Comonads: what are they and what can you do with them?

Melbourne Haskell Users Group

David Overton

29 May 2014

Table of Contents

(1) Motivation
(2) Theory
(3) Examples
(4) Applications
(5) Other Considerations
(6) Further Reading

Motivation

- Monads are an abstract concept from category theory, have turned out to be surprisingly useful in functional programming.
- Category theory also says that there exists a dual concept called comonads. Can they be useful too?
- Intuition:
- Monads abstract the notion of effectful computation of a value.
- Comonads abstract the notion of a value in a context.
- "Whenever you see large datastructures pieced together from lots of small but similar computations there's a good chance that we're dealing with a comonad." -Dan Piponi

Table of Contents

(1) Motivation
(2) Theory
(3) Examples
(4) Applications
(5) Other Considerations
(6) Further Reading

What is a Comonad?

- A comonad is just a comonoid in the category of endofunctors. . .
- A comonad is the category theoretic dual of a monad.
- A comonad is a monad with the "arrows" reversed.

What is a Comonad?

Both monads and comonads are functors. (Functor is its own dual.)
class Functor f where
fmap $::(\mathrm{a} \rightarrow \mathrm{b}) \rightarrow(\mathrm{f} \mathrm{a} \rightarrow \mathrm{f} \mathrm{b})$
class Functor $m \Rightarrow$ Monad m where
return : : a m a
bind $::(\mathrm{a} \rightarrow \mathrm{m}$ b) $\rightarrow(\mathrm{m} \mathrm{a} \rightarrow \mathrm{m} \mathrm{b})$ join : : m (ma) $\rightarrow \mathrm{m}$ a
join $=$ bind id
bind $f=$ fmap $f \circ$ join
$(\gg=):: \mathrm{ma} \rightarrow(\mathrm{a} \rightarrow \mathrm{mb}) \rightarrow \mathrm{mb}$
(>>=) = flip bind
class Functor w \Rightarrow Comonad w where extract : : w a \rightarrow a extend : : (w b \rightarrow a) $\rightarrow(\mathrm{w} b \rightarrow \mathrm{w}$ a) duplicate $::$ w a \rightarrow w (w a)
duplicate $=$ extend id extend $f=$ fmap $f \circ$ duplicate
$(=\gg):: \mathrm{w}$ b $\rightarrow(\mathrm{w} \mathrm{b} \rightarrow \mathrm{a}) \rightarrow \mathrm{w} \mathrm{a}$
(=>>) = flip extend

Intuition

- Monadic values are typically produced in effectful computations:

$$
\mathrm{a} \rightarrow \mathrm{mb}
$$

- Comonadic values are typically consumed in context-sensitive computations:

$$
\mathrm{w} \mathrm{a} \rightarrow \mathrm{~b}
$$

Monad/comonad laws

```
Monad laws
    Left identity \(\mid\) return \(\circ\) bind \(\mathrm{f}=\mathrm{f}\)
Right identify bind return = id
    Associativity bind \(f \circ\) bind \(g=\) bind ( \(f \circ\) bind \(g\) )
```

Comonad laws
Left identity extract 0 extend $\mathrm{f}=\mathrm{f}$
Right identity extend extract = id
Associativity extend $\mathrm{f} \circ$ extend $\mathrm{g}=$ extend ($\mathrm{f} \circ$ extend g)

Table of Contents

(1) Motivation
(2) Theory
(3) Examples
(4) Applications
(5) Other Considerations
(6) Further Reading

Example: reader/writer duality

-- Reader monad
instance Monad ((\rightarrow) e) where return $=$ const bind $f r=\lambda c \rightarrow f(r c) c$
-- Writer monad
instance Monoid e \Rightarrow Monad ((,) e) where
return $=(($,$) mempty)$
bind $f(c, a)=\left(c \diamond c^{\prime}, a^{\prime}\right)$ where ($\left.c^{\prime}, a^{\prime}\right)=f a$
-- CoReader (a.k.a. Env) comonad instance Comonad ((,) e) where extract $=$ snd extend $\mathrm{f} \mathrm{w}=$ (fst $\mathrm{w}, \mathrm{f} \mathrm{w}$)
-- CoWriter (a.k.a. Traced) comonad instance Monoid e \Rightarrow Comonad $((\rightarrow)$ e) where

```
        extract m = m mempty
```

 extend \(\mathrm{f} \mathrm{m}=\lambda \mathrm{c} \rightarrow\)
 \(\mathrm{f}\left(\lambda c^{\prime} \rightarrow \mathrm{m}\left(\mathrm{c} \diamond \mathrm{c}^{\prime}\right)\right)\)

