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Quasi-fibration sequence ĨM → ẼM → BM
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Approximation to a mapping space

Theorem 1 (Milgram-May-Segal)
There exists a weak homotopy equivalence
C(Rn,X )→ ΩnSnX , if X is path-connected.

An approximation to a mapping space by a configuration
space looks like

C(M,X ) ≃ map(M̂, (τM ∗ X ))

(Milgram-May-Segal, McDuff, ...)
In some cases, a system {C(Mn,X )} can approximate a
system of mapping spaces, that is, a homology theory.
(Segal, Shimakawa, Tamaki,...)
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Approximation to a mapping space

In most cases, an approximation map

C(M,X )− → map(M̂, (τM ∗ X )))

has geometric or physical iterpretation. So this talk is about

a geometric model of a (mapping) space
with geometrically constructed approximation map.
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Group completion

Theorem 2 (Segal-F.Cohen)
C(Rn,X )→ ΩnSnX is a group completion if n ≥ 2.

A group completion of an admissible topological monoid M can
be constructed by a homotopy limit of a (possibly huge)
diagram {· · · → M → M → . . . } given by multiplication by
elements taken from each connected component of M.

This talk is also about

A geometric construction of a group completion
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A partial abelian monoid is ...

A partial abelian monoid is
almost an abelian monoid but with partially defined sum.
suitable for configuration space construction.
the additive part of an F1-algebra.
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Definition 1

A topological partial abelian monoid is a space M with base
point 0 equipped with a subspace M2 of M ×M and a map
µ : M2 → M which satisfies

1 M ∨M ⊂ M2, and µ(m,0) = µ(0,m) = m, for all m ∈ M,

2 (m,n) ∈ M2 if and only if (n,m) ∈ M2,
and µ(m,n) = µ(n,m),

3 (µ(l ,m),n) ∈ M2 if and only if (l , µ(m,n)) ∈ M2, and
µ(µ(l ,m),n) = µ(l , µ(m,n)).

We denote µ(m,n) = m + n.
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Examples

Extreme cases:
1 An abelian monoid is a partial abelian monoid.
2 A based space X can be regarded as a trivial partial

abelian monoid by setting X2 = X ∨ X and µ : X ∨ X → X
the folding map. It is called a trivial partial abelian
monoid.

3 Let M be an abelian monoid and N be a subset which
contains 0. Then N is a partial abelian monoid if we set

N2 = {(n1,n2) | n1 + n2 ∈ N}

and a sum coming from that in M.
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Examples

N≤1 = {0,1} and N≤2 = {0,1,2} have multiplication tables

0
1

1
×

and
0 1 2
1 2 ×
2 × ×
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A product of partial abelian monoids

Y : a topological space

mul(Y ) =
⨿
n≥0

SPnY

— the free abelian monoid generated by Y+ = Y
⨿
{0} with an

appropriate topology, or equivalently, as SP∞Y+, an infinite
symmetric product introduced by Dold and Thom.

—we think of an element of mul(Y ) as a finite multiset — a
finite “set” with repeated elements.
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Summability in a pam

For a finite set S,

σ : S → Y

is a multiset. For a subset T ⊂ S,

σ|T : T ↪→ S → Y

is a submultiset.
When Y = M is a partial abelian monoid, we may speak of a
summable multiset.
We say that σ is pairwise insummable if, for any subset

T ⊂ S of cardinality two, σ|T is insummable.
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A product of partial abelian monoids

M,N : partial abelian monoids, S : a finite set. Consider the
following property for σ : S → M × N :

for any subset T , if one of pi ◦ (σ|T ) is pairwise insummable
then the other is summable.

M

T S M × N

N.

