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INTRODUCTION

If G is a compact Lie group then by a G-space we mean a com-
pletely regular space X together with a fixed action of G as a group of
homeomorphisms of X. While one could probably point to results arbi-
trarily far back in the mathematical literature that could be interpreted as
theorems about G-spaces, the degree of development and flavor of the
theory has changed markedly in the past decade. Probably the most im- '
portant single new influence that accounts for this is the theory of fiber
bundles, particularly as developed in the 1949-50 Seminaire Henri Cartan
[2]. The effect of this has been a fruitful tendency to regard G-spaces as
generalized principal bundles. In view of the important role played by the
Ccross sections of a principal bundle it was natural to try to develop an
analogous concept for general G-spaces. The resulting notion of a slice in
a G-space will play a central role in our development of the theory and per-~
haps a quick resume of its genesis is in order. In [4] (1950) A. M. Gleason
proved the existence of a local cross section through each point of a G-
principal bundle. The first definition of what finally, through successive
modifications, became a slice is apparently found in [8] (1953) where J. L.
Koszul in effect proved the existence of a slice through each point of a
differentiable G-space. In [10] (1957) Montgomery and Yang gave the nearly
final definition of a slice and proved the existence of a slice through any
point of a G-space X which was a complete, separable metric space of
finite dimension. Finally in [12] (1957) Mostow using an elegant and power-
ful generalization of Gleason's technique proved the existence of a slice in

complete generality. As it will appear in the present work the definition of
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a slice has been simplified and generalized to some extent, and we feel that
the notion has now perhaps found a final form.

Chapter I of this memoir will be devoted to giving an exposition of
the general theory of G-spaces. Some of the theorems will appear un-
natural for such an exposition and have been put in only because of a specific
need for them in Chapter IL For the most part only the line of development
is new, the results being more 0T less well-known. Exceptions perhaps are
the discussions of compactifications of G-spaces and of G-AR's and G-ANR's
although the latter are implicit in Mostow's paper [12] mentioned above.
Also new is the notion of reduced join of G-spaces, an operation which plays
a basic role in the second chapter when we come to the construction of uni-
versal G-spaces, and which we expect will see further service in the future.
Although Chapter I does provide a reasonably complete introduction to the
general properties of G-spaces, it covers only the surface of present
knowledge. All the deep and beautiful results of a more specialized nature
that have been proved by Smith, Montgomery and Zippin, Yang, Borel,
Floyd, Conner, and Mostow, among others, have purposely not been
mentioned. The latter theory, which deals mainly with G-spaces that are
generalized manifolds and often makes special assumptions on the nature of
G, has been treated in considerable detail in a seminar held at The Institute
for Advanced Study in 1958-59 and it is expected that notes from this seminar
will soon be published as an Annals of Mathematics Study.

Chapter II is devoted to a development of a classification theory for
G-spaces that generalizes and parallels the well -known and powerful classi-
fication theory of principal bundles in terms of universal bundles and classi-
fying spaces. To a large extent the theorems of Chapter II roughly parallel
the theorems in Steenrod's book [13] or in [7] on the classification theory of
principal bundles, and once the proper definitions are made even the proofs

are often quite similar. There are two major exceptions though which take
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Chapter II out of the realm of straightforward generalization. The proof of
the analogue of the covering homotopy theorem (which, as in the principal
bundle case, is the key which opens all doors) lies deeper in the general
case, and secondly the construction of universal G-spaces is different,
bearing however a certain resemblance to that used by J. Milnor in [9]. We
have made no applications of the classification theory in this memoir, pre-
ferring to leave these to later papers. However there is a theoretical appli-
cation which deserves mention. Just as in the principal bundle case, the
classification theory makes possible the definition of characteristic classes
for G-spaces and these we expect will prove quite useful in the future.

In closing I would like to thank the many members of the Institute for
Advanced Study with whom I have discussed this work, in particular A.
Borel and D. Montgomery. I would also like to thank the Institute itself for
extending to me the privileges of membership during the preparation of this
memoir and the National Science Foundation for their fellowship support

during that period.

The Institute for Advanced Study March, 1959
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THE CLASSIFICATION OF G-SPACES

1. G-SPACES
l.1. NOTATIONS AND BASIC THEOREMS.

Throughout both chapters G will denote a compact Lie group with
identity e. We will write H € G to denote that H is a closed subgroup of
G and HC G if in addition H4 G. If X isa topological space an action
of G on X is a continuous map ® : GX X —X such that &(e,x) = x and
<I>(g1g2,x) = <I>(g1, @(gz,x)). By a G-space we shall mean a completely regu-
lar space X together with a fixed action of G on X. We shall in general
not explicitly name the action & and simply write gx for ®(g,x). Itisto
be noted that for each ge¢ G the map x — gx is a homeomorphism of X
onto itself which we call an operation of G, and that the map which takes
g ¢ G into the operation x —gx is a homomorphism of G into the group of
self homeomorphisms of X. If S is a subset of X and ge G we write
gS for {gs ls € S}, and if K is a subset of G then we write KS for
{gs lg ¢ K and s e S} = gLe{< gS. The following proposition is basic.

1.1.1. PROPOSITION. Let S be a subset of the G-
space X and let K be a subset of G, Then:

(a) if S is open so is KS;

(b) if K is closed and § is compact, KS is compact;

(c)if K is closed and S is closed, KS is closed.

PROOF. If S is open then gS is open for each g e G (because

each operation of G is a homeomorphism of X on itself) hence KS§ =

)

ge K
then KS being the continuous image of K X S under the map (g,s) —»gs is

gS is open. If K is closed (and hence compact) and S is compact

also compact. Finally suppose K and S are closed and let x be adherent
to KS. Choose a net {sa} in S and {ga} in K sothat g s —x. Since
a o

K is compact by passing to a subnet we can suppose g, —ke K. Then

1

. . - -1 -1 .
lim s =1lim g (g s )=k x, sok x belongs to S since S is closed.
a a o a
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Hence x ¢ kS CKS. g.e.d.
Given a point x of a G-space X the set Gx is called the orbit of

x. By the preceding re sult each orbit is compact. More generally given a

subset S of X we call GS the saturation of S. Note that GS is the union

of the orbits which intersect S. A subset S of X is called invariant if

GS = S, so the saturation of S is just the smallest invariant set which in-

cludes S. As an immediate corollary of 1.1.1

1.1.2. PROPOSITION. 1f a subset S of a G-space X

is open, closed, or compact then so is its saturation.

Given a point x of a G-space X we define the isotropy group at X,
denoted by G_, by G_ = {ge Glgx = x}.

If X is a G-space then clearly two orbits of X are either disjoint
or equal, in other words X is partitioned by its orbits. We denote the
orbit space or set of orbits of X by X/G, and we denote by IIX the
natural map x —Gx of X onto X/G. We give X/G the usual identifica-
tion space topology, namely the strongest topology making IIX continuous,
i.e. a subset S of X/G is open (closed) if and only if II;(S) is open
(closed) in X. Now if S S—X then clearly II;CI(IIX(S)) = GS, the saturation
of S, hence by 1.1.2

1.1. 3. PROPOSITION. 1f X is a G-space then IIX

is an open and closed mapping of X onto X/G.

Now in general given a space X a set Y and a function f taking X
onto Y there is at most one topology for Y which makes f both open and

continuous, hence

1.1.4. PROPOSITION. 1f X is a G-space the topology
for X/G is uniquely characterized by the conditions

that it makes IIX open and continuous.
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A mapping f of a G-space X into a topological space Y is called
invariant if f(gx) = f(x) for all ge G and xe¢ X, i.e. if f is constant on
each orbit. Clearly if f is a mapping of X/G into Y then To I, is an
invariant mapping. Conversely given an invariant mapping f : X — Y, the
function f=fe H}_Cl is well defined and, because HX is open, continuous.

Since clearly f = fo IIX

1.1.5. PROPOSITION. I X is a G-space and Y a
topological space then f-To IIX is a one-to-one
correspondence between maps of X/G into Y and

invariant maps of X into Y.

