Configuration space of intervals with partially summable labels

Shingo Okuyama — joint with Kazuhisa Shimakawa

National Institute of Technology, Kagawa College

2018.9.13

Outline

2 [Configuration spaces](#page-5-0)

- [Partial abelian monoid](#page-5-0)
- [Configuration space of intervals](#page-20-0)

[Main construction and theorem](#page-25-0)

- [Configuration space of intervals with partially summable](#page-25-0) [labels](#page-25-0)
- [Approximation map](#page-33-0) e*I^M →* Ω *′BM*
- $\mathsf{Quasi\text{-}fibration}$ sequence $\mathit{I}_M \rightarrow \mathit{E}_M \rightarrow \mathit{BM}$

Approximation to a mapping space

Theorem 1 (Milgram-May-Segal)

There exists a weak homotopy equivalence $C(\mathbb{R}^n, X) \to \Omega^n S^n X$, if X is path-connected.

An approximation to a mapping space by a configuration space looks like

$$
C(M,X) \simeq map(\hat{M}, \overline{(\tau M * X)})
$$

(Milgram-May-Segal, McDuff, ...)

• In some cases, a system $\{C(M_n, X)\}$ can approximate a system of mapping spaces, that is, a homology theory. (Segal, Shimakawa, Tamaki,...)

Approximation to a mapping space

In most cases, an approximation map

$$
C(M,X)-\rightarrow map(\hat{M},\overline{(\tau M*X)}))
$$

has geometric or physical iterpretation. So this talk is about

a geometric model of a (mapping) space with geometrically constructed approximation map.

Group completion

Theorem 2 (Segal-F.Cohen)

 $C(\mathbb{R}^n, X) \to \Omega^n S^n X$ is a group completion if $n \geq 2$.

A group completion of an admissible topological monoid *M* can be constructed by a homotopy limit of a (possibly huge) diagram $\{ \cdots \rightarrow M \rightarrow M \rightarrow \cdots \}$ given by multiplication by elements taken from each connected component of *M.*

This talk is also about

A geometric construction of a group completion

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

A partial abelian monoid is ...

A partial abelian monoid is

- almost an abelian monoid but with partially defined sum.
- suitable for configuration space construction.
- \bullet the additive part of an \mathbb{F}_1 -algebra.

Definition 1

A **topological partial abelian monoid** *is a space M with base point* 0 *equipped with a subspace M*² *of M × M and a map* $\mu : M_2 \to M$ which satisfies

- \bullet *M* ∨ *M* ⊂ *M*₂*,* and μ (*m*, 0) = μ (0*, m*) = *m, for all m* ∈ *M,*
- 2 $(m, n) \in M_2$ *if and only if* $(n, m) \in M_2$, *and* $\mu(m, n) = \mu(n, m)$,
- Θ $(\mu(l, m), n) \in M_2$ *if and only if* $(l, \mu(m, n)) \in M_2$ *, and* $\mu(\mu(I, m), n) = \mu(I, \mu(m, n)).$

We denote $\mu(m, n) = m + n$.

Examples

Extreme cases:

- ¹ An abelian monoid is a partial abelian monoid.
- ² A based space *X* can be regarded as a trivial partial abelian monoid by setting $X_2 = X \vee X$ and $\mu: X \vee X \rightarrow X$ the folding map. It is called a **trivial partial abelian monoid**.
- ³ Let *M* be an abelian monoid and *N* be a subset which contains 0. Then *N* is a partial abelian monoid if we set

$$
N_2 = \{(n_1, n_2) | n_1 + n_2 \in N\}
$$

and a sum coming from that in *M.*

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Examples

 $N_{\leq 1} = \{0, 1\}$ and $N_{\leq 2} = \{0, 1, 2\}$ have multiplication tables 0 1 1 *×*

and

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

A product of partial abelian monoids

Y : a topological space

$$
\text{mul}(Y) = \coprod_{n \geq 0} \text{SP}^n Y
$$

 $-$ the free abelian monoid generated by $Y_+ = Y \coprod \{0\}$ with an appropriate topology, or equivalently, as $SP^{\infty}Y_{+}$, an infinite symmetric product introduced by Dold and Thom.

