Configuration space of intervals with partially summable labels

Shingo Okuyama — joint with Kazuhisa Shimakawa

National Institute of Technology, Kagawa College

2018.9.13

Outline

Configuration spaces

- Partial abelian monoid
- Configuration space of intervals

3 Main construction and theorem

- Configuration space of intervals with partially summable labels
- Approximation map $\widetilde{I}_M \to \Omega' BM$
- Quasi-fibration sequence $\widetilde{I}_M \to \widetilde{E}_M \to BM$

Approximation to a mapping space

Theorem 1 (Milgram-May-Segal)

There exists a weak homotopy equivalence $C(\mathbb{R}^n, X) \rightarrow \Omega^n S^n X$, if X is path-connected.

An approximation to a mapping space by a configuration space looks like

$$C(M,X) \simeq map(\hat{M},\overline{(\tau M * X)})$$

(Milgram-May-Segal, McDuff, ...)

In some cases, a system {C(M_n, X)} can approximate a system of mapping spaces, that is, a homology theory. (Segal, Shimakawa, Tamaki,...)

Approximation to a mapping space

In most cases, an approximation map

$$C(M,X) - \rightarrow map(\hat{M}, \overline{(\tau M * X)}))$$

has geometric or physical iterpretation. So this talk is about

a geometric model of a (mapping) space with geometrically constructed approximation map.

Group completion

Theorem 2 (Segal-F.Cohen)

 $C(\mathbb{R}^n, X) \rightarrow \Omega^n S^n X$ is a group completion if $n \geq 2$.

A group completion of an admissible topological monoid M can be constructed by a homotopy limit of a (possibly huge) diagram { $\cdots \rightarrow M \rightarrow M \rightarrow \dots$ } given by multiplication by elements taken from each connected component of M.

This talk is also about

A geometric construction of a group completion

Partial abelian monoid Configuration space of intervals

A partial abelian monoid is ...

A partial abelian monoid is

- almost an abelian monoid but with partially defined sum.
- suitable for configuration space construction.
- the additive part of an \mathbb{F}_1 -algebra.

Definition 1

A topological partial abelian monoid is a space M with base point 0 equipped with a subspace M_2 of $M \times M$ and a map $\mu : M_2 \rightarrow M$ which satisfies

- $M \lor M \subset M_2$, and $\mu(m, 0) = \mu(0, m) = m$, for all $m \in M$,
- ② $(m, n) \in M_2$ if and only if $(n, m) \in M_2$, and $\mu(m, n) = \mu(n, m)$,
- ◎ $(\mu(l,m),n) \in M_2$ if and only if $(l,\mu(m,n)) \in M_2$, and $\mu(\mu(l,m),n) = \mu(l,\mu(m,n))$.

We denote $\mu(m, n) = m + n$.

Partial abelian monoid Configuration space of intervals

Examples

Extreme cases:

- An abelian monoid is a partial abelian monoid.
- ② A based space X can be regarded as a trivial partial abelian monoid by setting X₂ = X ∨ X and µ : X ∨ X → X the folding map. It is called a trivial partial abelian monoid.
- Let *M* be an abelian monoid and *N* be a subset which contains 0. Then *N* is a partial abelian monoid if we set

$$N_2 = \{ (n_1, n_2) \mid n_1 + n_2 \in N \}$$

and a sum coming from that in *M*.

Partial abelian monoid Configuration space of intervals

Examples

• $\mathbb{N}_{\leq 1}=\{0,1\}$ and $\mathbb{N}_{\leq 2}=\{0,1,2\}$ have multiplication tables $\begin{tabular}{|c|c|c|c|c|}\hline 0&1\\\hline 1&\times \end{tabular}$

and

0	1	2
1	2	×
2	\times	X

Partial abelian monoid Configuration space of intervals

A product of partial abelian monoids

Y: a topological space

$$\mathsf{mul}(Y) = \coprod_{n \ge 0} \mathsf{SP}^n Y$$

— the free abelian monoid generated by $Y_+ = Y \coprod \{0\}$ with an appropriate topology, or equivalently, as $SP^{\infty}Y_+$, an infinite symmetric product introduced by Dold and Thom.

