∈ ΩO = O∗(P ).

We define operators (“differentiations”)

W ∗
ω : O∗(BO)→ O∗(BO),

W ∗
ω : ΩO → ΩO,

by setting W ∗
ω(X, ξ) = (Yω, f∗ω(ξ+τX)−τYω ), where (Yω, fω : Yω → X) is DW̃ω(ξ) ∈

O∗(X).
We also have multiplication operators

α : O∗(BO)→ O∗(BO),
α : ΩO → ΩO,

where (X, ξ)→ (X ×M, ξ × (−τM )) and (M,−τM ) ∈ ΩO represents α ∈ ΩO.
In particular, we have the formula

W ∗
ω · α =

∑
ω=(ω1,ω2)

W ∗
ω1

(α) ·W ∗
ω2

,

where α ∈ ΩO, W ∗
ω1

(α) ∈ ΩO.
It turns out that the following formula holds:

Sqω ·α =
∑

ω=(ω1,ω2)

W ∗
ω1

(α) · Sqω2 ,

where α ∈ Λ = ΩO.
We also have a diagonal

∆: AO → AO ⊗ΩO
AO,

where ∆(α) = α⊗1 = 1⊗α, and ∆ Sqω =
∑

ω=(ω1,ω2)

Sqω1 ⊗Sqω2 , so that AO⊗ΩO
AO

may be considered as an AO-module via ∆; AO ⊗ΩO
AO = O∗(MO⊗MO), and ∆

arises from the multiplication in the spectrum, MO ⊗MO →MO.
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We note that the homomorphisms W ∗
ω coincide with the Stiefel characteristic

residues if n = dim ω.
We also note that any characteristic class h ∈ O∗(BO) defines an operation h ∈

AO, if we set h(u) = φ(h), where u ∈ O∗(MO) is the Thom class and φ : O∗(BO)→
O∗(MO) is the Thom isomorphism.

In particular we consider the operations

∂(u) = ϕ(h1), where h1 = γ(W̃1),

∆(u) = ϕ(h2), where h2 = γ(W̃1)2.

It turns out that ∂2 = 0, ∆∂ = 0 and the condition h1(ξ) = 0 defines an
SO-bundle, since h1 = γ(W̃1).

Further, it turns out that O∗(MSO) is a cyclic AO-module with a single gen-
erator v ∈ O∗(MSO), given by the relations ∂(v) = 0, ∆(v) = 0, and we have a
resolution

(· · · → Ci → . . .
d−→ C1

d−→ C0
ε−→ O∗(MSO)→ O) = C,

where C0 = AO (generator u0), Ci = AO + AO (generators ui, vi, i ≥ 1), and

d(ui) = ∂ui−1, i ≥ 1,

d(vi) = ∆ui−1.

The homomorphisms ∂∗ and ∆∗ : ΩO → ΩO coincide with the homomorphisms of
Rohlin [20], [21] and Wall [23].

We consider the complex Hom∗
AO (C,O∗(P )) with differential d∗ defined by the

operators ∂∗ and ∆∗ on O∗(P ) ≈ Ω. The homology of this complex is naturally
isomorphic to Ext∗∗AO (O∗(MSO), O∗(P )) or the E2 term of the Adams spectral
sequence.

It is possible to prove the following:
1) all Adams differentials are zero;
2) Ext0,∗

AO (O∗(MSO), O∗(P )) = ΩSO/2ΩSO ⊂ ΩO where ΩSO/2ΩSO = Ker ∂∗ ∩
Ker ∆∗ by definition of the complex C;

3) Exti,i+s
AO = 0, for s 6= 4k;

4) Exti,i+4k
AO (O∗(MSO), O∗(P )) is isomorphic to Z2+ · · ·+Z2, where the number

of summands is equal to the number of partitions of k into positive summands
(k1, . . . , ks),

∑
ki = k;

5) there exists an element h0 ∈ Ext1,1
AO associated with multiplication by 2 in E∞,

such that Ext0,t
AO

h0−→ Ext1,t+1
AO is an epimorphism, t = 4k, and Exti,t

A
h0−→ Exti+1,t+1

A

is an isomorphism, i ≥ 1.
These facts actually are trivial since

ExtAO (O∗(X), O(Y )) = ExtA(H∗(X, Z2),H∗(Y, Z2))

and H∗(MSO, Z2), as was shown by the author [17, 18] and by Wall [23], is
H∗(

∑
EjK(Z2)) + H∗(

∑
EkK(Z)), where there are as many summands of the

form K(Z) as would be necessary for (4) and (5).
We have mentioned these facts here in connection with the analogy later of MSO

with MSU and the paper of Conner and Floyd [13].
In the study of ExtAU (U∗(MSU)) all dimensions will be doubled, the groups

Ei,8k+i
∞ for 1 ≤ i < 3 will be constructed in an identical fashion, but the element
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h0 ∈ Ext1,1 will be replaced by an element h ∈ Ext1,2
AU and the Adams differential

d3 will be non-trivial (see §§ 6, 7).
We note that the construction described here gives us a natural representation

of the ring AO = (Λ ◦ S)Λ on the ring ΩO by means of the operators W ∗
ω (“differ-

entiation”) and the multiplication on Λ.
In a certain sense the operators W ∗

ω generalize the ordinary characteristic num-
bers. They can be calculated easily for [RP 2h] ∈ ΩO and

W ∗
ω(αβ) =

∑
(ω1,ω2)=ω

W ∗
ω1

(α)Wω2(β)

(the Leibnitz formula). Completing their calculation would require that they be
known also for “Dold manifolds.”

It is interesting that the ring A ⊂ AO, where A ⊂ S, is also represented
monomorphically by the representation W ∗

ω on ΩO.
In conclusion, we note that the lack of rigor in this section is explained by the

fact that O∗-theory will not be considered later and all assertions will be established
in the more difficult situation of U∗-theory.

§ 5. Cohomology operations in the theory of U-cobordism

In this section we shall give the complete calculation of the ring AU of coho-
mology operations in U∗-cohomology theory. We recall that for any smooth qua-
sicomplex manifold (possibly with boundary) there is the Poincaré–Atiyah duality
law

U i(X) = Un−i(X, ∂X) and Ui(X) = Un−i(X, ∂X),

where quasicomplex means a complex structure in the stable tangent (or normal)
bundle. Here there is also the Thom isomorphism φ : U i(X)→ U2n+i(Mξ, ∗) where
ξ is a complex Un-bundle of dimension 2n, and Mξ is its Thom complex. We denote
the Poincaré–Atiyah duality operator by D. There is defined a natural homomor-
phism ε : U∗(X)→ U∗(P ), where P is a point and ΩU = U∗(P ) = Z[x1, . . . , xi, . . . ],
dim xi = 2i.

We consider the group U∗(K) given by pairs (X, f), where X is a manifold and
f : X → K. Let α be arbitrary characteristic class, α ∈ U∗(BU). For any complex
K in the category S, the class α defines an operator

α : U∗(K)→ U∗(K),

if we set α(X, f) = (Yα, f · fα), where (Yα, fα) ∈ U∗(X) is the element hav-
ing the form Dα(−τX), where τX ∈ K(X) is the stable tangent U -bundle of X.
{Dα(−τX) = D((−τX)∗(α)).}

As we know, the operation of the class α on U∗(K) can be defined in another
way: since U∗(MU) = U∗(BU) by virtue of the Thom isomorphism φ, we have
φ(α) = a ∈ U∗(MU) = AU . We consider the pair L = (K ∪ P, P ) in the S-
category; then U∗(K) = Hom∗(P,MU ⊗L) by definition, where P is the spectrum
of a point. Every operation a = φ(α) defines a morphism φ(α) : MU → MU and,
of course, a morphism

ϕ(α)⊗ 1: MU ⊗ L→MU ⊗ L.

Hence there is defined a homomorphism ᾱ∗ : U∗(K)→ U∗(K) by means of φ(α)⊗1.
We have the simple
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Lemma 5.1. The operators α∗ and ᾱ∗ coincide on U∗(K).

The proof of this lemma follows easily from the usual considerations with Thom
complexes, connected with t-regularity.

Thus there arises a natural representation of the ring AU on U∗(K) for any K,
where a→ [φ−1(a)]∗ = α∗, φ : U∗(BU)→ U∗(MU).

We have

Lemma 5.2. For K = P , the representation a→ [φ−1(a)]∗ of the Steenrod ring AU

in the ring of endomorphisms of U∗(P ) = ΩU is dual by Poincaré–Atiyah duality
to the operation of the ring AU on U∗(P ) and is a faithful representation.

Proof. Since K = P and MU ⊗ P = MU , the operation of the ring AU on
Hom∗(P,MU) is dual to the ordinary operation, by definition. By virtue of
Lemma 3.1 of § 3, this operation is a faithful representation of the ring AU . The
lemma is proved. �

We now consider the operation of the ring AU on U∗(P ) and extend it to another
operation on U∗(BU). Let x ∈ U∗(BU) be represented by the pair (X, ξ), ξ ∈
K0(X). We set

ã(x) = ã(X, ξ) = (Yα, f∗α(ξ + τX)− τYα
),

where α = φ−1(a), a ∈ U∗(MU) and (Yα, fα) is the element of U∗(X) equal to
Dα(ξ), α ∈ U∗(BU), and τM is the stable tangent U -bundle of M .

If ξ = τX , then f∗α(ξ + τX) − τYα
= −τYα

and hence the pair (X,−τX) goes to
(Yα,−τYα), i.e., the subgroup U∗(P ) ⊂ U∗(BU) is invariant under the transforma-
tion ã.

We have the obvious

Lemma 5.3. The representation a→ ã of the ring AU on U∗(BU) is well-defined
and is faithful.

Proof. The independence of the definition of ã from the choice of representative
(X, ξ) of the class x follows from the standard arguments verifying invariance with
respect to cobordism of pairs (X, ξ) and properties of Poincaré–Atiyah duality for
manifolds with boundary.

The fidelity of the representation ã follows from the fact that it is already faithful
on U∗(P ) ⊂ U∗(BU) by the preceding lemma, where ã coincides with [φ−1(a)]∗.
The only thing that remains to be verified is that ã is a representation of the ring
AU and not of some extension of it. For this however, we note that the composition
of transformations ãb̃ is also induced by some characteristic class and hence has the
form ãb̃ = c̃. Whence follows the lemma. �

Remark 5.1. It is easy to show that the transformation ã has the form φ−1a∗φ,
where φ : U∗(BU) → U∗(MU) and a∗ : U∗(MU) → U∗(MU) is the transformation
induced by a : MU → MU . In the future we shall use the geometric meaning of
the transformation ã = φ−1a∗φ and hence we have given the definition of ã in a
geometric form.

The transformation ã induces a transformation α∗ : ΩU → ΩU = U∗(P ), where
Ui(P ) = Ωi

U = U−i(P ).
We shall also denote by α∗ the dual transformation U∗(P ) → U∗(P ), U∗(P ) =

Λ ≈ ΩU .
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We shall now indicate the set of operations needed, from which we can construct
all the operations of the Steenrod ring AU .

1. Multiplication operators. For any element a ∈ U∗(P ) = Λ there is
defined the multiplication operator x → ax. Hence Λ ⊂ AU . The corresponding
transformation ã : U∗(BU)→ U∗(BU) has the form:

(X, ξ)→ (X × Ya, ξ × (−τYa
)),

where (Ya,−τYa) represents the element Da ∈ U∗(P ) = ΩU .
2. Chern classes and their corresponding cohomology operations. As

Conner and Floyd remarked in [11], if in the axioms for the ordinary Chern classes
one replaces the fact that c1(ξ) for the canonical U1-bundle over CPN is the ho-
mology class dual to CPN−1, by the fact that the “first Chern class” σ1(ξ) is the
canonical cobordism class σ1 ∈ U2(CPN ) which is dual, by Atiyah, to [CPN−1],
then there arise classes σi(ξ) ∈ U2i(X) with the following properties:

1. σi = 0, i < 0; σ0 = 1; σi = 0, i > dimC ξ;
2. σi(ξ + η) =

∑
j+k=i

σi(ξ)σk(η);

3. σ1(ξ) ∈ Map(X, MU) ⊂ U2(X), if ξ is a U1-bundle;
4. ν(σi) = ci, where ν : U∗ → H∗( , Z) is the map defined by the Thom class.
We note that in the usual way (by the symbolic generators of Wu) the charac-

teristic classes σi determine classes σω(ξ), ω = (k1, . . . , ks), such that σω(ξ + η) =∑
ω=(ω1,ω2)

σω1(ξ)σω2(η), with σ(1,...,1) = σi.

In the usual way the classes σω determine elements Sω = φσω ∈ U∗(MU) and,
as was shown earlier, homomorphisms σ∗ω : ΩU → ΩU and S̃ω : U∗(BU)→ U∗(BU).

We have the important

Lemma 5.4. The following commutation formula is valid :

Sω · x =
∑

ω=(ω1,ω2)

σ∗ω1
(x)Sω2 , x ∈ Λ = U∗(P ) ⊂ AU .

Proof. This formula can be established easily for the operation on U∗(BU) by the
faithful reprentation which we constructed earlier. Let (X, ξ) represent an element
of U∗(BU) and (M,−τM ) represent an element x of ΩU . We consider

S̃ω ◦ x̃(X, ξ) = S̃ω[(X, ξ)× (M,−τM )] =
∑

ω=(ω1,ω2)

σ∗ω1
(x)σ̃ω2(X, ξ)

=
∑

ω=(ω1,ω2)

(Yω1 , f
∗
ω1

(ξ + τX)− τYω1
)× (Nω2 − τNω2

)

by definition. Here (Yω1 , fω1) represents the element Dσω1(ξ), and similarly for
Nω2 . The lemma is proved. �

In order that the formula derived above be more effective, we shall indicate
exactly the action of the operator σ∗ω on the ring ΩU .

It is known that by virtue of the Whitney formula the classes σω(−ξ) are linear
forms in the classes σω(ξ) with coefficients which are independent of ξ. Let σ̄ω(ξ) =
σω(−ξ) and let σ̄∗ω be the homomorphism associated with this linear form.
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If (X,−τX) represents an element a of ΩU , then the classes σ̄∗ω(a), represented
by εDσ̄ω(−τX) ∈ ΩU {where ε is induced by X → P} are the characteristic classes
of the tangent bundle.

Let X = CPn and uω =
∑

ij≤n+1

tk1
i1

. . . tks
is

(the sum over all symmetrizations, ω =

(k1, . . . , ks)). Let λω be the number of summands in the symmetrized monomial
uω, k =

∑
ki. We have the simple

Lemma 5.5. If X = [CPn], then σ̄∗ω(X) = λω[CPn−k] and

σ̄∗ω(ab) =
∑

ω=(ω1,ω2)

σ̄∗ω1
(a)σ̄∗ω2

(b), a, b,∈ ΩU .

Hence the above formula completely determines the action of the operators σ∗ω
and σ̄∗ω on the ring ΩU .

Proof. Since for X = [CPn] we have that τX +1 = (n+1)ξ, where ξ is the canonical
U1-bundle, the Wu generators for τX are u = t1 = · · · = tn+1 = DCPn−1 ∈ U2(X).
Therefore σ̄∗ω[CPn] = λωuk, where k = dim ω.

We note that by virtue of the structure of the intersection ring U∗(CPn) we
have: uk = DCPn−k. Hence

εDσ̄∗ω[X] = ελωCPn−k = λω[CPn−k] ∈ ΩU

{where ε : U∗(CPn) → U∗(P ) is the augmentation}. The Leibnitz formula for
σ̄∗ω(ab) follows in the usual way from the Whitney formula. The lemma is proved.

�

We shall now describe the structure of the ring S generated by the operators Sω.
We consider the natural inclusions

CP∞
1 × · · · × CP∞

n
i−→ BUn

j−→MUn

and homomorphisms

j∗ : U∗(MUn)→ U∗(BUn),

i∗ : U∗(BUn)→ U∗(CP∞
1 × · · · × CP∞

n ).

We note that U∗(CP∞
1 × · · · × CP∞

n ) has generators ui ∈ U2(CP∞
i ), and an

additive basis of U∗(CP∞
1 ×· · ·×CP∞

n ) has the form
∑

λqxqPq(u1, . . . , un), where
xq ∈ Λ = U∗(P ), the λq are integers and Pq are polynomials. We have the following
facts:

1. The image Im i∗ consists of all sums of the form
∑

λqxqPq(u1, . . . , un), where
Pq is a symmetric polynomial and dim xiPi = constant (the series is taken in the
graded ring).

2. The image Im(i∗j∗) consists of the principal ideal in Im i∗ generated by the
element u1 . . . un.

3. The i∗σq = σq(u1, . . . , un) are the elementary symmetric polynomials, σq the
characteristic classes.

4. For any a ∈ U∗(BUn) we have the usual formula i∗(a)(u1 . . . un) = i∗j∗φ(a),
where φ is the Thom isomorphism.

From these facts easily follows

Lemma 5.6. The operations Sω ∈ AU have the following properties:
1. If α ∈ Map(X, MU1) ⊂ U2(X), then S(k)α = αk+1 and Sω(α) = 0 if ω 6= (k).
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2. Sω(α, β) =
∑

ω=(ω1,ω2)

Sω1(α)Sω2(β) for all α, β ∈ U∗.

3. If k(i) < n, ωi = (k(i)
1 , . . . , k

(i)
si ),

∑
j

k
(i)
j = k(i) and a =

∑
λiSωi , then

aφ(1) = au = 0 is equivalent to a = 0.
4. The composition of operations Sω1 · Sω2 is a linear combination of operations

of the form Sω with integral coefficients, so that an additive basis for the ring S
consists of all Sω.

Proof. Let X = BU1 = CP∞. Since MU1 = CP∞, it is sufficient to prove prop-
erty 1 for the element u ∈ U2(CP∞) equal to σ1(ξ) for the canonical U1-bundle ξ.
By definition, we have: u = j∗φ(1) ∈ U2(CP∞) and Sω(u) = j∗Sωφ(1) = j∗uk+1

(if ω = (k)) and σω(ξ) = 0, if ω 6= (k), since σi = 0, i ≥ 2, for U1-bundles ξ. This
proves property 1.

Property 2 follows obviously from the Whitney formula for the classes σω to-
gether with the remark that φ(1) ∈ U∗(MUn) as n → ∞ represents the universal
element corresponding to the operation 1 ∈ AU .

Property 3 is clear. Property 4 follows from the fact that on the basis of prop-
erties 1 and 2 it is possible to compute completely Sω1 · Sω2(u) =

∑
λωSω(u) and

then use property 3. Whence it will follow for large n that Sω1 ◦ Sω2 =
∑

λωSω.
The lemma is proved. �

Further, we note the obvious circumstance: An additive topological basis of the
ring AU has the form xiSω, where xi is an additive homogeneous basis for U∗(P ),
U i(P ) = ΩU .

The topology of AU is defined by a filtration. This means that the finite linear
combinations of the form

∑
λixiSωi

are dense in AU and the completion coincides
with AU , which thus consists of formal series of the form

∑
λixiSωi

, where the λi

are integers and dim xiSωi = constant, since AU is a graded ring.
Thus we have:

AU = (Λ · S)∧,

where the sign ∧ denotes completion. Here Λ = Z[x1, . . . , xi, . . . ], dim xi = −2i.
The ring S is completely described by Lemma 5.6, and the commutation properties
by Lemmas 5.4, 5.5.

We note that S is a Hopf ring with symmetric diagonal ∆: S → S × S, where

∆(Sω) =
∑

(ω1,ω2)=ω

Sω1 ⊗ Sω2 .

Since MU is a multiplicative spectrum MU ⊗MU → MU , the ring AU has a
“diagonal”

∆: AU → AU ⊗Λ AU ,

where ∆(Sω) =
∑

ω=(ω1,ω2)

Sω1 ⊗Sω2 and xa⊗ b = a⊗xb = x(a⊗ b) for x ∈ ΩU = Λ.

The Künneth formula for K1, K2 ∈ D {complexes without torsion} has the form:

U∗(K1 ×K2) = U∗(K1)⊗Λ U∗(K2),

and hence AU ⊗AU is an AU -module with respect to the diagonal ∆.
Moreover, we remark that AU has a natural representation * on the ring ΩU ,

where Ωi
U = U−i(P ), under which the action of the ring Λ goes over to the multi-

plication operators Λ ≈ ΩU and the Sω → σ∗ω.
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We now define an important map γ : U2 → U2 (nonadditive), such that νγ(x) =
ν(x), ν : U∗ → H∗( , Z) is defined by the Thom class, and γ(x) ∈ Map(X, MU1) ⊂
U2(X), for x ∈ U2(X).

We consider important examples of cohomology operations related to the class
σ1.

1. Let ∆(k1,k2) ∈ AU be the cohomology operation such that

∆(k1,k2) = ϕ[γ(−σ1)k1γ(σ1)k2 ] ∈ U∗(MU),

where σ1 ∈ U2(BU), γ : U2 → U2.
In particular, ∆(1,0) will be denoted by ∂ and ∆(1,1) by ∆.
We shall describe the homomorphisms ∆∗

(k2,k2)
and ∆̃(k2,k2):

a) if (X, ξ) represents an element of U∗(BU) and i1 : Y1 → X, i2 : Y2 → X are
submanifolds which realize the classes Dc1(ξ), −Dc1(ξ) ∈ Hn−2(X), then their
normal bundles in X are equal respectively to ξ1 and ξ̄1, where c1(ξ1) = −c1(ξ1) =
−c1(ξ̄1) = c1(ξ).

Let
Yk1,k2 = Y1 . . . Y1︸ ︷︷ ︸

k1

·Y2 . . . Y2︸ ︷︷ ︸
k2

be the self-intersection in U∗(X) with normal bundle

i∗(ξ1 + · · ·+ ξ1︸ ︷︷ ︸
k1

+ ξ̄1 + · · ·+ ξ̄1︸ ︷︷ ︸
k2

) = W,

where i : Yk1,k2 → X.
We set ∆̃(k1,k2)(X, ξ) = (Y(k1,k2), i

∗(ξ + W )).
b) If ξ = −τX , then the ∆̄(k1,k2) define homomorphisms ∆∗

(k1,k2)
: ΩU → ΩU for

which the image of ∂∗ consists only of SU -manifolds. The operations ∂∗ and ∆∗

on ΩU were studied earlier in [13],
2. The classes and operations χ(k1,k2). Just as was the case for the oper-

ations ∆(k1,k2) and classes γ(σk1
1 )γ(−σ1)k2 , the operations χ(k1,k2) and the classes

corresponding to them will be defined for a bundle ξ only as functions of c1(ξ) or
of γ(σ1(ξ)). We define these classes for one-dimensional bundles ξ over CPn.

We consider the projectivization P (ξ +k)→ CPn, where k is the trivial k-plane
bundle.

It is obvious that τ(P (ξ + k)) = p∗τ(CPn) + τ ′, where τ ′ consists of tangents to
the fiber. Over P (ξ + k) we have the following fibrations:

1) the Hopf fibration µ in each fiber;
2) The fibration ξ′ = p∗ξ.
It is easy to see that the stable bundle τ ′ is equivalent to the sum

τ ′ = µξ̄′ +
k times︷ ︸︸ ︷

µ + · · ·+ µ ∈ K(P (ξ + k)).

We set {here k1 + k2 = k}

τ ′(k1,k2)
= µξ̄′ + k1µ + k2µ̄,

which functorially introduces a U -structure into the bundle τ ′(k1,k2)
such that

rτ ′(k1,k2)
= rτ ′ where r is the realification of a complex bundle.
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P (ξ + k) has the induced U -structure p∗τ(CPn) + τ ′(k1,k2)
. We denote the result

by P (k1,k2)(ξ +k). We denote the pair (P (k1,k2)(ξ +k), p) ∈ U∗(CPn) by Dχ(k1,k2),
where χ(k1,k2) ∈ U∗(CPn).

For any fibration ξ over X we set χ(k1,k2)(ξ) = χ(k1,k2)(ξ1), where c1(ξ) = c1(ξ1)
and ξ1 is a U1-bundle.

There arise classes χ(k1,k2) ∈ U∗(BU), operations φχ(k1,k2) = Ψ(k1,k2), and ho-
momorphisms Ψ∗

(k1,k2)
and Ψ̃(k1,k2).

We note that χ(0,1) = 0. We denote the operation χ(1,0) by χ and the operation
χ(1,1) by Ψ.

The homomorphism Ψ∗ : ΩU → ΩU was studied by Conner and Floyd (see [13]).
It is easy to establish the following equations:
a) ∆(k1,k2) ◦ ∂ = 0 (in particular, ∂2 = 0, ∆∂ = 0);
b) ∆Ψ = 1, [∂, χ] = 2, χ∂ = x1 ◦ ∂, where x1 = [CP 1] ∈ Λ ⊂ AU ; ∂Ψ = 0.
We shall prove these equations. Since Im ∂∗ ⊂ ΩU is represented by SU -

manifolds, ∆∗
(k1,k2)

◦ ∂∗ = 0 by definition; since * is a faithful representation of
the ring AU by virtue of Lemma 3.1, ∆(k1,k2) ◦ ∂ = 0, where ∂ = ∆(1,0).

The equations ∆∗Ψ∗ = 1, ∂∗Ψ∗ = 0 were proved by direct calculation in [13].
Hence ∆Ψ = 1 in AU . Since Im ∂∗ consists of SU -manifolds, it is easy to see that
χ∗∂∗ = x1 ◦ ∂∗. This means that χ∂ = x1∂. The equation [χ, ∂] = 2 follows easily
from the fact that for one-dimensional bundles ξ over X such that c1(ξ) = −c1(X),
we have:

c1(P (ν + 1)) = −2c1(µ) = −2c,

and the class DC is realized by the submanifold X = P (ξ) ⊂ P (ξ + 1).

Remark 5.2. Equations of the type [a, b] = λ ◦ 1 arise frequently in the ring AU .
For example, if ak = Sk and bk = [CP k], then [ak, bk] = (k + 1) ◦ 1 by Lemma 5.5.

Remark 5.3. The operation π = [∆,Ψ] = 1 − Ψ∆ is the “projector of Conner–
Floyd” π2 = π. (Conner and Floyd studied π∗.)

This projector has the property that it allows the complete decomposition of the
cohomology theory U∗ into a sum of theories πjU

∗, where
∑

πj = 1, πj ∈ AU , with
π0 = 1−Ψ∆ and πj = Ψj∆j −Ψj+1∆j+1. Later on we shall meet other projectors
of this same sort.