Since each orbit of a G-space is closed (in fact compact) it follows

that X/G is a T, space. Actually much better is true.

1.1.6. LEMMA. If f isa continuous real valued
function on a G-space X then f(x) = ff(gx)dg (where
dg represents the element of normalized Haar measure)
is an invariant, continuous, real valued function on X.
Moreover if S is an invariant subspace of X and

£ IS has its range in some (open, half open, or closed)

interval, then flS has its range in the same interval.
PROOF. Trivial.

1.1.7. LEMMA. Let X be a G-space and let K and
F be disjoint invariant subspaces of X which are re-
spectively compact and closed. Then there is an in-
variant map f of X into the unit interval such that
f|[Kz0 and f|F =1. Moreover if X is normal it

sufficies to assume that both K and F are closed.

PROOF. By Urysohn's lemma (applied, in case X is not normal,
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~
to K and the closure of F in the Cech compactification of X) we can find

a continuous real valued function f mapping X into the unit interval such

S %
that £ |[K=z 0 and £ |[Fzl. We then define f as in the preceding lemma.

1.1.8. PROPOSITION. 1f X is a G-space then X/G
is completely regular and if X is normal then so is

X/G.

PROCF. Let T be a closed subset of X/G and x a point of X/G
not in F. Then % is a compact invariant subset of X disjoint from;the
closed invariant subset F = H;(f“). By 1.1.7 we can find an invariant map
f:X —[0,1] such that £]¥=0 and f|F z1. BylL5 T=fo n;(l is a con-
tinuous map of X/G —[0, 1] and clearly ?I%“ =1. If X is normal we can

~

replace X by any closed subset of X/G disjoint from F. q.e.d.

1.1.9. PROPOSITION. If X is a G-space then HX
is a proper map of X onto X/G, i.e. if K is a com-
pact subset of X/G then H;(K) is a compact subset
of X.

PROOF. It is an easily proved general fact that a map of a Hausdor{:
space into a Hausdorff space is proper if it is closed and the inverse image

of every point is compact.

1.1.10. COROLLARY. If X is a G-space then X/G
is compact (respectively, locally compact), if and only

if X is compact (respectively, locally compact).

PROOF. Immediate from the fact that H‘{ is open and proper.
1.1.11. DEFINITION. If p is a metric for a G-space X then
p is called invariant if p(gx, gy) = p(x,y) for all ge G and x, ye X, i.e.

if each operation of G is an isometry.

1.1.12. PROPOSITION. If X is a metrizeable G-space
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there exists an invariant metric p for X. More-
over X/G is metrizeable and in fact p(x,y) =
Inf {p(x,y)|xe %X, v e y} is a metric for X/G. If

X 1is in addition separable then so is X/G.

PROOF. Let pr'< be any metric consistent with the topology of X and
define p(x,y) = fpﬂp(gx, gy)dg. It is easily verified that p is a metric de-

e
ki

fining the same topology and in fact the same uniform structure as p and
clearly the invariance of Haar measure implies the invariance of p. It 1s
also a matter of straightforward verification that ; is a metric function for
the set X/G. Since HX is clearly distance decreasing relative to p and
; and maps the e -sphere relative to p about x onto the ¢ -sphere about
IIX(s) relative to E it follows that HX is open and continuous relative to
p and ;, so that by 1.1. 4 ; is consistent with the topology of X/G. If X
is separable it is Lindel8f, hence X/G = HX(X) is Lindel8f and therefore
separable. q.e.d.

1.1.13. PROPOSITION. If X is a G-space and Y is
an invariant subspace of X then Y/G = IIX(Y) with
the topology induced from X/G.

PROOF. It is clear that as a set Y/G is just IIX(Y) and that HY:
HX |Y. Since HXJY is continuous when HX(Y) is given the induced to-
pology it will suffice, by 1.1. 4, to show that it is open. But Y invariant
-1
= i i i = O
means Y HX (IIX(Y)) which implies IIX(Y{\ 0) HX(Y) N IIX( ) for any
subset O of X. This formula applied to open subsets O of X, together

with the openness of HX gives the openness of IIXfY onto IIX(Y),. q.e.d.

1.1.14. PROPOSITION. If X is a G-space and J is
an invariant subset of X then every neighborhood V

of J includes an invariant neighborhood of J.

PROOF. We may assume that V is open. Then by 1.1. 3 HX(X-V)
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is closed in X/G. Moreover T-1 (J) is disjoint from I (X-V) for if

X(x) ¢ J where xe¢ X -V then xe¢ II (J) = J (by the invariance of J)
which contradicts J EV. Hence U= X/G - l'[X(X V) is a neighborhood of
T so U= H;(ﬁ) is a neighborhood of J which is clearly invariant and in-
cluded in V.

1.1.15. DEFINITION. Let X and Y be G-spaces. A mapping

f:X —Y is equivariant if f(gx) = gf(x) for all (g,x)e GXX. If in addition
f is one-to-one on each orbit of X then f is called an isovariant map. An
equivariant homeomorphism of X onto Y is called an equivalencé of X
with Y. If there exists an equivalence of X with Y then X and Y are

called equivalent.

1.1.16. PROPOSITION. If X and Y are G-spaces
and f: X —»Y is equivariant, then for any xe X we
have G CGf( ) and equality occurs if and only if f

is one-to-one on Gx. In particular if f is isovariant

then G =G for all xe X.
X f(x)

PROOF. That G C Gf( ) is trivial. If f is one- to one on Gx
then f|Gx is an equ1va1ence of Gx with Gf{x} so (f|Gx) is an equi-
variant map of Gf(x) onto Gx. Since it carries f(x) into x we get the

reverse inclusion G < Conversely suppose G =G . Then if

)— f(X)
= =f
f(glx) f(gzx) we get g;2 glf(x) (x) by equivariance, so g2 g ¢ Gf(x) GX
SO g2 gx = and g = g, proving that { is one-to-one in Gx.

1.1.17. PROPOSITION (AND DEFINITION). If X and
Y are G-spaces and f : X —Y is equivariant, then
there is a unique map T.X/G—>Y/G such that feo IIX =

IIY o f. This map is called the map induced by f.

PROOF. The equivariance of f implies that f maps each orbit of

X into a single orbit of Y from which the existence and uniqueness of a
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function f satisfying the desired relation is immediate. The continuity of
T follows directly from the continuity of f and HY and the openness of
IIX.

1.1.18. PROPOSITION. Let X and Y be G-spaces.

If T: X —>Y is an equivalence of X with Y then the

induced map T is a homeomorphism of X/G onto

Y/G. If X is locally compactand T : X =Y is an

isovariant map such that T is a homeomorphism of

X/G with Y/G then T is an equivalence of X with
Y.

PROOF. The first statement is trivial and it is also clear that if
T : X—Y is an isovariant map such that T isa homeomorphism of X/G
with Y/G then T is a one-to-one map of X onto Y. If X is locally
compact and x ¢ X let K be a compact invariant neighborhood of x (for
example GV where V is any compact neighborhood of x). Then HX(K)
is a neighborhood of IIX(x) so T HX(K) is a neighborhood of T ° l'IX(x) =
IIYT(x) hence II:[IT‘ I[X(K) = T(K) is a neighborhood of Tx. Since T IK
is a homeomorphism of K onto T{(K) it follows that T-1 is continuous at
Tx. q.e.d.
1.1.19. DEFINITION. A G-space X is:
(a) differentiable if X is a paracompact differentiable (=Coo) manifold and
the action of G on X is a differentiable map of G X X into X;
(b) Riemannian if X is a differentiable G-space with a differentiable Rie-
mannian structure and if each operation of G on X is an isometry;
(c) Euclidean if X is a finite dimensional real vector space with an orthogo-
nal structure and each operation of G on X is an orthogonal linear trans-

formation of X.

1.1. 20. PROPOSITION. Every differentiable G-space

can be made into a Riemannian G-space by a proper
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choice of Riemannian structure.

