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Introduction

Approxima

Theorem 1 (Milgram-May-Segal)

There exists a weak homotopy equivalence
C(R", X) — Q"S" X, if X is path-connected.

@ An approximation to a mapping space by a configuration
space looks like

C(M, X) ~ map(M, (+M « X))
(Milgram-May-Segal, McDuff, ...)
@ In some cases, a system {C(M,, X)} can approximate a

system of mapping spaces, that is, a homology theory.
(Segal, Shimakawa, Tamaki,...)



Introduction

Approxima

In most cases, an approximation map

C(M, X)— — map(M, (M x X)))
has geometric or physical iterpretation. So this talk is about

a geometric model of a (mapping) space
with geometrically constructed approximation map.



Introduction

Theorem 2 (Segal-F.Cohen)

C(R" X) — Q"S"X is a group completion if n > 2.

A group completion of an admissible topological monoid M can
be constructed by a homotopy limit of a (possibly huge)
diagram {--- - M — M — ...} given by multiplication by
elements taken from each connected component of M.

This talk is also about

A geometric construction of a group completion



Partial abelian monoid
Configuration spaces Configuration space of intervals

A partial

A partial abelian monoid is
@ almost an abelian monoid but with partially defined sum.
@ suitable for configuration space construction.
@ the additive part of an Fy-algebra.
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Definition 1

A topological partial abelian monoid is a space M with base
point 0 equipped with a subspace M»> of M x M and a map
w: Mo — M which satisfies
Q@ MvMc My, and u(m,0) = u(0,m) = m, forallm e M,
© (m,n) € M, if and only if (n,m) € Ma,
and p(m,n) = p(n, m),
Q (u(l,m),n) € My if and only if (I, u(m, n)) € Mo, and

M(M(/; m): n) - M(/7 :u(m7 n))

We denote p(m,n) = m+ n.
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Partial abelian monoid

Configuration spaces Configuration space of intervals

Extreme cases:

@ An abelian monoid is a partial abelian monoid.

© A based space X can be regarded as a trivial partial
abelian monoid by setting Xo = Xv Xandp: Xv X = X
the folding map. It is called a trivial partial abelian
monoid.

© Let M be an abelian monoid and N be a subset which
contains 0. Then N is a partial abelian monoid if we set

NQ:{(m,ng) ’ n +n2€N}

and a sum coming from that in M.
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@ Noy ={0,1} and N<, = {0, 1,2} have multiplication tables

and
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Y : atopological space

mul(Y) = J] SP"Y

n>0

— the free abelian monoid generated by Y, = Y [[{0} with an
appropriate topology, or equivalently, as SP*°Y,, an infinite
symmetric product introduced by Dold and Thom.

—we think of an element of mul(Y) as a finite multiset — a
finite “set” with repeated elements.
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Summabil

For a finite set S,
c:S—Y

is a multiset. Forasubset T C S,
olr: T—=8—=Y

is a submultiset.

When Y = M is a partial abelian monoid, we may speak of a
summable multiset.

We say that o is pairwise insummable if, for any subset

T c S of cardinality two, ¢|T is insummable.
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M. N : partial abelian monoids, S : a finite set. Consider the
following property foro : S — M x N :

for any subset T, if one of p; o (¢|T) is pairwise insummable
then the other is summable.

/"‘T

T~ S —25 MxN

I\l/pz

We denote by Ty y the subspace of mul(M x N) consisting of
o with this property.
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A product

Let ~ be the least equivalence relation on Ty y which satisfies
the following three conditions:
(R1) If my or nq is zero then

(m17n1)+"'+(mfanf)N(m27n2)+"'+(mfamf)a

(R2) If my = m, + m{ then
(my, ny) + -+ (mr, ny)

N(m/1’n1)+(mq/vn1)7L(m2an2)+"'+(mf’nf)’

(R3) If ny = + nf then
(my,ny) + -+ (my, nr)

~ (my,ny) 4+ (my, nf) + (ma,np) + - -+ (my, ny).
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Two elements [«], [3] in M @ N are summable if we can choose
their representatives «, 3 in Ty y so that their sum o + 3 taken
in mul(M x N) is contained in Ty, n. Thus, M ® N is a partial
abelian monoid in a natural way.

We have a functor

® : PAM x PAM — PAM ; (M,N) - M ® N.
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Configuration spaces Configuration space of intervals

@ For abelian groups A, B, their product A® B defined here is
the usual tensor product of modules.