σ

p1

p2

We denote by TM,N the subspace of mul(M × N) consisting of
σ with this property.
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A product of partial abelian monoids

Let ∼ be the least equivalence relation on TM,N which satisfies
the following three conditions:

(R1) If m1 or n1 is zero then

(m1,n1)∔ · · ·∔ (mr ,nr ) ∼ (m2,n2)∔ · · ·∔ (mr ,mr ),

(R2) If m1 = m′
1 + m′′

1 then

(m1,n1)∔ · · ·∔ (mr ,nr )

∼ (m′
1,n1)∔ (m′′

1,n1)∔ (m2,n2)∔ · · ·∔ (mr ,nr ),

(R3) If n1 = n′
1 + n′′

1 then

(m1,n1)∔ · · ·∔ (mr ,nr )

∼ (m1,n′
1)∔ (m1,n′′

1)∔ (m2,n2)∔ · · ·∔ (mr ,nr ).
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A product of partial abelian monoids

Two elements [α], [β] in M ⊗ N are summable if we can choose
their representatives α, β in TM,N so that their sum α∔ β taken
in mul(M × N) is contained in TM,N . Thus, M ⊗ N is a partial
abelian monoid in a natural way.
We have a functor

⊗ : PAM × PAM → PAM ; (M,N) 7→ M ⊗ N.
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Examples

1 For abelian groups A,B, their product A⊗B defined here is
the usual tensor product of modules.

2 For two based spaces X ,X ′, viewed as trivial partial
abelian monoids, their product X ⊗ X ′ coincides with their
smash product X ∧ X ′.
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Examples

Intermediate cases:
3 X ⊗ N = SP∞X , the infinite symmetric product on a based

space X of Dold and Thom.
4 Then X ⊗M is the configuration space of finite points in X

with labels in M such that only summable labels occur
simultaneously.

X

m1 m2

mn

(m1, . . . ,mn) ∈ Mn
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Examples

5 Viewing S1 as a based space, we get S1 ⊗M = BM the
classifying space of a partial abelian monoid. In particular,
if M is a monoid this coincides with the McCord model of
the classifying space of M.

∗

m1

m2

mn

(m1, . . . ,mn) ∈ Mn

∈ BM
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Examples

N≤1 ⊗M ∼= M for any M. (Indeed, N≤1 = S0).

N≤2 ⊗ N≤2
∼= N.

If X = {0,1, . . . , n} is a based set, then
BX ∼= S1 × · · · × S1(n times).
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Examples

6 Let X be a compact based space and
M = Gr := ⊔Grn(R∞) be the infinite Grassmannian with a
partial sum defined only for two vector spaces which are
perpendicular to each other. Then X ⊗Gr = F (X )
coincides with the configuration space defined by Segal for
connective K -homology. Tamaki gave a similar
construction, which is enriched by an operad to make
twisting on K -theory, thus larger than X ⊗Gr .
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Examples

8 Fin(Y ) : ( finite subsets of a space Y ),
— Fin(Y ) is a partial abelian monoid by disjoint union. If
Cn = Fin(Rn) then Cn ⊗ X = Cn(X ) is the configuration
space of finite points in Rn with labels in X , introduced by
Segal and equivalent to the construction by Milgram and
May.

9 Fin(R∞)⊗M = CM(R∞) is the configuration space of finite
points in R∞ with labels in M defined by Shimakawa.
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Intervals

H = {(u, v) | u ≤ v} ⊂ R2, a half-plane in R2,
P = {±1} : the set of “parities”,
To any point (u, v ;p,q) ∈ H × P2 with u < v , we assign an

interval

J = {x ∈ R | u <p x <q v} ⊂ R,

where the symbol <p is interpreted as an inequality ≤ or <
according as p = +1 or −1.

I = {(u, v ;p,q) ∈ H × P2 | u < v}.
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Intervals

For J1, J2 ∈ I,
we denote J1 < J2 if v1 < u2, where Jk = (uk , vk ;pk ,qk ).

Let Lr be the subspace of I r given by

Lr =
{
(J1, . . . , Jr ) ∈ I r ∣∣ J1 < · · · < Jr

}
.