PROOF. Let T>:< be any differentiable Riemannian tensor for the
differentiable G-space X. For each ge G we denote by 6g the differen-
tial of the operation of g on X, and for tangent vectors u, v at a point x
of X we define T{u,v) = fT(ég(u), §g(v))dg. The joint differentiability of
(g, x) —gx implies that T is a differentiable tensor field on X (apply
Euler's theorem on differentiating under an integral sign in local coordi-
nates). Clearly T is a Riemannian tensor for X and as usual the in-
variance of Haar measure implies that each operation of G on X is an
isometry relative to T. q.e.d.
1.1.21. DEFINITION. If HCG we denote by G/H the space of
left H-cosets in G made into a G-space by the operations g(yH) = gyH. We
note that by [3] page 111, G/H is a differentiable G-space. Bya local cross-
section in G/H we mean a differentiable, non-singular map x: U — G where
U is a neighborhood of H in G/H, x(H) = e, and x{u) ¢ u. The existence

of a local cross-section follows from [3] page 109-110.

1.1.22. PROPOSITION. If X is a G-space and
x € X then T : ng —gx is an equivalence of G/Gx
with Gx. If X is differentiable then Gx is a com-
pact submanifold of X and T is a non-singular

differentiable imbedding of G/G_ onto Gx.
x

PROOF. Let F denote the map g —gx of G into X and TI the
natural projection of G onto G/Gx° Since clearly ¥ =T ° I the con-
tinuity of T follows from the continuity of F and the openness of II. That
T is equivariant is clear, and since the isotropy group at the point Gx of
G/Gx is just Gx it follows from 1.1.16 that T is one-to-one on the orbit of
GX which of course is all of G/Gx' Since G/Gx is compact T is an equi-

variant homeomorphism. Now suppose that X is differentiable. By homo-
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geneity it will suffice to show that T is differentiable and non-singular at
GX. Let x: U -G be a local cross-section in G/GX. Then we have T |U =
F e x sothat T is differentiable because F and X are. We finally must
show that 6T is non-singular at GX. Since the image of the tangent space
at Gx under §x is clearly a linear complement to the tangent space to GX
in the full tangent space to G at e, it will suffice to show that the null
space of §F at e is just the tangent space to Gx. Let Z be a tangent
vector to G at e andlet Exp tZ be the one-parameter group it generates.
Then for each ye Xt — (Exp tZ)y is a differentiable curve in X with tal;—

gent vector Z; at t = 0. From the relation (Exp(t1+ tZ)Z)y = (Exp t, Z)

1
sk

(Exp tZZ)y it follows that t —(Exp tZ)y is an integral curve of Z starting

from y. By the uniqueness theorem of ordinary differential equations it

follows that (Exp tZ)y = y if and only if Z; = 0. Now F(ExptZ) =

%

(Exp tZ)x so ZX = 8F(Z), hence 8F(Z) = 0 if and only if (Exp tZ)x = x,

i.e. if and only if Exp tZ is a one -parameter subgroup of G , i.e. if and
x

only if Z is tangent to Gx' q.e.d.

1.1.23. COROLLARY. Let X be a G-space, xe X
and let GX € HCG. Then the map gx —gH is an

equivariant map of Gx onto G/H which is differen-
tiable if X is differentiable and is an equivalence if

G =H.
X

PROOF. In view of 1.1. 22 it suffices to show that if KC HCG then
the map F : gK —»gH is a differentiable, equivariant map of G/K onto
G/H. Now if y: U —G is a local cross-section in G/K then F|U=Toy
where II is the natural projection of G on G/H. Since II and X are
differentiable so is F|U and by homogeneity F is everywhere differentiable,

The equivariance of F is trivial. q.e.d.
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1.2. ORBIT TYPES.

1. 2.1. DEFINITION. If H SG we denote by (H) the collection of
subgroups of G which are conjugate in G to H, (H) = {gHg-llg ¢« GL A
set of the form (H) will be called a G-orbit type. 1f X is a G-space and
Q is an orbit in X, say Q = Gx, then since clearly ng = ngg-l it follows
that {Gwlw e Q) = (GX) is a G-orbit type which we call the orbit Ell_)ﬁ_(zf Q
and denote by [92] . For each closed subgroup H of G we denote by X(H)
the union of all orbits of X that are of type {H) and we write X(H) =
(X

X (H)
partitioning of X into invariant subsets indexed by the orbit types of G. W

} for the set of orbits of X of type (H). We note that {X(H)} is a

call this indexed partition of X the orbit structure of X. Similarly {i(H)}
is a partition of X/G indexed by the orbit types of G which we call the

orbit structure of X/G.

1f (H) and (K) are two G-orbit types then we say that (H) € (K) if
some element of (H) is included in an element of (K). 1f (H) < (K) and
(K) £ (H) then clearly H and K have the same dimension and number of
components and it follows easily that (H) = (K), hence < is a partial order
ing of the G-orbit types (transitivity is clear) and we use < for the associ-

ated strong partial ordering.

1.2.2. PROPOSITION. Let © and Q' Dbe orbits

in perhaps different G-spaces. Then

(1) @ and Q' are equivalent as G-spaces if and only
if [9] =[] .

(2) There is an equivariant map f: Q@ — Q' if and only

if (@] <[a'].

PROOQF. Note that G/H is an orbit and clearly its type is (H).
Since equivalent orbits clearly have the same type (e.g. by 1.1.16) and sinc
by 1.1. 22 any orbit of type (H) is equivalent to G/H statement (1) is im-

mediate. If there exists an equivariant map f.-Q — Q' then choosing x ¢
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we have GX C Gf by 1.1.16 so that [Q] = (GX) < (Gf ) = [@']. Conversely

(x) (x)
if [Q] <[Q'] then we can find x¢ 2 and ye Q' with GXEGY and then

gx — gy is easily seen to be a well defined equivariant map of @ intoc Q'.

Alternatively the existence of f given [Q] <[Q'] follows from 1.1.23. q.e.d.

1.2.3. COROLLARY. If X and Y are G-spaces and
f: X =Y is equivariant (respectively, isovariant) then

[x] < [f(x)] (respectively [x] = [f(x)]) for all xe X/G.
REMARK. This is also an immediate consequence of 1.1.16.

1.2.4. COROLLARY. If X and Y are G-spaces and
if f:X —>Y isisovariant then, for any HCG,

§(X.)EY - and T(X,_ )Y

(H) (H) (H) (H)’

There is one of the subsets X(H) of a G-space X which is of par-

ticular interest, namely X This consists of the set of points x which

(GY
are left fixed by every operation of G and is called the stationary subset of

X. Since the elements left fixed by any one operation of G on X is clearly
closed, X is the intersection of closed sets and hence closed. We note

(G)
that IT__ | X is clearly a one-to-one map of X onto X , in fact it
< %) Y P (G) (G)

simply takes each point of X(G) into its unit class. Since IIX is a closed

mapping and X(G) is closed, HXIX(G) is a closed mapping, hence
1.2.5. PROPOSITION. If X is a G-space then l'IX

is a homeomorphism of X onto X .
P (G) (G)

There is a question naturally suggested by 1. 2. 4 that is often of
interest; namely suppose that X and Y are G-spaces and f: X/G —»Y/G
)T Y

satisfies (X for every orbit type (H). When can we "lift" f,

(H) (H)
i.e., when can we find an isovariant map f: X —Y having f as its induced
map. More generally given an invariant subset U of X and an isovariant

ES ~ *
map f : U—Y whose induced map is fll'[X(U) when can we extend f to
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an isovariant map of X into Y with induced map ¥. We will now answer
this question in two very special cases which will be of importance in

Chapter II.

1.2.6. PROPOSITION. Let X and Y be G-spaces
%
H))-—Y(H) for all

HCG. Then if £ 0% - XG — Y is an isovariant map

with induced map Af[(X/G - )NCG) there is a unique ex-

and let f: X/G —>Y/G satisfy ?(i(

tension f of f to an isovariant map of X into Y

with induced map 1.

PROOF. It is clear from 1.2,5 that if f exists it is given on X(G)

by f{x) = H,}l °ofo IIX(X) and it will suffice to check the continuity of this

extension. Since X(G) is closed and f so defined is clearly continuous on
X(G) it will suffice to show that if {Xa} is a net in X - X converging to a

%
point x of X then f (xa)—vf(x). Let V be any neighborhood of f(x).