3. We consider still another important example of a cohomology operation in
U∗-theory, connected with the following question:

Let ξ, η be U -bundles. How does one compute the class σ1(ξ ⊗ η)?
We have

Lemma 5.7. a) For any Un-bundle ξ there is a cohomology operation γn−1 ∈ AU

such that σ1(λ−1(ξ)) = γn−1(σn(ξ)), where λ−1 =
∑

(−1)iΛi and the Λi are the
exterior powers.

b) If u1, . . . , un ∈ U2(X) are elements in the subset Im γ = Map(X, MU1) ⊂
U2(X), then we have the equation

γn−1(u1 . . . un) = γ1(u1 · γ1(u2 · γ1(· · · · γ1(un−1 · un)) . . . ),

where γ1 is such that for a pair of U1-bundles ξ, η we have the formula

σ1(ξ ⊗ η) = σ1(ξ) + σ1(η) + γ1(σ1(ξ)σ1(η)).
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The proof of this lemma follows from the definition of the operation γ1. Let
X = CP∞ ×CP∞ and let ξ, η be the canonical U1-bundles over the factors. Since
νσ1(ξ ⊗ η) = c1(ξ ⊗ η) = c1(ξ) + c1(η) and σ1 ∈ Map(X, MU1) it is possible to
calculate the class σ1(ξ ⊗ η) completely as a function of σ1(ξ) and σ1(η). Namely:

−σ1(ξ)− σ1(η) + σ1(ξ ⊗ η) =
∑

i≥1,j≥1

xi,jσ
i
1(ξ)σ

j
1(η), xi,j ∈ Λ.

Since the bundle λ1(ξ + η) lies in a natural way in K0(MU2) and λ1(ξ + η) =
ξ ⊗ η − ξ − η + 1, the difference −σ1(ξ)− σ1(η) + σ1(ξ ⊗ η) + 1 has the form γ1u,
where u ∈ U∗(MU2) is the fundamental class u = φ(1).

The operation γ1 can be written in the form

γ1u =
∑

xi,jS(i,j)(u1u2), u = u1u2,

where u1 = σ1(ξ), u2 = σ1(η).
Let ω = (k1, . . . , ks), where s > 2. Then Sω(u) = 0. Hence γ1 is uniquely defined

(mod xωSω).
We set γn−1 = γ1(u1 . . . γ1(un−1un) . . . ) on the element u = u1 . . . un = φ(1) ∈

U∗(MUn). The operation γn−1 is well defined mod xωSω, where ω = (k1, . . . , ks),
s > n. By definition, we have the formula σ1λ−1(ξ) = γn−1σn(ξ) for a Un-bundle ξ.

The lemma is proved.

Remark 5.4. It would be very useful, if it were possible, to define exactly an
operation γ1 ∈ AU ⊗Q so as to satisfy the equations γi

1 = γi. The meaning of this
will be clarified later in § 8.

We now consider analogues of the Adams operations and the Chern character in
the theory of U -cobordism which are important for our purposes.

We have already considered above how the class σ1(ξ⊗η) is related to the classes
σ1(ξ) and σ1(η) for U1-bundles ξ, η. Namely

σ1(ξ ⊗ η) = u + v + γ1(uv),

where u = σ1(ξ), v = σ1(η) and

γ1(uv) =
∑
i≥0
j≥0
i 6=j

xij(ui+1vj+1 + uj+1vi+1) +
∑
i≥0

xi,iu
i+1vi+1, xi,j ∈ ΩU .

We set u + v + γ1(u, v) = f(u, v). Then we have the “law of composition” u⊕ v =
f(u, v) for u, v ∈ Im γ1 = Map(X, MU1), which turns Map(X, MU1) into a formal
one-dimensional commutative group with coefficients in the graded ring ΩU , while
dim u, v, f(u, v) = 2. As A. S. Mǐsčenko has shown, if we make the change of
variables with rational coefficients

g(u) =
∑
i≥0

xi

i + 1
ui, xi = [CP i],

where [CP i] ∈ Ω2i
U = Λ−2i, then the composition law becomes additive:

g(u⊕ v) = g(f(u, v)) = g(u) + g(v)

(see Appendix 1). This allows the introduction of the “Chern character”:
a) We set σh(ξ) = eg(u), where u = σ1(ξ) for U1-bundles ξ;
b) if ξ = ξ1 + ξ2, then σh(ξ) = σh(ξ) = σh(ξ1) + σh(ξ2);
c) if ξ = ξ1 ⊗ ξ2, then σh(ξ) = σh(ξ1)σh(ξ2).
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Thus, we have a ring homomorphism

σh : K(X)→ U∗(X)⊗Q.

We now consider an operation a ∈ AU such that

∆a = a⊗ a ∈ AU ⊗Λ AU .

We already know some examples of such operations:

1) a =
∑
ω

Sω,

2) a =
∑
i≥0

S(1,...,1)︸ ︷︷ ︸
i times

.

The Chern character gives a new example of such an operation a ∈ AU ⊗Q: We
consider the “Riemann–Roch” transformation λ

(n)
−1 : U2n → K which is defined by

the element λ
(n)
−1 ∈ K(MUn), and let λ = (λ(n)

−1 ), n → ∞. Let Φ(n) = σhn ◦ λ
(n)
−1 ,

and Φ = (Φ(n)). The operation Φ obviously has the property that ∆Φ = Φ ⊗ Φ
since σh and λ−1 are multiplicative, and if the element ξ ∈ K(X) has filtration m
and the element η has filtration n, then σhm+n(ξ ⊗ η) = σhm(ξ)σhn(η). It is easy
to verify that the operator Φ has the following properties:

1) Φ2 = Φ,
2) Φ∗(1) = 1,
3) Φ∗(x) = 0, dimx < 0, x ∈ Λ, Λ = U∗(P ), Φ∗ : Λ→ Λ, where

Φ =
∑
ω

xi1

i1 + 1
. . .

xis

is + 1
Sω, ω = (i1, . . . , is).

Hence, the operation Φ associated with the Chern character σh defines a projection
operator, which selects in the theory U∗ ⊗Q the theory H∗( , Q) = Φ(U∗ ⊗Q).

A multiplicative operation a ∈ AU is uniquely defined, obviously, by its value
a(u) ∈ U∗(CP∞), where u ∈ Map(CP∞,MU1) is the canonical generator, a(u) =
u(1 + . . . ).

Conversely, the element a(u) ∈ U∗(CP∞) can be chosen completely arbitrarily.
For example, for a =

∑
ω

Sω, a(u) = u
1−u ; for ak =

∑
ω=(k,...,k)

Sω, a(u) = u(1 + uk).

For our subsequent purposes the following operations will be important:
1) The analogues of Adams operations Ψp

U ∈ AU ⊗Z Z[1/p].
2) Projection operators which preserve the multiplicative structure.
All these operations are given by series a(u) ∈ U∗(CP∞), since ∆a = a⊗ a.
We define the Adams operations Ψk

U , which arise from the requirements:
1) Ψk

U (xy) = Ψk
U (x)ΨU (y), x, y ∈ U∗;

2) Ψk
U · x = kix ·Ψk

U , where x ∈ Λ−2i = Ω2i
U ;

3) Ψk
U (u) =

u⊕ · · · ⊕ u

k
(k times), where u ∈ U2(CP∞) is the canonical element

and ⊕ is composition in Map(X, MU1) ⊂ U2(X).

Lemma 5.8. a) The series Ψk
U (u) has the form

Ψk
U (u) =

u⊕ · · · ⊕ u

k
=

1
k

f(u, f(u, . . . , f(u, u . . . )));

b) Ψk∗
U (x) = kix, x ∈ Λ−2i = U−2i(P ) = Ω2i

U ;
c) ∆Ψk

U = Ψk
U ⊗Ψk

U , ∆: AU → AU ⊗Λ AU ;
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d) Ψk
UΨl

U = Ψkl
U = Ψl

UΨk
U ;

e) for a prime p, all λi, λi ∈ Λ−2i, such that

Ψp
U (u) = u + λ2u

2 + · · ·+ λiu
i + . . . , u ∈ Map(X, MU1),

are integral for i < p. Hence the element pnΨp
U (u1 . . . un), where u1 . . . un ∈

U2n(MUn) is a universal element, is integral, and so the operation pnΨn
U for el-

ements of dimension 2n is “integral,” if the dimension of the complex is < 2pn.
(See Appendix 2 for proof.)

4. We now consider the projection operators. The condition defining a projection
operator π ∈ AU is obviously π2 = π, or π∗2 = π∗, where π∗ : Λ→ Λ is the natural
representation. We shall consider only those π for which π(xy) = π(x)π(y) and
π(u) =

∑
i≥1

λiu
i ∈ U∗(CP∞). Let

xi = [CP i], π(u) =

1 +
∑
i≥1

λiu
i

u,

where the λi ∈ Λ⊗Q are polynomials in xi with rational coefficients, dim λi = −2i.
It is easy to show that π∗(λi) = 0, since π2 = π.

We shall be especially interested in the case when there exists a complete system
of orthogonal projectors (πj), πjπk = 0, j 6= k, which split the cohomology theory
U∗ into a direct sum of identical theories.

Let y ∈ Λ and ∆y ∈ AU ⊗Q be the “operator of division by y,” which has the
following properties:

1) ∆y(ab) = ∆y(a)b + a∆y(b)− y∆y(a)∆y(b),
2) ∆∗

y(y) = 1.
Let Φy = y∆y, Ψy = 1−Φy ∈ AU ⊗Q. It is easy to see that Φ2

y = Φy, Ψ2
y = Ψy,

and Φy ◦ Ψy = 0. Moreover, the collection of projectors πi = yi∆i
y − yi+1 is such

that πjπk = 0, j 6= k, and it decomposes the theory U∗ ⊗Q into a sum of identical
theories.

Let yi ∈ Λ−2j = Ω2j
U be a system of polynomial generators, and Φi = yi∆yi

. We
note that Φ∗i (yi) = 0 for j < i. Let ỹk = yk for k ≤ j and ỹk = (1−φi)∗yk = Ψ∗

i (yk).
Obviously, Φ∗i (ỹk) = 0 for k 6= i and Φ∗i (ỹi) = yi = ỹi.

Since (1−Φi)∗(yj) = yj for j ≤ i and yj − yi∆yi(yj) = (1−φi)∗yj for j > i, the
collection of elements ỹk is a system of polynomial generators.

The projectors πj = yj
i ∆

j
yi
− yj+1

i ∆j+1
yi

clearly are such that π∗f : Λ→ Λ carries
monomials of the form yj

i ỹi1 , . . . , ỹis
, j > 0, into themselves for i1, . . . , is 6= i, and

all other monomials into zero. This means that

Im π∗j = yj
i Q(ỹ1, . . . , ˆ̃yi, . . . )

and
Kerπ∗j =

⋃
s 6=j

ysQ(ỹ1, . . . , ˆ̃yi, . . . ).

In particular, 1 −
∑
j

πj and πj+1 = yiπj∆yi . Hence ∆yiπj+1(x) = πj(yix) for all

x ∈ U∗, and all theories πj(U ⊗Q) are isomorphic.
The projector π0 = 1− yi∆yi

has the following properties:
a) π0(xy) = π0(x)π0(y), i.e., π0 is multiplicative.
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b) The cohomology ring of a point for the theory π0(U∗ ⊗ Q) has the form
Q(ỹ1, . . . , ˆ̃yi, . . . ), where π∗0(ȳj) = ȳj for j 6= i.

c) All theories πs(U∗ ⊗Q) are canonically isomorphic to the theory π0(U∗ ⊗Q)
by means of the operator of multiplication by ys

i , and their defining spectra differ
only by suspension.

Examples of operators ∆y : if dim y = 2k, i.e., y ∈ Ω2k
U (P ) = U−2k(P ), and

σ∗(k)y = −λ 6= 0, then we set

∆y =
∑
q≥1

(−1)qyq−1

λq
S(k,...,k)︸ ︷︷ ︸

q times

.

For the generators yi ∈ Ω2i
U we have |λ| = 1 for i 6= pj − 1 and |λ| = p for i = pi− 1

for any prime p. Hence

∆yi
=
∑
q≥1

yq−1
i S(i,...,i) (i 6= pj − 1)

and

∆yi =
∑
q≥1

yq−1
i

pq
S(i,...,i) (i = pj − 1).

It is easy to see that for i + 1 6= pj for given p, ∆yi
∈ AU ⊗Z Qp; for i + 1 = pj

and p ≥ 2, ∆yi
∈ AU ⊗Q, where Qp is the p-adic integers.

Now let yi be a collection of polynomial generators of ΩU and let p be prime.
We consider all numbers ik 6= pj − 1 in the natural order, i1 < i2 < · · · < ik < . . . .
Let Φk = (1 − yik

∆yik
), where k is some sufficiently large integer. The projector

Φk is such that the ring Φ∗kΛ ⊂ Λ has as a system of polynomial generators all ỹi

for i 6= ik, and Φ∗kyik
= 0.

Obviously, the operator Φk commutes with the operator of multiplication by yj

for j ≤ ik since Φk = 1− yik
∆yik

, and ∆yik
commutes with yj , j ≤ ik.

We consider the operator Φk∆yik−1
Φ = ∆̃k−1. Since Φk is multiplicative, ∆̃k−1

is the operator of division by Φkyik−1Φk. Hence in the cohomology theory Φk(U∗)
the operator ∆̃k−1 has all the properties making 1− yik−1 ◦ ∆̃k−1 = Φk−1 a multi-
plicative projector, and Φ(j)

(k−1) = yj
ik−1

∆̃j
k−1 − yj+1

ik−1
∆̃j+1

k−1 forms a complete system
of orthogonal projectors.

Thus, Φ̃k−1 = Φk−yik−1Φk◦∆yik−1
◦Φk = Φk(1−yik−1∆yik−1

)Φk and Φ̃k−1Φk =

Φ̃k−1, while

Φ̃k−1 = ΦkΦk−1Φk,

where Φk = 1− yik
∆yik

. If Φs = 1− yis
∆yis

, then we set:

Φ̃[k]
2 Φ1Φ̃

[k]
2 = Φ̃[k],

where Φ̃[k]
k = Φk, or:

Φ̃[k]
(k−1) = Φ̃[k]

k Φk−1Φ̃
[k]
k , . . . , Φ̃[k]

i = Φ̃[k]
i+1ΦiΦ̃

[k]
i+1, . . . , Φ̃[k] = Φ̃[k]

2 Φ1Φ̃
[k]
2 .
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The projector Φ[k] is obviously such that

a) Φ[k]∗(ys) =

{
0, s + 1 6= pj ,

ỹs, s + 1 = pj for s ≤ ik,

b) Φ[k] ∈ AU ⊗Z Qp.

The collection of Φ[k] with k →∞ is such that Φ[k]∗ is independent of k when it
operates on ΩU and hence the sequence Φ[k] as k →∞, or the series

∑
k≥1

(Φ[k+1] −

Φ[k]) = Φ defines a projector Φ ∈ AU ⊗Z Qp which is multiplicative and such that:

a) Φ∗(ys) =

{
0, s 6= pj − 1,

ỹs, s = pj − 1,

b) Φ2 = Φ,

c) the theory U∗⊗Z Qp splits into a sum of identical theories of the form Φ(U∗⊗Z

Qp) up to a shift of grading (suspension).
We note that the elements ỹs = Φ∗(ys) for s = pj − 1 have the property that all

σ∗ω(ỹs) ≡ 0 mod p for all ω, dim ω = 2s.
The cohomology theory Φ(U∗ ⊗Z Qp) is given by a spectrum M(p), where

H∗(M(p), Zp) = A/βA + Aβ, A the Steenrod algebra and β the Bokštĕın
homomorphism.

Thus, we have shown

Lemma 5.9. a) There exists a multiplicative projector Φ ∈ AU⊗Z Qp such that the
cohomology theory Φ(U ⊗Z Qp) is given by a spectrum M(p), where H∗(M(p), Zp) =
A/Aβ + βA, and the homomorphism Φ∗ : Λ→ Λ annihilates all polynomial gener-
ators of the ring Λ = U∗(P ) ≈ ΩU of dimension different from pj − 1.

b) The theory U∗ ⊗Z Qp decomposes into a direct sum of theories of the form
M∗

(p) = U∗
p and their suspensions.

§ 6. The AU -modules of cohomology of the most important spaces

In this section we shall give the structure of the module U∗(X) for the most
important spectra X = P (a point), X = CPn, X = RP 2n, X = RP 2n−1, X =
MSU , X = S2n−1/Zp, X = BG, G = Zp.

1. Let X = P . The AU -module U∗(P ) is given by one generator u ∈ U0(P )
and the relations Sω(u) = 0 for all ω > 0. An additive basis for U∗(P ) is given by
the fact that U∗(P ) is a free one-dimensional Λ-module, where Λ ≈ ΩU . We shall
denote the module U∗(P ) by Λ.

Clearly, we have:
Hom∗

AU (AU ,Λ) = U∗(P ) = ΩU .

If d : AU → AU is a map such that d(1) = a ∈ AU , then it is easy to see that
d∗(hx) = ha∗(x), where hx ∈ HomAU (AU ,Λ), x ∈ Λ, and hx is such that hx(1) = x.

In particular, for a = Sω we have a∗ = σ∗ω, and for a = ∂, ∆ we have a∗ = ∂∗ or
∆∗, the known homomorphisms of the ring ΩU .

These remarks are essential for computing

ExtAU ( , U∗(P )) = ExtAU ( ,Λ)

2. Let X = CPn = (EkCPn) ∈ S. It is easy to see that U∗(X) is a cyclic
module with generator u ∈ U2(X) satisfying the relations:
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a) Sω(u) = 0, ω 6= (k),
b) S(k)(u) = 0, k ≥ n.

These results are easily derived from the properties of the ring U∗(CPn) and the
properties of the operations Sω given in Lemma 5.6.

3. X
(n)
k = S2n+1/Zk = (EkS2n+1/Zk) ∈ S, X

(n)
2 = RP 2n+1. U∗(X) has two

generators u ∈ U2(X(n)
k ), v ∈ U2n+1(Xk), satisfying the relations:

a) Sω(u) = 0, ω 6= (q),
b) S(q)(u) = 0, q ≥ n,
c) (kΨk

U )(u) = 0, u ∈ Map(Xk,MU1),
d) Sω(v) = 0, ω > 0.
These results follow from [7] for K∗(BG), G = Zp, and the σ1 : K0 → U2 and

the ring U∗(BG).
4. For X = RP 2n, BG, the module U∗(X) is described as follows:
a) U∗(RP 2n) = U∗(RP 2n+1)/v.
b) U∗(BZk) = lim[U∗(X(n)

k )].
5. We now consider the case X = MSU . Since U∗(MSU) = φU∗(BSU) and

SU -bundles are distinguished by the condition c1 = 0, which is equivalent to the
condition γσ1 = 0, we have U∗(MSU) = U∗(MU)/φJ(γσ1), where J is the ideal
spanned by (γσ1), J ⊂ U∗(BU).

The natural map U∗(MU) → U∗(MSU) is an epimorphism. Hence U∗(MSU)
is a cyclic AU -module with generator u ∈ U0(MSU) and au = 0 if and only if
a ∈ φJ(γσ1).

In particular, au = 0 for a = ∆(k1,k2).
We have the important

Theorem 6.1. a) The module U∗(MSU) is completely described by the relations
∂(u) = 0, ∆(u) = 0.

b) The left annihilator of the operation ∂ consists of all operations of the form
a∂ + b∆, a, b ∈ AU .

Proof. We consider the module N = AU/AU∆+AU∂ and the natural map f : N →
U∗(MSU). We shall show that this map is an isomorphism. Since for the operation
∆ there exists a right inverse Ψ such that ∆Ψ = 1 and ∂Ψ = 0, the module AU∆ is
free, and it is not possible to have a relation of the form a∆+ b∂ if a 6= 0 or b∂ 6= 0.

We now consider AU∂. We shall establish the following facts:
1) The left annihilator of the operation ∂ consists precisely of the operations of

the form φJ(γσ1) ⊂ AU .
2) The operations of the form AU∂ form a direct summand in the free abelian

group of operations AU under addition.
We consider the representation a→ ã on U∗(BU). Let ξ be an SU -bundle. It is

easy to see that we have the equation

(X, ξ) = ∂̃[(X, ξ)⊗ (CP 1, η)],

where c1(η) is the basic element of H2(CP 1). It is also obvious that Im ∂ consists
only of pairs (X, ξ) ∈ U∗(BU), where ξ is an SU -bundle. Hence Im ∂ is precisely
U∗(BSU). Whence follows fact (1).

For the proof of (2) we note that U∗(BSU) is a direct summand in U∗(BU).
We decompose U∗(BU) into a direct sum U∗(BU) = U∗(BSU) + J(γσ1). Then
U∗(MU) = AU decomposes into a direct sum A + B, where B is the annihilator of
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U∗(BSU) with respect to the representation ã. Obviously, AU∂ = (B + A)∂ = A∂.
If the operation a ∈ A is such that a∂ is divisible by the integer λ, then ã∂̃ is
divisible by λ, and hence for all SU -bundles ξ the characteristic class φ−1ā(ξ) is
divisible by λ. Hence this class is a λ-multiple class in U∗(BSU) and (up to J(γσ1))
a λ-multiple class in U∗(BU). Whence follows fact (2).

We deduce from (1) and (2) that the map f : N → U∗(MSU) is a monomor-
phism. Since N = AU/AU∆ + AU∂, it follows from (1) and (2) that the kernel
Ker f is a direct summand. Since AU∆ is a free module and AU∂ is a module
isomorphic to U∗(MSU) with shifted dimension (see (1)), the equation Ker f = 0
follows from the calculation of ranks in the groups

(AU∆⊗Λ Z)k = H(k−4)(MU,Z), (AU∂ ⊗Λ Z)k = Hk−2(MSU,Z),

(U∗(MSU)⊗ Z)k = Hk(MSU,Z).

Thus, U∗(MSU) = AU/AU∆ + AU∂. Since the left annihilator of the operation ∂
is precisely the left annihilator of the element u ∈ U0(MSU), it follows by what
was proved for U∗(MSU) that this left annihilator is precisely AU∆ + AU∂. The
theorem is proved. �

§ 7. Calculation of the Adams spectral sequence for U∗(MSU)

In this section we shall compute the ring

Ext∗∗AU (U∗(MSU),Λ)

and all differentials di of the Adams spectral sequence (Er, dr), where
E2 = Ext∗∗AU (U∗(MSU),Λ). In particular, it turns out that di = 0 for
i 6= 3, d3 6= 0, and Ei,∗

∞ = Ei,∗
4 = 0 for i ≥ 3.

For the calculation of Ext∗∗AU we consider the complex of AU -modules

C = (U∗(MSU) ε←− C0
d←− C1

d←− · · · ← Ci . . . ),

where the generators are denoted by ui ∈ Ci for i ≥ 0 and vi ∈ Ci for i ≥ 1,
C0 = AU and Ci = AU + AU for i ≥ 1. We set d(ui) = ∂ui−1 and d(vi) = ∆ui−1.
Since ∂2 = 0 and ∆∂ = 0, d2 = 0. It follows from the theorem above that C is an
acyclic resolution of the module U∗(MSU) = H0(C).

We now consider the complex Hom∗
AU (C,Λ), where Λ = U∗(P ). Since

Hom∗
AU (AU ,Λ) = ΩU , we obtain the complex

Hom∗
AU (C,Λ) = (ΩU

d∗−→ ΩU + ΩU
d∗−→ ΩU + ΩU

d∗−→ . . . ),

where d∗ = ∂∗ + ∆∗ : ΩU → ΩU + ΩU .
Since ∆∗ is an epimorphism, the complex Hom∗

AU (C,Λ) reduces to the following:

W̃ = (W ∂∗−→W
∂∗−→W

∂∗−→ . . . ),

where W = Ker∆∗ ⊂ ΩU

From this we deduce the following assertion.

Lemma 7.1. a) For all s ≥ 1, we have isomorphisms

Exts,t
AU (U∗(MSU),Λ) = Ht−2s(W,∂∗).

b) Ext0,∗
AU (U∗(MSU),Λ) = Ker ∂∗ ∩Ker ∆∗ ⊂ ΩU .
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c) If h ∈ Ext1,2
AU (U∗(MSU),Λ) = Z2 is the nonzero element, then the homomor-

phism α→ hα : Exti,∗
AU

h−→ Exti+1,∗
AU is an epimorphism with kernel Im ∂∗ for i = 0,

and an isomorphism for i ≥ 1 (we recall that the spectrum MSU is multiplicative).

Proof. Statements (a), (b) of the lemma obviously follow from the structure of
the complex W , in which the grading of each term is shifted by 2 from the one
before by the construction. For the proof of (c), we note that h = 1

2∂∗(x1), where
x1 = [CP 1] ∈ ΩU , x1 ∈W , and ∂∗(x1) = −2. Further, we note that ∂∗(x1y) = −2y
if ∂∗(y) = 0. Hence the element hy is represented by the element 1

2∂∗(yx1) for a
representative of y ∈ H∗(W̃ , ∂∗). But since 1

2∂∗(yx1) = y under the condition
∂∗y = 0, statement (c) is proved, and therewith the lemma. �

We consider the element K = 9x2
1 − 8x2 ∈ Ω4

U , where x1 = [CP 1], x2 = [CP 2].
Clearly, ∂∗K = ∆∗K = 0. The element K is a generator of the group

Ext0,4
AU (U∗(MSU),Λ) = Ker ∂∗ ∩Ker Λ∗ = Z.

Since A[K] = ±1, where A = e−c1/2T and T is the Todd genus, by virtue of the
Riemann–Roch theorem there is an i such that di(K) 6= 0 in the Adams spectral
sequence, since for all 4-dimensional SU -manifolds the A-genus is even (see [20]).

It follows from dimensional considerations that d2(K) = 0 and d3(K) = h3.
We note that from dimensional considerations it follows trivially that d2k = 0

(see theorem in § 2). Consider the differential

d3 : Ep,q
3 → Ep+3,q+2

3 ,

where d3(K) = h3. We have

Lemma 7.2. If α ∈ Ep,q
3 for p ≥ 3, and d3(α) = 0, then α = d3(β). Hence

Ep,q
4 = 0 for p ≥ 3, and E∞ = E4.

Proof. Let d3(α) = 0; since α = h̃3β from Lemma 7.1, d3(α) = d3(h̃3β) = 0. Hence

d̃3(β) = 0 since multiplication by h : Ep,∗
3 → Ep+1,∗

3 is a monomorphism for p > 0.
This means that α = d3(K̃β). Since∑

p≥3

Ep,∗
3 =

∑
p≥3

Extp,∗
AU (U∗(MSU),Λ)

is the ideal generated by the element h, we have Ep,q
4 = 0 for p ≥ 3.

From dimensional considerations it follows that E∗∗
4 = E∗∗

∞ .
Since E∗∗

∞ = E0,∗
∞ +E1,∗

∞ +E2,∗
∞ is associated with ΩSU = π∗(MSU), and E1,∗

∞ =
hE0,∗

∞ , E2,∗
∞ = hE1,∗

∞ = h2E0,∗
∞ we obtain �

Corollary 7.1. a) Ω2k+1
SU = hΩ2k

SU ; b) h2Ω2k
SU = Tor Ω2k+1

SU .