© For two based spaces X, X’, viewed as trivial partial
abelian monoids, their product X ® X’ coincides with their
smash product X A X'.
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Intermediate cases:

Q@ X ®N = SP*X, the infinite symmetric product on a based
space X of Dold and Thom.

© Then X ® M is the configuration space of finite points in X
with labels in M such that only summable labels occur
simultaneously.
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© Viewing S' as a based space, we get S' ® M = BM the
classifying space of a partial abelian monoid. In particular,
if M is a monoid this coincides with the McCord model of
the classifying space of M.

mo

(m1a~--7mn)€Mn
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® Noy ® M = M for any M. (Indeed, N<y = SP).
@ Neo @ Ncp =N

e If X=1{0,1,...,n}is a based set, then
BX = S' x ... x S'(ntimes).
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© Let X be a compact based space and
M = Gr := UGr,(R*°) be the infinite Grassmannian with a
partial sum defined only for two vector spaces which are
perpendicular to each other. Then X @ Gr = F(X)
coincides with the configuration space defined by Segal for
connective K-homology. Tamaki gave a similar
construction, which is enriched by an operad to make
twisting on K-theory, thus larger than X ® Gr.
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© Fin(Y) : (finite subsets of a space Y),
— Fin(Y) is a partial abelian monoid by disjoint union. If
Cn = Fin(R") then C, ® X = Cx(X) is the configuration
space of finite points in R" with labels in X, introduced by
Segal and equivalent to the construction by Milgram and
May.

@ Fin(R>®) ® M = CM(R>) is the configuration space of finite
points in R with labels in M defined by Shimakawa.
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Intervals

H = {(u,v) | u < v} C R?, a half-plane in R?,

P = {£1} : the set of “parities”,

To any point (u, v; p, q) € H x P? with u < v, we assign an
interval

J={xeR|u<px<qVv}CR,

where the symbol <, is interpreted as an inequality < or <
accordingas p=+1or —1.

L4 @ @ S @

T={(u,v;ip,q) e Hx P?|u<v}.
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Intervals

For Ji , b € 7z,
we denote J1 < Jg if Vi < Uo, where Jk = (Uk, Vk; Pk, qk).
Let L, be the subspace of Z" given by

Lr:{(Jh...,Jr)GIr‘ Ji << Jp }

Then L, is the configuration space of r bounded intervals in R
with mutually disjoint closures.
Now we define

I=1]L

and give it a topology such that cutting-pasting and
creation-annihilation is allowed.
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Intervals

Figure: Cutting-Pasting

T
..I @

—two intervals are pasted when meeting endpoints have
opposite parities, that is, one is open and the other is closed,
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Partial abelian monoid

Configuration spaces Configuration space of intervals

Intervals

Figure: Creation-Annihilation

- o

— a half-open interval annihilates when its length approaches
zero.

Then I has a partial abelian monoid structure by the
superimposition of disjoint configurations.
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A pointof Cy ® I is

— afinite subset of R', oo
— with labels in /, —6—C 00 0—0—
— in which, points can S oL o
collide,
— in case labels are
summable

—e <

Cy ® lis a configuration space of horizontal intervals in R?.
Let’s denote this space by k.
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Configuration space of intervals with partially summable labels
Approximation map Iy — Q' BM
Main construction and theorem Quasi-fibration sequence Iy — Ey — BM

Partially s

Partially summable labels
@ enrich a configuration space in a certain way.
@ control a topology of the reproduced configuration space.
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Main construction and theorem Quasi-fibration sequence Iy — Ey — BM

Partially ¢

Figure: Sum of labels (where red + blue = violet )

L4 @ @
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Configuration space ¢ of intervals with partially summable labels
Approximation map IM — Q'BM
Main construction and theorem Quasi-fibration sequence Iy — Epy — BM

Elementar

U = (a,b) : an open interval in R.
We consider two special types of elements in mul(Z x M).

(E1) e= (J n) with one of the following :

= (a,b)
9J (aW)orJ (a,w], a<w<b
@ J=(w,b)ord=[w,b), a<w<b
QO J=(w,w]ord=[wi,me), a<wy < W <b
(E2) e = (Jy, n) + (J2, n) with one of the following:
Q Ji = (a, w], J2 (wo,b)and a < wy < wp < b, or

Q@ Ji=(aw),o=[we,b)and a< wy < wr < b,
where nis a non-zero element in M for both cases.