Then Lr is the configuration space of r bounded intervals in R
with mutually disjoint closures.
Now we define

I =
⨿

Lr

and give it a topology such that cutting-pasting and
creation-annihilation is allowed.
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Intervals

Figure: Cutting-Pasting

–two intervals are pasted when meeting endpoints have
opposite parities, that is, one is open and the other is closed,
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Intervals

Figure: Creation-Annihilation

— a half-open interval annihilates when its length approaches
zero.
Then I has a partial abelian monoid structure by the
superimposition of disjoint configurations.
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Example : I2 = C1 ⊗ I

A point of C1 ⊗ I is
— a finite subset of R1,
— with labels in I,
— in which, points can
collide,
— in case labels are
summable

C1 ⊗ I is a configuration space of horizontal intervals in R2.
Let’s denote this space by I2.
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Partially summable labels

Partially summable labels
enrich a configuration space in a certain way.
control a topology of the reproduced configuration space.

29 / 61



Introduction
Configuration spaces

Main construction and theorem

Configuration space of intervals with partially summable labels
Approximation map ĨM → Ω′BM
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Partially summable labels

Figure: Sum of labels (where red + blue = violet )
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Elementary configuration

U = (a,b) : an open interval in R.
We consider two special types of elements in mul(I ×M).

(E1) e = (J,n) with one of the following :
1 J = (a,b)
2 J = (a,w) or J = (a,w ], a < w < b
3 J = (w ,b) or J = [w ,b), a < w < b
4 J = (w1,w2] or J = [w1,w2), a < w1 < w2 < b

(E2) e = (J1,n)∔ (J2,n) with one of the following:
1 J1 = (a,w1], J2 = (w2,b) and a ≤ w1 < w2 < b, or
2 J1 = (a,w1), J2 = [w2,b) and a < w1 < w2 ≤ b,

where n is a non-zero element in M for both cases.

We call such e an elementary configuration in U. In both
cases, n ∈ M is denoted by n(e).
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Elementary configurations

E1

ba

E2

ba
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Admissible multisets

For any ξ = (J1,m1)∔ · · ·∔ (Jr ,mr ) ∈ TI,M ⊂ mul(I ×M),
Let ξ|U = (J1 ∩ U,m1)∔ · · ·∔ (Jr ∩ U,mr )).

ξ ∈ TI,M is said to be admissible if for any t ∈ R there exists an
open interval U = (a,b) which contains t such that

ξ|U = e1+̇ . . . +̇er

for some elementary configurations e1, . . . , er in U such that
(n(e1), . . . , n(er )) ∈ Mr .

If, moreover, there exist ε > 0 and an interval U can be taken
as U = (t − ε, t + ε) for all t , then we say that ξ is ε-admissible.
It is clear that ε-admissible elements are ε′-admissible if ε′ < ε.

33 / 61



Introduction
Configuration spaces

Main construction and theorem

Configuration space of intervals with partially summable labels
Approximation map ĨM → Ω′BM
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Admissible multisets

Let V = (a,b) be and open interval with b − a > ε.

We say that an ε-admissible element ξ is supported by V if
ξ|(a+ε/2,b−ε/2) = ξ. If V ⊂ V ′ then ε-admissible elements
supprted by V are supported by V ′.

Let W ,W (ε), and W (ε,V ) be the subspace of TI,M which
consists of admissible elements, ε-admissible elements, and
ε-admissble elements supported by V , respectively.
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Configuration space of intervals with partially
summable labels

Let IM be the image in I ⊗M of W under the natural map
π⊗ ◦ πmul . Let also IM(ε) and IM(ε,V ) be the image in I ⊗M of
W (ε) and W (ε,V ), respectively , under π⊗ ◦ πmul . Then we alter
the topology of IM by the weak topology of the union

IM =
∪

ε>0,V

IM(ε,V ).