The equality (a) was first established in [18] by other methods, and (b) in [12].

Corollary 7.2. a) The image of ΩSU in ΩU is singled out within the intersection
Ker ∂∗∩ker ∆∗ by setting equal to zero a certain collection of linear forms mod 2,
generated by the homomorphism

d3 : (Ker ∂∗ ∩Ker∆∗)2k = E0,2k
3 → E3,2k+2

3

= h3(Ker ∂∗ ∩Ker∆∗)2k−4 = h3E0,2k−4
3 =

∑
Z2.
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b) The group Ext1,2k
AU = H(W,∂∗) is isomorphic to the direct sum Ω2k−1

SU +Ω2k−5
SU ,

and this isomorphism comes from the differential d3:

0→ Ω2k−1
SU → Ext1,2k

AU

h−3d3−−−−→ Ω2k−5
SU → 0,

where Ext1,2k
AU = E1,2k

2 = E2k−1
3 ⊃ Ω2k−1

SU = Ker d3, h−3d3 is well-defined since h3

is a monomorphism on Ext1,2k−4
AU , and the image Im h−3d3 = Ker d3 = Ω2k−5

SU ⊂
Ext1,2k−4

AU .

Corollary 7.2 follows from Lemma 7.2.

Remark 7.1. Part (b) of the corollary explains the meaning of the “Conner–Floyd
exact sequence” (see [13])

0→ Ω2k−1
SU → H2k−2(W,∂∗)→ Ω2k−5

SU → 0,

since H2k−2(W,∂∗) = Ext1,2k
AU (U∗(MSU),Λ).

We note now that the groups H∗(W,∂∗) are computed in [13]: namely, H8k(W ) =
H8k+4(W ) = Z2 + · · · + Z2 (the number of summands is equal to the number of
partitions of the integer k), Hi(W ) = 0, i 6= 8k, 8k + 4. Whence we have:

Ext1,8k+2
AU (U∗(MSU),Λ) = Ext1,8k+6

AU (U∗(MSU),Λ)

and
Ext1,i

AU (U∗(MSU),Λ) = 0, i 6= 8k + 2, 8k + 6.

We have

Lemma 7.3. a) Ext1,8k+6
AU = K Ext1,8k+2

AU , where K ∈ Ext0,4
AU (U∗(MSU),Λ).

b) d3(Ext0,i
AU ) = 0 for i 6= 8k + 4, and d3(Ext0,8k+4

AU ) = Ext3,8k+2
AU is defined by

the condition d3(K) = h3.

Proof. Suppose both parts of the lemma proved for k ≤ k0 − 1. We show that
d3(Ext0,8k0

AU ) = 0. In fact, by the induction hypothesis on the groups Ext3,8k+2
AU the

differential d3 is a monomorphism. Hence Ext0,8k0
AU

d3−→ 0.
We now consider d3(K Ext0,8k0

AU ) = h3 Ext0,8k0
AU . We see that d3(K Ext0,8k0

AU ) is an
epimorphism onto Ext3,8k0+6

AU . Whence parts (a) and (b) of the lemma follow; on the
group Ext3,8k+6 the differential is trivial, and on the group Ext3,8k+2 ⊃ Ker d3 = 0.

The lemma is proved. �

Thus, we obtain

Corollary 7.3. a) The image Ωi
SU/ Tor ⊂ ΩU coincides with Ker ∂∗ ∩Ker∆∗ for

i 6= 8k + 4.
b) For i = 8k + 4 the image Ω8k+4

AU / Tor ⊂ Ω8k+4
U is picked out precisely by the

requirement of the “Riemann–Roch Theorem”:

ch(cξ)A(X)[X] ≡ 0 (mod 2),

where X is an SU -manifold, ξ ∈ kO(X).

We note that (a) follows immediately from the lemma. As to (b), we note
that A[K] = 1. In [9], “Pontrjagin classes” πl ∈ kO∗[X] are introduced in kO-
theory. Consider the classes π2l ∈ k̃O(X); let π2l = κl. Now consider the num-
bers ch(cκl1 . . . cκlk)A(X)[X] for X ∈ Ω8k

U / Tor ⊂ Ω8k
U . These numbers are dif-

ferent from zero mod 2 if and only if hX 6= 0 in Ω8k+1
SU . Hence the condition
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d3(KX) = h3X 6= 0 in E3,∗
3 is equivalent to the fact that one of the numbers

ch(c(κl1 , . . . , κlk))A(X)[X] 6≡ 0 (mod 2). All such numbers are in 1-1 correspon-
dence with partitions of 8k into summands (8l1, . . . , 8lk) (these facts are easily
deduced from [9]).

Since ch(cκl1 . . . cκlk ⊗ 1)A(X ×K)[X ×K] = ch(cκl1 . . . cκlk)A(X)[X] ◦ A[K],
A[K] = 1, we have found elements κl1 . . . κlk ⊗1 ∈ kO(X×K) which do not satisfy
the Riemann–Roch theorem, and they determine π(k) linearly independent forms
mod 2, where π(k) is the number of partitions of k. From this part (b) of the
corollary follows.

The results of the lemmas and corollaries of this section together completely
describe the Adams spectral sequence for U∗(MSU).

§ 8. k-theory in the category of complexes without torsion

Here we shall consider the cohomology theory k∗, defined by the spectrum k =
(kn), where πi(kn) = 0, i < n, and Ω2nk2n = BU ×Z. The spectrum k is such that
the cohomology module H∗(k, Z2) is a cyclic module over the Steenrod algebra,
with a generator u ∈ H0(k, Z2), satisfying the relations Sq1(u) = Sq3(u) = 0.
Hence the spectrum k does not lie in the category D of complexes without torsion.

There is defined the “Bott operator” x : k2n → k2n−2 by virtue of the Bott
periodicity Ω2k2n = k2n−2, and k2n is a connective fiber of BU . Since k0(X) =
K0(X), we have on k0 the Adams operations (see [2])

Ψk : K0(X)→ K0(X),

defined by morphisms Ψk : BU → BU such that Ψk
∗ : π2n(BU) → π2n(BU) is the

operator of multiplication by the integer kn (see [2] concerning the operation of Ψk

on K0(S2n) = π2n(BU)). By virtue of this, the operators Ψk can be extended to
the whole theory K∗ ⊗Q, starting from the identity

kxΨk = Ψkx,

where x : Ki → Ki−2 is Bott periodicity.
In the category D of complexes without torsion the operator xn : k2n(X) →

k0(X) is such that its image consists precisely of all elements in k0(X) = K0(X)
whose filtration is ≥ 2n; moreover, x is a monomorphism.

In the category D we define an operation (knΨk) by setting

(knΨk) = x−nΨkxn,

where (knΨk) : k2n(X)→ k2n(X).
It is easy to see that this is well defined and gives rise to an unstable opera-

tion (knΨk) such that (knΨk) can be considered as a map k2n → k2n for which
(knΨk)∗ : π2n+2j(k2n)→ π2n+2j(k2n) is multiplication by kn+j .

Let an =
∑
k

λ
(n)
k (knΨk), where the λ

(n)
k are integers, be an unstable cohomology

operation and a
(j)∗
n multiplication by

∑
k

λ
(n)
k kn+j .

Definition 8.1. The sequence a = (an) will be called a stable operation if for any
j there is a number n such that for all N ≥ n the number a

(j)
N =

∑
k

λ
(N)
k kN+j is

independent of N .
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Definition 8.2. If the stable operation a has a zero of order q in the sense that
a
(j)
∗ = 0 for j ≤ q, then we also call b = (x−qa) a stable operation, where a = xqb,

b : ki(X)→ ki+2q(X), X ∈ D.

We consider the ring generated by the operations so constructed and the oper-
ation x by means of composition, taking into account the facts that kxΨk = Ψkx
and ΨkΨl = Ψkl. The resulting uniquely defined ring, which we denote by Ak

Ψ, is
a ring of operations acting in the category D. In it lies the subring of operations
generated by the operations indicated in Definition 8.1 together with the periodicity
x. This ring we denote by Bk

Ψ ⊂ Ak
Ψ. There is defined the inclusion Bk

Ψ → Ak
Ψ.

We shall exhibit a basis for the ring Ak
Ψ. It is easy to see that it is possible to

construct operations δi ∈ Ak
Ψ of dimension 2i, where δ0 = 1, such that the elements

xkδi give an additive topological basis for the ring Ak
Ψ, and all elements of Ak

Ψ can
be described as formal series

∑
λkxkδk−i, where the λk are integers. The choice of

such elements δi is of course unique only mod xAk
Ψ (elements of higher filtration).

We construct these elements δi in a canonical fashion: it suffices to define opera-
tions γi = xiδi of dimension 0. Let δ0 = 1. Let γ

(0)
1∗ = 0 and γ

(1)
1∗ be multiplication

by 2. By definition, we shall take γ
(j)
i∗ = 0 for j < i and γ

(i)
i∗ to be multiplication

by a number γ̃i which is a linear combination γ̃i =
∑
k

µ
(i)
k kn+i, where the numbers

µ
(i)
k are such that

∑
k

µ
(i)
k kn+i = 0 for j < i. We require in addition that γ̃i be the

smallest positive integer of all linear combinations of the form
∑
k

µ
(i)
k kn+i under

the conditions: ∑
k

µ
(i)
k kn+i = 0, j < i.

We consider the operation ain =
∑
k

µ
(i)
k (knΨk). Here n is very large compared

with i. It is easy to see that the number γ̃i does not depend on n for large n→∞.
Hence the operation is well-defined.

Consider the operations ain for n → ∞; we shall successively construct the δi

from them. We have a0n = 1; let bmn = a1n + κ1a2n + · · · + κmamn be linear
combinations such that the homomorphisms (bmn)(j)∗ for j ≤ m � n are multipli-
cations by integers γ̃i,j , where 0 ≤ γ̃1,j < γ̃j . Clearly the numbers γ̃1,j are uniquely
defined. Let m → ∞, n → ∞; then in the limit, the sequence (bmn) gives an
operation which we denote by γ1 = x1δ1. It is uniquely defined by the properties
that γ

(0)
1∗ = 0, γ

(1)
1∗ = 2, and 0 ≤ γ

(i)
1∗ < γ̃i, γ

(i)
1∗ = γ̃1,i.

The operations γi are constructed in a similar fashion, and are uniquely deter-
mined by the conditions γ

(j)
i∗ = 0, j < i, γ

(i)
i∗ = γ̃i, and 0 ≤ γ

(k)
i∗ < γ̃k for k > i.

We exhibit a table of the integers γ
(j)
i∗ = γ̃ij in low dimensions:

γ0 γ1 γ2

0 1 0 0 . . .
2 1 2 0 . . .
4 1 0 24 . . .

. . . . . . . . . . . . . . . .

By definition, δi = x−iγi. It is clear that the operations γi commute. Since π2i(BU)
is Z, the rings Ak

Ψ and Bk
Ψ are represented as operators on k∗(P ) = Z[x] in a natural
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way, in particular, the operations of dimension 0 by diagonal operators with integral
characteristic values; the operation x is represented by the translation operator (or
multiplication by x in k∗(P )). It is easy to show that we have a transformation
∗ : Ak

Ψ → Ak
Ψ such that ∗(Bk

Ψ) ⊂ Bk
Ψ and ax = xa∗. This transformation ∗ is

completely determined by the condition that in k∗⊗Q-theory we have kxΨk = Ψkx
and ∗Ψk = kΨk.

We also indicate the following simple fact.

Lemma 8.1. The greatest common divisor of the integers γ
(q)
i∗ = (xiδi)

(q)
∗ for all

i > 0, for a fixed integer q, coincides precisely with the greatest common divisor
of the numbers kN (kq − 1) for all k. There exist operations ak,n ∈ Bk

Ψ such that
a
(j)
k,n∗ = kn+j for j ≤ f(n), where f(n)→∞ as n→∞.

The proof of this consists of the fact that the operations xiδi = γi are obtained
as linear combinations of the operations kn(Ψk − 1) by virtue of the condition
γ

(0)
i∗ = 0 for i > 0, where n is large, and the determinant of the transition from

the kn(Ψk − 1) to the xiδi is equal to 1. In fact, the process described above
for constructing (xiδi) is the process of reduction of the set of transformations
kn(Ψk − 1) to the set γi of “triangular type” on Z[x] = k∗(P ). More exactly: let
n be sufficiently large that γ

(j)
i,n∗ = 0 for j < i and γ

(i)
i,n∗ = γ̃i for i < f(n), where

f(n)→∞ as n→∞ and γi,n =
∑

λ
(n)
k,i (knΨk). Under the condition

∑
λ

(n)
k,i kn = 0,

one can write all these operations in the form
∑

µ
(n)
k,i kn(Ψk − 1) and then apply to

the set kn(Ψk − 1) the process of reduction to “triangular form” described above
for constructing the operations (xiδi) up to high dimensions. We assert that the
passage from {kn(Ψk−1)} to {γi,n} is invertible. Indeed, any operation of the form∑

λkknΨk has the form µ1γ1,n + b1, where b
(0)
1∗ = b

(1)
1∗ = 0. Hence the operation b1

has the form b1 = µ2γ2,n + b2, where b
(0)
2∗ = b

(1)
2∗ = b

(2)
2∗ = 0, etc.

Consequently, a =
∑

i≤f(n)

µiγi + bf(n) where b
(j)
f(n),∗ = 0, j ≤ fn. If n → ∞,

then f(n) → ∞ and the coefficients µi stabilize, while an =
∑

µix
iδi + bf(n) if

a = (an) ∈ Bk
Ψ. Since the greatest common divisor of the homomorphisms a

(j)
∗ ,

for all a ∈ Bk
Ψ such that a

(0)
∗ = 0, is invariant and this invariant can be calculated

with respect to any basis of operations in Bk such that a
(0)
∗ = 0, we have that for

the basis (xiδi) = (γi) it coincides with the greatest common divisor for the basis
(kn(Ψk − 1)) = bk, where b

(j)
k∗ = kn(kj − 1). We note that the operations (knΨk)

are nonstable, but, by virtue of what has been said, there exist operations ak,n such
that a

(j)
k,n∗ = kn+j for j ≤ f(n), where f(n) → ∞ as n → ∞. These operations

are obtained by the transformation from (xiδi) to (knΨk) inverse to that described
above.

The lemma is proved.

Remark 8.1. The same operations Ψk in k∗ ⊗Q are obtained as formal sums of
the form

∑
µix

iδi = Ψk, where µi ∈ Q and knµi ∈ Z for large n and i < f(n).

Example 1. Let X = P ∈ D be the point spectrum. Then k∗(P ) has a single
generator t as an Ak

Ψ module and is given by the relations δi(t) = 0, i > 0. The
module k∗(P ), as a Bk

Ψ-module, has a single generator t and is given by the relations
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(pnΨp)(t) = pnt for all primes p (n large). (Or: all operations a ∈ Bk
Ψ which have

zeros of order one are such that at = 0.)

Example 2. Let X = MUn. Then k∗(MUn) can be described by the ideal in the
ring of symmetric polynomials in the ring Λ[u1, . . . , un], dim ui = 2i, generated by
u = u1 . . . un. Let vi = xui, Ψk(vl

i) = ((vi + 1)k − 1)l and Ψk(xy) = Ψk(x)Ψk(y).
The elements of k∗(MUn) have the form

∑
λi,sx

sds, where ds = f(u1, . . . , un) is
an element of the symmetric ideal in Z[u1, . . . , un] generated by u = u1 . . . un, and
x is the Bott operator. This uniquely determines k∗(MUn) and k∗(MU) as Ak

Ψ-
and Bk

Ψ-modules.

We have the following

Lemma 8.2. The ring Bk
Ψ ⊂ Ak

Ψ coincides exactly with the subring of Ak
Ψ consisting

of operations of dimension ≤ 0.

The only thing which must be proved is that Bk
Ψ contains all operations of

dimension ≤ 0. For a pair a1 ∈ Bk
Ψ, a2 ∈ Bk

Ψ of operations which have zeros of
order q1, q2 respectively, we introduce the operations x−q1a1 = b1 and x−q2a2 = b2

and the composition b1 ◦ b2 in Ak
Ψ. We shall show that xq1+q2b1 ◦ b2 lies in Bk

Ψ if
xq1b1 ∈ Bk

Ψ. Let a1n =
∑
k

λ
(n)
k knΨk and a2n =

∑
k

µ
(n)
k knΨk. We consider

xq1+q2b1n · b2n = xq1+q2
1 x−q1a1nx−q2a2n

=

(∑
k

λ
(n)
k k(n−q2)Ψk

)(∑
k

µ
(n)
k knΨk

)
{using kq2xq2Ψk = Ψkxq2}. We shall assume that n is very large, n → ∞, q1 and
q2 are fixed. We set m = n− q2. Then(∑

k

λ
(n)
k kmΨk

)(∑
k

µ
(n)
k kq2kmΨk

)

=

(∑
k

λ̄
(m)
k kmΨk

)(∑
k

µ̄
(m)
k kmΨk

)
,

where λ
(m)
k = λ

(n)
k and µ̄

(m)
k = kq2

µ
(n)
k . Clearly, as m→∞ we have a composition

of operations in Bk
Ψ which lies in Bk

Ψ.
The lemma is proved.
By virtue of the lemma, the rings Bk

Ψ and Ak
Ψ contain operations which coincide

up to dimensions f(n) → ∞ (as n → ∞) with the operations (knΨk) in the sense
that a

(j)
k,n,∗ = kn+j for j ≤ (n).

This remark allows us to use (up to any dimension) the ring Bk
Ψ as if it were the

ring generated by (pnΨp), with p prime, and by x ∈ Bk
Ψ where (pnΨp)x = px(pnΨp)

and γp = (pnΨp) are polynomial generators. Thus, a (topological) basis here is
xkP (γ2, γ3, . . . ), where P is a polynomial.

We consider the Bk
Ψ-module k∗(P ). We have

Lemma 8.3. The torsion part of the group Ext1,2i

Bk
Ψ

(k∗(P ), k∗(P )) is a cyclic group,

whose order is equal to {pn(pi− 1)}p, where n is large, p is prime, and { }p means
the greatest common divisor of the sequence of integers.
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Proof. We construct a Bk
Ψ-free resolution of the module k∗(P ). Let n be large. Then

the module k∗(P ) is given by the relations (γp − pn)t = 0. We choose generators
κp = (γp − pn) and 1. Then the κp are polynomial elements,

. . .
d−→ C1

d−→ C0
ε−→ k∗(P ),

C0 = Bk
Ψ, C1 =

∑
p

Bk
Ψ,p,

while du = t and dup = κp(u), where u, up are free generators of the modules
Bk

Ψ = C0, Bk
Ψ,p ⊂ C1, respectively.

We consider the complex Hom∗
Bk

Ψ
(C, k∗(P )).

Let hi ∈ Hom2i
Bk

Ψ
(C0, k

∗(P )) be elements such that hi(u) = xi(t) and h
(p)
i ∈

Hom∗(C1, k
∗(P )) be such that h

(p)
i (up) = xi(t) and 0 = h

(p)
i (up′) for p′ 6= p.

Obviously, we have

(d∗hi, up) = (hi, κpu) = κpx
i(t)

= pn(Ψp − 1)xi(t) = pn(pi − 1)xi(t).

Hence, d∗hi =
∑
p

pn(pi − 1)h(p)
i . Thus, d∗(hi)

{pn(pi−1)}p
is a 1-cocycle for the operator

d∗. Since Hom∗( , k∗(P )) is a free abelian group, the element d∗(hi)
{pn(pi−1)}p

is the

unique element of finite order equal to di in the group Ext1,2i

Bk
Ψ

(k∗(P ), k∗(P )), di =

{pn(pi − 1)}p, n→∞.
The lemma is proved. �

Note that the computation of Ext∗∗Bk
Ψ
(k∗(P ), k∗(P )) presents no difficulties, since

the module k∗(P ) has a Bk
Ψ-free resolution which coincides with the complex for

the polynomial algebra Z[γ2, . . . , γp, . . . ], as long as the operator x acts freely on
k∗(P ), Bk

Ψ.
We have

Theorem 8.1. The groups Ext1,2i

Ak
Ψ

(k∗(P ), k∗(P )) are cyclic groups of order di =

{pn(pi − 1)}p, where n is large.

Proof. It is easy to see that the algebra Ak
Ψ⊗Q is precisely the algebra of operations

in k-theory k∗ ⊗Q. Hence, by virtue of § 2, we have:

Exts,∗
Ak

Ψ⊗Q
(k∗(P )⊗Q, k∗(P )⊗Q) = Exts,∗

Ak
Ψ
(k(P ), k(P )⊗Q) = 0

for s > 0. Hence the groups Ext1,2i

Ak
Ψ

are all torsion. We consider the resolution(
. . .

d−→
∑

i

Ak
Ψ,i

d−→ Ak
Ψ

ε−→ k∗(P )

)
= C,

where d(ui) = δi(u), and ui, u are free generators of C1 and C0.
We consider the nonacyclic complex(

. . .
d̄−→
∑

i

Ak
Ψ,i

d̄−→ Ak
Ψ

ε−→ k∗(P )

)
= C̄,
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where d̄(vi) = xiδi(v) and vi, v are free generators. We shall show that the complex
C̄ is such that in the group

H1(Hom∗
Ak

Ψ
(C̄, k∗(P )), d̄∗)

the torsion part is exactly the same as in the group

H1(Hom∗
Ak

Ψ
(C, k∗(P )), d∗) = Ext1,∗

Ak
Ψ

.

In fact, if hj ∈ HomAk
Ψ
(C̄, k∗(P )), where hj(v) = xj(t), then

(d̄∗hj , vi) = hj(xiδi(t)) = xiδihj(t)

= xiδix
j(t) = xi(δix

j(t)).

Thus, if d∗hj =
∑

µ
(j)
i h

(i)
j−i, where h

(i)
j−i(ui) = xj−i(t), then

d̄∗hj =
∑

µ
(j)
i h

(j)
i ,

where h
(i)
j (vi) = xj(t) and the numbers µ

(j)
i are the same. We note that the order

of the group Ext1,2j

Ak
Ψ

is precisely the greatest common divisor of the numbers µ
(j)
i as

i varies, and a generator is d∗(hj)/{µ(j)
i }i. Since the elements (xiδi) give a system

of relations in k∗(P ) over the ring Bk
Ψ ⊂ Ak

Ψ, the same integers µ
(j)
i give the torsion

part of Ext1,2j

Bk
Ψ

, since the complex C̄ over Ak
Ψ is a segment of a Bk

Ψ-resolution of the
module k∗(P ). By virtue of the lemma, we get the required result. The theorem is
proved. �

We now pass to the module k∗(MU).
We have

Theorem 8.2. For any complex X ∈ D there is a canonical isomorphism

Hom∗
Ak

Ψ
(k∗(MU), k∗(X)) = U∗(X).

The proof of this assertion is essentially a straightforward consequence of the
result of [22] concerning the fact that the Riemann–Roch theorem on the inte-
grality of the number ch ξT (X)[X] gives a complete set of congruence relations
on Chern numbers in ΩU . More precisely: if [X] ∈ ΩU indivisible element, then
there exists ξ ∈ K(X) such that ch ξT (X)[X] = 1. By virtue of the properties
of the Thom isomorphism in K-theory, this assertion is equivalent to the follow-
ing: for any indivisible element α ∈ π∗(MU), there exists ξ ∈ K0(MU) such
that (ch ξ, Hα) = 1, where H : π∗ → H∗ is the Hurewicz homomorphism. Let
β ∈ Hom∗

Ak
Ψ
(k∗(MU), k∗(P )); then the number (ch ξ, β) is also an integer by virtue

of Bott periodicity. Both groups Hom∗
Ak

Ψ
(k∗(MU), k∗(P )) and π∗(MU) have no

torsion. {Note that HomAk
Ψ
(k∗(MU), k∗(P )) ⊂ k∗(P ), for k∗(MU) is cyclic on

un.} Hence π∗(MU) ⊂ Hom∗
Ak

Ψ
. By virtue of what was said about the indivisibility

of the numbers (ch ξ,Hα)α ∈ π∗(MU), the group π∗(MU) is indivisible in Hom∗
Ak

Ψ
.

Since the ranks of these groups coincide, the groups coincide. Thus the assertion is
proved for the point spectrum.
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Let X ∈ D, X1, X2 ∈ D, with X1 a skeleton of X, X2 = X/X1; we have exact
sequences:

0→ U∗(X2)→ U∗(X) i∗−→ U∗(X1)→ 0,

0→ k∗(X2)→ k∗(X)→ k∗(X1)→ 0.

We assume by induction that the theorem has been proved for X1 and X2 (we
do induction on the rank of the group H∗(X, Z)). Then we have a commutative
diagram of exact sequences:

0 // U∗(X2)

≈
��

// U∗(X)

≈ν

��

// U∗(X1)

≈γ

��

// 0

0 // Hom∗
Ak

Ψ

// Hom∗
Ak

Ψ

// Hom∗
Ak

Ψ

δ // Ext1,∗
Ak

Ψ
(k∗(MU), k∗(X2)).

However, by virtue of the commutativity of the diagram we have that the homo-
morphism

Hom∗
Ak

Ψ
(k∗(MU), k∗(X))→ Hom∗

Ak
Ψ
(k∗(MU), k∗(X2))

is an epimorphism, since i∗ is an epimorphism and γ is an isomorphism. Hence the
homomorphism δ is trivial, and hence by the 5-lemma the homomorphism ν is an
isomorphism. The theorem is proved.

Remark 8.2. In what follows it will become clear that the groups Exti,∗
Ak

Ψ
(k∗(MU), k∗(P ))

are nontrivial even for i = 1, and the question of their computation is extraordi-
narily important (see § 9, 11).

By analogy with the rings Ak
Ψ and Bk

Ψ it is possible to construct analogous rings
AkO

Ψ and BkO
Ψ . Let kO∗ be the theory defined by the spectrum kO such that

Ω8nkOn = BO × Z (see § 3). The cohomology ring of a point kO∗(P ) = ΛO is
described as follows: generators 1 ∈ Λ0

O, h ∈ Λ−1
O , v ∈ Λ−4

O , w ∈ Λ−8
O ; relations

2h = 0, h3 = 0, hv = 0, v2 = 4w.
We have the “complexification” operator

c : kO∗ → k∗

such that c(h) = 0, c(v) = 2x2, c(w) = x4, where x is the Bott periodicity operator.
In the theory kO∗ it is possible by analogy with the theory k∗ to introduce

operations (knΨk) and their combinations a = (an), an =
∑

λ
(n)
k (knΨk), where

a
(j)
n∗ does not depend on n. The ring of such operators is identical to the analogous

ring for k∗-theory which lies in Bk
Ψ. The ring BkO

Ψ is composed, in a fashion identical
to that for the ring Bk

Ψ, from such operators a = (an) constructed from Ψk and
from the multiplication operators on ΛO = kO∗(P ), keeping in mind the following
commutativity relations: Ψkh = khΨk; Ψkv = k2vΨk; Ψkw = k4wΨk. We denote
the resulting ring by BkO

Ψ . Similarly, it is possible to construct a ring AkO
Ψ also, but

we shall not consider this ring in what follows.
We consider the category B ⊂ D ⊂ S.
1) The spectral sequence (En, dr) ↓ kO∗ is trivial in B; in B there is a subcate-

gory B′ such that:
2) the operation of the ring BkO

Ψ is well-defined in B′. As is easy to see, the
spheres Sn (their spectra in S) lie in B′ by definition, since kO∗(Sn) ≈ kO∗(P ).
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If f : Sn+k → Sn is a mapping, then a necessary and sufficient condition for the
complex Dn+k+1∪f Sn to belong to B′ is that f∗ = 0, f∗ : kO∗(Sn)→ kO∗(Sn+k).