We call such e an elementary configuration in U. In both
cases, n € M is denoted by n(e).
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97
oO0
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Admissibl

Forany & = (Ji,m) + -+ (Jr,my) € Tz C mul(Z x M),
Let{ly = (b nU,m)+ -+ (U my)).

¢ € Tz m is said to be admissible if for any t € R there exists an
open interval U = (&, b) which contains t such that

Elu=e1+...+e

for some elementary configurations ey, ..., e, in U such that
(n(e‘i)a ) n(ef)) € M,.

If, moreover, there exist ¢ > 0 and an interval U can be taken
as U= (t—e,t+¢) for all t, then we say that ¢ is c-admissible.
It is clear that e-admissible elements are ¢’-admissible if ¢/ < ¢.
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Approximation map Iy — Q' BM
Main construction and theorem Quasi-fibration sequence Iy — Epy — BM

Admissible

Let V = (a, b) be and open interval with b —a > ¢.

We say that an e-admissible element ¢ is supported by V if
€l(ate/2,b—cs2) = & It V C V' then c-admissible elements
supprted by V are supported by V.

Let W, W(e), and W(e, V) be the subspace of T7 j which
consists of admissible elements, e-admissible elements, and
e-admissble elements supported by V, respectively.
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Approximation map Iy — Q' BM
Main construction and theorem Quasi-fibration sequence Iy — Ey — BM

Let /i be the image in I ® M of W under the natural map

T © Tmy- Let also Iy(e) and Iy(e, V) be the image in | ® M of
W(e) and W(e, V), respectively , under mg o mmy. Then we alter
the topology of Iy, by the weak topology of the union

= {J V).

e>0,V

Thus, we have defined a configuration space of intervals
with partially summable labels.
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Thickenin

We define
= U Iues)x{s}x{e}

e>0,8>¢

and give it the topology as a subspace of Iy, x R?.

If s =¢, Iy(e, €) consists of one point, the element () in Iy, which
represents the empty configuration. As a base point of 7M, we
take (0,1,1).

Proposition 1

The projection Iy — Iy onto the first component is a weak
homotopy equivalence.
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Approximation map ly — ' BM
@ is defined in 3 steps : disintegration, scanning, and
summing-up.
@ is shown to be weak equivalence so to constitute a zig-zag
of weak equivalences :

Iy <~ Iy — Q'BM.
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@ By definition, for any element ([¢], s, ¢) clyandteR,
flu =e1+...+er

for some elementary configurations ey, ..., e, in U; such
that (n(ey),...,n(er)) € M, where Uy = (t — ¢, t +¢).

© For any elementary configuration e in U;, we have a
well-defined map w(e) : Vs — S', where
Vi=(t—5.t+5).

So we have an element in mul(Map(V;, S') x M) for each

t€(0,s).

This defines a map

wt : Ws. — mul(Map(V;, S1) x M).
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Approximation map Iy — Q' BM
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Summing

© The composite of w; with the sequence of natural maps
mul(Map(V;, S') x M) — mul(Map(V;, S x M))
—  Map(V;, mul(S" x M)),
maps into Map(Vt, Tg1 y)-
Recalling that T y is a subset of mul(S' x M) on which
we defined the tensor relations, we have an element in
Map(V;, ST @ M).
This construction is compatible for distinct s so that we
can paste local functions to get a global function in
Map((0, s), S' @ M).

Thus we getamap a : Iy — Q'BM.
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Wi.c - G mul(Map(V;, S') x M)

)

I

G —— mul(Map(V;, S") x M)

l

ot mul(Map(V;, S' x M))

I

Map(V;, Ts1 py) — Map(V;, mul(S' x M))

Map(V;, BM).
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Approximation map IM — Q'BM
Main construction and theorem Quasi-fibration sequence Iy — Ep — BM

A space Ey, is almost Iy, but

@ intervals lie in a half line [0, ), and

@ The origin works as a “vanishing point”.
Then

= U Ewmles) x {s} x {}

e>0,5>¢

is its thickening.

Proposition 2

Ew is weakly contractible.

O

(proof) Push everything into the origin.

labels
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@ In Iy(e, s), intervals lie in (0, o), so we have
(e, s) C En(e, s), thus we have an inclusion Iy — Epy.

e Ej — BM is defined using scanning at the origin.

2t

A 2t
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Main construction and theorem Quasi-fibration sequence Iy — Ey — BM

A configuration consisting of two intervals with “red” and “blue”
as a respective label, which maps under p : Eyy — BM to a
configuration consisting of a point with “violet” as its label.