Example: state

```
newtype State s a = State { runState :: s -> (a, s) }
instance Monad (State s) where
    return a = State $ \lambdas }->\mathrm{ (a, s)
    bind f (State g) = State $ \lambdas }
        let (a, s') = g s
        in runState (f a) s'
data Store s a = Store (s -> a) s -- a.k.a. ''Costate''
instance Comonad (Store s) where
    extract (Store f s) = f s
    extend f (Store g s) = Store (f o Store g) s
```

One definition of Lens:
type Lens $\mathrm{s} \mathrm{a}=\mathrm{a} \rightarrow$ Store s a
Hence the statement that lenses are "the coalgebras of the costate comonad".

Example: stream comonad

```
data Stream a = Cons a (Stream a)
instance Functor Stream where
    fmap f (Cons x xs) = Cons (f x) (fmap f xs)
instance Comonad Stream where
    extract (Cons x _ ) = x
    duplicate xs@(Cons _ xs') = Cons xs (duplicate xs')
    extend f xs@(Cons _ xs') = Cons (f xs) (extend f xs')
```

- extract $=$ head, duplicate $=$ tails.
- extend extends the function $\mathrm{f}:$: Stream $\mathrm{a} \rightarrow \mathrm{b}$ by applying it to all tails of stream to get a new Stream b.
- extend is kind of like fmap, but instead of each call to f having access only to a single element, it has access to that element and the whole tail of the list from that element onwards, i.e. it has access to the element and a context.

Example: list zipper

```
data Z a = Z [a] a [a]
left, right :: Z a }->\mathrm{ Z a
left (Z (l:ls) a rs) = Z ls l (a:rs)
right (Z ls a (r:rs)) = Z (a:ls) r rs
instance Functor Z where
    fmap f (Z l a r) = Z (fmap f l) (f a) (fmap f r)
iterate1 :: (a }->\mathrm{ a) }->\textrm{a}->\mathrm{ [a]
iterate1 f = tail o iterate f
instance Comonad Z where
    extract (Z _ a _) = a
    duplicate z = Z (iterate1 left z) z (iterate1 right z)
    extend f z = Z (fmap f $ iterate1 left z) (f z)
                (fmap f $ iterate1 right z)
```


Example: list zipper (cont.)

- A zipper for a data structure is a transformed structure which gives you a focus element and a means of stepping around the structure.
- extract returns the focused element.
- duplicate returns a zipper where each element is itself a zipper focused on the corresponding element in the original zipper.
- extend is kind of like fmap, but instead of having access to just one element, each call to f has access to the entire zipper focused at that element. I.e. it has the whole zipper for context.
- Compare this to the Stream comonad where the context was not the whole stream, but only the tail from the focused element onwards.
- It turns out that every zipper is a comonad.

Example: array with context

```
data CArray i a = CA (Array i a) i
instance Ix i }=>\mathrm{ F Functor (CArray i) where
    fmap f (CA a i) = CA (fmap f a) i
instance Ix i }=>\mathrm{ Comonad (CArray i) where
    extract (CA a i) = a ! i
    extend f (CA a i) =
        let es' = map ( }\lambda\textrm{j}->(j,f(CA a j))) (indices a),
        in CA (array (bounds a) es') i
```

- CArray is basically a zipper for Arrays.
- extract returns the focused element.
- extend provides the entire array as a context.