In the category B ⊃ B′ the operation of the ring B̃kO
Ψ is well-defined, the latter

being a priori an extension BkO
Ψ → Bk

Ψ, since in view of the presence of torsion in
AO = kO∗(P ) the operation is not defined by its own representation on kO∗(P ),
in contrast to k∗-theory in the category D.

There is defined a homomorphism (epimorphism):

Ext1,∗
BkO

Ψ
(kO∗(P ), kO∗(P ))→ Ext1,∗

B̃kO
Ψ

(kO∗(P ), kO∗(P ))

and a Hopf invariant

q1 : Ker q0 → Ext1,∗
S̃kO

Ψ
(kO∗(P ), kO∗(P )).

It is easy to see that the complexification c : kO∗ → k∗ is an algebraic functor (see
Definition 9.1) from the category of B̃kO

Ψ -modules to the category of BkO
Ψ -modules.

It is also easy to show that

Ext1,4k

BkO
Ψ

(kO∗(P ), kO∗(P )) = Zdk
, dk = {pn(p2k − 1)}p

and

Ext0 s
BkO

Ψ
(ΛO,ΛO) = Z2 for s = 8k + 1, 8k + 2.

We have a natural ring homomorphism τ : BkO
Ψ → Bk

Ψ generated by the homo-
morphism c : kO∗(P )→ k∗(P ), and consequently a homomorphism

c̃ : Ext1,4k

BkO
Ψ

(ΛO,ΛO)→ Ext1,4k

Bk
Ψ

(Λ,Λ),

Λ = k∗(P ), ΛO = kO∗(P ),

whose image has, as is easy to see, index 1 for k = 2l and index 2 for k = 2l + 1,
in consequence of the fact that the image of the homomorphism c : kOt → kt has
index 1 for t = 8l and 2 for t = 8l + 4. Later, in § 9, this homomorphism will be
considered from another point of view.

There is defined an element h ∈ Ext0,1

BkO
Ψ

(ΛO,ΛO) such that 2h = 0, h3 = 0,
while multiplication by h

Ext0,8k+1

BkO
Ψ

h−→ Ext0,8k+2

BkO
Ψ

and Ext1,s

BkO
Ψ
→ Ext1,s+1

BkO
Ψ

is a monomorphism for s = 8k, 8k + 1.
The images of the homomorphisms

q0 : π∗(Sn)→ Ext0,∗
BkO

Ψ
(ΛO,ΛO)

and

q1 : π∗(Sn)→ Ext1,∗
BkO

Ψ
(ΛO,ΛO)

are easy to study: namely, q0 is an epimorphism (see [9]), and the image Im q1 is
realized by the image of q1 ◦ J , where J : π∗(SO) → π∗(Sn), and is nontrivial in
dimensions (1, 4k), (1, 8k + 1), (1, 8k + 2).
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§ 9. Relations between different cohomology theories. Generalized
Hopf invariant. U-cobordism, k-theory, Zp-cohomology

Let X ∈
→
S be a cohomology theory. Suppose given a subcategory B ∈

→
S. We

define the notion of the “Steenrod ring” AX
B of the theory X∗ in the subcategory

B: the ring AX
B is the set of transformations θK : X∗(K)→ X∗(K) which commute

with the morphisms of the category B (according to Serre). The ring AX
B contains

the factor-ring AX/J(B), where J(B) consists of all operations which vanish on
the category B.

We now define “the generalized Hopf invariant:” let

g : K1 → K2

be a morphism in B such that the object CK1 ∪g K2 (= 0 +K1 K2 in the notation
of § 1, i.e., the sum with respect to the inclusions K1

g−→ and K1
g−→ K2) also lies

in B.
We have an exact sequence

X∗(CK1 ∪g K2)

����
��

��
�

X∗(K2)
g∗ // X∗(EK1)

]]<<<<<<<

If the homomorphism g∗ = q0(g) : X∗(K2)→ (EK1) is trivial, then we have

0→ X∗(K1)→ X∗(CK1 ∪g K2)→ X∗(K2)→ 0,

where X∗(Ki), X∗(CK1 ∪g K2) are modules, and our short exact sequence deter-
mines a unique element

q1(g) ∈ Ext1,∗
AX

B

(X∗(K1), X∗(K2)).

We thus obtain a mapping

q1 : Ker q
(B)
0 → Ext1,∗

AX
B

(X∗(K1), X∗(K2)),

where q0 : Hom∗(K1,K2) → Hom∗
AX

B
(X∗(K2), X∗(K1)), K1,K2 ∈ B and g ∈

Ker q
(B)
0 , provided CK1 ∪g K2 ∈ B. This map is “generalized Hopf invariant.”

General problem: which elements of Ext1,∗
AX

B

(X∗(K2), X∗(K1)) ate realized geo-

metrically as images q1(Ker q
(B)
0 )?

If ĀX
B ∈ AX

B is an arbitrary subring, then there is defined the usual homomor-
phism:

i : Ext∗∗AX
B

(X∗(K2), X∗(K1))→ Ext∗∗ĀX
B

(X∗(K2), X∗(K1))

and we set q̄1 = iq1, where q̄1 is the “Hopf invariant” of the subring ĀX
B ⊂ AX

B .
Examples.
1. If B consists of a single object K, then AX

B = EndX∗(K) and there is no
Hopf invariant.

2. If B consists of objects K1,K2, L = CK1 ∪g K2 and morphisms g : K1 → K2,
β : L → EK1, α : K2 → L, where g∗ : X∗(K2) → X∗(K1) is the trivial homo-
morphism, then the ring AX

B consists of all endomorphisms of X∗(L) which pre-
serve the image β∗X∗(K1) ⊂ X∗(L). In this case, the Hopf invariant q

(B)
1 (g) ∈

Ext1AX∗
B

(X∗(K1, X
∗(K2)) is defined, and is equal to zero if and only if X∗(L) =
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X∗(K1) + X∗(K2) (as groups). Of course, examples 1 and 2 are uninteresting. We
go on now to the examples which interest us.

3. Let B = D (complexes with no torsion) and X∗ = H∗( , Zp). In this case
AX

B = A/(βA+Aβ), where β is the Bokštĕın homomorphism and A is the Steenrod
algebra (over Zp).

There is a canonical isomorphism

Ext1,t
A (Zp, Zp) = Ext1,t

A/βA+Aβ(Zp, Zp)

for t > 1, where Zp = H∗(P,Zp), P is a point, and the Hopf invariant q1(D)
coincides with the Hopf invariant q1 for K1 = K2 = P .

4. Let B = D and X∗ = k∗. In this case AX
B ⊃ Ak

Ψ, and the latter ring contains
the ring AX/J(B) but apparently does not coincide with it. The Hopf invariant in
this theory will be discussed later; the Ext1,∗

Ak(k∗(P ), k∗(P )) were computed in § 8.
In § 8 we considered the subring Bk

Ψ ⊂ Ak and

Ext1,∗
Ak

Ψ
(k∗(P ), k∗(P )) = torExt1,∗

Bk
Ψ
(k∗(P ), k∗(P )).

5. For the theory X∗ = U∗ we shall also consider the category B = D and the
Hopf invariant for the whole ring AU .

The groups Ext1,∗
AU will be computed later (for K2 = MSU ; see § 6).

6. In § 2 it was indicated that for complexes K = E2L the homomorphism
J : K0(X)→ J(X) can be considered as a homorphism J : K0(X)→ P ∗(X), where
P is the point spectrum or cohomotopy theory. A lower bound for the groups J̃(X)
can be computed in any cohomology theory Y ∗, if we consider the composition

q
(Y )
1 · J : K0(X)→ P ∗(X)→ Ext1,∗

AY (Y ∗(P ), Y ∗(X)),

where P ∗(X) = Hom∗(X, P ), defined on elements such that q
(Y )
0 · J = 0.

If K = EL, then in this case the computation can also be carried out by means
of Ext∗∗AY (Y ∗(P ), Y ∗(X)), but here the multiplicative structure in Ext∗∗AY y enters
by virtue of Lemma 2.1 of § 2.

We now consider two cohomology theories X∗, Y ∗ ∈
→
S, a subcategory B ⊂ S

and a transformation α : X∗ → Y ∗ of the cohomology functors in the subcategory
B. Let subrings ĀX

B ⊂ AX
B , ĀY

B ⊂ AY
B be chosen.

Definition 9.1. We call the transformation α : X∗ → Y ∗ algebraic with respect
to the subrings ĀX

B , ĀY
B , if it induces a functor ᾱ from the category of ĀX

B -modules
to the category of ĀY

B-modules. When ĀX
B = AX

B , and ĀY
B = AY

B we call the
transformation α algebraic.

Examples.
1. Let X∗, Y ∗ be arbitrary cohomology theories. An arbitrary element α ∈

Y ∗(X) determines a transformation of theories

α : X∗ → Y ∗.

2. If the theory X∗ is such that Xi(P ) = 0 for i > 0 and X0(P ) = π, then there
arises an augmentation functor

ν : X∗ → H∗(Y, π)

and hence for any group G a functor

νG : X∗ → H∗( , π ⊗G).
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For example, for G = Zp we have νp : X∗ → H∗( , π ⊗ Zp). In the cases of interest
to us, π = Z and π ⊗ Zp = Zp.

3. The Riemann–Roch functor. Let X∗ = U∗ and Y ∗ = k∗; we consider the
Atiyah–Hirzebruch-Grothendieck element λ

(n)
1 ∈ K0(MUn). It defines a map

λ−1 : U∗ → K∗

and λ : U∗ → k∗, where λ = (λ(n)), λ(n) ∈ k2n(MUn), is the element (uniquely
defined) such that xnλ(n) = 1 ∈ K0(MUn), where x is the Bott operator.

For the theory X∗ = U∗, the augmentation functors ν, νp and the Riemann–Roch
functor λ preserve the ring structure of the theory.

Later it will be shown that these functors are algebraic in the category D.
Now let α : X∗ → Y ∗ be an algebraic transformation of theories in the category

B ⊂ S with respect to the subrings ĀX
B , ĀY

B . What is the connection between the
“Hopf invariants” q

(B)
1 in the theories X∗ and Y ∗?

Since α : X∗ → Y ∗ leads to a functor in the category of modules, the trivial mor-
phism g∗X : X∗(K2)→ X∗(K1) corresponds to the trivial morphism g∗Y : Y ∗(K2)→
Y ∗(K1) for K1,K2, g ∈ B. Hence we have the inclusion Ker q

(B)
0X ⊂ Ker q

(B)
0Y , and

the domain of definition of the Hopf invariant q̄
(B)
1X is contained in the domain of

definition of q̄
(B)
1Y .

Now let ᾱ be a right exact functor in the category of modules. We consider
a resolution Cx of the module M = X∗(K2) and the following (commutative)
diagram:

CY

��

C̃Y
β2oo β1 //

��

ᾱCX

��
Y ∗(K2) = Y ∗(K2) = ᾱM ,

where CY is an acyclic ĀY
B-free resolution of the module ᾱM = Y ∗(K2), C̃Y is a

free complex such that H0(C̃Y ) = ᾱM . Let N = X∗(K1), ᾱN = Y ∗(K1),
By definition we have: H∗(Hom∗

ĀY
B
(ᾱCX , ᾱN)) = R∗GN (M), where R∗ =

∑
q

Rq

and GN = Hom∗
ĀY

B
( , ᾱN)◦ᾱ is the composite functor, RqG is the q-th right derived

functor. There is defined a natural homomorphism

rq : Extq,∗
ĀX

B

(M,N)→ RqGN (M), r =
∑

q

rq,

and homomorphisms

β∗1 : RqGN (M) // Hq,∗(Hom∗
ĀY

B
(C̃Y , ᾱN))

Extq,∗
ĀY

B

(ᾱM, ᾱN),

β∗2

OO

where Kerβ∗2 = 0.
We have the composite map

α̃ = (β∗2)−1β∗1r1 : E1(ᾱ)→ Ext1ĀY
B
(Y ∗(K2), Y ∗(K1)),
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where

E1(ᾱ) ⊂ Ext1ĀX
B

(X∗(K2), X∗(K1)),

E1(ᾱ) = r−1
1 ◦ β∗

−1

1 β∗2(Ext1ĀY
B
(Y ∗(K2), Y ∗(K1)).

In the following cases the group E1(ᾱ) coincides with the whole group Ext:
a) ᾱ is an exact functor; here Hi(ᾱCX) = 0, i > 0, and one can assume that

C̃Y = CY , β2 = 1.
b) If in addition ᾱ is such that Exti

ĀY
B
( , εN) ◦ ε = 0 for i > 0, then ᾱCX = CY

and an isomorphism is generated:

Ext∗∗ĀY
B
(ᾱM, ᾱN) = R∗GN (M).

In case (a) (ᾱ is an exact functor) there arises a spectral sequence (Er, dr),
where Ep,q

2 =
∑
p,q

RpGq,N (M), which converges to Ext∗∗(ᾱM, ᾱN), and Gq,N (M) =

Extq,∗( , εN) ◦ ε. From this spectral sequence it follows immediately that the ho-
momorphism

β∗1 : R1GN (M)→ Ext1(ᾱM, ᾱN)

is a monomorphism.
The basic examples which we shall consider are the subcategory D of torsion-free

complexes, the theories U∗, k∗,H∗( , Zp), the Riemann–Roch functor λ : U∗ → k∗

and the augmentations νp : U∗ → H∗( , Zp). We have

Lemma 9.1. a) The functors λ : U∗ → k∗ and νp : U∗ → H∗( , Zp) are algebraic
in the subcategory D;

b) The functors λ and νp are exact in this category.
c) The functor λ is such that RqGN (M) = Extq

AU (M,N), where M = U∗(K2),
N = U∗(K1), M,N ∈ D, CN = HomAk( , λN) ◦ λ, λN = k∗(K1).

d) The functor νp is such that RqGN (M) = Extq
A/βA+Aβ(νpM,νpN).

Proof. The category of AU -modules corresponding to the category D is the category
of Λ-free modules, where Λ = U∗(P ) ≈ ΩU . On the cohomology of a point Λ the
functor λ is such that Λ λ−→ Z[x] and λ(y) = T (y)xi, where y ∈ Ω2i

U = U−2i(P ) and
T is the Todd genus.

From the group point of view we have λM = M ⊗Λ Z[x], where M is Λ-free.
There follows the exactness of the functor λ and Rqλ = 0, q > 0. For νp we have
νpU

∗(P ) = Zp, and in the category D, νpM = M⊗Λ Zp; since in the category D all
groups U∗(K) and H∗(K) are free abelian, the functor νp is exact in this category.
This proves part (d). Part (c) follows immediately from the theorem in § 7. Part (b)
follows from the well-known fact that H∗(MU,Zp) is a free (A/βA + Aβ)-module.
We shall now prove the fundamental part (a).

Consider first the functor λ. We recall that in § 5 we constructed operations
Ψk

U ∈ AU ⊗Q. Let
Ψk(λx̃) = λΨk

U (x̃), x̃ ∈ U∗(K),

where K ∈ D is a complex with no torsion. Since λ is an epimorphism and λ(y) =
T (y)xi where x is the Bott operator, the desired formula follows easily from the
construction of the Adams operations Ψk in K-theory and of the operations Ψk

U

in § 5. The operations (knΨk) have the form knλΨk
U and are “integral” for large
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n. Thus, the action of the operators (knΨk) and multiplication by x in k∗-theory
are calculated by AU and λ. This proves part (a) of the lemma for the functor λ.

Now let α = νp : U∗ → H∗( , Zp). In § 5 we constructed a projector Φ ∈
AU ⊗Z Qp of the theory U∗ onto a smaller theory having the cohomology of a point
Λp = Qp[x1, . . . , xi, . . . ], dim xi = −2(pi − 1).

We set
P k(νpx̃) = νpΦSωΦ(x̃),

where ω = (p − 1, . . . , p − 1) (k times) and the P k are the Steenrod powers.
The correctness of this formula follows from the fact that all homomorphisms
(ΦSωΦ)∗(y) ≡ 0 mod p if dim ω = dim y, i.e., (ΦSωΦ)∗(y) ∈ Ω0

U = Z. The
lemma is proved. �

Corollary 9.1. For any K1,K2 ∈ D the homomorphism

α̃ = λ̃ : Ext1,∗
AU (U∗(K2), U∗(K1))→ Ext1,∗

Ak
Ψ
(k∗(K2), k∗(K1))

is a monomorphism.

Proof. As was established in Theorem 8.2, the homomorphism r1 is an isomorphism;
the homomorphism β∗1 is a monomorphism, as was shown above, while β∗2 = 1, since
Rqλ = 0, q > 0. Hence, β∗1r1 = λ̃ is a monomorphism. �

Corollary 9.2. For any complex K = E2L the lower bound of the J-functor

q
(D)
1k · J(K0(X)) ∈ Ext1,∗

Ak
Ψ
(k∗(P ), k∗(X))

coincides with the bound

q
(D)
1U · J(K0(X)) ∈ Ext1,∗

AU (U∗(P ), U∗(X))

Corollary 9.2 follows from Corollary 9.1.

Corollary 9.3. The groups Ext1,2i
AU (U∗(P ), U∗(P )) are cyclic groups – subgroups of

cyclic groups of order equal to the greatest common divisor of the integers {kn(ki−
1)}k for all k, for large n.

Proof. Since the groups Ext1,2i

Ak
Ψ

(k∗(P ), k∗(P )) by virtue of the theorem are cyclic
of the asserted orders, Corollary 9.3 follows from Corollary 9.1. We shall indicate a
simple fact about the connection between the Hopf invariants in different cohomol-
ogy theories X∗, Y ∗ in the presence of an algebraic transformation α : X∗ → Y ∗

with respect to the rings ĀX
B , ÃY

B in the subcategory B ⊂ S. �

Lemma 9.2. We have the equality

q̄
(B)
1Y = α̃ · q̄(B)

1X

on Ker q
(B)
0X , the group q

(B)
1X (Ker q

(B)
0X ) being contained in E1(α), the domain of def-

inition of the homomorphism α̃ = (β∗−1
1 · β∗1 · r1).

The proof of this lemma follows immediately from the fact that by construction
of the generalized Hopf invariants q̄

(B)
1X and q̄

(B)
1Y we can compute both quantities

q̄
(B)
1X (a) and q̄

(B)
1Y (a) for any a ∈ Ker q̄

(B)
0X ⊂ Ker q̄

(B)
0X .

As is easy to see, the equality

β∗2q
(B)
1Y (a) = β∗1 · r1 · q̄(B)

1X (a)
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is true. This equation is equivalent to everything asserted by the lemma. The
lemma is proved.

Corollary 9.4. a) If the element γ ∈ Ext1,∗
ĀX

B

does not belong to E1(α) for any
algebraic α : X∗ → Y ∗, then the element γ is not realized as the Hopf invariant of
any element of Hom∗(K1,K2).

b) If γ ∈ Ext1,∗
ĀY

B

does not belong to the image of the homomorphism α̃(Ext1ĀX
B

)

and Ker q
(B)
0X = Ker q

(B)
0Y , then the element γ is not realized as the Hopf invariant

of any element of Hom∗(K1,K2).

§ 10. Computation of Ext1AU (U∗(P ), U∗(P )). Computation of Hopf
invariants in certain theories

In the preceding section the monomorphicity of the mapping

Ext1AU (U∗(P ), U∗(P ))→ Ext1Ak
Ψ
(k∗(P ), k∗(P ))

was established.
We shall now bound the order of the groups Ext1,2i

AU from below. We consider
the resolution

(. . . d−→ C1
d−→ C0

ε−→ U∗(P ) = Λ) = C,

where C0 = AU (generated by u) and C1 =
∑
ω

AU
ω with generators uω, duω = Sω(u),

dim ω > 0. We consider the differential

d∗ : Ω2i
U →

∑
ω>0

Ω2i−2 dim ω
U

where
d∗(x) =

∑
ω

γ∗ω, x ∈ Ω2i
U = Hom2i

AU (C0,Λ)

and
σ∗ω(x) ∈ Hom2i

AU (C1,Λ) =
∑
ω

Ω2i−2 dim ω
U ,

where σ∗ω(x)[uω′ ] = 0 if ω 6= ω′, and σ∗ω(x)[uω] = σ∗ω(x) ∈ Λ. These facts follow
from § 5.

Now let i be odd. We consider the element xi
1, where x1 = [CP 1] ∈ Ω2

U . Since
σ∗1(x1) = ±2, all σ∗ω(xi

1) ≡ 0 mod 2, ω > 0, from the properties of the homomor-
phisms σ∗ω described in § 5. Hence the cokernel Coker d∗ always contains an element
of order 2. Since the homomorphism Ext1,4l+2

AU → Ext1,4l+2

Ak
Ψ

is monomorphic and

{kn(ki − 1)}k = 2, i ≡ 1 (mod 2), we have

Ext1,4l+2
AU (U∗(P ), U∗(P )) = Ext1,4l+2

Ak
Ψ

(k∗(P ), k∗(P )) = Z2

for 4l + 2 = 2i, i ≡ 1 (mod 2).
Thus, we have proved

Theorem 10.1. The groups Ext1,2i
AU (Λ,Λ) are isomorphic to Z2 for i = 2l + 1.

We now study the case of even i = 2l. Let yi ∈ Ω2i
U be an indivisible element

such that some multiple λyi, λ 6= 0, represents an almost-parallelizable manifold
M2i, whose tangent bundle τ is a multiple of the basic element κi of the group
K0(S2i), τ = µiκ̄i, µi integral, where κ̄i = f∗κ̄i, f : M2i → S2i a projection of
degree ±1. From the requirement of the integrality of the Todd genus and the fact
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that (ch κ̄1,M
2i) = 1, it follows easily that all σ∗ωyi for all ω are divisible by the

denominator of the number (Bl/al · 2l), where a2S+1 = 1 and a2S = 2, Bl is the
Bernoulli number entering into the Todd genus, i = 2l (see [14]). Hence Coker d∗

contains a group of order of equal of the denominator of the number (Bl/al · 2l).
Since this number is only half of the number {kn(ki − 1)}k(al = 1), the image
λ̃ Ext1,2i

AU ⊂ Ext1,2i

Ak
Ψ

coincides with Ext1,2i

Ak
Ψ

for l = 2s and has index 2 in Ext1,2i

Ak
Ψ

for
l = 2s + 1.

From this, for the case al = 2, l = 2s, follows the

Theorem 10.2. The groups Ext1,8k
AU (Λ,Λ) are isomorphic to the groups

Ext1,8k

Ak
Ψ

(k∗(P ), k∗(P )).

In the case al = 1 there arises an uncertainty: do the groups Ext1,8k+4
AU

coincide
with the groups Ext1,8k+4

Ak
Ψ

or do they have index 2 in them?
Hence, we have the weaker

Theorem 10.3. The groups Ext1,8k+4
AU

(Λ,Λ) are cyclic groups whose order is equal
to either the denominator of the number B2k+1/(4k + 2) or the denominator of the
number B2k+1/(8k + 4).

Remark 10.1. In what follows it will be established that this order is in fact equal
to the denominator of B2k+1/(8k + 4) for k ≥ 1 (however, for k = 0 it is easy to
see that Ext1,4

AU (Λ,Λ) = Z12). The basis element uk of the group Ext1,8k+4
AU is such

that
d3(uk) = h3 Ext1,8k

AU (Λ,Λ), h ∈ Ext1,2
AU (Λ,Λ) = Z2.

We now study the question of the relations among different cohomology theories
and the question of the existence of elements in the homotopy groups of spheres
with given Hopf invariant

γ ∈ Ext1,∗
ĀX

D

(X∗(P ), X∗(P ))

for the cases X∗ = U∗, k∗, kO∗, H∗( , Zp), with the help of the functors α = λ,
α = c, α = νp relating these theories.

1. The first question which we consider here is the complexification

c : kO∗ → k∗

with respect to the rings BkO
Ψ and Bk

Ψ. The structure of the groups

Exts,∗
BkO

Ψ
(kO∗(P ), kO∗(P )),

where s = 0, 1 is known to us, namely:

a) Ext0,t

BkO
Ψ

(kO∗(P ), kO∗(P )) = Z2, t = 8k + 1, 8k + 2, k ≥ 0,

Ext0 t
BkO

Ψ
(kO∗(P ), kO∗(P )) = 0, t 6= 8k + 1, 8k + 2;

b) Ext1,4

BkO
Ψ

(kO∗(P ), kO∗(P )) = Z{kn(kq−1)}k
+ . . . , n→∞

Ext1,8k+t

BkO
Ψ

(kO∗(P ), kO∗(P )) = Z2 + . . .

for t = 1, 2;
c) the homomorphism q0 : πS

∗ (P )→ Hom∗
BkO

Ψ
(kO∗(P ), kO(P )) is an epimorphism

(result of Brown–Peterson–Anderson [9]);
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d) the homomorphism q1 · J : k̃Ot(P ) → Ext1,t

BkO
Ψ

(kO∗(P ), kO∗(P )) is an epi-
morphism. This last fact follows from the work of Adams [3] for the groups
Ext1,4k

BkO
Ψ

(ΛO,ΛO); since

Ext1,8k+t

BkO
Ψ

= ht Ext1,8k

BkO
Ψ

(t = 1, 2), h ∈ Ext0,1

BkO
Ψ

,

the required fact follows for the groups Ext1,8k+t

BkO
Ψ

(ΛO,ΛO).
We now consider the complexification c, defining homomorphisms c̃, c̃′:

Ext1,∗
B̃kO

Ψ
(ΛO,ΛO) c̃ // Ext1,∗

Bk
Ψ
(Λ,Λ) = Ext1,∗

Ak
Ψ
,

Ext1,∗
BkO

Ψ
(ΛO,ΛO)

``@@@@@@@ c̃′

>>~~~~~~~~

Since in the groups kt(P ) the image of the homomorphism c has index 2 for t =
8k + 4, index 1 for t = 8k and is equal to zero for t 6= 8k, 8k + 4, we can draw
from this the conclusion that the image group Im c̃ ⊂ Ext1,t

Ak
Ψ
(Λ,Λ) has index 2

for t = 8k + 4, index 1 for t = 8k and is equal to zero for t 6= 8k, 8k + 4, since
Im c̃ = Im c̃′.