—we think of an element of mul(Y) as a finite multiset — a finite "set" with repeated elements.

Partial abelian monoid Configuration space of intervals

Summability in a pam

For a finite set S,

 $\sigma: \mathbf{S} \to \mathbf{Y}$

is a multiset. For a subset $T \subset S$,

$$\sigma|_T: T \hookrightarrow S \to Y$$

is a submultiset.

When Y = M is a partial abelian monoid, we may speak of a **summable** multiset.

We say that σ is **pairwise insummable** if, for any subset $T \subset S$ of cardinality two, $\sigma | T$ is insummable.

A product of partial abelian monoids

M, N: partial abelian monoids, S: a finite set. Consider the following property for $\sigma : S \rightarrow M \times N$:

for any subset *T*, if one of $p_i \circ (\sigma | T)$ is pairwise insummable then the other is summable.

We denote by $T_{M,N}$ the subspace of mul($M \times N$) consisting of σ with this property.

A product of partial abelian monoids

Let \sim be the least equivalence relation on $T_{M,N}$ which satisfies the following three conditions:

(R1) If m_1 or n_1 is zero then

$$(m_1, n_1) \dotplus \cdots \dotplus (m_r, n_r) \sim (m_2, n_2) \dotplus \cdots \dotplus (m_r, m_r),$$

(R2) If
$$m_1 = m'_1 + m''_1$$
 then
 $(m_1, n_1) \dotplus \cdots \dotplus (m_r, n_r)$
 $\sim (m'_1, n_1) \dotplus (m''_1, n_1) \dotplus (m_2, n_2) \dotplus \cdots \dotplus (m_r, n_r),$

(R3) If
$$n_1 = n'_1 + n''_1$$
 then
 $(m_1, n_1) \dotplus \dots \dotplus (m_r, n_r)$
 $\sim (m_1, n'_1) \dotplus (m_1, n''_1) \dotplus (m_2, n_2) \dotplus \dots \dotplus (m_r, n_r).$

Partial abelian monoid Configuration space of intervals

A product of partial abelian monoids

Two elements $[\alpha]$, $[\beta]$ in $M \otimes N$ are summable if we can choose their representatives α , β in $T_{M,N}$ so that their sum $\alpha + \beta$ taken in mul($M \times N$) is contained in $T_{M,N}$. Thus, $M \otimes N$ is a partial abelian monoid in a natural way. We have a functor

 \otimes : *PAM* × *PAM* → *PAM* ; (*M*, *N*) \mapsto *M* \otimes *N*.

Partial abelian monoid Configuration space of intervals

- For abelian groups A, B, their product $A \otimes B$ defined here is the usual tensor product of modules.
- Por two based spaces X, X', viewed as trivial partial abelian monoids, their product X ⊗ X' coincides with their smash product X ∧ X'.

Examples

Intermediate cases:

- $X \otimes \mathbb{N} = SP^{\infty}X$, the infinite symmetric product on a based space *X* of Dold and Thom.
- Then $X \otimes M$ is the configuration space of finite points in X with labels in M such that only summable labels occur simultaneously.

Partial abelian monoid Configuration space of intervals

Examples

Solution Viewing S^1 as a based space, we get $S^1 \otimes M = BM$ the classifying space of a partial abelian monoid. In particular, if *M* is a monoid this coincides with the McCord model of the classifying space of *M*.

Partial abelian monoid Configuration space of intervals

Examples

• $\mathbb{N}_{\leq 1} \otimes M \cong M$ for any M. (Indeed, $\mathbb{N}_{\leq 1} = S^0$).