() )

~ 1~ ~
Si f mzl Fom (x =1 c = it fol
ince f(x) e ¥ X( (G)) ¥ f(X(G)) < HY (Y(G)) Y(G) it follows
from 1.1.14 that there is an invariant neighborhood U of f(x) included in V.
Then U:': = II>_<1° ?-l o HY(U) is a neighborhood of x so Xar is eventually in

sk

U . Then foI_(x ) is eventually in T_(U) so f(x )e n-lo Fom (x ) is
o Y a X «a

X Y
eventually in H,}l(HY(U)). But since U is invariant H:{l(HY(U)) =U. q.e.d

1.2.7. DEFINITION. Let X be a G-space. An isogeny of X is an
isovaciant map T : X - X whose induced map T is the identity map of X/G

We denote by J(X) the set of isogenies of X.

1.2.8. PROPOSITION. If X is a locally compact G-
space then an isogeny of X is an equivalence of X with

itself, hence (J(X) is a group.
PROOF. Immediate from 1.1.19,

1.2.9., PROPOSITION. Let X and Y be G-spaces and
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let f:X —Y be an isovariant map. Then T —fo T

is a one-to-one map of _9 (X) into the set of isovariant
maps of X into Y with induced map f. If X is
locally compact then this map is onto, i.e. every
isovariant map of X into Y with induced map f

is of the form fe T for a unique T ¢ ,9 (X).

PROOF. 1t is clear that if T e 9 (X} then fo T is an isovariant
map of X into Y with induced map T If fo T1 =f DT‘2 then since f is
one-to-one on each orbit while T1 and T2 are self-homeomorphisms of
each orbit it follows that T1 = TZ. Now suppose X is locally compact and
that f' is an isovariant map of X into Y with induced map f. Given
Xe X/G f[; and f' I; are each equivalences of x with T(X). We define
T:X—>X by T[x=(£]%) " 0 (£ |X). Then clearly f' =fo T, MyoT=1,
and T(gx) = gT(x), so it will suffice to prove that T is continuous. Let
{xa} be a net in X converging to x. We must show that Txa — Tx. Since
X 1is locally compact we may assume that X, is in a compact neighborhood
V of x. Then Txa lies in GV which is also compact. If {Txa} did not
converge to Tx we could suppose by passing to a subnet that Txa —x' :} Tx.
Now

HX(x') = lim HX(TXQ) = lim HX(XQ) = IIX(X) =1 (Tx)

X

so x' and Tx are on the same orbit. On the other hand f(x') = lim f(Txa) =
lim f' (Xa) = f'(x) = {(Tx). But since f is one-to-one each orbit it follows
that Tx = x' a contradiction. q.e.d.

1.2.10. DEFINITION. If X is a G-space we denote by X X1 the
product of X with the unit interval made into a G-space by the operations
glx,t) = (gx,t). If f is a map of X X I into a space Y then for each te I
we denote by ft the map of X into Y defined by ft(x) = f(x,t). If Y is

also a G-space and f is isovariant then we call f an isovariant homotopy,
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or more explicitly an isovariant homotopy of fo (or an isovariant homotopy
connecting fo and fl).

REMARK. It is clear that with a natural identification (which we
shall always make) (X X I)/G = X/G X1 and that (by 1.2.4)if f: XX 1—Y

is an isovariant homotopy, then ?(i(H) X 1) §§(H) for every orbit type (H).

1.2.11. PROPOSITION. Let X be a normal G-space,
C a closed invariant subspace of X and U an in-
variant neighborhood of C. If T* is an isogeny of

U X1 satisfying T*(u, o) =u for all ue U then

there exists an isogeny T of X XI such that T(x, o) =
x forall x ¢ X and T|CXI= T*lcxl.

PROOF. By 1.1.7 we can find an invariant map f: X —1 such that
fIC = 1 and such that the support of f is included in U. We put T(x,t) =
T'P(x, f(x)t) for xe U and T(x,t) = x for xe X - U.

1.2.12. THEOREM. Let X be a locally compact G-
space satisfying the second axiom of countability and
let f:XXI—Y be an isovariant homotopy. *Let C
be a closed invariant subspace of X and U and in-
variant neighborhood of C. Let f* :UX1—Y bean
isovariant homotopy such that f: = fo |U and ?* =
?IHX(U) X I. Then there exists an isovariant homotopy
f' : XX 1—Y with induced map T such that f' |[CX1I=
£ |C x 1.

e '

PROOF. Byl.2.9 f* = f£|(UX1I) T where T is a uniquely de-
termined isogeny of U XI. Since f: = folU we have T*(u, o)=u forue U
Now X being locally compact and second countable is metrizeable and henc:
normal, so by 1.2.11 we can find an isogeny T of XX1I suchthat T|[CXTI:
Tai< |Cx1. Weput f' =feT. That f' has the desired properties follows
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from 1. 2. 9.

1. 3. PRODUCTS, JOINS, AND REDUCED JOINS OF G-SPACES.

1.3.1. DEFINITION., If {Xa} is an indexed family of G-spaces then
we make their topological product g Xa/ into a G-space by defining g(xa) =
(gxa).

REMARK. That the product so defined is a G-spa e follows from the
fact that a product of completely regular spaces is completely regular and
that convergence of a net in the product is equivalent to convergence of each
component.

1.3. 2. PROPOSITION. If Xl’ . Xn is a finite set
of G-spaces which are all differentiable, Riemannian,

or Euclidean, then their product is also differentiable,

Riemannian, or Euclidean.

PROOF. Trivial.
REMARK. If Xl’ . Xn are Euclidean G-spaces then as usual we
denote their product by X1 ... ® Xn.
1. 3.3. PROPOSITION. If {Xa} is an indexed family
of G-spaces and (Xa) is a point of their product, then
G, =[G .
(x ) a  x
a o

PROOF. Trivial

We now define the join of a finite indexed set of G-spaces Xl’ o Xn°
Let X be the invariant subspace of (XIXI) X ... X (XnXI) consisting of all
n
points ((Xl’tl)’ e (xn,tn)) such that Zl) ti = 1. We define an equivalence
e 1=
relation in X" b tti s s ~({x!,t!), ... 't i
n in vy setting ((xl, tl) (xn,tn)) ((x1 't ), , (xn,tn)) if
and only if ti = ti, and ti 40 = x, = xi'; i=1, 2... n. Itis easily checked

that the resulting identification space is completely regular and that, since

the equivalence relation is preserved by the operations of G, that it is a
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G-space. We denote the equivalence class of ((xl, tl), ce (xn, tn)) by
(tlxl, v tnxn) so that g(tlxl, cees tnxn) = (tlgxl, eees tngxn).
1. 3.4. DEFINITION. The G-space defined above is called the join
of X, ..., X and is denoted by X.® ... ox . If X, =Xi=1l ... ther
1 n (on) 1 n i
we denote the join by X .

REMARK. For the topological properties of joins we refer the reade:

to [9]. We note that if {il, . e ik} is a subset of {, ... n} and

{]1, - ‘]n-k} is the complementary subset, then {(tlxl’ ce tnxn) Iti S
=t = 0} is an invariant subspace of Xl" cee OX which is canonically
equivalent to X.® ... "Xj . In particular {(tlxl’ cens tnxn) ltj =1} can

be naturally identified withn_ka and so we shall regard the Xj and their
partial joins as being actual subspaces of X1° N °Xn° It is clear that to
within equivalence the join is a commutative and associative operation on G-
spaces.

From the definition of the equivalence relation defining the join it is

immediate that

— t 1 1 1
(tlxl, eees tnxn) = (t1 Xis oo tnxn)

if and only if t = t; and 1:i 1 0= X, = x; . It follows that

1. 3.5. PROPOSITION. Let Xl’ N Xn be G-spaces
and let x = {t.x,, ..., t X ) be a point of their join.
11 n n

Then G_ = r\{Gxilti {0i=1, ..., n}.