Consider the groups πn+4k−1(Sn) and the Hopf invariants in kO∗- and k∗-
theories. These invariants are always defined since Ext0,4k−1

B̃kO
Ψ

= 0. We have thus
the

Conclusion. The image of the Hopf invariant

q1,k : πn+4k−1(Sn)→ Ext1,4k

Ak
Ψ

(k∗(P ), k∗(P )), n→∞,

has index 2 for k = 2l + 1 and index 1 for k = 2l. Moreover, the image
q1,k(πn+4k−1(Sn)) coincides with the image q1,k · Jπ4k−1(SO).

2. We now consider the Riemann–Roch functor λ : U∗ → k∗ and the correspond-
ing homomorphism λ̃ : Ext1,t

AU (Λ,Λ)→ Ext1,t

Ak
Ψ
. Since λ̃ is a monomorphism, we get

from item 1 on complexification the following conclusion:
The Hopf invariant q1U : πn+4k−1(Sn)→ Ext1,4k

AU is always defined, and its image
Im q1U coincides with q1U (Jπ2k−1(SO)); it coincides with Ext1,4k

AU (Λ,Λ) for k = 1,
k = 2l and has index 2 in the group Ext1,8l+4

AU for l ≥ 1.
Later we shall study Ext1,8k+2

AU and Ext1,8k+6
AU .

3. We now consider the functor νp : U∗ → H∗( , Zp) and the corresponding Hopf
invariant

πn+i−1(Sn), n→∞, i > 1
q1U

||xxxxxxxx
q1H

""FFFFFFFF

Ext1,i
AU (Λ,Λ) λ̃ // Ext1,i

A/βA+Aβ(Zp, Zp) = Ext1,i
A (Zp, Zp).

Since Ext1,i
A/βA+Aβ(Zp, Zp) = ExtA(Zp, Zp) for i > 1 this becomes the usual Hopf

invariant. Since the homomorphism

q1U : Jπ8k−1(SO)→ Ext1,8k
AU (Λ,Λ)
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is an epimorphism, the question of the existence of elements with ordinary Hopf
invariant equal to 1 reduces to the calculation of this invariant on the group
Jπ4k−1(SO). For example, let p = 2, and let hi ∈ Ext1,2i

A (Z2, Z2) be basis ele-
ments. Since h1, h2, h3 are cycles for all Adams differentials and represent elements
in the groups Jπ∗(SO), it follows that, in view of the fact that Im J is closed under
composition, hi · h2 ∈ Ext2,∗

A (Z2, Z2) must represent an element of q2Jπ∗(SO) if hi

represents an element of q1Jπ∗(SO). Moreover, since q2Jπ4k−2(SO) = 0, we have
h2hi = 0 if hi ∈ q1Jπ∗(SO), since h2 ∈ q1Jπ∗(SO).

However, hi · h1 6= 0 for i ≥ 4. We have thus the

Conclusion. For i ≥ 4 the elements hi ∈ Ext1,2i

A (Z2, Z2) do not belong to the
image of the homomorphism

ν2 : Ext1,2i

AU (Λ,Λ)→ Ext1,2i

A (Z2, Z2).

The case p > 2 is considered analogously.
In fact, we have the purely algebraic

Theorem 10.4. The image of the homomorphism

νp : Ext1,2pi(p−1)

AU → Ext1,2pi(p−1)
A/Aβ+βA(Zp, Zp)

is nontrivial only for i = 0, 1, 2 (p = 2) and for i = 0 (p > 2).

4. We now consider the homomorphism

δ : Ext∗∗AU (U∗(P ), U∗(P ))→ Ext∗∗AU (U∗(MSU), U∗(P )).

We assume that K ∈ Ext0,4
AU (U∗(MSU),Λ), y ∈ Ext0,8

AU (U∗(MSU),Λ), and h ∈
Ext1,2

AU (U∗(MSU),Λ) are elements such that d3(K) = h3, and y ∈ Ω8
U is represented

by an almost-parallelizable manifold. We have

Lemma 10.1. All elements of the form hn+1 · Kε · ym, n ≥ 0, m ≥ 0, ε = 0, 1,
belong to Im δ.

Proof. Since h ∈ Im δ, it suffices to show that Kε · ym · h belongs to Im δ. For this
it suffices to establish that all homomorphisms σ∗ω(x1 ·Kε · ym) are divisible by 2.
It is easy to verify that σ∗ω(x1), σ∗ω(K) and σ∗ω(ym) are divisible by 2. The general
result follows from the Leibnitz formula

σ∗ω(ab) =
∑

ω=(ω1,ω2)

σ∗ω1
(a)σ∗ω2

(b).

The lemma is proved. �

As was shown in § 6, in the Adams spectral sequence for U∗(MSU) we have:
a) d3(hKyn) = h4ym 6= 0,
b) di(hym) = 0, i ≥ 2.

Moreover, Brown–Peterson–Anderson showed in [9] that elements of the form hym ∈
Ω8m+1

SU belong to the image of the homomorphism π∗(Sn)→ π∗(MSUn) by a direct
construction of the elements.

We have thus the

Theorem 10.5. a) The groups Ext1,8k+2
AU (Λ,Λ) = Z2 are cycles for all Adams

differentials and belong to the image of the Hopf invariant

q1U : πn+8k+1(Sn)→ Ext1,8k+2
AU (Λ,Λ), n→∞.
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b) The groups Ext1,8k+6
AU (Λ,Λ) = Z2 are not cycles for the differential d3.

Remark 10.2. Since Ext1,4i+2
AU = Ext1,4i+2

Ak
Ψ

, the analogous facts hold also for k-
theory, although basis elements here are not related to the J-functor, in contrast
to Ext1,4k

Ak
Ψ

(here, the elements go into hym under the homomorphism Ωe → ΩSU ).

We summarize the results of this section:
1) The groups Ext1,∗

AU (Λ,Λ) were considered and also the associated homomor-
phisms

Ext1,∗
AU (Λ,Λ)

ν̃pyysssssssssss
λ̃

%%KKKKKKKKKKK
Ext1,∗

B̃kO
Ψ

(kO∗(P ), kO∗(P ))

c̃
yysssssssss

Ext1,∗
A (Zp, Zp) Ext1,∗

Ak
Ψ
(k∗(P ), k∗(P ))

π∗(Sn)

q1H

eeLLLLLLLLLLL

q1U

OO

q1k

99rrrrrrrrr
q1,kO

KK

π∗(SO)

J

OO

,

where q1H is the classical Hopf invariant, J is the Whitehead homomorphism, λ is
the “Riemann–Roch” functor, c is complexification, and νp is the augmentation of
U∗-theory into Zp-cohomology theory.

2) The homomorphism Ext1AU (Λ,Λ)→ Ext1AU (U∗(MSU),Λ) was studied.
3) It was established which elements of all these groups Ext1 are realized as

images of the Hopf invariant q1. In particular, for the groups Ext1,2t
AU (Λ,Λ) this

image Im q1U is trivial for t = 4k + 3; q1U is an epimorphism for t = 4k − 1, 4k; for
t = 4k + 2 (k ≥ 1) and t = 4k + 3 (k ≥ 0) the Adams differential

d3 : Ext1,2t
AU (Λ,Λ)→ Ext4,2t+2

AU (Λ,Λ)

is nontrivial; it can be shown that d3(E
1,2t
3 ) = h3E1,2t−4

3 for t = 4k +2 (k ≥ 1) and
t = 4k + 3 (k ≥ 0) (see § 11).

4) The nonexistence of elements with classical Hopf invariant 1 is a consequence
of the fact that ν̃2(Ext1,2i

AU ) = 0 for i ≥ 4. Analogously for p > 2 (see § 12).
5. For t 6= 8k + 4, the fact of the following group isomorphism was established:

Ext1,t
AU (Λ,Λ) λ̃= Ext1,t

Ak
Ψ
(k∗(P ), k∗(P ));

for t = 4 this fact is false. For t = 8k + 4, k ≥ 1, it is true and will be proved later
(see § 11).

§ 11. Cobordism theory in the category S ⊗Z Qp

Earlier, in § 5, it was proved that in the algebra AU ⊗Z Qp there exists a pro-
jector Φ ∈ AU ⊗Z Qp such that Φ(x, y) = Φ(x)Φ(y) and Im Φ∗ ⊂ Λ is the ring of
polynomials in generators y1, . . . , yi, . . . , dim yi = 2pi − 2, where the yi are poly-
nomial generators of the ring Λ = ΩU ⊗Z Qp such that the numbers σ∗ε (y) ∈ Qp

are divisible by p and σ∗k(yi) = p, k = pi − 1. Moreover, a complete system of
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orthogonal projectors Φ(i) was constructed,
∑

Φ(i) = 1, Φ(i) ·Φ(j) = 0, i 6= j, where
the Φ(i)(U∗⊗Z Qp) are isomorphic theories up to shift of dimensions. Hence, in the
category S⊗Z Qp the spectrum MU is equal to the sum MU ≈

∑
ω

E2d(ω)Mp, where

ω is not p-adic {i.e., ω = (i1, . . . , ik), all iq 6= pr − 1 for any r, and d(ω) =
k∑

q=1
iq}.

If AU
p is the Steenrod ring of the spectrum Mp, where AU

p = Φ · AU · Φ, then we
have:

1) AU ⊗Z Qp = GL(AU
p ) is the appropriately graded ring of infinite matrices of

the form (aωiωj
), aωiωj

∈ AU
p , ωi not p-adic and dim(aωiωj

) = 2d(ωj) − 2d(ωj) +
dim aωiωj {i.e., the right-hand side is a constant for the whole matrix and defines
the degree of the matrix}.

2) Exts,t
AU (U∗(K), U∗(L))⊗Z Qp = Exts,t

AU
p
(U∗

p (K), U∗
p (L)), where U∗

p = Φ(U∗⊗Z

Qp) is the theory defined by the spectrum Mp.
3) The Adams spectral sequences (Er ⊗ Qp, dr ⊗ Qp) in U -theory and (Ẽr, d̃r)

in Up-theory coincide. These facts follow from §§ 1–3.
We note that the polynomial generators of the ring Λp = U∗

p (P ) = Φ∗U∗(P )
can be chosen to be polynomials with rational coefficients in the elements xi =
[CP pi−1] ∈ ΩU , where the polynomial generator can be identified with [CP p−1] =
x1 = y1 in the first nontrivial dimension, equal to p− 1.

We consider the ring Λp,i ⊂ Λ, generated by the first i polynomial generators
y1, . . . , yi ∈ Λp. This ring Λp,i does not depend on the choice of generators.

The following fact is clear: the subring Λp,i ⊂ Λp is invariant with respect to the
action of all operations Φ · S2 · Φ on the ring Λp. The proof follows from the fact
that the subring Λ(j) ⊂ Λ = ΩU , generated by all generators of dimension ≤ 2j, is
invariant with respect to Sω and with respect to Φ, while Φ(Λpi−1) = Λp,i.

We consider the projection operator Φi ∈ AU
p ⊗Qp Q such that Φ∗i : Λp →

Λp,i,Φi|Λp,i = 1 and Φi(yj) = 0 for j > i. The ring ΦiA
U
p Φi will be denoted by

Ap,i. It is generated by the operators of multiplication by elements of Λp,i ⊂ Ap,i

and by operators of the form Φi · Φ · Sω · Φ · Φi, where it is sufficient to take only
partitions ω = (k1, . . . , ks), kj = pqi − 1, while qj ≤ i.

We have the following general fact.
The ring AU

p is generated by operators of the form Φ · Sω · Φ for ω(k1, . . . , ks),
kj = pqj − 1.

This fact follows easily from properties of the projector Φ and the structure of
the spectrum Mp.

However, if ω = (pq1 − 1, . . . , pqs − 1) and at least one qj > i, then clearly
σω(Λp,i) = 0. Hence in the ring ΦiA

U
p Φi it suffices to consider only Φi ·Φ ·Sω ·Φ ·Φi

for ω = (pp1 − 1, . . . , pqs − 1), where all qj ≤ i.
Additive bases for the rings AU

p and Ap,i:
a) AU

p = (Λp · Sω)∧, where ω is p-adic and ∧ denotes completion (by formal
series).

b) Ap,i = (Λp,i · Sω)∧, ω = (pj1 − 1, . . . , pjs − 1), jk ≤ i.
We consider the operations ei,k = S(pi−1,...,pi−1) (k times), regarded as elements

of the ring Ap,i, i.e., ei,k = ΦiΦSωΦΦi. Clearly, we have:
1) ∆(ei,k) =

∑
k=l+s

eis ⊗ ei,l (the projectors Φi and Φ preserve the diagonal);

2) e∗i,k(Λp,i−1) = 0;
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3) e∗i,1(yi) = p, where yi ∈ Λp,i ⊂ Λp is the polynomial generator of dimension
pi − 1.

We denote by Ei ⊂ Ap,i the subring generated by the elements (ei,k), k ≤ 1.
We denote by Di the subring of Ap,i spanned by Ei and the operator of multi-

plication by the generator yi, i.e., Di = Qp[yi]Ei.
We have the following

Lemma 11.1. a) The subring E1 commutes with all operators of multiplication
Λp,i−1 ⊂ Λp and all operators ΦiΦSωΦΦi for all ω = (pj1 − 1, . . . , pjs − 1), where
jk ≤ i− 1.

b) In the ring Ei we have the relations

ei,k · ei,s =
(

k + s

s

)
· ei,k+s,

ei,k · yq
i =

∑
s+m=i

e∗i,m(yq) · ei,s,

where e∗i,m(yq) =
(

q
m

)
pmyq−m.

c) The ring Ap,i−1 is obtained from the ring Ap,i by discarding the polynomial
generator yi and then factoring the remaining subring Bp,i ⊂ Ap,i by the ideal
spanned by the central subalgebra Ei of Bp,i, where

Bp,i = {Λp,i−1 · (ΦiΦSωΦΦi)}∧

for all p-adic ω.

The proof of all parts of Lemma 11.1 follows easily from what has preceded.
Thus, the ring Ap,i is obtained from the ring Ap,i−1 in the following way (in two

steps):
Step 1. Without altering the “ring of scalars” Λp,i−1, we make a central exten-

sion of Ei+1 by Ap,i:
0→ Ei → Bp,i → Ap,i−1 → 0,

with Ei acting trivially on Λp,i−1.
Step 2. We adjoin to the ring of scalars Λp,i−1 a polynomial generator yi of

dimension pi − 1, setting e∗i,k(yi) =
(

q
k

)
pkyq−k with all the consequences derived

from this.
The ring Qp[yi] ·Bp,i coincides with Ap,i, while the commutation rules for yi and

ΦiSωΦi are derived from part (b) of Lemma 11.1.
In particular, the action of the operators ΦiSωΦi for ω = (pj1 − 1, . . . , pjk − 1)

and for jk < i can also turn out to be nontrivial.
We shall denote ΦSωΦ by P k when ω = (p− 1, . . . , p− 1) (k times).
We denote ΦiP

kΦi by P k. For p = 2 we set P k = Sqk.
As in the ordinary Steenrod algebra mod p, we have here the following fact:

the operations P k together with Λp generate the entire ring AU
p (it suffices to take

P ps

). This follows easily from the fact that for the ring AU
p ⊗Zp it is easily derived

from the properties of the ordinary Steenrod algebra. Hence, it suffices to determine
only the action of the operators P k on the generators yi (and even only of the P ps

).
We now consider the ring Di, operating on the module Qp[yi], and the groups

Exts,t
Di

(Qp[yi], Qp[yi]). We set

Γs,−t = Exts,t
Di

(Qp[yi], Qp[yi]).
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We consider the groups Γs,t ⊗ Λp,i−1. We have

Lemma 11.2. a) There is a well-defined graded action of the ring Ap,i−1 on∑
Γs,t ⊗ Λp,i−1 such that :
1) λ(x⊗ µ) = x⊗ λµ, λ, µ ∈ Λp,i−1 ⊂ Ap,i−1;
2) if ei,ω = ΦiSωΦi,

ei,ω ∈ Ap,i−1, ω = (pi − 1, . . . , pjs − 1), jj < i,

then
e∗i,ω(x⊗ µ) =

∑
ω=(ω1,ω2)

e∗i,ω(x)⊗ e∗i,ω2
(µ),

where e∗i,ω2
(Λp,i−1) is the ordinary action and e∗i,ω2

(x) ∈ Γs ⊗ Λp,i−1 for x ∈ Γs,
µ ∈ Λp,i−1;

b) we have the equality

Hom∗
Ap,i−1

(Ap,i−1,Γs,t ⊗ Λp,i−1)

= HomAp,i−1(Ap,i−1,Λp,i−1)⊗ Exts1−t
Di

(Qp[yi], Qp[yi]).

Proof. Part (b) is obvious. To construct the action of Ap,i−1 on Γs ⊗ Λp,i−1 we
note that the ring Bi acts on Λp,i = Qp[y] ⊗ Λp,i−1 naturally, while the action is
trivial on Λp,i−1. From this follows the natural action of the factor-ring Ap,i−1 on
the groups

ExtDi(Λp,i, Qp[yi]) = ExtDi(Qp[y], Qp[y])⊗ Λp,i−1,

where Di = Qp[y] · E1. It is now easy to derive part (a). �

We note that the ring Bi is a free right module over Ei.
We have the following

Theorem 11.1. There exists a spectral sequence (E2, dr), where:
a) E∞ is associated with ExtAp,i

(Λp,i,Λp,i);
b) Ep,q

2 coincides with Extp
Ap,i−1

(Λp,i−1,Γq ⊗ Λp,i−1), where Γq ⊗ Λp,i−1 is a
Λp,i−1-module by virtue of Lemma 11.2;

c) dr : Ep,q
r → Ep+r,q−r+1

r ; all differentials dr preserve the dimension of elements
induced by the dimension of rings and modules;

d) Ep,0
2 = Extp

Ap,i−1
(Λp,i−1,Λp,i−1);

e) the spectral sequence (Er, dr) is a spectral sequence of rings, where the multi-
plicative structure is induced by the diagonal ∆ of the ring Ap,i.

The proof of this theorem is more or less standard and is constructed by starting
from the double complex corresponding to the central extension Bi of the rings
Ei, Ap,i−1. We shall not give it here.

For what follows it will be useful to us to compute Ext∗∗Di
(Qp[y], Qp[y]). We note

that Ap,1 = D1, and the calculation of these groups gives certain information about
the ring

ExtAU (U∗(P ), U∗(P ))⊗Z Qp.

Lemma 11.3. Let C be a bigraded differential ring over Qp, which is associative
and is generated by elements

x ∈ C0,2pi−2, hj ∈ C1,2j(pi−1), j ≥ 1,
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such that :
1) phj+1 = [x, hj ] = xhj − hjx;

2) d(x) = ph1;

3) d(h1) = 0, d(hj+1) =
j∑

k=1

(
j + 1

k

)
hj+1−k · hk, j ≥ 1;

4) d(uv) = (du)v + (−1)iu(dv) where u ∈ Ci. Here, d is the differential in the
ring C∗∗.

Then the cohomology ring H∗∗(C) is canonically isomorphic to the ring
Ext∗∗Di

(Qp[yi], Qp[yi]).

The proof of the lemma consists in constructing a Di-free acyclic resolution F̃ of
the module Qp[yi+1], having the form Qp[y] · F , where F is a standard resolution
over Ei of the trivial module Qp = Ei/Ēi, where Ēi is the set of elements of positive
dimension and Ei is described in Lemma 11.1. The ring Ei has a diagonal, as
do Di and Qp[y]. Hence the complex Hom∗∗

Di
(F̄ , Qp[y]) is a ring, which coincides

exactly, as is easy to verify, with the ring C together with the differential operator
d. Whence the lemma follows.

From Lemma 11.3 it is easy to derive

Lemma 11.4. a) For p = 2 the cohomology ring H∗∗(C ⊗ Z2) is isomorphic to
the polynomial algebra Z2[x] ⊗ Z2[h1, h2, . . . , h2k ] with Bokštĕın homomorphism β
of the following form:

1) β(x) = h1;
2) β(h2k) = h2

2k−1 , k ≥ 1, x ∈ H0,2(2i−1), h2k ∈ H2k+1(2i−1)(C ⊗ Z2).
b) For p > 2 the ring H∗∗(C ⊗ Zp) is isomorphic to the ring

Zp[x]⊗ Λ[h1, hp, . . . , hpk , . . . ]⊗ Zp(γ2, . . . , γk, . . . ),

where
hpk ∈ H1,2pk(pi−1)(Ci ⊗ Zp),

γk ∈ H2,2pk(pi−1)(Ci ⊗ Zp),

x ∈ H0,2pi−2(Ci ⊗ Zp)

and the Bokštĕın homomorphism β has the following:
1) β(x) = h1;
2) β(hpk) = γk, k ≥ 1.
c) The group Ext1,t

Di
(Qp[yi], Qp[yi]) is nontrivial for t = 2p(pi − 2), q ≥ 1,

and is isomorphic to the cyclic group Zf(q), where f(q) − 1 is equal to the
largest power of p which divides q. We shall denote the generator of the group
Ext1,2q(pi−1)

Di
(Qp[y], Qp[y]) by δq.

d) The image of the homomorphism of “reduction modulo p,”

α : Ext1,2q(pi−1)(Qp[yi], Qp[yi])→ H1,2q(pi−1)(Ci ⊗ Zp)

is generated by the following elements:
1) h1x

q−1 for p > 2 and all q,
2) h1x

q−1 for q = 2 and q ≡ 1 mod 2,
3) h1x

q−1 + h2x
q−2 for p = 2 and q ≡ 0 mod 2.
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e) For all t > 1, in the groups Ht,∗(Ci ⊗Z2) the kernel Kerβ coincides with the
image Im β. Hence, the homomorphism of reduction modulo p,

αp : Extt,∗
Di

(Qp[yi], Qp[yi])→ Ht,∗(Ci ⊗ Zp)

is an isomorphism on the kernel Kerβ = Im β and none of these groups has ele-
ments of order p2.

The proof of (a) and (b) follows easily from the form of the ring C — in particular,
from the fact that C ⊗ Zp is commutative, C is obtained from the standard Ei-
resolution and Ei ⊗ Zp has a system of generators {li,pj}, while

H∗∗(Ci ⊗ Zp) = Zp[x]⊗ ExtEi⊗Zp(Zp, Zp).

The structure of the Bokštĕın homomorphism β is derived immediately from
Lemma 11.3.

Part (c) follows from the fact that e∗i,k(yq
i ) =

∑
k≥1

(
q
k

)
pkxq−k, as was shown in

Lemma 11.1, and from the construction of the standard Ei-resolution F for the
module Ei/Ēi = Qp and the differential d∗ in the complex Hom∗(Qp[yi] · F,Qp[yi]).
Namely, we have:

d∗(xq) =
∑
k≥1

(
q
k

)
pkhkxq−k.

Part (d) is derived from the fact that 1
pf(q) d(xq) mod p is equal to h1x

q−1 for p > 2
or p = 2, q = 2s + 1, and is equal to h1x

q−1 + h2x
q−2 for p = 2, q = 2s.

We shall now prove part (e). Since the homomorphism β is a differential operator,
it suffices to show that Ht(H∗(Ci ⊗ Zp), β) = 0 for t > 1. The structure of the
homomorphism β was determined in parts (a) and (b) of Lemma 11.4, and the
required fact is easily derived from the usual homological arguments. The lemma
is proved.

1. The ring structure in Ext∗∗Di
(Qp[y], Qp[y]) completely follows from Lemma

11.4, since the homomorphism of reduction modulo p,

αp : Ext∗∗Di
(Qp[y], Qp[y])→ H∗∗(Ci ⊗ Zp),

is a monomorphism on Kerβ and in dimensions ≥ 2; hence, from αp(xy) = 0 it
follows that xy = 0 for elements x, y of positive dimension. The image of the
homomorphism αp(Ext∗∗Di

) coincides with Kerβ in all dimensions ≥ 1, although
Kerαp is nontrivial in dimension 1 [see parts (c) and (d)].

2. The product Ext1,∗
Di
⊗Ext1,∗

Di
(Qp[y], Qp[y]) is identically equal to zero for p > 2.

3. A basis for the group Ext2,∗
Di

(Qp[y], Qp[y]) is completely given by the set of
elements:

a) α
(m)
k = β(hkxm), k ≥ 1, m ≥ 0 where p > 2, where

β(hpkxm) = (γkxm −mhpkh1) ∈ Ext2,(pk+2m)(pi−1)
Di

,

b) αm
k = β(h2kxm) = (h2

2k−1x
m + mh2kh1x

m−1) where p = 2, k ≥ 2,m ≥ 0.

4. For p = 2 the product Ext1,∗
Di
⊗Ext1,∗

Di
→ Ext2,∗

Di
is defined by the formulas:

a) δ2q+1 · δ2l+1 = α
(2q+2l)
1 ,

b) δ2q+1 · δ2l = α
(2q+2l−1)
1 ,

c) δ2l · δ2m = α
(2q+2l−2)
1 + α

(2q+2l−4)
1 .
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In particular, we shall denote the element δ1 by h ∈ Ext1,2. Hence, from (a) and
(b) it follows that

δ2q+1 · δm = hδ2q+m for all q, m.

We note that D1 = Ap,1 and there is defined a natural homomorphism

Extt,∗
D1

(Qp[y1], Qp[y1])
γ(t)

−−→ Extt,∗
AU (U∗(P ), U∗(P ))⊗Z Qp.

From Lemma 11.4 and the results of §§ 7, 8 is derived the following

Theorem 11.2. a) For t = 1 the homomorphism γ
(1)
p is a monomorphism.

b) For all p > 2 the homomorphism γ
(1)
p is an isomorphism.

c) For p = 2 the homomorphism γ
(1)
p is an isomorphism on the groups Ext1,2q

for q = 2 and for q odd ; for q = 2s, s ≥ 2, the image of the homomorphism γ
(1)
2

nas index 1 or 2 in Ext1,2q
AU ⊗ZQ2 and in fact index 2 for all q = 4s, s ≥ 1.

d) For all q = 4s + 1 and q = 4s + 2 the image Im γ
(1)
2 coincides with the image

of the Hopf invariant qU
1 (π∗(Sn)) = qU

1 (Jπ∗(SO)). For p > 2 the image Im γ
(1)
p

coincides with the image of the Hopf invariant qU
1 (π∗(Sn)) = qU

1 (Jπ∗(SO)).

In the formulation of Theorem 11.2 the calculation of the group Ext1,8k+4
AU ⊗ZQp

not complete — is the homomorphism γ
(1)
2 an epimorphism or does Im γ1

2 have
index 2?