•
$$\mathbb{N}_{\leq 2} \otimes \mathbb{N}_{\leq 2} \cong \mathbb{N}.$$

• If $X = \{0, 1, ..., n\}$ is a based set, then $BX \cong S^1 \times \cdots \times S^1(n \text{ times}).$

Partial abelian monoid Configuration space of intervals

Examples

• Let *X* be a compact based space and $M = Gr := \sqcup Gr_n(\mathbb{R}^\infty)$ be the infinite Grassmannian with a partial sum defined only for two vector spaces which are perpendicular to each other. Then $X \otimes Gr = F(X)$ coincides with the configuration space defined by Segal for connective *K*-homology. Tamaki gave a similar construction, which is enriched by an operad to make twisting on *K*-theory, thus larger than $X \otimes Gr$.

Examples

- Fin(Y): (finite subsets of a space Y),
 Fin(Y) is a partial abelian monoid by disjoint union. If C_n = Fin(ℝⁿ) then C_n ⊗ X = C_n(X) is the configuration space of finite points in ℝⁿ with labels in X, introduced by Segal and equivalent to the construction by Milgram and May.
- Sin(ℝ[∞]) ⊗ M = C^M(ℝ[∞]) is the configuration space of finite points in ℝ[∞] with labels in M defined by Shimakawa.

Partial abelian monoid Configuration space of intervals

Intervals

$$H = \{(u, v) \mid u \leq v\} \subset \mathbb{R}^2$$
, a half-plane in \mathbb{R}^2 ,
 $P = \{\pm 1\}$: the set of "parities",
To any point $(u, v; p, q) \in H \times P^2$ with $u < v$, we assign an
interval

$$J = \{x \in \mathbb{R} \mid u <_{p} x <_{q} v\} \subset \mathbb{R},$$

where the symbol $<_p$ is interpreted as an inequality \leq or < according as p = +1 or -1.

Partial abelian monoid Configuration space of intervals

Intervals

For
$$J_1, J_2 \in \mathcal{I}$$
,
we denote $J_1 < J_2$ if $v_1 < u_2$, where $J_k = (u_k, v_k; p_k, q_k)$.
Let L_r be the subspace of \mathcal{I}^r given by

$$L_r = \left\{ (J_1, \ldots, J_r) \in \mathcal{I}^r \mid J_1 < \cdots < J_r \right\}$$

Then L_r is the configuration space of r bounded intervals in \mathbb{R} with mutually disjoint closures.

Now we define

$$I = \coprod L_r$$

and give it a topology such that cutting-pasting and creation-annihilation is allowed.

Partial abelian monoid Configuration space of intervals

Intervals

-two intervals are pasted when meeting endpoints have opposite parities, that is, one is open and the other is closed,

a half-open interval annihilates when its length approaches zero.

Then *I* has a partial abelian monoid structure by the superimposition of disjoint configurations.

Partial abelian monoid Configuration space of intervals

Example : $I_2 = C_1 \otimes I$

 $C_1 \otimes I$ is a configuration space of horizontal intervals in \mathbb{R}^2 . Let's denote this space by I_2 .

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Partially summable labels

Partially summable labels

- enrich a configuration space in a certain way.
- control a topology of the reproduced configuration space.

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Partially summable labels

Figure: Sum of labels (where red + blue = violet)

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \to \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \to \widetilde{E}_M \to BM$

Elementary configuration

 $U = (a, b) : \text{ an open interval in } \mathbb{R}.$ We consider two special types of elements in mul($\mathcal{I} \times M$). (E1) e = (J, n) with one of the following : **1** J = (a, b) **2** J = (a, w) or J = (a, w], a < w < b **3** J = (w, b) or J = [w, b), a < w < b**4** $J = (w_1, w_2)$ or $J = [w_1, w_2), a < w_1 < w_2 < b$

E2)
$$e = (J_1, n) + (J_2, n)$$
 with one of the following:
1 $J_1 = (a, w_1], J_2 = (w_2, b)$ and $a \le w_1 < w_2 < b$, or
2 $J_1 = (a, w_1), J_2 = [w_2, b)$ and $a < w_1 < w_2 \le b$,

where n is a non-zero element in M for both cases.