It is clear from this that the join of G-spaces Xl’ cees Xn may
have orbit types occurring in it that occur in none of the Xi' The reduced
join which we define next is free from this often undesirable possibility.

1. 3.6. DEFINITION. The reduced join of G-spaces Xl’ oo e Xn,

b *,,, ¥X , i i o ... ©°
denoted by X1 Xn is the set of points (tlxl’ tnxn) of X1 °

such that among the Gx with ti 4 0 there is one that is included in all the
i
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(*n)

others. If all the Xi are equal to X then we write X for their re-
duced join. We note that the reduced join is an invariant subspace of the

join and hence a G-space. We note that the remarks following 1. 3. 4 hold

equally well for the reduced join, that is each of the Xi and any partial
reduced join is a subspace of the full reduced join and that the reduced join

is a commutative and associative operation.

1.3.7. PROPOSITION. If Xl’ ce s Xrl are G-spaces
then an orbit type occurs in X1 ... 0% Xn if and only

if it occurs in at least one of the Xi'

PROOF. Immediate from 1. 3.5 and the definition of the reduced
join.

1.3.8. DEFINITION. Let HCG. If X is a G-space we define
XH = {xe X,Gx = H}. We say that X is (H)-simple if X is the saturation

of X _ or equivalently if X = X(

H H)’

REMARK. The equivalence of the two conditions is immediate from

. _ -1
the relation ng = ngg .

1.3.9. PROPOSITION. Let H C G and let N(H) be
the normalizer of H in G. If X is a G-space the
X is an N(H)-space. Moreover since H acts

H

trivially on Xy Wwe mayregard X . as an N(H)/H

H
space, and as such the isotropy group at each point

is the identity.
PROOF. Trivial.

1. 3.10. PROPOSITION. Let HCG. If Xl’ e Xn
are H-simple G-spaces then X = X, Fo.. % Xn is also

- 1 = d ©
(H)-simple and XH (Xl)H (Xn)H.

PROOF. X is (H)-simple by 1.3.7. It is clear that (X1)1_°I e °(Xn)H
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CXpype If x=(tpx, oo t x )e X, then the set of GXi with t. 3 0 all in-
clude H and are conjugate to H, hence equal H, so x¢ (Xl)H" el © (Xn)H.
q.e.d.
1. 3.11. PROPOSITION. Let X and Xl’ e e Xn be
G-spaces and let f:x — (¢1(x)f1(x), e ¢>n(x)fn(x))
be an isovariant map of X into X1 * .. 0 * Xn. Then

(1) The ¢ form an invariant partition of unity for X.
(2) f is an equivariant map of 4) (O 1]) into X..
(3) For each xe¢ X 3i such that 4) (x) -11 0 and

f (x) Gx'
Conversely if ¢1 e e ¢n and fl, e e fn satisfy
conditions (1) - (3) then the map f as defined above is
an isovariant map of X into X1 * L., X Xn.

PROOF. Straightforward verification.

1.4, EUCLIDEAN G-SPACES

1.4.1. PROPOSITION. For each closed subgroup H
of G there exists a non-singular, differentiable equi-
variant imbedding of G/H in some Euclidean G-space.
Thus H occurs as an isotropy group in some Euclidean
G-space or, what is the same, there is an orbit of type

(H) in some Euclidean G-space.

PROOF. Let LZ(G) be the Hilbert space of complex valued function:
on G which are square summable with re spect to Haar measure and make
L (G) into a G-space by defining gf for fe L (G) by (giNy) = flyg ).

Let f be a continuous real valued functlon on G/H which assumes the value
one only at the coset H and define fe L (G) by f(g) = f(gH) It is clear

that G = H. By the Peter-Weyl Theorem L (G) = @X where the X. are

i=1
finite dimensional, mutually orthogonal invariant linear subspaces and the
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direct sum is in the Hilbert space sense. Let fi be the projection of f on

Xi and let Hi = Gf . Then clearly H = O Hi. Now the closed subgroups of
i

a compact Lie group satisfy the descending chain condition: at each step in

a properly descending chain either the dimension or number of components

must decrease. Hence we can find integers il’ ey
n .

A H . Then X=X@... &®X. is a Euclidean G-spaceand x=f + ... +
j:]. lj 11 1rl 11
fi is a point of X with GX = H. That there exists a non-singular, differen-

n
tiable, equivariant imbedding of G/H in X is now an immediate conse-

i such that H =
n

quence of 1.1, 22. q.e.d.

1.4.2. PROPOSITION. If H CG and X isa
Euclidean H-space then there exists a Euclidean
G-space which, considered as an H-space by re-

striction, has X as an invariant linear subspace.

PROOF. We can assume that X can be given the structure of a
complex Hilbert space (consistent with its real vector space structure) in
which the operations of G are unitary (otherwise let X* be the complexifi-
cation of X; since X* has X as a real linear, invariant subspace,a Eu-
clidean G-space Y which has X* as an H-invariant linear subspace also
has X as an H-invariant linear subspace). We can alsc assume that the
representation of H in X is irreducible in this complex structure, for if
we write X as a direct sum of complex irreducible subspaces Xi and we
find a Yi which works for each Xi’ then the direct sum of the Yi' s works
for X. Our proposition then follows directly from Proposition 1, page 211 of
[3]. q.e.d.

We next come to one of the most basic results in the theory of G-
spaces.

1.4.3. TIETZE-GLEASON THEOREM. Let X be a

G-space (respectively, normal G-space) and let C be
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a compact (respectively, closed) invariant subspace
of X. 1If f° is an equivariant map of C into a
Euclidean G-space Y there exists an extension of

o

£° to an equivariant map of X into Y.

PROOF. By Tietze's Extension Theorem (applied, when X is not
normal, to the Gech compactification of X) there is an extension of f to a
map f' of X into Y. We make f' equivariant by the usual process of
averaging with respect to Haar measure. That is we define f: X—Y by
f(x fg f' gx)dg It is clear that ¢ is continuous, and if xe C then

g f (gx) = g f (gx) =g 1gf (x) —f (x) so f(x) = fﬂ:(x) and f is an extensior

of f . For arbitrary x we have, by the invariance of Haar measure,
f(yx) = fg f' (gys)dg = fyg ' (gx)dg. Since the operations of G on Y are
linear we can pass Y through the integral sign to get f(yx) = vi(x), so f is

equivariant. q.e.d

1.4.4. PROPOSITION. 1f f is an equivariant map of
a G-space X intoa Euclidean G-space V, there exists
an equivariant map f' of X into a Euclidean G-space
such that [f'(x) | =1 and such that f' maps homeomor-
phically any subset of X which is mapped homeomor-

phically by f.

PROOF. Let W bea one -dimensional Euclidean G-space on whic]
G acts trivially and let w be a non-zero vector in W. Clearly f*: X —
(f(x),w) is an equivariant map of X into the invariant set J = {v,w) ‘v € \
of V® W whichisa homeomorphism on every subset of X on which f
Since T :u —u/ Hu” is clearly an equivalence of J with a unit hemisphe

of VO® W, f' =T¢° ¢° has the desired properties. g.e.

1.4.5. PROPOSITION. Let X be a G-space, X ¢ X

and F a closed (not necessarily invariant) subset of
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X not containing x. Then there exists a bounded
equivariant map f of X into a Euclidean G-space
which is a homeomorphism on Gx such that

f(x) ¢ £(F).

