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THE SPACE OF INTERVALS AND AN APPROXIMATION TO
QrEnx

AR T RESEPIEE Rl HE (Shingo Okuyama)
Takuma National College of Technology

1. INTRODUCTION
Let Cn(X) be the configuration space of finite points in R” with labels in X. Asa

set, Cp(X) is given by
| : & finite subset C R"
Cn(X)={(Ssm) f:;_'xsu c }/"‘

where the relation is the base point relation, that is

S0~ @) = { HJZUG | HeesnT

We say X group-completes to Y if there exist an admissible H-space X which is
weakly equivalent to X and a group completion X —+ Y [?]. By definition, if X group-
completes to Y then H,(X)[m(X)™ 1] =~ H.(Y).

Then Segal showed the following

Theorem 1 (Segal {7]}. C,(X) group-completes to SI®L" X, When X is connected,
Cn(X) ™, Q"X

By the above theorem, it is natural to expect that if we could put a Hopf inverse to
Cn(X) in some nice way, then we get a model which approximates Q?T"X even when
X is not connected. We recall the following special case of D.McDuff’s construction|?].
We put

+ Ny S : a finite subset C R"
@)= {50 5 8B b/~
where the topology is given so that two points with the opposite parity in {1} can
collide and annihilate. By the annihilation of oppositely charged particles, this space
can be considered as a space constructed from C,,{S°) by putting a homotopy inverse to
it. But it does not approximate Q"E"8? = O"8", indeed, it is showed by McDuff that
CE(R™) 2, (8" x S™/A), where A denotes the diagonal subspace of "X x T"X

By an interval in R® we mean a subspace J x v C R x R* where J ¢ R! is a

bounded interval and v € R"~!. We put

00 = {1, (o)) | L] et terla i B 1/

This set is topologized so that

~ Any two intervals can be connected into one interval if they are of different type
in meeting ends (i.c. one is closed and the other is open) and their labels in X
coincide, and

— Any half-open interval can vanish when its length comes to be zero.

Theorem 2 (Main theorem). J,(X) =~ O"E"X (even for non-connected X)

61



The construction of I,(X) and the above theorem is inspired by the idea of Prof.
K.Shimakawa concerning the same problem genersalized to the G-equivariant setting.
Let G be a group acting on X, and V be an orthogonal G-module. which contains all
the irreducible G-representations inifinitely many times as direct summands. We denocte
the space Map,{V¢, VA X) of based maps by QVEY X, where V¢ denotes the one point
compactification of V. When G is finite, it is krown that the configuration space Cy (X)
of finite points in V with labels in X is weakly equivalent to QVEZV X, but when G is
infinite, Cy(X) is too small to give such an approximation. His idea is to substitute
Cy(X) hy a space of sorne class of manifolds embedded in V' and get a weak equivalence
to VIV X. Especially, the manifolds can be cut and pasted in his space of manifolds,
which specializes to the connection of intervals in our space.

We give an outline of the proof of the main theorem in §2. In §3, we explain how I,(X)
is related to Q"E"X by observing the idea of physical analogue behind the definition of
a: I{X) — QC,_;ZX. We also give the explicit definition of o in §3.

2. QUTLINE OF THE PROOF OF THE MAIN THEOREM

Let U be a subspace of R} and I;(X)y denote the space of intervals in U. We
denote I,(X), = I(X)p,s)- I[1(X) is homeomorphic to 1{X), for any s > 0. We
say that ¢ € I}(X)y is e-separated if it consists of intervals which satisfy the following
conditions.

(1) they are subinterval in U — 8U,/p, where {7 denotes the closure of U and 87, /2
denotes the e/2-neighborhood of its boundary,
(2) any two ends {of the same or distinct intervals) with the same parity are sepa-

rated more than or equal to €, and
(3) any two intervals with the distinct labels in X are separated more than or equal

to &.

Let I{(X)y be the subspace of I3 (X)y consisting of all the e-separated elements. We
define
I (X} = Cpa(I5{X)).

(We agree here, that C,,_; is a continuous self-functor on the category of topological
abelian partial monoids [?],[?]. Abelian partial monoid structure of If{X) is given by
superimposition.)

Then we define

I(X)={{t,e,8) | 0<e<é 520, §€I5{X)s},

with a topology considered as s subspace of I, (X }o X (0,8] x [0, 00). Then the following
lemma holds.

Lemma 3. I,(X) ~ I(X).

We can define a space E’n(X ) and maps i and p appropriately so that the following
proposition holds.

Proposition 4. I,(X) 2 E,(X) & Cn-12X is a quasifibration.