Table of Contents

(1) Motivation
(2) Theory
(3) Examples
(4) Applications
(5) Other Considerations
(6) Further Reading

Application: 1-D cellular automata - Wolfram's rules

```
rule :: Word8 }->\mathrm{ Z Bool }->\mathrm{ Bool
rule w (Z (a:_) b (c:_)) = testBit w (sb 2 a .l. sb 1 b .|. sb 0 c) where
    sb n b = if b then bit n else 0
```

```
move :: Int }->\textrm{Z a }->\textrm{Z a
```

move :: Int }->\textrm{Z a }->\textrm{Z a
move i u = iterate (if i < O then left else right) u !! abs i
move i u = iterate (if i < O then left else right) u !! abs i
toList :: Int }->\mathrm{ Int }->\textrm{Z a }->\mathrm{ [a]
toList i j u = take (j - i) \$ half \$ move i u where
half (Z _ b c) = b : c
testRule :: Word8 }->\mathrm{ IO ()
testRule w = let u = Z (repeat False) True (repeat False)
in putStr \$ unlines \$ take 20 \$
map (map (}\lambda\textrm{x}->\mathrm{ if }\textrm{x}\mathrm{ then '\#' else ' ') o toList (-20) 20) \$
iterate (=>> rule w) u

```

\section*{Application: 2-D cellular automata - Conway's Game of Life}
```

data Z2 a = Z2 (Z (Z a))
instance Functor Z2 where
fmap f (Z2 z) = Z2 (fmap (fmap f) z)
instance Comonad Z2 where
extract (Z2 z) = extract (extract z)
duplicate (Z2 z) = fmap Z2 \$ Z2 \$ roll \$ roll z where
roll a = Z (iterate1 (fmap left) a) a (iterate1 (fmap right) a)

```

\section*{Application: 2-D cellular automata - Conway's Game of Life}
```

countNeighbours :: Z2 Bool }->\mathrm{ Int
countNeighbours (Z2 (Z
(Z (n0:_) n1 (n2:_):_)
(Z (n3:_) _ (n4:_))
(Z (n5:_) n6 (n7:_):_))) =
length \$ filter id [n0, n1, n2, n3, n4, n5, n6, n7]
life :: Z2 Bool }->\mathrm{ Bool
life z = (a \&\& (n=2 | n = 3))
|| (not a \&\& n = 3) where
a = extract z
n = countNeighbours z

```

\section*{Application: image processing}
```

laplace2D :: CArray (Int, Int) Float -> Float
laplace2D a = a ? (-1, 0)
+ a ? (0, 1)
+ a ? (0, -1)
+ a ? (1, 0)
-4* a ? (0, 0)

```
(?) :: (Ix i, Num a, Num i) \(\Rightarrow\) CArray i a \(\rightarrow\) i \(\rightarrow\) a
CA a i ? d = if inRange (bounds a) (i \(+d\) ) then a ! (i +d ) else 0
- laplace2D computes the Laplacian at a single context, using the focused element and its four nearest neighbours.
- extend laplace2D computes the Laplacian for the entire array.
- Output of extend laplace2D can be passed to another operator for further processing.

Application: Env (CoReader) for saving and reverting to an initial value
```

type Env e a = (e, a)
ask :: Env e a }->\mathrm{ e
ask = fst
local :: (e }->\mathrm{ e') }->\mathrm{ Env e a }->\mathrm{ Env e' a
local f (e, a) = (f e, a)
initial = (n, n) where n = 0
experiment = fmap (+ 10) initial
result = extract experiment
initialValue = extract (experiment =>> ask)

```

\section*{Other applications of comonads}
- Signal processing: using a stream comonad.
- Functional reactive programming: it has been postulated (e.g. by Dan Piponi, Conal Elliott) that some sort of "causal stream" comonad should work well for FRP, but there don't yet seem to be any actual implementations of this.
- Gabriel Gonzalez's three examples of "OO" design patterns:
- The Builder pattern: using CoWriter / Traced to build an "object" step-by-step.
- The Iterator pattern: using Stream to keep a history of events in reverse chronological order.
- The Command pattern: using Store to represent an "object" with internal state.

\section*{Table of Contents}
(1) Motivation
(2) Theory
(3) Examples
(4) Applications
(5) Other Considerations
(6) Further Reading

\section*{Syntactic sugar}

At least two different proposals for a comonadic equivalent of do notation for comonads:
- Gonzalez's method notation - "OOP-like" with this keyword representing the argument of the function passed to extend.
- Orchard \& Mycroft's codo notation - resembles Paterson's arrow notation.


\section*{Comonad transformers}
-- Monad transformers
class MonadTrans t where
lift : : Monad m \(\Rightarrow \mathrm{m} \mathrm{a} \rightarrow \mathrm{t} \mathrm{m} \mathrm{a}\)
-- Comonad transformers
class ComonadTrans \(t\) where
lower : : Comonad w \(\Rightarrow \mathrm{t}\) w a \(\rightarrow \mathrm{w}\) a

The comonad package provides a few standard transformers:
- EnvT - analogous to ReaderT
- StoreT - analogous to StateT
- TracedT - analogous to WriterT
```