We call such *e* an elementary configuration in *U*. In both cases, $n \in M$ is denoted by n(e).

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Elementary configurations

Configuration space of intervals with partially summable labels Approximation map $\tilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\tilde{I}_M \rightarrow \tilde{E}_M \rightarrow BM$

Admissible multisets

For any
$$\xi = (J_1, m_1) \dotplus \cdots \dotplus (J_r, m_r) \in T_{\mathcal{I},M} \subset \operatorname{mul}(\mathcal{I} \times M)$$
,
Let $\xi|_U = (J_1 \cap U, m_1) \dotplus \cdots \dotplus (J_r \cap U, m_r))$.

 $\xi \in T_{\mathcal{I},M}$ is said to be **admissible** if for any $t \in \mathbb{R}$ there exists an open interval U = (a, b) which contains t such that

$$\xi|_U = e_1 + \ldots + e_r$$

for some elementary configurations e_1, \ldots, e_r in U such that $(n(e_1), \ldots, n(e_r)) \in M_r$.

If, moreover, there exist $\varepsilon > 0$ and an interval U can be taken as $U = (t - \varepsilon, t + \varepsilon)$ for all t, then we say that ξ is ε -admissible. It is clear that ε -admissible elements are ε' -admissible if $\varepsilon' < \varepsilon$.

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Admissible multisets

Let V = (a, b) be and open interval with $b - a > \varepsilon$.

We say that an ε -admissible element ξ is supported by V if $\xi|_{(a+\varepsilon/2,b-\varepsilon/2)} = \xi$. If $V \subset V'$ then ε -admissible elements supprted by V are supported by V'.

Let $W, W(\varepsilon)$, and $W(\varepsilon, V)$ be the subspace of $T_{\mathcal{I},M}$ which consists of admissible elements, ε -admissible elements, and ε -admissible elements supported by V, respectively.

Configuration space of intervals with partially summable labels Approximation map $\tilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\tilde{I}_M \rightarrow \tilde{E}_M \rightarrow BM$

Configuration space of intervals with partially summable labels

Let I_M be the image in $I \otimes M$ of W under the natural map $\pi_{\otimes} \circ \pi_{mul}$. Let also $I_M(\varepsilon)$ and $I_M(\varepsilon, V)$ be the image in $I \otimes M$ of $W(\varepsilon)$ and $W(\varepsilon, V)$, respectively, under $\pi_{\otimes} \circ \pi_{mul}$. Then we alter the topology of I_M by the weak topology of the union

$$I_{M} = \bigcup_{\varepsilon > 0, V} I_{M}(\varepsilon, V).$$

Thus, we have defined a configuration space of intervals with partially summable labels.

Thickening — Moore type variant

We define

$$\widetilde{I}_M = \bigcup_{\varepsilon > 0, \boldsymbol{s} \ge \varepsilon} I_M(\varepsilon, \boldsymbol{s}) \times \{\boldsymbol{s}\} \times \{\varepsilon\}$$

and give it the topology as a subspace of $I_M \times \mathbb{R}^2$. If $s = \varepsilon$, $I_M(\varepsilon, \varepsilon)$ consists of one point, the element \emptyset in I_M which represents the empty configuration. As a base point of \widetilde{I}_M , we take $(\emptyset, 1, 1)$.

Proposition 1

The projection $I_M \rightarrow I_M$ onto the first component is a weak homotopy equivalence.

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Approximation map $I_M \rightarrow \Omega' BM$

Approximation map $\tilde{I}_M \rightarrow \Omega' BM$

- is defined in 3 steps : disintegration, scanning, and summing-up.
- is shown to be weak equivalence so to constitute a zig-zag of weak equivalences :

 $I_M \leftarrow \widetilde{I}_M \rightarrow \Omega' BM.$

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Disintegration and scanning

• By definition, for any element $([\xi], s, \varepsilon) \in \widetilde{I}_M$ and $t \in \mathbb{R}$,

$$\xi|_{U_t} = e_1 \dot{+} \dots \dot{+} e_r$$

for some elementary configurations e_1, \ldots, e_r in U_t such that $(n(e_1), \ldots, n(e_r)) \in M_r$, where $U_t = (t - \varepsilon, t + \varepsilon)$.