—we think of an element of mul(*Y*) as a finite multiset — a finite "set" with repeated elements.

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Summability in a pam

For a finite set *S,*

 $\sigma : S \to Y$

is a multiset. For a subset $T \subset S$,

$$
\sigma|_{\mathcal{T}}:\, \mathcal{T}\hookrightarrow S\rightarrow Y
$$

is a submultiset.

When $Y = M$ is a partial abelian monoid, we may speak of a **summable** multiset.

We say that *σ* is **pairwise insummable** if, for any subset $T \subset S$ of cardinality two, σ *|T* is insummable.

A product of partial abelian monoids

M, N : partial abelian monoids, *S* : a finite set. Consider the following property for $\sigma : S \to M \times N$:

for any subset *T*, if one of $p_i \circ (σ | T)$ is pairwise insummable then the other is summable.

We denote by $T_{M,N}$ the subspace of mul($M \times N$) consisting of *σ* with this property.

A product of partial abelian monoids

Let *∼* be the least equivalence relation on *TM,^N* which satisfies the following three conditions:

(R1) If m_1 or n_1 is zero then

$$
(m_1,n_1)\dotplus\cdots\dotplus(m_r,n_r)\sim(m_2,n_2)\dotplus\cdots\dotplus(m_r,m_r),
$$

(R2) If
$$
m_1 = m'_1 + m''_1
$$
 then
\n $(m_1, n_1) \dotplus \cdots \dotplus (m_r, n_r)$
\n $\sim (m'_1, n_1) \dotplus (m''_1, n_1) \dotplus (m_2, n_2) \dotplus \cdots \dotplus (m_r, n_r),$

(R3) If
$$
n_1 = n'_1 + n''_1
$$
 then
\n $(m_1, n_1) \dotplus \cdots \dotplus (m_r, n_r)$
\n $\sim (m_1, n'_1) \dotplus (m_1, n''_1) \dotplus (m_2, n_2) \dotplus \cdots \dotplus (m_r, n_r).$

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

A product of partial abelian monoids

Two elements [*α*]*,* [*β*] in *M ⊗ N* are summable if we can choose their representatives α , β in $T_{M,N}$ so that their sum $\alpha + \beta$ taken in mul($M \times N$) is contained in $T_{M,N}$. Thus, $M \otimes N$ is a partial abelian monoid in a natural way. We have a functor

⊗ : *PAM × PAM → PAM* ; (*M, N*) *7→ M ⊗ N.*

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

- ¹ For abelian groups *A, B,* their product *A ⊗ B* defined here is the usual tensor product of modules.
- ² For two based spaces *X, X ′ ,* viewed as trivial partial abelian monoids, their product *X ⊗ X ′* coincides with their smash product *X ∧ X ′ .*

Examples

Intermediate cases:

- ³ *X ⊗* N = SP*∞X*, the infinite symmetric product on a based space *X* of Dold and Thom.
- ⁴ Then *X ⊗ M* is the configuration space of finite points in *X* with labels in *M* such that only summable labels occur simultaneously.

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Examples

⁵ Viewing *S* ¹ as a based space, we get *S* ¹ *⊗ M* = *BM* the classifying space of a partial abelian monoid. In particular, if *M* is a monoid this coincides with the McCord model of the classifying space of *M.*

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Examples

^N*≤*¹ *[⊗] ^M [∼]*⁼ *^M* for any *^M.* (Indeed, ^N*≤*¹ ⁼ *^S* 0)*.*

$$
\bullet\ \mathbb{N}_{\leq 2}\otimes\mathbb{N}_{\leq 2}\cong\mathbb{N}.
$$

If $X = \{0, 1, \ldots, n\}$ is a based set, then $BX \cong S^1 \times \cdots \times S^1$ (*n* times).