PROOF. By l.4.1 we can find an element v of a Euclidean G-space
V1 such that Gx = Gv’ hence by 1. 2. 2 there is an equivariant homeomorphism
of Gx onto Gv (namely gx — gv) which by 1.4. 3 can be extended to an equi-
variant map of X into V.. By l.4.4 we can find an equivariant map f* of

1
X into the unit sphere of a Euclidean G-space V which is a homeomori)hism

on Gx. Since x# F, f*(x)éf*(Gx[\F) hence, since Gx(\F is compact, we
can find disjoint neighborhoods U1 and U2 of f*(x) and f*(Gxﬂ F) in the
unit sphere of V. We note that I - U1 and I - U2 have only the origin of

V in common (where I - Ui = {aru]O Lax<l, ue Ui}). Now f*—l(UZ)U X -F
is a neighborhood of Gx and so by 1.1.14 includes an invariant neighborhood
W of Gx. By l.1.7 we can find an invariant map h : X =1 such that

hlGx =1 and h[X - W=0. We define f: X -V by f(x') = h(x' )f*(x' ). It
is clear that f is a bounded equivariant map of X into V and since it
agrees with f* on Gx it is a homeomorphism on Gx. Since f maps
FN(X-W) into the origin while [[f(x)| =1 it is clear that f(x) is not ad-
herent to f(FN(X-W)). On the other hand f(FNAW)C f(Fn(f*'l(Uz)u (X-F)))

ko ok
_C_f(f 1(UZ))SI Cf(f 1(UZ))QI - U Since 1 - U1 with the origin deleted

5"
is a neighborhood of f(x) = f (x) in the closed unit ball of V which is dis-
joint from I - UZ’ it follows that f(x) is also not adherent to f(FNW).

Hence f(x) is not adherent to f{FN(X-W))VI(FNAW) = f{(F). q.e.d.

1l.4.6. PROPOSITION {Mostow [12]). Let X be a
metrizeable G-space, F a closed invariant subspace of
X and suppose that each of F and X - F admit equi-
variant imbeddings in Euclidean G-spaces. Then X
itself admits an equivariant imbedding in a Euclidean

G-space.
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PROOF. Let f1 be an equivariant imbedding of F into a Euclidean
G-space V, extended by 1.4. 3 to an equivariant map of X into V. Let p
be an invariant metric for X (1.1.12) and define h{x) = Inf {p(x, z) +
”fl(x) - fl(z)H ze F}. Then h is con;cinuous, invariant, positive on X - F

,<
and X TXe F o= h(xn) —» 0. Now let fZ be an equivariant imbedding of

X - F in a Euclidean G-space W which, by 1.4.4 we can assume to satisfy

”f:(x) ” = 1. Define fz(x) = h(x)f;(x). That f2 is continuous, one-to-one,
and equivariant is ciear. If J‘fz(xn) —>f2(x) then h(xn) = “fz(xn) ” —
”fz(x)“ = h(x) so fz(xn) —>f2(x) and hence X —X 80 f2 is an imbedding.

Moreover we can extend f2 to an equivariant map of X into W by setting

f,(x) =0 for xe F. We now define f: X >V @ W by f(x) = (fl(x), fz(x)).
It is clear that f is continuous, equivariant and a homeomorphism on each
of F and X - F. Since fz(x) =0 when xe¢ F and fz(x) :rl 0 when xe X -
F it follows that f is one-to-one. Now suppose that f(xn) —f(x). The
proof will be complete if we show that x —x, If xe X - F then fZ(X) :* 0
SO fZ(xn) 4 0 for large n, so X € X - F for large n and since f is a
homeomorphism on X - F we get X X If x ¢ F then by definition of h
we can choose z € F so that p(xn, Zn) < Zh(xn) and ”fl(xn) - fl(zn) ” < Zh(xn

Since h(xn) = |t (xn) | — ]]fz(x) | = 0 it follows that lim fl(zn) = lim fl(xn) =

2

fl(x), and since f is a homeomorphism on F we get z X But since

1
plx ,z )< 2h{x_)—0 it follows that x —x also. q.e.d.
n n n n

1.4.7. COROLLARY. Let X be a separable metric

G-space of finite dimension. If X - X(G) admits an

equivariant imbedding in a Euclidean G-space then so

does X.

PROOF. By a standard result X admits an imbedding in a Eu-

(G)
clidean space Y. If we make Y into a Euclidean G-space by letting G

act trivially then this imbedding is automatically equivariant. Since X(G)

is closed in X the corollary follows.
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1.4.8. COROLLARY. Let X be a G-space and let
Ol’ e, On be a covering of X by invariant open
sets. If each Oi admits an equivariant imbedding in

a Euclidean G-space then so does X.

PROOF. If n =1 the corollary is trivial so we can proceed by in=-
duction and assume that O1 RN On 1 admits an equivariant imbedding in

a Euclidean G-space. Then F = X - (O On l) being included in On

1
admits an equivariant imbedding in a Euclidean G-space, hence by 1.4.6 so

i

does X.

1.5. COMPACTIFICATIONS OF G-SPACES.
sk
Suppose X is a locally compact G-space and X =X v {0} is the

2.

one-point compactification of X. Then it is clear that X. becomes a G-
space if we define g(w) = o for all ge G.

If X is not locally compact then we might try to compactify X with
the Cech compactification B(X) of X. Then each operation of G on X ex-
tends uniquely to a homeomorphism of B(X) and the map which takes ge G
into this extended operation is a homomorphism of G into the group of
homeomorphisms of X. Unfortunately the natural map (g, x) —g(x) of
G X B(X) into B(X) is in general not continuous and in fact if we take
x* € B(X) - X the map g —>g(x*) is not even continuous in general. A
simple example, pointed out by M. Jerison, is as follows: X = complex
plane, G = unit circle, and the action of G on X is by multiplication. If

R is the real axis considered as a net in B(X) with its usual ordering and

ot
e

X is a limit point of R in B(X) then eiex* will be a limit point of eiGR.
Let K be the closure of K = {ze X{ |Im z| > IRe(z)]_l} in B(X). Then it
is readily seen that K is disjoint from the closure of R in B(X) (K and R
can be separated by a bounded continuous real valued function f on X whose
unique extension to B(X) separates K and the closure of R). Hence B(X) -

K is a neighborhood of x*. On the other hand if 6 ':L 0 (mod 27) the net
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eieR is eventually in K hence eiex* is in K, so eiex* does not approacl
x* as 6 —0.

We now set out to rectify this difficulty.

I.5.1. DEFINITION. Let X be a G-space. A G-space X* will be
called a G-compactification of X if X* is compact and X 1is a dense in-

o

variant subspace of X .
1.5.2. DEFINITION. A compactification X of a G-space X will

be called a Cech G-compactification of X if every equivariant map of X

into a compact G-space Y admits an (automatically unique) extension to an

equivariant map of X' into Y.

1.5.3. PROPOSITION. If X and X & are two
Cech G-compactifications of the G-space X then
the identity map of X extends (uniquely) to an equiva-
lence of X* with X**. Hence there is essentially at

)

most one Cech G-compactification of X,

PROOF. Trivial.

We now show that every G-space admits a eech G-compactification.
The construction is a fairly obvious modification of one of the classical
methods of obtaining the ordinary Cech compactification, suitably modified

so as to take the G-structure into account.

1.5.4. THEOREM. Every G-space admits a eech

G-compactification.

PROOF. Let F be the collection of all bounded equivariant maps of
X into Euclidean G-spaces (to avoid logical difficulties the Euclidean G-
spaces may be assumed to be restricted to the number spaces Rn). For

each fe F let X, be the closure of f(X) in the ambient Euclidean space.

f
Then {Xf}feF are compact G-spaces, hence so is their produce (I X
Now the map e : X —’fg[F Xf defined by (e(x))f = f(x) is clearly equivariant
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and by 1. 4.5 and Lemma 5, page 116 of [7] it follows that e maps X homeo-
morphically into feHF Xf. We let X be ‘Ehe closure of e(X) 1n feHF Xf and
identify x e X with its image e{x) in X . It is clear that X is a G-
compactification of X. That it is a Cech G-compactification follows by an

easy modification of the proof of Theorem 24 of [7], page 153. q.e.d.

For future purposes we will need only the following weak corollary.

1.5.5. COROLLARY. Every G-space is an invariant

subspace of a compact G-space.

1.6. G-AR's and G-ANR' s.
1.6.1. DEFINITION. A G-space X is a G-absolute retract (ab-

breviated G-AR) if given a normal G-space Y, a closed invariant subspace
F of Y and an equivariant map f:F —X there is an extension of f toan
equivariant map of Y into X.