%’%1—21‘

“red” + “blue” = “violet” so that (“red”, “blue”) € P(“violet”) .
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Approximation map Iy — Q' BM
Main construction and theorem Quasi-fibration sequence Iy — Ey — BM

Proposition 3

Let M be a partial abelian monoid whose elements are
self-insummable. Then the map p : Eyy — BM is a
quasi-fibration with fiber I.

Assuming this, we can state and prove the main theorem :

Theorem (O.-Shimakawa)

Let M be a partial abelian monoid whose elements are self
insummable. Then the configuration space Iy of intervals in R
with labels in M is weakly homotopy equivalent to QBM.
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Main construction and theorem

In the following commutative diagram, lower horizontal line is
the Serre’s path-loop fibration. The vertical map in the middle is
a weak homotopy equivalence, since it is a map between
weakly-contractible spaces, hence so is the vertical map on the

left.

Y Ewy BM

| |

QOBM —— P'BM —— BM
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Approximation map Iy — Q' BM

Main construction and theorem Quasi-fibration sequence Iy — Ep — BM

@ Let X be a based set {0, 1,2} ( trivial partial abelian

monoid ).

0|12
1| X[ X
2| XX

Then BX = S' v S and we know from the theorem that
Ix ~w Q(S1 V 81)

An element of Iy can be depicted as follows.

®
[ ]
[
®
q
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Scanning map Ix — Q(S' v S') can be graphed as follows.

mo(lx) =2 m(S'vS)Y=Zx7Z
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Main construction and theorem Quasi-fibration sequence Iy — Ep — BM

@ Let M =Ny x N4 be the direct product (as a partial
abelian monoid !) of N<4 with itself.

00110/01]11]
10[ x |11
01[11]
1] x| x

X

X

X

Then BM =~ S' x S' and we know from the theorem that
An element of Iy Iooks as follows.

)
D
)
®
D
[
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Scanning map Iy — Q(S' x S") can be graphed as follows.

‘@
\ Z
®
N Jj

7T0(/M) g7T1(S1 X 81) N ASYA
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Main construction and theorem Quasi-fibration sequence Iy — Ep — BM

© Let M = C; is the configuration space of finite subsets of
R'. Then we know from Milgram-May-Segal’s theorem that
BCy =~ Cy ® S' ~,, QSS' = QS2. Now, our theorem
asserts that

Iy ~w Q282
So any element of 7352 can be written as a based loop in

Iu. A generator of 7352 = Z is given by a Hopf map
n: 8% 82
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Corresponding loop in /y is given by :

4

\ \

77
e

—d

N
\
\ \
X
\
T
\
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Crossing change gives an inverse :

i

la

\ \

N
\
\ \
X
\
T
\

77T
(ST

—d —d
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Corresponding loop in /y is given by :

4

\ \

77
e

—d

N
\
\ \
X
\
T
\
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Crossing change gives an inverse :

i

la

\ \

N
\
\ \
X
\
T
\

77T
(ST

—d —d
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Indeed, we can paste two surfaces to remove them:

(Step 1)
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Indeed, we can paste two surfaces to remove them:

(Step 2)

f—

VG N
G p—

S
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Indeed, we can paste two surfaces to remove them:

(Step 3)
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Indeed, we can paste two surfaces to remove them:

(Step 4)

59/61



Configuration space of intervals with partially summable labels
Approximation map Iy — Q' BM
Main construction and theorem Quasi-fibration sequence Iy — Ey — BM

Moreover, if we use the standard embedding R' — R? to get a
map Ic, — Ic,, and this amounts to an embedding of
configuration of intervals in R? into configuration of intervals in
R3 under the standard embedding R? — R3. This corresponds
to the suspension map Z = m3(S?) — m4(S%) = Z/27Z. So the
above pictures also show the vanishing of 21 in 74(S®).
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Two lemma

For a proof of proposition 3, we may use the Dold-Thom
criterion.

For any open set V C F;BM — F;_1BM, there exists a homotopy
equivalence p~'V ~ V x Iy, so that V is distinguished.

Lemma 2
There exists an open set O C F;BM which contains F;_BM
and homotopies h; : O — O and Hy : p~'O — p~'0 such that
Qo ho = idp, ht(Fj,1BM) C Fj,1BM and h1(O) - Fj,1BM,
Q Ho=idy-1pandpoHy = hop forallt, and
Q H,:p'z— p'hi(2) is a weak homotopy equivalence for
allz € O.
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