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Examples

⁶ Let *X* be a compact based space and *M* = *Gr* := \sqcup *Gr*_{*n*}(\mathbb{R}^{∞}) be the infinite Grassmannian with a partial sum defined only for two vector spaces which are perpendicular to each other. Then $X \otimes Gr = F(X)$ coincides with the configuration space defined by Segal for connective *K*-homology. Tamaki gave a similar construction, which is enriched by an operad to make twisting on *K*-theory, thus larger than *X ⊗ Gr.*

Examples

- ⁸ Fin(*Y*) : (finite subsets of a space *Y*)*,* — Fin(*Y*) is a partial abelian monoid by disjoint union. If $C_n = \text{Fin}(\mathbb{R}^n)$ then $C_n \otimes X = C_n(X)$ is the configuration space of finite points in \mathbb{R}^n with labels in $X,$ introduced by Segal and equivalent to the construction by Milgram and May.
- ⁹ Fin(R*∞*) *⊗ M* = *C ^M* (R*∞*) is the configuration space of finite points in R*[∞]* with labels in *M* defined by Shimakawa.

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Intervals

$$
H = \{(u, v) \mid u \le v\} \subset \mathbb{R}^2
$$
, a half-plane in \mathbb{R}^2 ,
\n
$$
P = \{\pm 1\}
$$
: the set of "particles",
\nTo any point $(u, v; p, q) \in H \times P^2$ with $u < v$, we assign an
\ninterval

$$
J=\{x\in\mathbb{R}\mid u<_px<_qv\}\subset\mathbb{R},
$$

where the symbol \lt_p is interpreted as an inequality \leq or \lt according as $p = +1$ or -1 .

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Intervals

For
$$
J_1, J_2 \in \mathcal{I}
$$
,
we denote $J_1 < J_2$ if $v_1 < u_2$, where $J_k = (u_k, v_k; p_k, q_k)$.
Let L_r be the subspace of \mathcal{I}^r given by

$$
L_r = \big\{ (J_1, \ldots, J_r) \in \mathcal{I}^r \middle| J_1 < \cdots < J_r \big\}
$$

Then *L^r* is the configuration space of *r* bounded intervals in R with mutually disjoint closures.

Now we define

$$
I=\coprod L_r
$$

and give it a topology such that cutting-pasting and creation-annihilation is allowed.

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Intervals

–two intervals are pasted when meeting endpoints have opposite parities, that is, one is open and the other is closed,

[Introduction](#page-2-0) [Configuration spaces](#page-5-0) [Main construction and theorem](#page-25-0) [Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0) Intervals

— a half-open interval annihilates when its length approaches zero.

Then *I* has a partial abelian monoid structure by the superimposition of disjoint configurations.

[Partial abelian monoid](#page-5-0) [Configuration space of intervals](#page-20-0)

Example : $I_2 = C_1 \otimes I$

 $C_1 \otimes I$ is a configuration space of horizontal intervals in \mathbb{R}^2 . Let's denote this space by I_2 .

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Partially summable labels

Partially summable labels

- **•** enrich a configuration space in a certain way.
- control a topology of the reproduced configuration space.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Partially summable labels

Figure: Sum of labels (where red $+$ blue = violet)

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Elementary configuration

 $U = (a, b)$: an open interval in \mathbb{R} . We consider two special types of elements in mul $(\mathcal{I} \times M)$. $(E1)$ $e = (J, n)$ with one of the following : $J = (a, b)$ **2** $J = (a, w)$ or $J = (a, w)$, $a < w < b$ **3** $J = (w, b)$ or $J = (w, b)$, $a < w < b$ \bullet $J = (w_1, w_2]$ or $J = [w_1, w_2], a < w_1 < w_2 < b$ $(E2)$ $e = (J_1, n) + (J_2, n)$ with

2)
$$
e = (J_1, n) + (J_2, n)
$$
 with one of the following:
\n**6** $J_1 = (a, w_1], J_2 = (w_2, b)$ and $a \leq w_1 < w_2 < b$, or
\n**8** $J_1 = (a, w_1), J_2 = [w_2, b)$ and $a < w_1 < w_2 \leq b$,

where *n* is a non-zero element in *M* for both cases.