Thus, we have defined a configuration space of intervals
with partially summable labels.
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Thickening — Moore type variant

We define

ĨM =
∪

ε>0,s≥ε

IM(ε, s)× {s} × {ε}

and give it the topology as a subspace of IM × R2.
If s = ε, IM(ε, ε) consists of one point, the element ∅ in IM which
represents the empty configuration. As a base point of ĨM , we
take (∅,1,1).

Proposition 1

The projection ĨM → IM onto the first component is a weak
homotopy equivalence.
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Approximation map ĨM → Ω′BM

Approximation map ĨM → Ω′BM
is defined in 3 steps : disintegration, scanning, and
summing-up.
is shown to be weak equivalence so to constitute a zig-zag
of weak equivalences :

IM ← ĨM → Ω′BM.
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Disintegration and scanning

1 By definition, for any element ([ξ], s, ε) ∈ ĨM and t ∈ R,

ξ|Ut = e1+̇ . . . +̇er

for some elementary configurations e1, . . . , er in Ut such
that (n(e1), . . . , n(er )) ∈ Mr , where Ut = (t − ε, t + ε).

2 For any elementary configuration e in Ut , we have a
well-defined map ω(e) : Vt → S1, where
Vt =

(
t − ε

2 , t +
ε
2

)
.

So we have an element in mul(Map(Vt ,S1)×M) for each
t ∈ (0, s).
This defines a map

ωt : Ws,ε → mul(Map(Vt ,S1)×M).
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ω′(J)
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Summing up

3 The composite of ωt with the sequence of natural maps
mul(Map(Vt ,S1)×M) → mul(Map(Vt ,S1 ×M))

→ Map(Vt ,mul(S1 ×M)),

maps into Map(Vt ,TS1,M).

Recalling that TS1,M is a subset of mul(S1 ×M) on which
we defined the tensor relations, we have an element in
Map(Vt ,S1 ⊗M).
This construction is compatible for distinct t ’s so that we
can paste local functions to get a global function in
Map((0, s),S1 ⊗M).

Thus we get a map α : ĨM → Ω′BM.
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Quasi-fibration sequence ĨM → ẼM → BM

Ws,ε G mul(Map(Vt ,S1)×M)

G′ mul(Map(Vt ,S1)×M)

mul(Map(Vt ,S1 ×M))

Map(Vt ,TS1,M) Map(Vt ,mul(S1 ×M))

Map(Vt ,BM).

ωt

αt

µ
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Total space ẼM

A space EM is almost IM but
intervals lie in a half line [0,∞), and
The origin works as a “vanishing point”.

Then

ẼM =
∪

ε>0,s≥ε

EM(ε, s)× {s} × {ε}

is its thickening.

Proposition 2

ẼM is weakly contractible.

(proof) Push everything into the origin.
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ĨM ↪→ ẼM → BM

In IM(ε, s), intervals lie in (0,∞), so we have
IM(ε, s) ⊂ EM(ε, s), thus we have an inclusion ĨM ↪→ ẼM .

ẼM → BM is defined using scanning at the origin.

t

1− 2t

t

2t
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Scanning at the origin

A configuration consisting of two intervals with “red” and “blue”
as a respective label, which maps under p : ẼM → BM to a
configuration consisting of a point with “violet” as its label.

ut

2u = 1− 2t

“red” + “blue” = “violet” so that (“red”, “blue”) ∈ P(“violet”) .
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Main theorem

Proposition 3
Let M be a partial abelian monoid whose elements are
self-insummable. Then the map p : ẼM → BM is a
quasi-fibration with fiber ĨM .