A G-space X is a G-absolute neighborhood retract (G-ANR) if given

a normal G-space Y and an equivariant map f of a closed invariant sub-
space F of Y into X there is an extension of f to an equivariant map of

an invariant neighborhood of F into X.
1.6.2. PROPOSITION. A Euclidean G-space is a G-AR.

PROOF. This is just a restatement of the Tietze-Gleason Theorem
(1. 4. 3).
1.6.3. PROPOSITION. Let Y be a G-space, F
a compact invariant subspace of Y and f an equi-
variant map of F into a G-AR (respectively, G-ANR) X.
Then there is an extension of f to an equivariant map
of Y (respectively, an invariant neighborhood of F in

Y) into X.

PROOF. By 1.5.5 there is a compact (and hence normal) G-space
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o e

Y  with Y as an invariant subspace. Since F is closed in Y there is an

extension f of f to an equivariant map of Y (respectively, of an invariant
b3 ~

neighborhood of F in Y ) into X. Then le gives the desired extension.

q.e.d.
1.6.4. PROPOSITION. Let Y be an invariant sub-

space of a G-ANR X. If there exists an equivariant
retraction of an invariant neighborhood of Y in X

onto Y then Y is a G-ANR.
PROOF. Obvious.

1.6.5. THEOREM (Koszul [8] p. 138). Let M bea
differentiable G-space and ¥ a compact invariant sub-
manifold of M. Then there is an open invariant neigh-
borhood O of ¥ in M and an equivariant differentiable
retraction f of O onto X with the property that for
each ¢ ¢ £ there is a coordinate system in M centered
at o such that Go_ acts linearly, and in fact orthogonally,
relative to this coordinate system and f-l(o) is an open

disc centered at ¢ in an invariant linear subspace.

PROOF. By 1l.1.20 we can assume that M is Riemannian. Let
N(Z) be the normal bundle of £ in M and put N{(Z,¢) = {v e N(XZ) ”v” <e}.
ILet E denote the restriction of the exponential map to N(Z,¢). Then as is
well known if ¢ is sufficiently small (as we henceforth assume) E is a
diffeomorphism of N(Z,¢) onto a neighborhood O of £ in M. Moreover
if &g denotes the differential of the operation of an element g of G on M
then (g,v) —6g(v) defines an operation of G on N(Z, e} which makes
N(Z,e¢) a differentiable G-space. Since the operations of G on M are
isometries Ee&g=goE, i.e. E 1is an equivalence of N(Z,e) with O.
Then the fibre projection of N(Z, ¢) onto the zero cross-section, carried

over to O via E, gives the desired equivariant retraction of O onto Z
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and any Riemannian normal coordinates about ¢ has the required properties.

q.e.d.
1.6.6. PROPOSITION. If a compact differentiable

G-space admits a non-singular, differentiable, equi-

variant imbedding in a Euclidean G-space it is a G-ANR.

PROOF. Immediate from 1.6.4 and 1. 6.5 since a Euclidean G-space
is a G-AR (1. 6.2) and a fortiori a G-ANR.

REMARK. It is in fact the case that every compact differentiable G-
space admits a non-singular, differentiable, equivariant imbedding in a '
Euclidean G-space, and hence is a G-ANR. This was proved independently
by the author [14] and Mostow [12]. While both proofs are quite elementary
we will not repeat either here, but rather content ourselves with the following

special case, which is all we will require for further use,
1.6.7. COROLLARY. If H CG then G/H is a G-ANR.

PROOF. 1.4.1 and 1.6.6.

1.7. KERNELS AND SLICES.

To avoid endless repetition we shall assume throughout this section
that H is a closed subgroup of G.

1.7.1. DEFINITION. A subset S of a G-space X will be called an
H-ml (over IIX(S)) if:
(1) S is closed in GS;
(2) S is H-invariant, i.e. HS = S;
(3) for each ge G notin H gS is disjoint from 8.

An H-kernel S in X will be called an H—M in X if I'IX(S) is
open, or equivalently if GS is open.

If x¢ X thenbya slice at x we shall mean a GX-slice in X which
contains x.

REMARK. We note that the notion of an H-kernel is absolute while
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the notion of an H-slice is relative. In fact an H-kernel S is an H-slice in

Gs.
1.7.2. PROPOSITION. If S is an H-kernel (respec-

tively, H-slice) in X over S and O is any subset
~ -1~
(respectively, open subset) of S then S IIX (O) is

an H-kernel (respectively, H-slice)in X over O.
PROOF. Direct verification.

1.7.3. PROPOSITION. If {ga} is a disjoint collection

of open sets in X/G and Sa is an H-slice over §a then

S:US is an H-slice over §:U§
a a o «a

PROOF. The only fact that is perhaps not obvious is that S is
closed in GS. But since GS is the disjoint union of open sets GSa and

Sa = Sf\GSa is closed in GSQ, this follows easily. q.e.d.

1. 7.4, PROPOSITION. If S is an H-kernel in X and
s € S then GSC_'.H and hence HS = Gs.

PROOF. Immediate from the third condition for an H-kernel.
Now let S be an H-kernel in the G-space X and let K CH. Re-

garding S as an H-space S is the set of points s € S such that Hs is

(K)

conjugate in H to K. On the other hand X, NS is the set of points se S

(K)
such that GS (which, by 1.7.4, equals Hs)is conjugate in G to K. Clearly

then S(K) S X(K)f\ S. The following additional information will be needed in

Chapter II.

1.7.5. PROPOSITION. If S is an H-kernel in the
G-space X and KCH then S is closed in

(K)
X(K)/\S.

PROOF. Let {Sa} be a netin S converging to a point s ¢ X

; (K) (K)
S. Then H =h Kh™, or H = K where {h } is a netin H. Since
s a « h s a

a a o
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H is compact by passing to a subset we can assume that ha —he H, so

gK and so, by 1l.7.4,

h s —hs. Now H = K clearly implies that H
a a hs

h_ s

o
G, CK so G C h-lKh. On the other hand since s e X we have
hs — s — (K)

G = gKg'1 so G_ and K have the same dimension and number of com-
s s

ponents. It follows that H_ = G_ = h ™ kn SO s ¢ s(K). q.e.d.

1.7.6. PROPOSITION. If S is an H-kernel in the
G-space X then h: Hs(s) —>1'IX(s) is a well defined
homeomorphism of S/H onto HX(S) = GS/G, and for

any KEH, h(g ) is a closed subset of X

(K) (K)

PROOF. Since Hs(s) = IIS(s') means s' = hs for some he H,
while HX(s) = HX(s') means s' = gs for some ge G it follows trivially
that h is well-defined and, from the third condition for a slice, that h is
one-to-one. In proving that h is a homeomorphism we may, because of
1.1.13, assume that IIX(S) = X/G. Since I'IX is a closed map and S is
closed in GS = 8§, HXIS is a closed map. On the other hand l'IS is open,
and since IIX ,S =he IIS it follows that h is closed and h.1 open, so that
h is bicontinuous. The final remark follows easily from 1. 7.5 since

h(S k) =P ol (s(K)) = (HX]S)(S(K)) while (since GS=X) X _ . = (X
I (X ) \S) = XIS)(X(K)nS).

The following theorem, which could serve as an alternative definition

):

(X) (K)

of an H-kernel, will explain the choice of name.

1.7.7. THEOREM. Let X be a G-space and let
§’CX/G° Then f —>f—1(H) is a one-to-one corres-
pondence between all equivariant maps of II (S)
into G/H and all H-kernels in X over S. If S
is any H-kernel in X over S then the corres-
ponding equivariant map f of H (S) into G/H is
given by f(gs)=gH; ge G, s ¢ S.
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PROOF. With no loss of generality we can assume that § = X/G.

It is a trivial matter to check that if f: X - G/H is equivariant then fal(H)

is an H-kernel over X/G. Now suppose S is an H-kernel over X/G. It is

clear that if {: X - G/H is equivariant and S = f_l(H) then f(gs)= gH for
-1

€ S then 8, 88, =8

ge¢ G, se S. Nowif 8181 = 8,8, 8;» 8, ¢ G, s, s

and hence by condition (3) for a kernel gilgl € H1 so2 ng = gZH so the abozve
formula gives a well defined function f of X into G/H which clearly satis-
fies f(gx) = gf(x) and it remains only to check that this function is continuous.
Let K be a closed subset of G/H and let K be the union of the céi)sets in
K. By definition of the topology of G/K, K is closed in G and hence, since
S is closedin X, KS is closedin X by l.1.1. But clearly KS = f-l(IN{),

so f is continuous. q.e.d.