We call such *e* **an elementary configuration in** *U***.** In both cases, $n \in M$ is denoted by $n(e)$.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Elementary configurations

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Admissible multisets

For any
$$
\xi = (J_1, m_1) \vdash \cdots \vdash (J_r, m_r) \in T_{\mathcal{I},M} \subset \text{mul}(\mathcal{I} \times M)
$$
,
Let $\xi|_U = (J_1 \cap U, m_1) \vdash \cdots \vdash (J_r \cap U, m_r)$).

ξ ∈ *T*_{*T*}*M* is said to be **admissible** if for any *t* ∈ R there exists an open interval $U = (a, b)$ which contains *t* such that

$$
\xi|_U=e_1+\ldots+e_r
$$

for some elementary configurations e_1,\ldots,e_r in U such that $(n(e_1), \ldots, n(e_r)) \in M_r$.

If, moreover, there exist *ε >* 0 and an interval *U* can be taken as $U = (t - \varepsilon, t + \varepsilon)$ for all *t*, then we say that ξ is ε **-admissible.** It is clear that *ε*-admissible elements are *ε ′* -admissible if *ε ′ < ε.*

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Admissible multisets

Let $V = (a, b)$ be and open interval with $b - a > \varepsilon$.

We say that an *ε*-admissible element *ξ* is supported by *V* if *ξ|*(*a*+*ε/*2*,b−ε/*2) = *ξ.* If *V ⊂ V ′* then *ε*-admissible elements supprted by *V* are supported by *V ′ .*

Let *W*, $W(\varepsilon)$, and $W(\varepsilon, V)$ be the subspace of $T_{\mathcal{I},M}$ which consists of admissible elements, *ε*-admissible elements, and *ε*-admissble elements supported by *V*, respectively.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Configuration space of intervals with partially summable labels

Let *I^M* be the image in *I ⊗ M* of *W* under the natural map $\pi_{\otimes} \circ \pi_{\text{mult}}$ *.* Let also $I_M(\varepsilon)$ and $I_M(\varepsilon, V)$ be the image in $I \otimes M$ of *W*(*ε*) and *W*(*ε*, *V*), respectively, under $\pi_{\otimes} \circ \pi_{mul}$. Then we alter the topology of *I^M* by the weak topology of the union

$$
I_M=\bigcup_{\varepsilon>0,V}I_M(\varepsilon,V).
$$

Thus, we have defined a **configuration space of intervals with partially summable labels.**

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Thickening — Moore type variant

We define

$$
\widetilde{I}_M = \bigcup_{\varepsilon > 0, s \geq \varepsilon} I_M(\varepsilon, s) \times \{s\} \times \{\varepsilon\}
$$

and give it the topology as a subspace of $I_M\times\mathbb{R}^2.$ If $s = \varepsilon$, $I_M(\varepsilon, \varepsilon)$ consists of one point, the element \emptyset in I_M which represents the empty configuration. As a base point of I_M , we take (*∅,* 1*,* 1)*.*

Proposition 1

The projection $I_M \rightarrow I_M$ *onto the first component is a weak homotopy equivalence.*

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Approximation map e*I^M →* Ω *′BM*

Approximation map e*I^M →* Ω *′BM*

- is defined in 3 steps : disintegration, scanning, and summing-up.
- is shown to be weak equivalence so to constitute a zig-zag of weak equivalences :

 $I_M \leftarrow I_M \rightarrow \Omega'$ *BM*.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Disintegration and scanning

1 By definition, for any element ($[\xi]$, s, ε) $\in \widetilde{I}_M$ and $t \in \mathbb{R}$,

$$
\xi|_{U_t} = e_1 \dot{+} \ldots \dot{+} e_r
$$

for some elementary configurations e_1, \ldots, e_r in U_t such ${\sf that}$ $(n(e_1), \ldots, n(e_r)) \in M_r,$ where $U_t = (t - \varepsilon, t + \varepsilon).$

2 For any elementary configuration e in U_t , we have a $\textsf{well-defined map}~ \omega(\bm{e}):\mathsf{V}_t \rightarrow \mathcal{S}^1, \text{where}$ $V_t = (t - \frac{\varepsilon}{2})$ $\frac{\varepsilon}{2}$, $t + \frac{\varepsilon}{2}$ $\frac{\varepsilon}{2}$).