So For any elementary configuration e in U_t , we have a well-defined map $\omega(e) : V_t \to S^1$, where $V_t = \left(t - \frac{\varepsilon}{2}, t + \frac{\varepsilon}{2}\right)$.

So we have an element in $mul(Map(V_t, S^1) \times M)$ for each $t \in (0, s)$. This defines a map

 $\omega_t: W_{s,\varepsilon} \to \operatorname{mul}(\operatorname{Map}(V_t, S^1) \times M).$

 $\omega'(J)$

×

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Summing up

■ The composite of $ω_t$ with the sequence of natural maps $mul(Map(V_t, S^1) × M) \rightarrow mul(Map(V_t, S^1 × M))$ $\rightarrow Map(V_t, mul(S^1 × M)),$

maps into Map(V_t , $T_{S^1,M}$).

Recalling that $T_{S^1,M}$ is a subset of mul($S^1 \times M$) on which we defined the tensor relations, we have an element in Map($V_t, S^1 \otimes M$).

This construction is compatible for distinct *t*'s so that we can paste local functions to get a global function in $Map((0, s), S^1 \otimes M)$.

Thus we get a map $\alpha : \tilde{I}_M \to \Omega' BM$.

Total space E_M

A space E_M is almost I_M but

- intervals lie in a half line $[0,\infty)$, and
- The origin works as a "vanishing point".

Then

$$\widetilde{E}_{M} = \bigcup_{\varepsilon > 0, s \ge \varepsilon} E_{M}(\varepsilon, s) \times \{s\} \times \{\varepsilon\}$$

is its thickening.

Proposition 2

 \widetilde{E}_M is weakly contractible.

(proof) Push everything into the origin.

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \to \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \to \widetilde{E}_M \to BM$

$$\widetilde{I}_M \hookrightarrow \widetilde{E}_M o BM$$

• In $I_M(\varepsilon, s)$, intervals lie in $(0, \infty)$, so we have $I_M(\varepsilon, s) \subset E_M(\varepsilon, s)$, thus we have an inclusion $\widetilde{I}_M \hookrightarrow \widetilde{E}_M$.

• $\widetilde{E}_M \to BM$ is defined using scanning at the origin.

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \to \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \to \widetilde{E}_M \to BM$

Scanning at the origin

A configuration consisting of two intervals with "red" and "blue" as a respective label, which maps under $p : \tilde{E}_M \to BM$ to a configuration consisting of a point with "violet" as its label.

"red" + "blue" = "violet" so that ("red", "blue") $\in P$ ("violet").

Configuration space of intervals with partially summable labels Approximation map $\tilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\tilde{I}_M \rightarrow \tilde{E}_M \rightarrow BM$

Main theorem

Proposition 3

Let M be a partial abelian monoid whose elements are self-insummable. Then the map $p: \widetilde{E}_M \to BM$ is a quasi-fibration with fiber \widetilde{I}_M .

Assuming this, we can state and prove the main theorem :

Theorem (O.-Shimakawa)

Let M be a partial abelian monoid whose elements are self insummable. Then the configuration space I_M of intervals in \mathbb{R} with labels in M is weakly homotopy equivalent to ΩBM .

Configuration space of intervals with partially summable labels Approximation map $\widetilde{l}_M \to \Omega' BM$ Quasi-fibration sequence $\widetilde{l}_M \to \widetilde{E}_M \to BM$

Proof of the main theorem

In the following commutative diagram, lower horizontal line is the Serre's path-loop fibration. The vertical map in the middle is a weak homotopy equivalence, since it is a map between weakly-contractible spaces, hence so is the vertical map on the left.

Let X be a based set {0, 1, 2} (trivial partial abelian monoid).

Then $BX \cong S^1 \vee S^1$ and we know from the theorem that $I_X \simeq_w \Omega(S^1 \vee S^1)$. An element of I_X can be depicted as follows.