For the study of this question we shall use the spectral sequence (Er, dr) de-
scribed in Theorem 11.1, which converges to the groups ExtA2,2(Λ2,2,Λ2,2). Namely,
we must compute the groups E0,1

2 and the differential

d2 : E0,1
2 → E2,0

2 ≈ Ext2A2,1
(Λ2,1,Λ2,1) = Ext2D1

(Q2[y1], Q2[y1]).

The groups Ext2D1
were computed in Lemma 11.4 for all p ≥ 2. We may assume

that y1 = [CP p−1] ∈ ΩU and

y2 =
1
p
([Cp2−1

p ] + λ[Cp−1
p ]p+1) =

1
p
(x2 + λxp+1

1 ),

where xi = [CP pi−1]. Moreover, by the integrality of the Todd genus we can set
λ = p− 1 and

y2 =
1
p
(x2 + (p− 1)xp+1

2 ), y1 = x1.

We have:
Λp,1 = Qp[y1], Λp,2 = Qp[y1, y2].

The action of the operation Φ ·P k ·Φ on Λp,1 and Λp,2 is given by the formulas:

Φ · P k · Φ(xq
1) =

(
q

k

)
pkxq−k

1 ,

Φ · P k · Φ(x2) =



0, k 6= p, p + 1,(
p2

p

)
x1, k = p,(

p2

p + 1

)
, k = p + 1.

As a consequence of this we have
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Lemma 11.5. The action of the operators P k on the generators yq
2 of the ring Λp,2

is given by the following formula:

(ΦP kΦ)∗(yq
2) =

∑
k≥1

[
yq−k
2 ⊗

( ∑
l1>0
lk>0∑

li=k

P l1(y2) ◦ · · · ◦ P lk(y2)

)
◦
(

q

k

)]
,

where (l2, . . . , lk) is an ordered partition of the integer k and

a) P l(y2) =
1
p
(P l(x2) + (p − 1)P l(xp+1

1 )) = (p − 1)
(

p + 1
l

)
plxp+1−l

1 for l 6= p,

p + 1,

b) P p(y2) =
1
p

((
p2

p

)
+
(

p + 1
p

)
pp

)
x1,

c) P p+1(y2) =
1
p

((
p2

p + 1

)
+ pp+1

)
.

We note that P 1(y2) is divisible by p for 1 6= p and P p(y2) is not divisible by p.
Now we can describe the action of the ring Ap,1 on Γ1 ⊗ Λp,1, where

Γt,s = Extt,−s
D2

(Qp[y2], Qp[y2]) and λp,1 = Qp[y1] = Qp[x1], x1 = [CP p−1].
The groups Γ1,∗ were computed in Lemma 11.4, part (c). The generator of
the group Ext1,q(p2−1)(Qp[y2], Qp[y2]) is obtained as d∗(xq)/pf(q) in the com-
plex Hom∗

D2
(F,Qp[γ2]) where F is a D2-free acyclic resolution of the module

Qp[y2], xq ∈ Hom∗(D2, Qp[y2]) is an element such that xq(1) = yq
2, f(q) − 1 is

the maximal power of p which divides q, and d∗ is the differential in the complex
Hom∗

D2
(F,Qp[y2]).

We set

P k(yq
2) =

q∑
k=1

yq−k
2 ⊗ ak,

where

ak =
∑

∑
li=k

li>0

P l(y2) . . . P ls(y2)
(

q

k

)

by virtue of Lemma 11.5 and ak ∈ Qp[y1], ak = λkysk
1 . From what has been said it

is easy to derive

Lemma 11.6. The action of the ring Ap,1 = D1 on Γ1⊗Qp[y2] is described in the
following fashion:

P k(αq) =
q−1∑
k=1

αq−k ⊗ pf(q−k)−f(q) ◦ ak,

where
αq ∈ Γ1,−2q(p2−1) = Ext1,2q(p2−1)

D2
(Qp[y2], Qp[y2])

are generators (their orders are pf(q)) and ak ∈ Qp[y1] is described in Lemma 11.4.

Lemma 11.6 follows easily from Lemma 11.4 and the definition of the generators
αq = d∗xq/pf(q), where xq ∈ Hom∗(F,Qp[y2]) is such that xq(1) = yq

2 ∈ Qp[y2].
Further, we compute Hom∗

Ap,1
(Λp,2,Γ1 ⊗ Λp,1) = E0,1

2 in the spectral sequence
(E2, d2) of Theorem 11.1, which converges to Ext∗∗Ap,2

(Λp,2,Λp,2); here Ap,1 = D1

and Λp,1 = Qp[y1].
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We have the following

Lemma 11.7. The groups Homt
Ap,1

(Λp,1,Γ1⊗Λp,1) are spanned by generators κi,q

of dimension 2pi(p2 − 1) + 2q(p − 1) for all i ≥ 0, q ≥ 0, where the order of the
generator κi,q is p.

The proof of the lemma follows easily from Lemma 11.5 and 11.6 by direct
calculation.

Since Hom∗
Ap,1

(Λp,1,Γ1 ⊗ Λp,1) = E0,1
2 , our problem is to calculate d2 : E0,1

2 →
E2,0

2 = Ext2Ap,1
(Λp,1,Λp,1), where the latter groups are computed in Lemma 11.4

and in the conclusions drawn from it.
Direct calculation proves

Lemma 11.8. The differential d2 : E0,1
2 → E2,0

2 of the spectral sequence (Er, dr)
converging to ExtAp,2(Λp,2,Λp,2) is given by the following formula:

d2(κi,t) = β(hpi+1xpi+t + hpixpi+t), i ≥ 0, t ≥ 0,

where hpi and x are in the notation of Lemma 11.4, and β is the Bokštĕın homo-
morphism H∗∗(C)→ ExtD1(Qp[x1]) described in Lemma 11.4.

From Lemma 11.8 follows the important

Corollary 11.1. a) For p > 2, the kernel Ker d2|E0,1
2 is trivial ;

b) For p = 2, the kernel Ker d2|E0,1
2 is generated by elements

κ0,2t+1 ∈ Hom4t+8
Ap,1

(Λp,1; Γ1 ⊗ Λp,1), t ≥ 0.

Hence, the image of the homomorphism

Ext1,4t+8
Ap,1

(Λp,1; Λp,1)→ Ext1,4t+8
p,2 (Λp,2; Λp,2)

has index 2 for all t ≥ 0.

Parts (a) and (b) of the corollary are derived in an obvious way from the structure
of the homomorphism β, which was completely described in Lemma 11.4. The sharp
distinction between the cases p = 2 and p > 2 is explained by the fact that for p > 2
we have h2

1 = 0 and β(h1x
s) = 0 for all s ≥ 0, while for p = 2, β(h1x

2s+1) 6= 0.
Comparing part (b) of Corollary 11.1 with Theorem 11.2, we obtain the following

result.

Theorem 11.3. a) In all dimensions t 6= 4, the order of the cyclic
group Ext1,t

AU (U∗(P ), U∗(P )) coincides exactly with the order of the group
Ext1,t

Ak
Ψ
(K∗(P ),K∗(P )), and this isomorphism is induced by the Riemann–Roch

functor λ.
b) The Hopf invariant

q1 : πn+t−1(Sn)→ Ext1,t
AU (U∗(P ), U∗(P ))

is an epimorphism for t = 8k, t = 8k + 2 and t = 4, and the image Im q1 has
index 2 in Ext1,t

AU , for t = 8k + 6, k ≥ 0, and t = 8k + 4, k ≥ 1.

Corollary 11.2. The generators αq of the groups Ext1,2q
AU (U∗(P ), U∗(P )) are cycles

for all Adams differentials di for q = 4s, 4s + 1, s ≥ 0, and q = 2, and are not
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cycles for all differentials for q = 4s− 1, 4s + 2, s ≥ 1 (the elements 2αq are cycles
for all differentials)4.

Supplementary remark. It is possible in all dimensions to prove the formula
d3(αq) = h3 · αq−2 for q = 4s − 1, 4s + 2, s ≥ 1, where h = α1 ∈ Ext1,2

AU . In
particular, for q = 4s + 2 this follows from the fact that h3αq−2 6= 0 in Ext4AU ,
while at the same time αq−2 is realized by the image of the J-homomorphism, and
we must have in E∞ that h3αq−2 = 0.

§ 12. The Adams spectral sequence and double complexes.
Comparison of different cohomology theories

We assume that there is given a complex Y = Y−1 ∈
→
S and a filtration

Y ← Y0 ← Y1 ← · · · ← Yi ← . . . ,

where the complex of AX -modules {X∗(Yi, Yi+1) = Mi}

M = {M0
d←−M1 ←M2 ← . . .

d←−Mi ← . . . }
is acyclic in the sense that Hi(M) = 0, i > 0, and H0(M) = X∗(Y ). The modules
Mi are not assumed to be projective. In the usual way a double complex of AX -free
modules N = (Nij) is constructed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

��
N2,0

��

N2,1
oo

��

N2,2
oo

��

. . .oo

N1,0

d1

��

N1,1
d2oo

d1

��

N1,2
d2oo

d1

��

. . .oo

N0,0 N0,1
d2oo N0,2

d2oo . . .oo

such that (a) d1d2 = −d2d1; (b) {→ · · · → Nij
d1−→ Ni−1,j → . . . } for all j is

an AX -free acyclic resolution of the module Mj ; (c) if Qk =
∑

j+i=k

Nij and d =

d1 + d2 : Qk → Qk−1, then the complex {Qk
d−→ Qk−1 → . . . } is an AX -free acyclic

resolution of the module X∗(Y ); (d) the complex Ni = {→ Ni,j
d2−→ Ni,j−1 → . . . }

is such that Hk(Ni) = 0 for k > 0, H0(Ni) is a free AX -module and the complex
{. . .H0(Nk) d1−→ H0(Nk−1) → . . . } represents an AX -free acyclic resolution of the
module X∗(Y ).

As usual, there arises a spectral sequence of the double complex (Et,q
r , dr), where

dr : Et,q
r → Et+r,q−r+1

r

and
Et,q

2 = Extt
AX (Mq, L),

4We take this opportunity to note the small computational error in parts (3) and (4) of Theo-

rem 5 of the author’s paper [19], which is completely corrected in Theorem 11.3 and Corollary 11.2
of the present paper.
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with L an arbitrary AX -module; this spectral sequence converges to ExtAX (X∗(Y ), L).

Definition 12.1. By a geometric realization of the double complex N = (Nij) in
the category

→
S or

→
S ⊗Z Qp is meant a set of objects (Zij), i ≥ −1, j ≥ −1, and

morphisms
Z−1,−1 Z−1,0

oo Z−1,1
oo . . .oo

Z0,−1

OO

Z0,0
oo

OO

Z0,1
oo

OO

. . .oo

Z1,−1

OO

Z1,0
oo

OO

Z1,1
oo

OO

. . .oo
OO OO OO

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
with the following properties:

a) Z−1,−1 = Y , Yi = Z−1,i and the filtration Z−1,−1 ← Z−1,0 . . . coincides with
the filtration Y ← Y0 ← · · · ← Yi ← . . .

b) The filtration

Yi/Yi+1 = Z−1,i/Z−1,i+1 ← Z0,i/Z0,i+1 ← Z1,i/Z1,i+1 ← . . .

represents a geometric realization of the AX -free resolution of the module
X∗(Yi/Yi+1) = Mi,

{Mi
ε←− N0,i

d1←− N1,i
d1←− . . . }

and hence X∗(Zk,i/Zk,i+1 ∪ Zk+1,i) = Nk,i.
c) The differentials d1 : Nk,i → Nk−1,i and d2 : Nk,i → Nk,i−1 coincide with the

natural homomorphisms

X∗(Zk,i/Zk,i+1 ∪ Zk+1,i)
d1−→ X∗(Zk−1,i/Zk,i ∪ Zk−1,i+1),

X∗(Zk,i/Zk,i+1 ∪ Zk+1,i)
d2−→ X∗(Zk,i−1/Zk,i ∪ Zk+1,i−1).

We make some deductions fromi the properties of the geometric realization of a
double complex:

1. The filtration Z−1,−1 = Y ← Z0,−1 ← Z1,−1 ← · · · ← Zi,−1 ← . . . represents

the geometric realization of the AX -free resolution {H∗(N0)
d2←− H∗(N1)← . . . }.

2. The filtration Y ← Z−1,0 ∪ Z0,−1 ← · · ·
⋃

i+j=k−1

Zi,j ← . . . represents the

geometric realization of the AX -free resolution

X∗(Y ) ε←− N0,0
d←− N0,1 + N1,0 ← · · · ←

∑
i+j=k

Ni,j ,

where d = d1 + d2.
3. The double complex (Z) defines two Adams spectral sequences:
a) the Adams spectral sequence Er,X in the theory X∗, induced by the filtration

Y ← Z0,−1 ∪ Z−1,0 ← · · · ←
⋃

i+j=k−1

Zi,j ← . . .

with term Ek
2 = Extk

AX (X∗(Y ), X∗(K)) for any K ∈ S;



METHODS OF ALGEBRAIC TOPOLOGY FROM COBORDISM THEORY 65

b) the spectral sequence Ēr of the filtration

Y ← Y0 ← Y1 ← · · · ← Yi ← . . .

with term Ē1 = {Hom∗(K, Yi/Yi+1)}.
In view of the presence of the double filtration (Zij) of the complex Y in all terms

of both Adams spectral sequences there arises yet another filtration: in the first
case it is equal to φ(x), x ∈ Ek

r , where φ(x) coincides in Ek
2 with the filtration in

Extk
AX (X∗(Y ), X∗(K)) induced by the non-free resolution X∗(Y )←M0 ←M1 ←

. . . , and in Ek
∞ is induced by the geometric filtration⋃

i+j=k−1
i≤k

Zi,j ⊃ · · · ⊃
⋃

i+j=k−1
i≤k−φ(x)

Zi,j ⊃ · · · ⊃ Z−1,k.

c) For the second Adams spectral sequence the filtration in Ēk
r and Ēk

∞ is induced
by the geometric filtration

Z−1,k ⊃ Z0,k ⊃ · · · ⊃ Zs,k ⊃ . . . .

We shall denote it by Ψ(y), y ∈ Ēr.
In addition, each of the indicated spectral sequences defines in the groups of

homotopy classes of mappings Hom∗(K, Y ) the usual filtration i(x), whose corre-
sponding index i is such that the element x ∈ Hom∗(K, Y ) is nontrivial in Ei

∞ and
trivial in Ej

∞ for j > i. For the Adams spectral sequence of the theory X∗ we
shall denote this filtration by iX . We have the double filtration [iX(x), φ(x)] where
x ∈ Hom∗(K, Y ), φ(x) ≤ ix(x).

The second Adams spectral sequence for Hom∗(K, Y ), induced by the filtration

Y ← Y0 ← Y1 ← · · · ← Y1 ← . . .

also induces a double filtration in Hom∗(K, Y ) : [i(x),Ψ(x)].
From the construction of the double complex it is obvious that we have

Lemma 12.1. The filtrations described above are related by

i(x) ≤ φ(x) ≤ iX(x) ≤ i(x) + Ψ(x)

for all x ∈ Hom∗(K, Y ) in the presence of a geometric realization of the double
complex defining both Adams spectral sequences.

By standard methods one proves

Lemma 12.2. If X∗ is the theory of Zp-cohomology, then for any acyclic filtration
Y = Y−1 ← Y0 ← Y1 ← . . . there exists a geometrically realizable A-free double
complex (Z), where A is the ordinary Steenrod algebra.

The proof of this lemma is obtained easily by the methods of [1].
The most important example which we consider here is the theory of cobordism

in the category S ⊗Z Qp:
a) Y ∈ Dp, i.e., H∗(Y, Qp) has no torsion.
b) X = H∗( , Zp), AX = A.
c) The filtration Y ⊃ Y0 ⊃ Y1 ⊃ . . . is an acyclic free filtration in the theory

U∗ ⊗Z Qp or in the theory U∗
p ⊂ U∗ ⊗Z Qp. By virtue of the exactness of the

functor U∗
p → H∗( , Zp) in the category Dp, the filtration Y ⊃ Y0 ⊃ . . . is also

acyclic (although not free) in the theory X = H∗( , Zp).
In this example, the filtration i(x) is a homotopy invariant, with i(x) = iUp

(x),
where U∗

p is cobordism theory. Moreover, we have
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Lemma 12.3. a) All the filtrations iX , iUp , φ, Ψ, for X∗ = H∗( , Zp), a U∗
p -

free acyclic filtration Y ⊃ Y0 ⊃ Y1 ⊃ . . . in the category S ⊗Z Qp and any X∗-free
acyclic double complex (Z) are homotopy invariants of Y , and we have the following
inequalities:

iU∗p (x) ≤ φ(x) ≤ iH∗( ,Zp)(x) ≤ iU∗p (x) + Ψ(x),
where i = iU∗p , iX = iH∗( ,Z) are the respective filtrations in the theories U∗ ⊗Z Qp

and H∗( , Zp).
b) The second Adams spectral sequence Er coincides in this case with the Adams

spectral sequence in the theory U∗ ⊗Z Qp for r ≥ 2.
c) Both Adams spectral sequences Er in the theories X∗ = H∗( , Zp) and U∗⊗Z

Qp (or U∗
p ) in our case preserve, respectively, the filtrations φ and Φ.

d) The Adams spectral sequence in the theory H∗( , Zp) is such that each differ-
ential dr for r ≥ 2 raises the filtration φ at least by 1, i.e.,

φ(dry) ≥ φ(y) + 1, y ∈ Er.

For the proof of (a) we note that the U∗
p -filtration Y ⊃ Y0 ⊃ Y1 ⊃ . . . depends

functorially on the Up-free resolution and is uniquely determined by it. For a fixed
Up-filtration the same thing is true with respect to the double complex N and the
double filtration (Z) defined by it. Parts (b) and (c) are obvious. Part (d) follows
immediately from the fact that the complex Yi/Yi+1 is a direct sum of spectra Mp

of the theory U∗
p up to suspension. For such objects the Adams spectral sequence

has zero differentials for r ≥ 2, as was proved by Milnor and the author [15, 17, 18].
The lemma is proved.
We now consider the graded ring Λp ⊂ ΩU⊗Z Qp, where Λp = Qp[x1, . . . , xi, . . . ],

dim xi = 2pi−2. The ring Λp is a local ring: it has a unique maximal ideal m ⊂ Λp

such that Λp/m = Zp. Hence the bigraded ring Λ̄p =
∑
i=0

mi/mi+1 is an algebra over

Zp, and Λ̄p = Zp[h0, h1, . . . , hi, . . . ], where h0 is associated with multiplication by
p and dim hi = (1, 2pi − 1), i.e., hi ∈ m/m2. Clearly

⋂
i

mi = 0 and, by [15, 17, 18],

we have:
Λ̄p = Ext∗∗A (H∗(Mp, Zp), Zp).

As was established in § 11, the action of the ring AU
p on Λp = U∗

p (P ) preserves
the filtration generated by the maximal ideal m. Hence it defines an action on Λ̄p,
which is described as follows:

1) the action of Λp on Λ̄p is defined by multiplication;
2) the action of P k on Λ̄p is defined so that

P pi

(hi) = hi−1 and P j(h0) = 0, j ≥ 1, P k(ab) =
∑

l+s=k

P l(a)P s(b).

We consider the ring Ā associated to AU
p by the filtration AU

p ⊃ mAU
p ⊃ · · · ⊃

miAU
p ⊃ . . . . We note that in the ordinary Steenrod algebra A there is a normal

(exterior) subalgebra Q ⊂ A, Q = Λ(Q0, . . . , Qi, . . . ), dim Qi = 2pi − 1, such
that A//Q is isomorphic to the quotient A/βA ∪ Aβ and ExtA(H∗(Mp, Zp)) =
ExtQ(Zp, Zp) = Λ̄p = Zp[h0, h1, . . . , hi, . . . ].

From the results of § 11 and the structure of the Steenrod algebra A follows

Lemma 12.4. The algebra Ā associated to the ring AU
p is isomorphic to (Λ̄p ·

A//Q)∧, where the commutation law ah =
∑
i

ā∗i (h)¯̄ai is given by the action of
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A//Q on Λ̄p defined by the formulas P pr

(hr) = hr−1, r ≥ 1, P k(h0) = 0 for k > 0,
and ∆a =

∑
i

āi ⊗ ¯̄ai, where ∆: A//Q → A//Q ⊗ A//Q is the diagonal and P k is

the ordinary Steenrod power.

We note now the following identity:

Exts
Ā(Λ̄p, Λ̄t

p) = Exts
A//Q(Zp, Λ̄t

p) = Exts
A//Q(Zp,Extt

Q(Zp, Zp))

(here, t is the dimension in Λ̄p defined by the filtration Λ̄t
p = mt/mt+1). Moreover,

if Y ⊂ Dp, then for Lp = U∗
p (Y ) and M = H∗(Y, Zp) = L/mL we have:

a) M is an A//D-module;
b) there exists the identity

Exts
Ā(L̄, Λ̄t

p) = Exts
A//Q(M,Extt

Q(Zp, Zp)),

where L̄ =
∑

miL/mi+1L is an Ā-module and, clearly, a Λ̄p-free module.

Two spectral sequences (Ẽr), ( ˜̃Er) arise, both with the term

Ẽ2 = ˜̃E2 = ExtA//Q(M,ExtQ(Zp, Zp)).

These sequences have the following properties:
1) In the first, which converges to ExtA(M,Zp), we have

d̃r : Ẽs,t
r → Ẽs+r,t−r+1

r .

2) In the second, which is induced by the filtrations in Λp, AU
p , L and which

converges to ExtAU
p
(L, Λp), we have:

˜̃
dr : ˜̃Es,t

r →
˜̃Es+1,t+r−1

r .

3) d̃1 = ˜̃
d1 and Ẽs,t

2 = ˜̃Es,t
2 = Exts

A//Q(M,Extt
Q(Zp, Zp)).

4) In both spectral sequences there is yet another grading Ẽs,t
r =

∑
q

Ẽs,t,q
r and

˜̃Es,t
r =

∑
q

˜̃Es,t,q
r , induced by the dimensions in all modules and algebras which

appear, and connected to the spectral sequences as follows:
a) the third grading q is preserved by all differentials d̃r of the spectral sequence

Ẽr which converges to ExtA(M,Zp);
b) since

∑
t−q=m

Λ̄t,q
p is associated to Λm

p , the third grading q in the second spec-

tral sequence ˜̃Er, which converges to ExtAU
p
(L,Λp), is increased by r − 1 by the

differential ˜̃
dr:

d̃r : Ẽs,t,q
r → Ẽs+r,t−r+1,q

r ,

˜̃
dr : ˜̃Es,t,q

r → ˜̃Es+1,t+r−1,q+r−1
r .

5). a) The group
∑

s+t=m
Ẽs,t,q
∞ is associated with

Extm,q
A (M,Zp) = Extm,q

A (H∗(Y, Zp), Zp).

b) The group
∑

q−t=l

˜̃Es,t,q
∞ is associated with

Exts,t
AU

p
(L,Λp) = Exts,l

AU (U∗(Y ), U∗(P ))⊗Z Qp,

where L = U∗(Y ), Λp = U∗
p (P ).
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Thus, in the groups

Es,t,q
2 = Exts,q

A//Q(M,Extt
Q(Zp, Zp))

we have two “dimensions”: (m, q) = (s+t, q) is the “cohomological” and (s, q−t) =
(s, l) is the “unitary” (in U -cobordism). The “geometric” dimension (of the homo-
topy groups) is equal to q −m = l − s = q − s− t.

We note the important fact: the dimension of the element d̃r(y) for the element
y of “unitary” dimension (s, l) is equal to (s + r, l + r − 1), where l = q − t; and,
conversely, ˜̃

dr(y) of an element of “cohomological” dimension (m, q) has “cohomo-
logical” dimension (m+r, q+r−1), m = s+t. This means that both these spectral
sequences have the form of the Adams spectral sequence, although they are defined
purely algebraically by the ring AU

p .
Up to this point there has been no difference between p = 2 and p > 2, if

we speak of the results if this section. However, the following theorem shows the
comparative simplicity of the case p > 2.

Theorem 12.1. For any p > 2 and complex Y ⊂ Dp, the spectral sequence (Ẽr, d̃r)
has all differentials d̃r = 0 for r ≥ 2. The groups∑

s+t=m

Ẽs,t,q
2 =

∑
s+t=m

Exts,q
A//Q(M,Extt

Q(Zp, Zp))

are isomorphic to Extm,q
A (M,Zp), where M = H∗(Y,Zp),

Ext∗Q(Zp, Zp) = Zp[h0, . . . , hi, . . . ], dim hi = (1, 2pi − 1),

and the algebra A//Q generated by the Steenrod powers P pi

acts on ExtQ(Zp, Zp)
in the following way : P pi

(hi+1) = hi, P k(h0) = 0 for k > 0, and P k(xy) =∑
i+j=k

P i(x)P j(y).

From Theorem 12.1 follows

Corollary 12.1. For any complex Y ∈ Dp, where p > 2, there is defined an “alge-

braic Adams spectral sequence” ( ˜̃Er,
˜̃
dr), where ˜̃Es,t,q

2 = Exts,q
A//Q(M,Extt

Q(Zp, Zp)),

the group
∑

s+t=m

˜̃Es,t,q
2 = ˜̃Em,q

2 is associated to Extm,q
A (M,Zp), d̃r : ˜̃Es,t,q

r →

˜̃Es+t,t+r−1,q+r−1
r , and the group

∑
t−q=l

˜̃E∞
s,t,q is associated to Exts,1

AU
p
(U∗

p (Y ), U∗
p (P )),

M = H∗(Y, Zp).

We prove Theorem 12.1. In the Steenrod algebra A for p > 2 there is defined a
second grading — the so-called “type in the sense of Cartan,” equal to the number
of occurrences of the homomorphism β in the iteration. We shall denote by τ(a) ≥
0 the type of the operation a ∈ A, with A =

∑
τ

Aτ , where τ is the type and

Aτ1 · Aτ2 ⊂ Aτ1+τ2 . By the same token, for any Y ∈ Dp there is an extra grading
— the type τ — in the groups ExtA(M,Zp), and

Exts,l
A (M,Zp) =

∑
τ≥0

Exts,l−τ,τ
A (M,Zp),
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where l − τ ≡ 0 mod 2p− 2. We note that for Q ⊂ A, τ(Qr) = 1 and τ(P k) = 0.
It is also obvious that τ(hi) = 1, hi ∈ Ext1Q(Zp, Zz), and the type is an invariant
of the spectral sequence (d̃r, Ẽr) for r ≥ 1.