So we have an element in mul(Map($V_t, S^1) \times M$) for each $t \in (0, s)$. This defines a map

 $\omega_t: W_{\mathcal{S},\varepsilon} \to \mathsf{mul}(\mathsf{Map}(\mathsf{V}_t,\mathcal{S}^1)\times M).$

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

ω ′ (*J*)

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* [Quasi-fibration sequence](#page-38-0) $I_M \to E_M \to BM$

Summing up

³ The composite of *ω^t* with the sequence of natural maps ${\sf mul}({\sf Map}({\sf V}_t,S^1)\times M)\;\;\rightarrow\;\; {\sf mul}({\sf Map}({\sf V}_t,S^1\times M))$ \rightarrow Map(V_t , mul($S^1 \times M$)),

maps into Map(V_t , $\mathcal{T}_{\mathcal{S}^1, M}$).

Recalling that $\mathcal{T}_{\mathcal{S}^1,\mathcal{M}}$ is a subset of mul $(\mathcal{S}^1\times \mathcal{M})$ on which we defined the tensor relations, we have an element in Map(*V^t , S* ¹ *⊗ M*)*.*

This construction is compatible for distinct *t*'s so that we can paste local functions to get a global function in $\mathsf{Map}((0, s), S^1 \otimes M).$

Thus we get a map α : $I_M \rightarrow \Omega'$ *BM*.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Total space E_M

A space E_M is almost I_M but

- intervals lie in a half line $[0, \infty)$, and
- The origin works as a "vanishing point".

Then

$$
\widetilde{E}_M = \bigcup_{\varepsilon > 0, s \geq \varepsilon} E_M(\varepsilon, s) \times \{s\} \times \{\varepsilon\}
$$

is its thickening.

Proposition 2

 E_M *is weakly contractible.*

(proof) Push everything into the origin.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

$$
\widetilde{\textit{I}}_{\textit{M}}\hookrightarrow\widetilde{\textit{E}}_{\textit{M}}\rightarrow\textit{BM}
$$

- In $I_M(\varepsilon, s)$, intervals lie in $(0, \infty)$, so we have $I_M(\varepsilon, s) \subset E_M(\varepsilon, s)$, thus we have an inclusion $I_M \hookrightarrow E_M$.
- $E_M \rightarrow BM$ is defined using scanning at the origin.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Scanning at the origin

A configuration consisting of two intervals with "red" and "blue" as a respective label, which maps under $p : \tilde{E}_M \to BM$ to a configuration consisting of a point with "violet" as its label.

"red" + "blue" = "violet" so that ("red", "blue") \in $P("violet")$.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Main theorem

Proposition 3

Let M be a partial abelian monoid whose elements are $self\text{-}insummable.$ Then the map $p: E_M \to BM$ is a *guasi-fibration with fiber* I_M .

Assuming this, we can state and prove the main theorem :

Theorem (O.-Shimakawa)

Let M be a partial abelian monoid whose elements are self insummable. Then the configuration space I^M of intervals in R *with labels in M is weakly homotopy equivalent to* Ω*BM.*

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Proof of the main theorem

In the following commutative diagram, lower horizontal line is the Serre's path-loop fibration. The vertical map in the middle is a weak homotopy equivalence, since it is a map between weakly-contractible spaces, hence so is the vertical map on the left.

 \bullet Let *X* be a based set {0, 1, 2} (trivial partial abelian monoid).