-- Free monad
data Free f a = Pure a | Free (f (Free f a))
instance Functor f }=>\mathrm{ Monad (Free f) where
return = Pure
bind f (Pure a) = f a
bind f (Free r) = Free (fmap (bind f) r)
-- Cofree comonad
data Cofree f a = Cofree a (f (Cofree f a))
instance Functor f }=>\mathrm{ Comonad (Cofree f) where
extract (Cofree a _) = a
extend f w@(Cofree _ r) = Cofree (f w) (fmap (extend f) r)

```
- Cofree Identity is an infinite stream.
- Cofree Maybe is a non-empty list.
- Cofree [] is a rose tree.

\section*{A bit of category theory}
```

-- Kleisli category identity and composition (monads)
return :: Monad m ma a m a
(>=>) :: Monad m m (a }->\textrm{m b})->(\textrm{b}->\textrm{m}c)->(\textrm{a}->\textrm{m
f >=> g=\lambdaa }->\textrm{f}a>>=
-- Co-Kleisli category identity and composition (comonads)
extract :: Comonad w \# w a }->\mathrm{ a
(=>=) :: Comonad w \# (w a }->\textrm{b})->(\textrm{w b }->\textrm{c})->(\textrm{w a }->\textrm{c}
f =>= g= lw lof w =>> g

```
- Each monad has a corresponding Kleisli category with morphisms a \(\rightarrow \mathrm{mb}\), identity return and composition operator (>=>).
- Each comonad has a corresponding Co-Kleisli category with morphisms w \(\mathrm{a} \rightarrow \mathrm{b}\), identity extract and composition operator (=>=).

Monad laws
Left identity
Right identify
\[
\begin{array}{r|ll}
\text { Left identity } & \text { return >=> f } & =\mathrm{f} \\
\text { Right identify } & \mathrm{f}>=>\text { return } & =\mathrm{f} \\
\text { Associativity } & \text { (f >=> g) >=> h } & =\mathrm{f} \ggg(\mathrm{~g}>=>\mathrm{h})
\end{array}
\]

Comonad laws
\begin{tabular}{r|ll} 
Left identity & extract \(=>=f\) & \(=f\) \\
Right identify & \(f=>=\) extract & \(=f\) \\
Associativity & \((f=>=g)=>=h\) & \(=f=>=(g=>=h)\)
\end{tabular}
Category laws
Left identity Right identify
\[
\begin{array}{r|ll}
\text { Left identity } & \text { id } \circ \mathrm{f} & =\mathrm{f} \\
\text { Right identify } & \mathrm{f} \circ \mathrm{id} & =\mathrm{f} \\
\text { Associativity } & (\mathrm{f} \circ \mathrm{~g}) \circ \mathrm{h} & =\mathrm{f} \circ(\mathrm{~g} \circ \mathrm{~h})
\end{array}
\]

\section*{Table of Contents}
(1) Motivation
(2) Theory
(3) Examples
(4) Applications
(5) Other Considerations
(6) Further Reading

\section*{Further reading}
- http://blog.sigfpe.com/2006/12/evaluating-cellular-automata-is.html
- http://blog.sigfpe.com/2008/03/comonadic-arrays.html
- http://blog.sigfpe.com/2008/03/transforming-comonad-with-monad.html
- http://blog.sigfpe.com/2014/05/cofree-meets-free.html
- https://www.fpcomplete.com/user/edwardk/cellular-automata
- http://www.jucs.org/jucs_11_7/signals_and_comonads/jucs_11_7_1311_1327_ vene.pdf
- http://www.haskellforall.com/2013/02/you-could-have-inventedcomonads.html
- http://www.cl.cam.ac.uk/~dao29/publ/codo-notation-orchard-ifl12.pdf
- http://conal.net/blog/tag/comonad```