Since the type is trivial on the ring A//Q, and A//Q ⊂ A, all d̃r = 0 for r ≥ 2,
since on the groups Exts,q

A//Q(Zp,Extt
Q(Zp, Zp)) the type τ = t and τ(dry) = τ(y)

for r ≥ 1.
This implies the isomorphism

Extm,q
A (M,Zp) =

∑
s+t=m

Exts,q
A//Q(M,Extt

Q(Zp, Zp))

and Ẽ2 = Ẽ∞. The theorem is proved.
From the proof of Theorem 12.1 follows

Corollary 12.2. The second term of the “algebraic Adams spectral sequence”
( ˜̃Er,

˜̃
dr) of Corollary 12.1 is canonically isomorphic to the sum

∑ ˜̃Es,t,q
2 , where

˜̃Es,t,q
2 = Exts,t,q

A (M,Zp), t is the Cartan type, M = H∗(Y, Zp) for Y ∈ Dp, and∑
t+s=m

Exts,t,q
A (M,Zp) = Extm,q

A (M,Zp).

In this spectral sequence
˜̃
dr : ˜̃Es,t,q

r → ˜̃Es+1,t+r−1,q+r−1
r

and the group
∑

t−q=l

˜̃Er,t,q
∞ is associated to Exts,l

AU
p
(U∗

p (Y ), U∗
p (P )).

From the geometric realization of double complexes as defined above, Theo-
rem 12.1 and Corollaries 12.1, 12.2, there follows

Theorem 12.2. The “algebraic Adams spectral sequence” ( ˜̃Er,
˜̃
dr) is associated to

the Adams spectral sequence (Er, dr) in H∗( , Zp)-cohomology theory for all p > 2
in the following sense:

1) Em,q
2 =

∑
s+t=m

˜̃Es,t,q
2 = Extm,q

A (M,Zp);

2) if for some y ∈ Es,t,q
2 we have ˜̃

di(y) = 0 for i < k and ˜̃
dk(y) 6= 0, then there is

a ỹ such that φ(y− ỹ) ≥ φ(ỹ)+1, di(ỹ) = 0 for i < k, and dk(ỹ) 6= 0, and moreover
φ(dkỹ) = φ(ỹ) + 1, where φ(ỹ) = φ(y) = t and φ(dkỹ − dky) > φ(ỹ) + 1;

3) if ỹ ∈ Extm,q
A (M,Zp) is such that di(ỹ) = 0 for i < k and φ(dkỹ) > φ(ỹ) + 1,

then for the projection y of the element ỹ in Extm−φ(ỹ),φ(ỹ),q
A (M,Zp) we

have the equation ˜̃
di(y) = 0 for i ≤ k (we note that for elements y ∈∑

t≥a

Exts,t,q
A (M,Zp), ϕ(y) ≥ α).

The groups Ext1,s
AU

p
(U∗

p (P ), U∗
p (P )) were computed in previous sections; they are

cyclic for s = 2k(p−1) of order P f(k), where f(k)−1 is the exponent of the greatest
power of p which divides k.

Corollary 12.3. The generator αk of the group Ext1,2k(p−1)

AU
p

(Λp,Λp) has filtration
(1, k− f(k)) or, in other words, φ(αk) = k− f(k) in the term E∞ of the “algebraic
Adams spectral sequence” ( ˜̃Er,

˜̃
dr) for p > 2. Since Ext1,∗

AU
p
(Λp,Λp) consists of

cycles for all Adams differentials in U∗
p -theory, di(αk) = 0, i ≥ 2, and there is an
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associated element α̃k ∈ π∗(Sn); we have φ(α̃k) = k − f(k), iU (α̃k) = 1, iH(α̃k) ≤
k − f(k) + 1.

Proof. As was shown in § 11, the homomorphism Ext1D1
(Λp,1,Λp,1) →

Ext1AU
p
(Λp,Λp) is an epimorphism for p > 2. For the ring D1 and the mod-

ule Λp,1 = Qp[x1] the ring C = Hom∗(F,Λp,1) was determined (see Lemma 11.4),
where φ(x) = 1, φ(hj) = 0, φ(p) = 1 and d(xk)

∑(
k
j

)
pjxk−jhj . The element αk

was represented by αk = (1/pf(k))d(xk).
From this we have:

ϕ(αk) = min j

[
ϕ

(
k

j

)
+ j + k − j − f(k)

]
= k − f(k)

Thus, the filtration φ of the element αk is equal to k − f(k), since the filtration φ
is induced by the filtration in the ring Λp. The Corollary is proved. �

As is known, the groups Ext1,s
A (Zp, Zp) are equal to Zp for s = 1 or s = 2pj(p−1)

and are generated by elements uj , j ≥ 0, of type 0 for s = 2pj(p − 1) and h0 ∈
Ext0,1,1

A of type 1 in the sense of Cartan.

Hence, ui ∈ Ext1,0,2pi(p−1)
A (Zp, Zp) and h0 ∈ Ext0,1,1

A (Zp, Zp), where Extm,q
A =∑

s+t=m
Exts,t,q

A and t is the type. In the groups Ext2,2pi(p−1)
A there are nonzero

elements yi, i ≥ 1, having type 0.

Corollary 12.4. In the “algebraic Adams spectral sequence” we have the equation
˜̃
d2(ui) = h0γi, for i ≥ 1.

The proof, by analogy with the proof of Corollary 12.3, follows easily from the
structure of the homomorphism β in H(C ⊗ Zp), where β(hpi) = γi for i ≥ 1 (see
Lemma 11.4).

Thus, we see that with the help of the “algebraic Adams spectral sequence” it is
not only possible to prove the absence of elements with Hopf–Steenrod invariant 1,
but also to compute (ordinary) Adams differentials by purely algebraic methods
which come from the ring AU .

Conjecture. For p > 2 the “algebraic Adams spectral sequence,” which con-
verges to ExtAU (U∗(P ), U∗(P )) ⊗Z Qp, coincides with the “real” Adams spectral
sequence, and the homotopy groups of spheres π∗(Sn) ⊗Z Qp are associated to
ExtAU (U∗(P ), U∗(P ))⊗Z Qp. {Equivalently: all differentials dr, r ≥ 2, are zero in
the Adams spectral sequence over U∗

p .}
We now consider p = 2. As was indicated earlier, here there are two spectral se-

quences (Ẽr, d̃r) and ( ˜̃Er,
˜̃
dr), where ˜̃E2 = Ẽ2 = ExtA//Q(M, Λ̄2), M = H∗(X, Z2),

and Λ̄2 = Ext∗∗Q (Z2, Z2) is associated to U∗
2 (P ) = Λ2. The sequence ( ˜̃Er,

˜̃
dr) con-

verges to ExtAU
2
(U∗

2 (X),Λ2) and (Ẽr, d̃r) converges to ExtA(M,Z2).
By analogy with Theorem 12.2 for p > 2, here we have

Theorem 12.3. The differentials d̃r are associated with the Adams differentials
in Cobordism theory on the group ˜̃E∞ associated with ExtAU

2
(U∗

2 (X),Λ2). The

differentials ˜̃
dr are associated with the Adams differentials in H∗( , Z2)-theory on

the groups Ẽ∞ associated with ExtA(H∗(X, Z2), Z2), where X ∈ D.
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The proof of Theorem 12.3, as of 12.2, follows immediately from the properties
of the geometric realization of the double complex.

Thus, for p = 2, it is possible to compute the Adams differentials in H∗( , Z2)-
theory, starting from cobordism, and conversely.

Question. Do the algebraic Adams spectral sequences Ẽr and ˜̃Er define the
real Adams spectral sequences in both theories?

In any case in all examples known to the author all Adams differentials are
subsumed under this scheme.

Example. Let X = MSU . We consider ExtA//Q(M, Λ̄), where M =
H∗(X, Z2). We write an A//Q-resolution of the module M :

(· · · → Ci
d−→ Ci−1 → · · · → C0

ε−→M) = C.

We recall that M = F +
∑
ω

Mω, where F is A//Q-free and Mω has one generator

uω for all ω = (4k1, . . . , 4ks) and is given by the relations Sq2 uω = 0 over A//Q,
where dim uω = 8

∑
kj . Hence one can assume that C = C(F ) +

∑
C(Mω), where

C(F ) = F and C(Mω) has the form:

C(Mω) = (→ . . .
d−→ A//Q

d−→ A//Q→ . . .
d−→ A//Q

ε−→Mω),

where ui is a generator of Ci(Mω) and dui = Sq2 ui−1. The action of Sq2 on Λ̄2

was indicated earlier: Λ̄2 = Z2[h0, . . . , hi, . . . ], dim hi = (1, 2i+1 − 1), i ≥ 0, while
Sq2 h1 = h0.

There follows straightforwardly (by direct calculation)

Lemma 12.5. Ext∗∗∗A//Q(Mω, Λ̄2) for ω = (0) has a system of multiplicative gener-
ators:

h0 ∈ Ext0,1,1, x1 ∈ Ext1,0,2, hi ∈ Ext0,1,2i+1−1, i ≥ 2, y ∈ Ext0,2,6

and is given by the relation h0x1 = 0.

We note that the dimension of Exts,t,q in H∗( , Z2) is equal to (s + t, q) and the
dimension in U∗

2 -theory is equal to (s, q − t) (see above).
We now describe the spectral sequences Ẽr ↘ ExtA and ˜̃Er ↘ ExtAU

2
.

Lemma 12.6. a) The spectral sequence (Ẽr, d̃r) is such that :

d̃3(y) = x3
1, d̃3(h0) = d̃3(x1) = d̃3(hi) = d̃3(vω = 0),

d̃3|HomA//Q(F, Λ̄2) = 0

and all d̃r = 0 for r = 3.
b) The spectral sequence ( ˜̃Er,

˜̃
dr) is such that :

˜̃
d2(v(2i)) = x1hi+2, i ≥ 0,

˜̃
d2(x1) = ˜̃

d2(hi) = ˜̃
d2(y) = ˜̃

d2(v(k)) = 0, k 6= 2i,

˜̃
d2(HomA//Q(F,Λ2)) = 0,

M = F +
∑
ω

Mω,



72 S. P. NOVIKOV

where F is A//Q-free, ˜̃
dr = 0 for r ≤ 2 (we note that vω is conjugate to the

generator uω of the module Mω, ω = (k1, . . . , ks), dim uω = 8(
∑

kj) and vωvω1 =
v(ω,ω1) by virtue of the diagonal in the module M).

The proof of Lemma 12.6 for Ẽr follows easily from the calculations [18] for
ExtA(M,Z2). For the case ( ˜̃Er,

˜̃
dr), part (b) of Lemma 12.6 follows from the fact

that the elements x, hi+2 must be zero in ExtAU
2
(U∗

2 (U∗
2 (MSU),Λ2) on the basis

of § 7.

Corollary 12.5. For MSU , the Adams spectral sequence (in U -cobordlsm and
H∗( , Z2)-theory) determined by the algebraic spectral sequences Ẽr and ˜̃Er.

In analogous fashion it can be shown that all known Adams differentials for
X = P in both homology theories (the case of the homotopy groups of spheres) are
also determined by Ẽr,

˜̃Er and d̃r,
˜̃
dr.

By analogy with the case p > 2, bounds can be determined here also for the
filtrations of elements Ext1AU (see Corollary 12.3).

Appendix 1. On the formal group of “geometric” cobordism
(Theorem of A. S. Mǐsčenko)

We consider an arbitrary complex X, the group U∗(X) and its subgroup
Map(X, MU1) ⊂ U2(X). In what follows we shall denote Map(X, MU1) by
V (X). Since MU1 = CP∞ is an H-space, V (X) becomes a group, which is
communicative, and with respect to this law of multiplication we obviously have:

V (X) ≈ H2(X, Z).

How is this multiplication in V (X) connected with operations in U∗(X) ⊃ V (X)?
As was already indicated in § 5, we have

Lemma 1. a) If u, v ∈ V (X) and ⊕ is the product in V (X), then the law of
multiplication u⊕ v = f(u, v) has the form

u⊗ v = u + v +
∑
i≥1
j≥1

xi,ju
ivi,

where xij ∈ Λ−1(i+j−1) = Ω2(i+j−1)
U are coefficients independent of u, v,

b) u⊕ v = v ⊕ u,
c) (u⊕ v)⊕ w = u⊕ (v ⊕ w),
d) there exists an inverse element ū, where ū⊕ u = 0.

The proof of this lemma follows in an obvious way from the fact that V (X) ≈
H2(X, Z) and the possibility of computing all the coefficients on the universal
example X = CP∞. We note that x1,1 = [CP 1].

Thus, we have a commutative formal group with graded ring of coefficients Λ,
and dim u = dim v = 2. As is known, the structure of such a group is completely
determined by a change of variables g over the ring Λ⊗Z Q, u→ g(u) =

∑
i≥0

yiu
i+1,

y0 = 1, such that
g(u⊕ u) = g(u) + g(v).

We have the following
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Theorem (A. S. Mǐsčenko). The change of variables u → g(u), where g(u) =∑
n≥0

xn

n + 1
un+1, xn = [CPn] ∈ Λ−2n, reduces the formal group V ⊗Z Q to linear

form g(u ⊕ v) = g(u) + g(v). Hence, the change u → g(u) reduces to linear form
the formal group V (X)⊗Q for all X and uniquely determines the structure of the
one-dimensional formal group V over the ring Λ.

Proof. We consider the ring U∗(CP∞) = Λ[[u]] and the multiplication CP∞ ×
CP∞ → CP∞, sending the one-dimensional canonical U1-bundle ξ over CP∞ into
ξ1 ⊗ ξ2, where ξ1, ξ2 are canonical bundles over CP × CP . This multiplication
induces a diagonal ∆: U∗(CP∞)→ U∗(CP∞)⊗Λ U∗(CP∞), which gives the mul-
tiplication in V (CP∞).

Let u′ = g(u)
∑

λiu
i, where ∆(u′) = u′⊗1+1⊗u′. Then g is the desired change

of variables.
We compute the coefficients λi. Let S(k) ∈ AU (see § 5).
We have the easy

Lemma 2. The operations S(k) form a system of multiplicative generators for the
ring S ⊗Q. If σ∗k(x) = 0 for all k, x ∈ Λ, then x = 0.

Proof. We order the partitions ω naturally (by length) and consider

S(k)Sω(u1 . . . un) = S(k)

∑
uk1+1

i . . . uks+1
s us+1 ◦ · · · ◦ un,

ω = (k1, . . . , ks),

S(k)Sω(u1 . . . un) =
∑

aiSωi
(u1 . . . un) + a0S(k,ω)(u1 . . . un),

where a0 6= 0, ωi = (k1, . . . , ki + k, ki+1, . . . , ks). Since by the induction hypothesis
all Sωi can be expressed by the S(kj), the same is true for S(ω,k). Since all Sω can
be expressed by the S(k), the lemma is proved. �

We note the following equation:

S(k)u
i =

∑
i

S(k)(λiu
i) =

∑
i

(σ∗k(λi)ui + iλiu
i+k)

=
∑

i

(σ∗(k)(λi) + (i− k)λi−k)ui.

We set

u′k =
∑

i

λ
(k)
i ui, uk =

∑
i

µ
(k)
i u′i,

∑
i

λ
(k)
i µ

(i)
j = δk

j .

Obviously, S(k)∆u′ = ∆S(k)u
′, since ∆u′ = u′ ⊗ 1 + 1⊗ u′. Since

S(k)u
′ =

∑
i

(σ∗(k)(λi) + (i− k)λi−k)ui =
∑

i

∑
j

(σ∗(k)(λi) + (i− k)λi−k)µ(i)
j u′j ,
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we have

∆S(k)u
′ = S(k)∆u′ =

∑
i

∑
j

(σ∗(k)(λi) + (i− k)λi−k)µ(i)
j (u′ ⊗ 1 + 1⊗ u′)j

=
∑

j

∑
i

(σ∗(k)(λi) + (i− k)λi−k)µ(i)
j

 ∑
α+β=j

(
α + β

α

)
u′α ⊗ u′β


= S(k)(u′ ⊗ 1 + 1⊗ u′).

It obviously follows that for α 6= 0, β 6= 0 we have:∑
i

(σ∗(k)λi + (i− k)λi−k)µ(i)
j = 0, j = α + β ≥ 2.

Since µ
(i)
1 = 0 for all i ≥ 2, µ

(i)
1 = 1, λ1 = 1 and σ∗(k) + (i − k)λi−k = 0, k ≥ 1,

we have ∑
i

(σ∗(k)λi + (i− k)λi−k)µ(i)
j = 0

for all j ≥ 1, and since
∑
j

µ
(i)
j λ

(j)
s = δi

j , we have∑
j

∑
i

(σ∗(k)λi + (i− k)λi−k)µ(i)
j λ(j)

s = σ∗(k)λi + (i− k)λi−k = 0.

Hence,
σ∗(k)λi = −(i− k)λi−k.

Further, since σ∗(k)[CPn] = −(n + 1)[CPn−k] (see § 5, Lemma 5), it follows that
λ̄i = xi−1/i, xj = [CP j ] ∈ Λ−2j satisfies the condition σ∗(k)λ̄i = −(i − k)λ̄i−k for
all i, k. By Lemma 2, λ̄i = λi, and the theorem is proved. �

Remark. For a quasicomplex manifold X, the group V (X) is isomorphic
to H2n−2(X) and the meaning of the sum u ⊕ v is such that the homology
class ν(u)ν(v) is realized by the inclusion of the submanifold V1 ⊗ V2, where
u ∈ U2n−2(X), v ∈ U2n−2 are realized by the submanifolds V1, V2 ⊂ X. Then the
series

u⊕ v = u + v + · · · = f(u, v)
must be considered in the intersection ring U∗(X).

Appendix 2. On analogues of the Adams operations in U∗-theory

Analogues of the Adams operations Ψk
U ∈ AU ⊗Z Z[(1/k)] were defined in § 5 in

the following way:
a) Ψk

U (xy) = Ψk
U (x)Ψk

U (γ),
b) kΨk

U (x) = x⊕ · · · ⊕ x (k times), where x ∈ V (X).
Thus, the series Ψk

U has the form:

kΨk
U (x) = g−1(kg(x)) = f(x, f(x, . . . , f(x, x), . . . ),

where f(u, v) is the law of addition in the formal group V (X) and

g(x) =
∑
k≥0

xk

k + 1
xk+1, xj = [CP j ], x ∈ V (X),

the basis of Appendix 1, g−1(g(x)) = x.
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From the associativity of the law of multiplication in V (X) follows the equation:

Ψk
U (Ψl

U (x)) = Ψkl
U (x).

Hence, always Ψk
U ◦Ψl

U = Ψkl
U in AU⊗Z Q, since for any n→∞ and u = u1 . . . un

we have Ψk
UΨk

U (u) = Ψkl
U by virtue of properties (a) and (b).

Of the assertions in Lemma 5.8, only part (d) is nontrivial, and it asserts that
Ψk,∗

U (y) = kiy, y ∈ Λ−2i = Ω2i
U .

Theorem 1. 5 If a ∈ AU is an arbitrary cohomology operation of dimension 2m,
then we have the following commutation law :

aΨk
U = kmΨk

U ◦ a.

Proof. Let am = S(m) ∈ AU and u ∈ V (CP∞) ⊂ U2(CP∞). Then

am(u) = um+1,

Ψk
U (amu) = Ψk

U (um+1) = Ψk
U (u)m+1 =

1
km+1

(u⊕ · · · ⊕ u)m+1

=
1

km
am

(
u⊕ · · · ⊕ u

k

)
=

1
km

amΨk
U (u),

since u⊕ · · · ⊕ u ∈ V (CP∞). Hence, for the operations a(m) = S(m) the theorem is
proved. From this Theorem 1 follows for all operations S(ω), since by Lemma 2 of
Appendix 1 the ring S ⊗Z Q is generated by the operations S(k).

Now let a ∈ Λ−2m = U−2m(P ). We assume by induction that for all operations
in Λ−2j , j < m, the theorem is proved. This means that for b ∈ Λ−2j , j < m, we
have:

Ψk,∗
U (b) = kjb.

In view of the fact that Ψk,∗
U (b1b2) = Ψk,∗

U (b1)Ψ
k,∗
U (b2), the theorem is also proved for

all decomposable elements of Λ−2m. Let a ∈ Λ−2m be an indecomposable element.
We consider Ψk,∗

U σ∗ω(a) = km−dim ωσ∗ω(a) by induction, for ω 6= (0). Since

Ψk
USω = k− dim ωSωΨk

U ,

we have
Ψk,∗

U σ∗ω(a) = σ∗ω(kma).

Hence, Ψk,∗
U (a) = kma, since

⋂
ω>0

Kerσ∗ω = 0. �

Since Theorem 1 is proved for Λ and S, it is also proved for AU = (ΛS)∧.
Thus, all assertions of Lemma 5.8 are proved.
We now consider an arbitrary ring K, the group of units Uk ⊂ K and AU ⊗Z K.

We define the following semigroups in AU ⊗Z K:
1. The semigroup of multiplicative operations a ∈ AU⊗Z K, where ∆a = a⊗a ∈

AU ⊗Λ AU ⊗Z K.
2. The semigroup of multiplicative operations of dimension 0,

A0
K ⊂ AK ⊂ AU ⊗Z K.

3. The center ZK ⊂ A0
K of the semigroup AK .

5From Theorem 1 it follows easily that all operations Ψk
U are well-defined over the integers on

U0(X), as in K-theory.
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4. The “Adams operations” Ψq
U ∈ A0

K , where q ∈ Uk (the group of units),
defined by the requirements of Theorem 1:

Ψq
U (a) = q−maΨq

U , dim a = 2m,

Ψq1
U Ψq2

U = Ψq1q2
U .

Just as earlier, a multiplicative operation a ∈ AK is defined by a series a(u), u ∈
U2(CP∞)⊗Z K the canonical element, a(u) ∈ ΛK [[u]], ΛK = Λ⊗Z K.

We now consider the question of defining the Adams operation. Let K = Q[t],
ΛK = Λ⊗Z K. We consider for all integral values t the series tΨt

U (u) ∈ U∗(CP∞),
defining the series tΨU (u) ∈ U∗(CP∞)⊗Z K.

Remark. If K is an algebra over Q, then the Adams operations Ψα
U ∈ AU⊗Z K are

always defined, since the series tΨt
U is divisible by t and Ψt

U (u) ∈ U∗(CP )⊗Z K.

We have the following

Theorem 2. a) For any algebra K over Q without zero divisors and for K = Qp, Z,
the “Adams operations” Ψα

U ∈ AU⊗Z K are defined, where α ∈ K∗ in the Q-algebra
case and α ∈ Up in the case K = Qp {i.e., Up = UQp

}, α = ±1 in the case K = Z,
such that :

1) Ψα1
U Ψα2

U = Ψα1α2
U .

2) Ψα,∗
U : Λ−2i

K → Λ−2i
K is multiplication by αi.

3) Ψα
U ◦ a = α−iaΨα

U , where a ∈ AU ⊗Z K is of dimension 2i.
4) The series αΨα

U (u) for u ∈ V (CP∞) makes the operation of raising to the
power α, α ∈ K∗, well-defined in the formal group V .

b) The collection of all Adams operations forms a semigroup K∗ ≈ Ψ(K) for a
Q-algebra K, Ψ(K) ≈ Up for K = Qp,Ψ(Z) = Z2, which coincides precisely with
the center ZK of the semigroup A0

K of multiplicative operations of dimension 0 in
the ring AU ⊗ K for K = Qp, Z, while for a Q-algebra K the center consists of
Ψ(K) and the operator Φ, where Φ(u) = g(u).

Remark. Although a ∈ AK is such that ∆a = a⊗a and is given by a formal series
beginning with 1, where a(u) = u + . . . , still the coefficients of the series lie in Λ
or Λ⊗K, while the law of super-position of series a1 · a2(u) takes into account the
representation of AU ⊗K on Λ⊗K. Hence AK is not a group (as usual in formal
series of this kind), but a semigroup. An example of a “noninvertible” element
a ∈ A0 + K is given by the series

Φ(u) =
∑ [CP i]

i + 1
ui+1 = g(u),

where Φ2 = Φ and Φ∗(y) = 0, y ∈ Λ2j for j > 0.

We prove Theorem 2. Part (a) was essentially already proved above. In order
to establish that Ψ(K) = ZK , we consider an arbitrary element a ∈ ZK and we
shall show that a ∈ Ψ(K). Since the series a(u) = u + . . . , we have a∗|Λ0 = 1 and
a∗|Λ2 is multiplication by a number α ∈ K. If a∗|Λ−2j = 0 for all j > 0, then it
follows that a∗ = Φ∗ and hence a = Φ, while Φ 6∈ AU ⊗Z Qp. It will be assumed
that for some j, a∗|Λ−2j 6= 0, j > 0. If a∗|Λ−2j is the operator of multiplication
by a number kj , then it is easy to see that kj = kj

1 and a = Ψk1
U , where k1 ∈ K∗

or k1 ∈ Up. We shall show that for all j the operator a∗ is multiplication by a
number kj . If j0 is the first number for which a∗|Λ−2j0 is not multiplication by
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a number, then, nevertheless, on the decomposable elements Λ̄−2j0 ⊂ Λ−2j0 , a∗

is multiplication by a number in view of the fact that a∗(xy) = a∗(x)a∗(y). If
y ∈ Λ−2j0 is an indecomposable element then a∗(y) = λy + ȳ, ȳ ⊂ Λ̃ and ȳ = 0.
Let b ∈ A0

K be such that b∗(y) = µy + ¯̄y, where ¯̄y ∈ Λ, ¯̄y 6= 0. Then b∗a∗ 6= a∗b∗ on
Λ−2j0 , which is impossible. The theorem is proved.

Appendix 3. Cell complexes in extraordinary cohomology theory,
U-cobordism and k-theory

Let X be a homology theory with a multiplicative stable spectrum, X⊗X∗ → X,
and let Λ∗ = X∗(P ) be the cohomology ring of a point. We require that Λ∗ be
a ring with identity. We note that Λ = X∗(P ) is also a ring, and we have the
formulas Λ = Hom∗

Λ∗(Λ
∗,Λ∗) and Λ∗ = Hom∗

Λ(Λ,Λ). Obviously, the rings Λ and
Λ∗ are isomorphic and Λi = Λ∗−i, Λi = 0, i < 0.

Let K be a cell complex and Ki ⊂ K be its skeleton of dimension i. We construct
a “cell complex of Λ-modules” SX(K):

a) if dim K = 0, then SX(K) is a free complex
∑
P

Λ(P ), where the P are the

vertices of K and Λ(P ) is a one-dimensional free module with generator uP : we set
∂uP = 0.

b) Suppose that for all Kj , j < i, SX(Kj) has been constructed so that ∂λ = λ∂,
λ ∈ Λ, and the generators of SX(Kj) are in one-one correspondence with the cells
of Kj .