Then *BX ∼*= *S* ¹ *∨ S* ¹ and we know from the theorem that $I_X \simeq_W \Omega(S^1 \vee S^1)$ *.* An element of I_X can be depicted as follows.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Scanning map $I_X \to \Omega(\mathcal{S}^1 \vee \mathcal{S}^1)$ can be graphed as follows.

 $\pi_0(I_X)\cong \pi_1(S^1\vee S^1)\cong \mathbb{Z}\ast \mathbb{Z}$

Examples

2 Let $M = N_{\leq 1} \times N_{\leq 1}$ be the direct product (as a partial abelian monoid !) of N*≤*¹ with itself.

Then $\mathit{BM} \cong \mathit{S}^1 \times \mathit{S}^1$ and we know from the theorem that $I_M \simeq_W \Omega(S^1 \times S^1)$ *.* An element of *I^M* looks as follows.

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Scanning map $I_M \to \Omega(S^1 \times S^1)$ can be graphed as follows.

 $\pi_0(I_M)\cong \pi_1(S^1\times S^1)\cong \mathbb{Z}\oplus \mathbb{Z}$

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

 \bullet Let $M = C_1$ is the configuration space of finite subsets of $\mathbb{R}^1.$ Then we know from Milgram-May-Segal's theorem that $BC_1 \cong C_1 \otimes S^1 \simeq_W \Omega S S^1 = \Omega S^2$. Now, our theorem asserts that

$$
I_M \simeq_W \Omega^2 S^2.
$$

So any element of $\pi_3 S^2$ can be written as a based loop in *I_M*. A generator of $\pi_3 S^2 \cong \mathbb{Z}$ is given by a Hopf map $\eta: {\mathcal S}^3 \rightarrow {\mathcal S}^2.$

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Corresponding loop in *I^M* is given by :

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Crossing change gives an inverse :

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Corresponding loop in *I^M* is given by :

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Crossing change gives an inverse :

Examples

Indeed, we can paste two surfaces to remove them: (Step 1)

Examples

Indeed, we can paste two surfaces to remove them: (Step 2)

Examples

Indeed, we can paste two surfaces to remove them: (Step 3)

Examples

Indeed, we can paste two surfaces to remove them: (Step 4)

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Examples

Moreover, if we use the standard embedding $\mathbb{R}^1 \hookrightarrow \mathbb{R}^2$ to get a map $I_{C_1} \rightarrow I_{C_2}$, and this amounts to an embedding of configuration of intervals in \mathbb{R}^2 into configuration of intervals in \mathbb{R}^3 under the standard embedding $\mathbb{R}^2 \hookrightarrow \mathbb{R}^3.$ This corresponds τ to the suspension map $\mathbb{Z} \cong \pi_3(S^2) \to \pi_4(S^3) \cong \mathbb{Z}/2\mathbb{Z}$. So the above pictures also show the vanishing of 2 η in $\pi_4(\mathcal{S}^3).$

[Configuration space of intervals with partially summable labels](#page-25-0) [Approximation map](#page-33-0)e*I^M →* Ω *′BM* $\mathsf{Quasi\text{-}fibration}$ sequence $I_M \to E_M \to BM$

Two lemmas for quasi-fibration

For a proof of proposition 3, we may use the Dold-Thom criterion.

Lemma 1

*For any open set V ⊂ FjBM − Fj−*1*BM, there exists a homotopy equivalence* $p^{-1}V \simeq V \times \tilde{I}_M$, so that V is distinguished.

Lemma 2

*There exists an open set O ⊂ FjBM which contains Fj−*1*BM and homotopies h^t* : *O → O and H^t* : *p [−]*1*O → p [−]*1*O such that* \bullet *h*₀ = *id*_{*O*}, *h*_t(*F*_{*j*−1}*BM*) ⊂ *F*_{*j*−1}*BM* and *h*₁(*O*) ⊂ *F*_{*j*−1}*BM*, **2** $H_0 = id_{n-1}$ and $p ∘ H_t = h_t ∘ p$ for all t, and ³ *H*¹ : *p [−]*1*z → p [−]*1*h*1(*z*) *is a weak homotopy equivalence for all z ∈ O.*