Assuming this, we can state and prove the main theorem :

Theorem (O.-Shimakawa)

Let M be a partial abelian monoid whose elements are self
insummable. Then the configuration space IM of intervals in R
with labels in M is weakly homotopy equivalent to ΩBM.
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Quasi-fibration sequence ĨM → ẼM → BM

Proof of the main theorem

In the following commutative diagram, lower horizontal line is
the Serre’s path-loop fibration. The vertical map in the middle is
a weak homotopy equivalence, since it is a map between
weakly-contractible spaces, hence so is the vertical map on the
left.

ĨM ẼM BM

Ω′BM P ′BM BM
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Examples

1 Let X be a based set {0,1,2} ( trivial partial abelian
monoid ).

0 1 2
1 × ×
2 × ×

Then BX ∼= S1 ∨ S1 and we know from the theorem that
IX ≃w Ω(S1 ∨ S1).
An element of IX can be depicted as follows.
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Examples

Scanning map ĨX → Ω(S1 ∨ S1) can be graphed as follows.

π0(IX ) ∼= π1(S1 ∨ S1) ∼= Z ∗ Z
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Examples

2 Let M = N≤1 × N≤1 be the direct product (as a partial
abelian monoid !) of N≤1 with itself.

00 10 01 11
10 × 11 ×10
01 11 × ×
11 × × ×

Then BM ∼= S1 × S1 and we know from the theorem that
IM ≃w Ω(S1 × S1).
An element of IM looks as follows.
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Examples

Scanning map ĨM → Ω(S1 × S1) can be graphed as follows.

π0(IM) ∼= π1(S1 × S1) ∼= Z⊕ Z
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Examples

3 Let M = C1 is the configuration space of finite subsets of
R1. Then we know from Milgram-May-Segal’s theorem that
BC1

∼= C1 ⊗ S1 ≃w ΩSS1 = ΩS2. Now, our theorem
asserts that

IM ≃w Ω2S2.

So any element of π3S2 can be written as a based loop in
IM . A generator of π3S2 ∼= Z is given by a Hopf map
η : S3 → S2.
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Examples

Corresponding loop in IM is given by :
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Examples

Crossing change gives an inverse :
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Quasi-fibration sequence ĨM → ẼM → BM
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Corresponding loop in IM is given by :
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Crossing change gives an inverse :

55 / 61



Introduction
Configuration spaces

Main construction and theorem

Configuration space of intervals with partially summable labels
Approximation map ĨM → Ω′BM
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Examples

Indeed, we can paste two surfaces to remove them:
(Step 1)
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Quasi-fibration sequence ĨM → ẼM → BM

Examples

Indeed, we can paste two surfaces to remove them:
(Step 2)
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Examples

Indeed, we can paste two surfaces to remove them:
(Step 3)
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Examples

Indeed, we can paste two surfaces to remove them:
(Step 4)
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Examples

Moreover, if we use the standard embedding R1 ↪→ R2 to get a
map IC1 → IC2 , and this amounts to an embedding of
configuration of intervals in R2 into configuration of intervals in
R3 under the standard embedding R2 ↪→ R3. This corresponds
to the suspension map Z ∼= π3(S2)→ π4(S3) ∼= Z/2Z. So the
above pictures also show the vanishing of 2η in π4(S3).
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Approximation map ĨM → Ω′BM
Quasi-fibration sequence ĨM → ẼM → BM

Two lemmas for quasi-fibration

For a proof of proposition 3, we may use the Dold-Thom
criterion.
Lemma 1

For any open set V ⊂ FjBM − Fj−1BM, there exists a homotopy
equivalence p−1V ≃ V × ĨM , so that V is distinguished.

Lemma 2

There exists an open set O ⊂ FjBM which contains Fj−1BM
and homotopies ht : O → O and Ht : p−1O → p−1O such that

1 h0 = idO, ht(Fj−1BM) ⊂ Fj−1BM and h1(O) ⊂ Fj−1BM,
2 H0 = idp−1O and p ◦ Ht = ht ◦ p for all t , and
3 H1 : p−1z → p−1h1(z) is a weak homotopy equivalence for

all z ∈ O.
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