We consider the pair (Kj ,Ki−1), where Ki/Ki−1 is a bouquet of spheres Si
1 ∨

· · · ∨ Si
qi

. We adjoin to SX(Ki−1) free generators u1, . . . , uqi
of dimension i. A

differential in the complex SX(Ki−1)+Λ(u1)+ · · ·+Λ(uqi) is introduced as follows:
1) ∂λ = λδ, λ ∈ Λ;
2) ∂uj = zj ∈ SX(Ki−1), where zj is such that ∂zj = 0 in SX(Ki−1) and the

homology class [zj ] ∈ X∗(Ki−1) is represented by the element equal to ∂uj , where
∂ : X∗(Si

1 ∨ · · · ∨ Si
qi

) → X∗(Ki−1) is the boundary homomorphism of the pair
(Ki,Ki−1) and uj ∈ X∗(Ki/Ki−1) corresponds to the sphere Si

j .
Thus, a complex SX(K) of free modules arises.

Lemma 1. The complex SX(K) is uniquely defined up to the choice of the system
of generators, and the differential ∂ in SX coincides up to higher filtration with the
homology one. Obviously, H(SX(K), ∂) = X∗(K) as Λ-modules.

For a cellular map Y1 → Y2, there is defined analogously a morphism of free
complexes SX(Y2)→ SX(Y2), also unique.

Let Y = Y1 × Y2 with the natural cellular subdivision.
Question. When is there defined a pairing

SX(Y1)⊗Λ SX(Y2)→ SX(Y1 × Y2),

which is an isomorphism of complexes?
Now let X = U .

Conjecture. For a pair Y1, Y2, the complex SU (Y1 × Y2) is homo topic ally equiv-
alent to the tensor product

SU (Y1)⊗ΩU
SU (Y2).
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Let A be an arbitrary ΩU -module. The homology of the complex SU ⊗ ΩUA
we shall denote by U∗(Y, A), and the homology of the complex Hom∗

ΩU
(SU , A) by

U∗(Y, A) (cohomology with coefficients in A).
We shall indicate important examples:
1. A = ΩU is a one-dimensional free module.
2. A = Z[x], dim x = 2, and the action of ΩU on A is such that y(xm) =

T (y)xm+i, where y ∈ ΩU , 2i = dim y, and T (y) is the Todd genus. Here A is a ring
and there is defined a homomorphism λ : ΩU → Z[x], such that λ(y) = T (y)xi.

3. A = Z[x, x−1], where dim x = 2, dim x−1 = −2 and xx−1 = 1. Here A is a
ring, while ΩU acts on A just as in example 2: y(xm) = T (y)xm+i, −∞ < m <∞.

4. A = Z, where Z = ΩU/Ω+
U ,Ω+

U is the kernel of the augmentation ΩU → Z
and the action of ΩU on Z is the natural one.

Conjecture. For the ΩU -modules A = ΩU , Z[x], Z[x, x−1], Z, the corresponding
cohomology groups U∗( , A) are isomorphic, respectively, to the cobordism theory
U∗ for A = ΩU , to stable k∗-theory for A = Z[x], to unstable K-theory K∗ for
A = Z[x, x−1] and to the theory H∗( , Z) for A = Z. The homology theories
U∗( , A) for A = ΩU , Z[x], Z[x, x−1], Z, are isomorphic, respectively, to U∗, k∗,
K∗ and H∗( , Z).

Theorem 1. Since the complex (SU (Y ), ∂) is a complex of free ΩU -modules, there
exists a spectral sequence with term E2 = Ext∗∗ΩU

(U∗(Y ), A) which converges to
U∗(Y, A), and there exists a spectral sequence with term E2 = Tor∗∗ΩU

(U∗(Y ), A)
which converges to U∗(Y,A).

Theorem 2. Since the complexes SU (Y ) ⊗ΩU
Z[x] = Sk(Y ) and SU (Y ) ⊗ΩU

Z[x, x−1] = Sk(Y ) are complexes of free A-modules for A = Z[x], Z[x, x−1], and
the ring Z[x] is homologically onedimensional, we have the following universal co-
efficient formulas:

1) 0→ Ext2,∗
Z[x](k∗, Z[x])→ k∗ → Hom∗

Z[x](k∗, Z[x])→ 0,

2) 0→ k∗ ⊗Z[x] Z[x, x−1]→ K∗ → Tor1,∗
Z[x](k∗, Z[x, x−1])→ 0,

3) 0→ k∗ ⊗Z[x] Z → H∗( , Z)→ Tor1,x
Z[x](k∗, Z),

where in formula 1) k∗ and k∗ are connected, in formula 2) k∗ and K∗, since
Z[x, x−1] is a Z[x]-module, and in formula 3) k∗ and H∗, since Z is a Z[x]-module.6

It is possible to find a number of other formulas connecting k∗, k∗, K∗, K∗, H∗,
H∗ and also Künneth formulas for the direct product Y1 × Y2, starting with the
complex SU ⊗Ω Z[x] as a Z[x]-module and the fact that Z[x] is one-dimensional,
as is Z.

We note also that Hom∗
Z[x](Z[x], Z[x]) = Z[y], where dim y = −2.

In all the formulas of Corollary 2 one can start from the complex
Hom∗

ΩU
(SU , Z[x]), which is a complex of free Z[y]-modules for k∗-theory.

With the help of the complex SU (Y ) it is possible to introduce, in addition to
the cohomological multiplication, also the “Čech operation” ∩ such that (a∩b, c) =
(a, bc), where c, a ∈ U∗, b ∈ U∗ and a ∩ b ∈ U∗, while (a ∩ b, c) ∈ ΩU . Analogously
for k∗- and k∗-, K∗- and K∗-theories.

The Poincaré–Atiyah duality law, of course, is treated in the usual way by means
of the fundamental cycle and the Čech operation.

6The author has available a derivation of Theorems 1 and 2 from the Adams spectral sequence

in cobordism theory, and hence Theorems 1 and 2 do not depend on the preceding conjectures.
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We note that the homomorphisms σ∗ω introduced by the author on the ring ΩU

represent “characteristic numbers” with values in ΩU , since the scalar product lies
in ΩU .

Appendix 4. U∗- and k∗-theory for BG, where G = Zm.
Fixed points of transformations

In this appendix we shall consider the following questions:
1. What are the cell complexes SU (BG) and Sk(BG) for G = Zm? What are

the Λ-modules U∗(BG) and k∗(BG), where Λ = ΩU and Λ = Z[x]?
2. How to compute in U∗(BG) the following elements: let the group Zm

act on Cn linearly, and without fixed points on Cn�0, i.e., by means of di-
agonal matrices (aij), where aij = exp(2πixj/m) and xj is a unit in the ring
Zm. Then an action of Zm on S2n−1 is defined, and by the same token a map
fx1,...,xn

: S2n−1/Zm → BG, which represents an element of U2n−1(BG). This ele-
ment we denote by αn(x1, . . . , xn) ∈ U2n−1(BG). It is trivial to find αn(1, . . . , 1)
(“geometric bordism”) and to show that αn(x1, . . . , xn) 6= 0 for all (invertible)
x1, . . . , xn ∈ Zm (see [11]),

ναn(x1, . . . , xn) 6= 0, ν : U∗ → H∗( , Z).

This question arises in connection with the Conner–Floyd approach to the study
of fixed points (see [11]).

We consider the question of computing the cell complexes SU (BG), Sk(BG) and
SK(BG) (see Appendix 3).

We recall the well-known result of Atiyah [7] that K1(BG) = 0 and K0(BG) =
RUG∧, where RU (G) is the ring of unitary representations. For G = Zm, the basic
unitary representations ρ0 = 1, ρ1 = {l2πi/m}, . . . , ρk = {l2πik/m}, . . . , ρm−1 are
one-dimensional, while as a ring a generator is ρ1 = ρ with the relation ρm = 1.
By virtue of this we can choose in K0(BG) an element t, corresponding to ρ − 1,
with the relation Ψm(t) = 0, where Ψm

∗ is the Adams operator.
We consider the ring k∗(P ) = Hom∗

Z[x](Z[x], Z[x]) = Z[y], dim y = −2. We have

Lemma 1. The Z[y]-module k∗(BG) for G = Zm is described as follows:
a) k2j+1 = 0.
b) k2j(BG) is isomorphic to the subgroup of k0(BG) consisting of elements of

filtration ≥ 2j, an this isomorphism is established by the Bott operator yj :

k2j(BG)→ K0(BG).

c) The action of the rings Bk
Ψ and Ak

Ψ is well defined on k∗(BG).
d) There exists a natural generator u ∈ k2(BG) such that every element of

k∗(BG) has the form
∑
j

ysj uqj and there is the relation (mΨm)(u) = 0, or

Ψm(yu) = 0, where yu ∈ k0 = K0 is the canonical generator t ∈ K0(BG); and we
have the equation

(mΨm)(u) =
∑
k≥1

(
m

k

)
(−y)k−1uk.

The proof of the lemma follows easily from the results mentioned about K0(BG)
and the discussion of the spectral sequence with term E2 = H∗(BG,Z[y]) which
converges to k∗(BG).
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We denote the expression mΨm(u) by Fm(u) =
∑(

m
k

)
(−y)k−1uk. From

Lemma 1 follows

Lemma 2. The cell complex S∗k(BG) = Hom∗
Z[x](Sk, Z[x]) of modules over Z[y]

is a ring with multiplicative generators (over Z[y]) v (of dimension (1)) and u (of
dimension (2)) and additive basis {ysun, yqvul}. The differential d in this complex
satisfies the Leibnitz formula, commutes with multiplication by y and has the form:

du = 0, dv = Fm(u).

The cell complex of k-theory Sk(BG) for G = Zm in the natural cellular subdivi-
sion has the form Sk(BG) = Hom∗

Z[y](S
∗
k , Z[y]), while Sk(BG) over Z[x], Z[x] =

Hom∗
Z[y](Z[y], Z[x]), is a complex of free modules.

Lemma 2 follows easily from Lemma 1 and Appendix.
We turn now to U∗- and U∗-theories. For the element u ∈ V (X) =

Map(X, MU1) ⊂ U2(X), the series mΨm
U (u) = g−1(mg(u)) (see Appendix 2),

where g(u) =
∑
n≥0

[CPn]un+1/(n + 1) is the “Mǐsčenko series” (see Appendix 1).

We denote the series mΨm
U (u) by Fm,U (u). Let

Λ = U∗(P ) = Hom∗
ΩU

(ΩU ,ΩU ),

and let S∗U (BG) be the cell complex in U∗-theory which is a complex of Λ-modules,
with Λ−2i = Ω2i

U .
With the help of the Conner–Floyd homomorphism σ1 : k0 → U2, k0 = K0, we

obtain from Lemma 2

Theorem 1. The cell complex (in the natural cellular subdivision)

S∗U (BG) = Hom∗
ΩU

(SU ,ΩU ),

which is a complex of free Λ-modules, Λ = U∗(P ), with differential d, is a ring
with multiplicative generators v (of dimension (1)) and u (of dimension (2)) over
Λ, given in the following way :

v2 = 0, d(v) = Fm,U (u), d(u) = 0.

The complex SU (BG) is isomorphic to Hom∗
Λ(SU ,Λ), G = Zm, where ΩU =

Hom∗
Λ(Λ,Λ). The complexes S∗U ⊗Ω Z[x] and S∗ ⊗Ω Z[x, x−1] are isomorphic, re-

spectively, to the complexes S∗k(BG) and S∗k(BG) in k- and K-theories.

We pass now to the automorphisms of the complex BG→ BG. Such automor-
phisms for G = Zm are completely determined by automorphisms of the group
Zm → Zm, which are multiplication by k, where k is a unit in Zm.

There arise automorphisms

λk : BG→ BG,

λ∗k : S∗U (BG)→ S∗U (BG),

where λ∗k is completely determined by the images

λ∗k(v) ∈ S∗U (BG), λ∗k(u) ∈ S∗U (BG),

since λ∗k is a ring homomorphism which commutes with the action of Λ.
We have
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Theorem 2. 7 The homomorphism of multiplication by k

λ∗k : S∗U (BG)→ S∗U (BG)

for G = Zm and (k,m) = 1 is a ring homomorphism which commutes with d and
multiplication by Λ and is defined by the following formulas:

a) λ∗k(u) = Fk,U (u),

b) λ∗k(v) =
Fkm,U (u)
Fm,U (u)

· v.

The proof of Theorem 2 is obtained from the fact that under λ∗k (“geometric
cobordism”) u ∈ U2(BG) must go into kΨk(u) by definition of the operator Ψk.
This implies part (a). Part (b) follows from the fact that dλ∗k(v) = λ∗kdv = D(u)v,
where D(u) is a series of dimension 0 with coefficients in Λ.

We now pass to the question of fixed points of transformations Zm. Let Z∗m ⊂
Zm be the multiplicative group of units, x1, . . . , xn ∈ Z∗m and αn(x1, . . . , xn) ∈
U2n−1(BG) the element defined by the linear action of the group Zm on S2n−1 ⊂
Cn\0 by means of multiplication of the j-th coordinate by exp(2πixj/m), xj ∈ Z∗m.
There arises a function

αn : Z∗m × · · · × Z∗m → U2n−1(BG).

Let m = pn, p a prime and m1 = pn−1. Then Zm1 ⊂ Zm and there is defined a
homomorphism U∗(BZm1)→ U∗(BZm). We have

Lemma 3. Given a quasicomplex transformation T : Mn →Mn of order m which
has only isolated fixed points P1, . . . , Pq, we have the equation

q∑
j=1

αn(x1j , . . . , xnj) ≡ 0 mod U∗(BZm1),

where the xij are the orders of the linear representation of the group Zm at the
point Pj (clearly, xij ∈ Z∗m).

This lemma for prime m = p was found by Conner–Floyd [11] (here, m1 = 0),
and it is trivial to go over to m = ph.

It is easy to show that for any (x1, . . . , xn) ∈ Z∗m × · · · × Z∗m

αn(x1, . . . , xn) 6≡ 0 mod U∗(BZm1),

whence follows the theorem of Conner–Floyd–Atiyah: there does not exist a trans-
formation T with one fixed point. For p > 2 this is also true for real transformations
T , as can be seen from the analogous application of the theory SO∗ ⊗ Z[1/2].

We now pass to the question of calculating the function αn(x1, . . . , xn) ∈
U2n−1(BZm). We denote by v2n−1 ∈ U2n−1(BG) the so-called “geometric bor-
dism” αn(1, . . . , 1). In the complex SU (BG) described in Theorem 1, the element
v2n−1 is adjoint to vun−1 ∈ S∗U (BG), i.e., (v2n−1, vun−1) = 1, (v2n−1, vun−1+k) = 0
for k > 0, where x ∈ Λ∗.

We shall calculate the function αn(x1, . . . , xn) by the following scheme:
1) Clearly, α1(x) = xv1 ∈ U1(BG) = Zm.

7All homological deductions from Theorems 1 and 2 of this appendix can be justified, without

the complexes SU , merely from Theorems 1 and 2 of Appendix 3.



82 S. P. NOVIKOV

2) If
m∑

j=1

αk(x1j , . . . , xkj) ≡ 0,
l∑

j=1

αn−k(yk+1,j , . . . , yn,j) ≡ 0, then we have the

equation: ∑
j,s

αn(x1j , . . . , xkj , yk+1,s, . . . , yn,s) ≡ 0 mod BZm1 .

This follows in an obvious way from the fact that transformations T1 : Mk → Mk

and T2 : M l → M l induce (T1, T2) : Mk × Mn−k, where fixed points (and their
orders) correspond to each other.

3) If λx : BG→ BG is induced by multiplication by x ∈ Z∗m, then αn(x, . . . , x) =
λx,∗(v2n−1), where the structure of λx,∗ is described in Theorem 2.

As examples of the application of this scheme we shall indicate the following
simple results:

Lemma 4. If ν : U∗ → H∗( , Z) is the natural homomorphism, then we have the
equation

ναn(x1, . . . , xn) = (x1, . . . xn)ν(v2n−1),

where ν(v2n−1) ∈ H2n−1(BZm) = Zm is the basis element.

Lemma 5. For n = 1, 2, 3 we have the formulas:

λx,∗(v1) = xv1,

λx,∗(v2) = x2v3,

λx,∗(v5) = x3v5 +
x3 − x2

2
[CP 1]v3.

From Lemma 2, in an obvious way, follows the corollary on the impossibility of
one fixed point.

Now let m = p, where p > 2 for n = 2 and p > 3 for n = 3. Under these
conditions, by the scheme indicated above, one easily obtains from Lemmas 2 and 3

Theorem 3. The functions αn(x1, x2, . . . , xn) for n ≤ 3 has the following form:

α1(x) = xv1 (obviously);

α2(x1, x2) = (x1x2)v3;

α3(x1, x2, x3) = (x1x2x3)v5 +
x1x2x3 −

x1x2 + x1x3 + x2x3

3
2

[CP 1]v3.

Suppose given a group of quasicomplex transformations Zp : Mn →Mn with iso-
lated fixed points P1, . . . , Pq at which the generator T ∈ Zp has orders x1j , . . . , xnj ∈
Zp, j = 1, . . . , q, where xkj ∈ Z∗p . We consider the point (x1,1, . . . , xkj , . . . , xnq) ∈
Zqn

p up to a factor µ ∈ Z∗p , µ 6= 0. Thus, (x1,1, . . . , xnq) ∈ P qn−1. The group
Sn × Sq, where Sk is the group of permutations of k elements, acts on P qn−1.

Definition. By the type of the action of the group Zp on Mn with isolated fixed
points we shall mean the set of orders of (x1,1, . . . , xkj , . . . , xnq), of any generator
T ∈ Zp, considered in the projective space P qn−1, factored by the actions of the
group Sn of permutations of orders of each point and the group Sq of permutations
of points.

From Theorem 3 follows the
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Corollary. For p > n and for n = 2, 3, the set of types of actions of Zp on Mn is
given in P qn−1 by the set of equations:∑

Pj

σk(x1j , . . . , xnj) = 0, xjs 6= 0, k = 2, 3, . . . , n,

where the xsj are the orders at the point Pj and σk(x1j , . . . , xnj) is the elementary
symmetric polynomial.

Appendix 5. The conjecture on the bigradation of algebraic
functors

in S-topology for all primes p > 2

In the Introduction and also in § 12 the possibility was already discussed of the
appearance of a new categorical invariant — an additional grading, connected with
the Cartan type, in the Adams spectral sequence for ordinary cohomology mod p,
p > 2, from which it would follow (see the Introduction) that the homotopy groups
in the category of torsion-free complexes could be formally computed algebraically
by the theory of unitary cobordism. We shall formulate here more exactly the
corresponding conjecture.

First of all, we shall go to the question of the category S ⊗Z Qp for p > 2. Let
K(π) ∈ S be the spectrum K(π, n). The following fact is known (H. Cartan): the
Steenrod algebra A = H∗(K(Zp), Zp) is bigraded: A =

∑
Ak,β , where dim = k +β

and β is the type.
Conjecture: I) Let the bigradings H(X, Zp) =

∑
Hk,β and H(Y,Zp) =

∑
Hk,β

be well defined, and let the morphism f : X → Y in the S-category preserve the
bigrading. Then in the exact sequences

0→ X
f−→ Y → Z → 0

and
0→ Z ′ → X

f−→ Y → 0

for the objects Z,Z ′ ∈ S, the bigradings of the functors H∗∗(Z,Zp) and H∗∗(Z ′, Zp)
are well defined, and the exact sequence of the triple (X, Y, Z) is

· · · → Hk,β(X) δ−→ Hk,β+1(Z)→ Hk,β+1(Y )
f∗−→ Hk,β+1(X)→ . . .

II) For X = K(Zp) the bigrading coincides with that of Cartan.
III) The cohomology A-module H∗(X, Zp) is bigraded, if in H∗(X, Zp) the bi-

grading is well defined.
IV) All these properties are fulfilled in the subcategory Sgr ⊂ S⊗Z Qp obtained

from K(Zp) inductively by means of bigraded morphisms and passage to “kernels”
and “cokernels”

0→ X
f−→ Y → Z → 0, 0→ Z ′ → X

f−→ Y → 0;

here Qp is the p-adic integers.
Assertion. 1. If the conjecture is true, then the spectra of points (spheres) P

and complexes without p-torsion in homology belong to the category Sgr.
2. If the analogous conjecture of bigradation for other functors (for example,

homotopy groups) is true, then the entire classical Adams spectral sequence and the
stable homotopy groups of spheres for p > 2 can be completely calculated by means
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of the theory of unitary cobordism by the scheme described in the Introduction and
in § 12. In particular, we should have the equation:

π
(p)
∗∗ (SN ) ≈ Ext∗∗AU (Λ,Λ)⊗Z Qp, p > 2.

This means two things: a) the triviality of the Adams spectral sequence constructed
by the author in the theory of U -cobordism; b) the absence of extensions in the
term E∞ = E2.

3. For p = 2, the conjecture in such a simple form is trivially false. {In the
spectral sequence for the stable groups of spheres, all powers ηk 6= 0 for an element
η representing the Hopf map in π1(S), hence ηk for k ≥ 4 must be killed off by
differentials.}

4. The classical Adams spectral sequence with second term Es,k,β
2 =

Exts,k,β
A (H∗∗(X), Zp) for X ∈ Sgr is arranged as follows:

dr : Es,k,β
r → Es+r,k,β+r−1

r .

We note that h0 ∈ Ext1,0,1
A (Zp, Zp) is associated with multiplication by p (ordinarily

we have h0 ∈ Ext1,1
A ). Here, the dimension differs slightly from that described in § 12

by a simple linear substitution.
Examples of bigradation (the simplest). Let X = K(Z) + EK(Z) and

Y = K(Zpq ). From the ordinary point of view we have:

H∗(X, Zp) = H∗(Y,Zp) = A/Aβ(u) + A/Aβ(v),

where dimu = 0 and dim v = 1. However, for X the ordinary Adams spectral
sequence is zero, but for Y we have: dq(v∗) = hq

0u
∗, where u∗ ∈ Ext0,0

A and v∗ ∈
Ext0,1

A , since π∗(Y ) = Zpq .
From our point of view the situation is thus:
a) H∗∗(X, Zp) = A/Aβ(u) + A/Aβ(v), where u ∈ H0,0, v ∈ H0,1. Hence u∗ ∈

Ext0,0,0
A , v∗ ∈ Ext0,1,0

A and hq
0u
∗ ∈ Extq,q,0; by dimensional considerations, dq(v∗) ∈

Extq,1,q−1
A , and Extq,1,q−1

a = 0.
b) H∗∗(Y,Zp) = A/Aβ(u) + A/Aβ(v), u ∈ H0,0, v ∈ H0,1, then u∗ ∈ Ext0,0,0

A

and v∗ ∈ Ext0,0,1
A , div

∗ 6= 0 for i = q.
Besides the facts indicated earlier, there are subtler circumstances which corrob-

orate the conjecture:
1. From the results of the author’s series of papers on the J-homomorphism

J∗ ⊂ π∗(SN ) and the results of the present paper, it follows that Ext1,∗
AU (Λ,Λ)⊗Z Qp

consists (for p > 2) of cycles for all differentials, while elements of Ext1,∗
AU are realized

by elements of π
(p)
∗ (SN ) of the same order; moreover, π

(p)
∗ (SN ) = Ext1,∗

AU + . . . ,
where Ext1,∗ = J∗ ⊗Z Qp.

2. The Adams spectral sequence in U -theory would not have to be trivial from
dimensional considerations (obviously, only di is zero for i − 1 ≡ 0 mod 2p − 2).
There first appears an element x ∈ Ext2,2p2(p−1)

AU where d2p−1(x) = ?, since

Ext2p+1,2p2(p−1)+2p−2

AU 6= 0. In reality, these elements in U -theory are “inherited”
from ordinary cohomology theory H∗( , Zp) together with the question about
d2p−1(x). A few years ago L. N. Ivanovskĭı informed the author that with the help
of partial operations of Adams type he had succeeded in showing that d2p−1(x) = 0
for p > 3 (?). However, neither Ivanovskĭı nor the author were able to verify this
calculation, and hence this fact remained obscure. Recently Peterson informed the
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author that it has only recently been proved by the young American topologist
Cohen [25] for all p ≥ 3 (more exactly, the analogue of this question in the classical
theory, from which, of course, it follows).

3. The fact that the “algebraic” Adams spectral sequence associated with
the “topological” one, which begins with E2 = Ext∗∗∗∗A (Zp, Zp) and converges to
Ext∗∗AU (Λ,Λ) ⊗Z Qp (see § 12), is algebraically well-defined, is non-trivial a priori.
The situation here is that if for some spectral sequence (Er, dr) we consider the
complementary filtration in E2 and define on all the Ēr associated differentials
d̄r, then very often the d̄r are not included in a well-defined spectral sequence (of
algebras). Hence the fact of such a well-defined inclusion is in our case an extra geo-
metric argument for the existence of an invariant second grading in the subcategory
Sgr ⊂ S ⊗Z Qp.

References

[1] J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math.

Helv. 32 (1958), 180-214. MR 20 #2711.
[2] , Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603-632. MR 25 #2614.

[3] , On the groups J(I). I, Topology 2 (1963), 181-195. MR 28 #2553.
[4] J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. Oxford

Ser. (2) 17 (1966), 31-38. MR 33 #6618.

[5] M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200-208. MR
23 #A4150.

[6] , Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291-310. MR 24 #A1727.

[7] , Characters and cohomology of finite groups, Inst. Hautes Études Sci. Publ. Math.

No. 9 (1961), 23-64. MR 26 #6228.
[8] M. F. Atiyah and F. Hirzebruch, Riemann–Roch theorems for differentiable manifolds, Bull.

Amer. Math. Soc. 65 (1959), 276-281. MR 22 #989.

[9] D. W. Anderson, E. Brown and F. Peterson, SU-cobordism, KO-characteristic numbers and
the Kervaire invariant, Ann. of Math. (2) 83 (1966), 54-67. MR 32 #6470.

[10] , Spin cobordism, Bull. Amer. Math. Soc. 72 (1966), 256-260. MR 32 #8349.

[11] P. Conner and E. Floyd, Cobordism theories, Princeton Univ. Press, Princeton, N. J., 1963,
pp. 1-15. Preprint.

[12] , The SU-bordism theory, Bull. Amer. Math. Soc. 70 (1964), 670-675. MR 29 #5253.

[13] , Torsion in SU-bordism, Mem. Amer. Math. Soc. No. 60 (1966), 1-73. MR 32 #6471.
[14] M. Kervaire and J. Milnor, Bernoulli numbers, homotopy groups and a theorem of Rohlin,

Proc. Internat. Congr. Math., 1958, Cambridge Univ. Press, New York, (1960), pp. 454-458.

MR 22 #5537.
[15] J. Milnor, On the cobordism ring Ω∗ and a complex analogue. I, Amer. J. Math. 82 (1960),

505-521. MR 22 #9975.
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