Examples

Scanning map $\widetilde{I}_X \to \Omega(S^1 \vee S^1)$ can be graphed as follows.

 $\pi_0(I_X) \cong \pi_1(S^1 \vee S^1) \cong \mathbb{Z} * \mathbb{Z}$

Examples

2 Let $M = \mathbb{N}_{\leq 1} \times \mathbb{N}_{\leq 1}$ be the direct product (as a partial abelian monoid !) of $\mathbb{N}_{\leq 1}$ with itself.

00	10	01	11
10	×	11	X
01	11	X	Х
11	×	×	Х

Then $BM \cong S^1 \times S^1$ and we know from the theorem that $I_M \simeq_w \Omega(S^1 \times S^1)$. An element of I_M looks as follows.

Examples

Scanning map $\widetilde{I}_M \to \Omega(S^1 \times S^1)$ can be graphed as follows.

 $\pi_0(I_M) \cong \pi_1(S^1 \times S^1) \cong \mathbb{Z} \oplus \mathbb{Z}$

Examples

■ Let $M = C_1$ is the configuration space of finite subsets of \mathbb{R}^1 . Then we know from Milgram-May-Segal's theorem that $BC_1 \cong C_1 \otimes S^1 \simeq_w \Omega SS^1 = \Omega S^2$. Now, our theorem asserts that

$$I_M \simeq_w \Omega^2 S^2$$
.

So any element of $\pi_3 S^2$ can be written as a based loop in I_M . A generator of $\pi_3 S^2 \cong \mathbb{Z}$ is given by a Hopf map $\eta : S^3 \to S^2$.

Examples

Corresponding loop in I_M is given by :

Examples

Crossing change gives an inverse :

Examples

Corresponding loop in I_M is given by :

Examples

Crossing change gives an inverse :

Examples

Indeed, we can paste two surfaces to remove them: (Step 1)

Examples

Indeed, we can paste two surfaces to remove them: (Step 2)

Examples

Indeed, we can paste two surfaces to remove them: (Step 3)

Examples

Indeed, we can paste two surfaces to remove them: (Step 4)

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \to \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \to \widetilde{E}_M \to BM$

Examples

Moreover, if we use the standard embedding $\mathbb{R}^1 \hookrightarrow \mathbb{R}^2$ to get a map $I_{C_1} \to I_{C_2}$, and this amounts to an embedding of configuration of intervals in \mathbb{R}^2 into configuration of intervals in \mathbb{R}^3 under the standard embedding $\mathbb{R}^2 \hookrightarrow \mathbb{R}^3$. This corresponds to the suspension map $\mathbb{Z} \cong \pi_3(S^2) \to \pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$. So the above pictures also show the vanishing of 2η in $\pi_4(S^3)$.

Configuration space of intervals with partially summable labels Approximation map $\widetilde{I}_M \rightarrow \Omega' BM$ Quasi-fibration sequence $\widetilde{I}_M \rightarrow \widetilde{E}_M \rightarrow BM$

Two lemmas for quasi-fibration

For a proof of proposition 3, we may use the Dold-Thom criterion.

Lemma 1

For any open set $V \subset F_j BM - F_{j-1}BM$, there exists a homotopy equivalence $p^{-1} V \simeq V \times \tilde{I}_M$, so that V is distinguished.

Lemma 2

There exists an open set $O \subset F_jBM$ which contains $F_{j-1}BM$ and homotopies $h_t : O \to O$ and $H_t : p^{-1}O \to p^{-1}O$ such that

- $h_0 = id_O, h_t(F_{j-1}BM) \subset F_{j-1}BM \text{ and } h_1(O) \subset F_{j-1}BM,$
- 3 $H_0 = id_{p^{-1}O}$ and $p \circ H_t = h_t \circ p$ for all t, and
- $H_1: p^{-1}z \rightarrow p^{-1}h_1(z)$ is a weak homotopy equivalence for all $z \in O$.