Proof. We follow the Dold-Thom criterion for a quasifibration.[?] So it suffices to show
two lemnmas below. Q

Lemma 5. (Dold-Thom criterion 1)
For any open set V C F;C,,EX — F;_1C, 1 XX, V is distinguished.
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Lemma 6. (Dold-Thom criterion 2)
There exist an open neighborhood U of F;_1C,~1ZX in FjCp-15X and a homotopies
he : U —> U and Hy : p71U — p~ U such that

(].') hg = idy and h](U) C Fj-]Cn-lz:X,

(2) Hy =idy-1yy and pH; = hyp for all ¢,

(3) Hy :p7 'z — p~1h;z is a homotopy equivalence for all z € U.

Filtration F;C,_1£X is given in [?]. The proof of two lemmas above are quite lengthy
and we refer the reader to [?].
We have maps a and  which make the following diagram commutative.

Lx)y 2 Eux) -2 c,iTx

» | | |

QC,1ZX —— PCpZX — Cp1ZX.
The above quasifibration approximates the path loop fibration
QCr_1 XX = PCpr XX — Cp1 X,
once we have proved the following |
Lemma 7. E,(X) is weakly contractible.

As En(X ) is weakly contractible, 3 is a weak equivalence, and so is &. Then the main
theorem follows from Lemma ?7, since, by the Segal’s theorem, C,,_1TX =~ Q" 1¥nx,

3. THE MAP a : I,(X) - QC,_;ZX

Before giving the explicit definition of a, we observe that there exists an idea of
physical analogue behind it.

To relate In(X) with Q*Z"X, we regard an interval to be a string which produces
an electric field. Essentially, the electric property of a atring differs from an ordinary
electricity only in the direction of its tangent vector at two ends, so we first concentrate
on the case n = 1.

We introduce some extraordinary electricity of particles, the notion of a particle
‘charged half’. A particle charged +3 on the left(right}) make the same effect as a
particle charged +1 on the left(right) side and does nothing on its right(left) side.

A string works as a pair of particles each of which is charged +% or —%. If the string
has a closed(open) end on its left side, then we take it as if there is & particle charged
+5(— %) on the left located at § inside the end. We understand the exsistence of another
particle charged +3 on the right similarly for the right end of the string.

Then a point in I§{(X) is considered to be a configuration of finite number of such
strings in R. ff (X) = Map™(R,R x X) is defined by assigning to the configuration
of strings a field it produces, making the labels in X in consideration. Taking one
point compactification of R and a quotient appropriately, we get a map of : X)) -
Map, (RU{oo}, (RU{co})AX) = QEX. (Regard that, in Map,(RU{oc}, (RU{oc})AX),
oo is the base point of RU{00} on the source, while 0 is on the target,) of forall0<e < 6
constitutes a map a : I,(X) — Q*E"X.

If we prefer, we may define T’,‘(X ) = Q"Z"X by assignment of the field to the
configuration of strings in R", by regarding the effect of each string in the direction
orthogonal to the first axis as the effect given by a ‘string charged +1".



Now we give the explicit definition of o : fn(X } = QC,_1ZX. Let ¢ be an element
of If(X)s. Suppose ¢ is represented by a k-tuple ((J1,21),- -, {Jk, %)) where J; is an
interval with end points ug; 1 and ug;. We also assume that u; ) < wu; for all 4. If u;
(j = 2i ~ 1 or 24) is a closed(open) end of J;, we put p; = 1(-1).

We define subintervals N; € [0,s] (i =1,-++ ,2k) as

N1 = [uy - €/2,Min{u1 + /2, u2 — /2)],
N; = [Max(ul - 5/2: Uj—1 + 5/2)3 Min(ui + E/2= Uit1 — E/?")] ' forl<i< 2k:
and
Nop = [Max(ugk — £/2, ugk—1 + €/2), uar +/2].
We define a function f : {[J%, N; — S1A X by
f(t) = [p;((t - u,)/e + (—1)‘/2)] A To(i+1}/2)s ifte N;
where S! is regarded as [-1,1]/{%1} and G(g) denotes the largest integer which does
not exceed g. We can extend f continuously to {0,s] in such a way that it is piecewise
constant outside | J2¥, Ni.

=1
This definition does not depend on the choice of a representative, so we obtain a map

oy : I3 (X)s — (2 X),

which is clearly an abelian partial monoid homomorphism. Then we define a map
a: [1(X) = QX by (£,¢€,5) — a5(£), which is also an abelian partial monoid homo-
morphism, if we regard 23X as an abelian partial monoid appropriately.

Then we define & map o : I, (X} — QC,_1(£X) by the composite

-~ - Chn-1{a
(X)) = Coct(T(X)) 24 €1 (QEX) — QCni(EX),

where the first map is given by an inclusion I§(X) — fl(X }, while the last map is given
by
[vs, las- - vy ] = (B [o1, () - S0k, ())& € 22X
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