1.7.8. COROLLARY. Let X and Y be G-spaces
and f: X —Y an equivariant map. If S is an H-
kernel (respectively, H-slice)in Y over S then

f_l(S) is an H-kernel (respectively, H-slice)in X

over Nf'-l(g).,

-1 -
PROOF. If h: HY (8) = G/H is equivariant with S = h 1(H) then

hof: n;(f'l(sn — G/H is equivariant and (he f)_l(H) = f'l(S). q.e.d.
1.7.9. COROLLARY. Let S be an H-kernel in X
and let x: U—G be a local cross-section in G/H.
Then for any go ¢ G the map F : (u,s) —»gox(g;lu)s
is a homeomorphism of goU X S onto an open neighbor-
hood of goS in GS. Moreover if f is the equivariant

map of GS into G/H with S = f'l(H) then f(F(u,s)) = u.

PROOF. We recall that f(gs) = gH for ge G, s e S, hence since

X(g;lu)H = g;lu, because yx is a local cross-section, it follows that
1
(

£(F(u, s)) = g_(x(g] wH) = gog;lu =u. Thus F(g UXS)=f (g U) which is
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an open neighborhood of gOS in GS. The continuity of F is clear. Now
suppose that F(ua, sa) —F(u,s). We will complete the proof by showing that

u —u and s —s. Infact u = f(F(u,s )) = f(F(u,s)) = u, so X(g_lu )
a a « 2 T o «a

-1 . -1 s -1 S S
-—»)dgou) , and since X(go ua)sa = go F(ua, sa) —)go F(u, s) = X(go u) s it

follows that s, S g.e.d.

1.7.10. THEOREM. Let S and S' be H-kernels in
G-spaces X and Y respectively and let fo be an H-
equivariant map of S into S'. Then there is a uniquely
determined G-equivariant map f: GS —GS' such that
f[S = fo, namely f(gs) = gfo(s), ge G, s e S. Moreover,
if fo is isovariant then so is f and if fo is an im-
bedding of S into (respectively, an equivalence of §
with) S' then f is an imbedding of GS into (respec-

tively, an equivalence of GS with) GS'.

PROOF. 1t is clear that if f exists it is given by f(gs) = gf (s),
moreover since (1.7.4 and 1.1.16) G C'Crf o(s) it follows that the above
formula gives a well defined function of GS into GS' whose restriction to
S is fO and which clearly satisfies f(gx) = gf(x). If f0 is isovariant then
Gs = HS = Hfo(s) = Gfo(s) = Gf(s) for se S sothat (1.1.16) if f is an equi-
variant map it is isovariant. If fo is one-to-one and f(gs) = f(g's') then
gfo(s) = g'f (s') so g-lg’f (s') =1 (s). Since 8' is an H- kernel and f (s),
fo(s’ )e S' it follows from the th1rd cond1t1on for a slice that g g € H.
Since fo is H-equivariant fo(s) = fo(g g s') so s=g g s' and gs =
g's', so f is one-to-one. To complete the proof it remains only to check
that { is continuous (if f;l exists and is continuous then it will follow by
symmetry that f-1 is continuous). Let X: U—G be a local cross-section
in G/H and g, € G. Byl7.9 F: (u,s) — g x(g 1u)s is a homeomorphism
of g, U X S onto a neighborhood of g, S in GS and similarly F' : (u,s') —
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gox(g"lu)s' is a homeomorphism oflgoU X S onil:o a neighborhood of gOS‘
in GS'. Since f(F(u,s)) = fo(gox(go u)s) = gox(go u)fo(s) = F'(u, fo(s)) the
continuity of f on gOS is clear. Since g, was arbitrary f{ is continuous
on GS. q.e.d.
1.7.11. COROLLARY. Let S be an H-kernel in the
G-space X. If S admits an equivariant imbedding

in a Euclidean H-space then GS admits an equivariant

imbedding in a Euclidean G-space.

PROOF. In view of 1.7.10 it will cearly suffice to prove the.following
lemma.
1.7.12. LEMMA. If V is a Euclidean H-space then
there exists an H-equivariant imbedding of V onto an

H-kernel in some Euclidean G-space.

PROOF. By l.4.2 we can find a Euclidean G-space W which, as an
H-space, includes V as an invariant linear subspace. By l.4.1 we can find
a Euclidean G-space U witha ue U such that Gu = H. Clearly v —(v,u)
is an H-equivariant imbedding of V into W @ U so it will suffice to that
S = {(v,u)|ve V} is an H-kernelin W @ U. Clearly S is closed in
W @ U andis H-invariant. Moreover if ge G is not in H and (v,u) e S
then g(v,u)= (gv, gu) cannot be in S because gu 4 u. This shows that S is
in fact an H-kernel. q-e.d.

We have seen above that if S is an H-kernel in the G-space X then
f:gs —»gH is an equivariant map of GS onto G/H. Moreover f_l(gH) = g5
so that the inverse images of points are all homeomorphic to S. It is
natural to guess that GS is a fiber bundle over G/H with fiber S and pro-
jection F. We shall see that this is in fact the case and moreover that this
fiber bundle admits H/K as a structural group, where K = s[e\S Hs and that
the associated principal bundle is G/K under the action (hK){(gK) = gh_lK.

First we give a quick review of the theory of principal bundles and their
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associated fiber bundles as developed in [2].
By definition a G-principal bundle is simply an (e)-simple G-space,

i.e. a G-space X such that the isotropy group at each point of X is the
identity. It is easily seen that if H is a closed subgroup of G and K a
closed normal subgroup of H then the action defined above makes G/K a
H/K principal bundle with orbit space G/H. Now let X be a G-principal
bundle and Y any G-space. Note that the map II : (x,vy) ——*HX( x) is an in-
variant map of X X Y into X/G and hence induces a map f of (X X Y)/G
into X/G. We write X XG Y for (XX Y)/G and call the triple
(X XG Y, X/G, f) the fiber bundle with fiber Y associated with the principal
bundle X. To proceed further we need the following proposition:

1.7.13. PROPOSITION. Let G and T be compact

Lie groups and let X be a space which is simultaneously

A G-space and a I'-space in such a way that the gpera-

tions of G and I' on X commute. Then X/G is a

(x)=1

T'-space under the operation yII

(X, G) (X, G)(YX),

where 1-I(X,G) is the orbit map of X — X/G.

PROOF. That these operations of ' on X/G are well defined
follows from the fact that the operations of G and I commute (for this
implies that a operation of I' carries G-orbits into G-orbits). Now we have

commutativity in the diagram

rxx -25x

axty o l l T o)
' XX/G——>X/G

and since H(X G) and & are continuous and id X II is open, it fol-

X, G)
lows that the action of T on X/G is continuous. q.e.d.



34 RICHARD S. PALAIS

Now let us get back to our G-principal bundle X and G-space Y and
suppose we have a compact Lie group I' acting on X so that the operations
of I' on X commute with the operations of G. If we let I' act trivially on
Y then the operations of ' on X X Y commute with the operations of G on

XX Y. Thus (XX Y)/G=XX_,Y and X/G are both I'-spaces and since the

map {x,y)—x of XX Y —+XGis clearly TI" equivariant it follows that the
fiber map f : XXG Y - X/G is also.

Let us now specialize this process. Let as above K be a closed
normal subgroup of the closed subgroup H of G and let S be an M-space
such that QS Hs = K, so that we can regard S as an H/K space. As noted
above G/K is an H/K principal bundle under the operations (hK)(gK) = gh-lK
and the orbit space in G/H. On the other hand G/K is as usual a G-space
under the action g(g'K) = gg'K. Since clearly the actions of G and of H/K
on G/K commute we are in the situation discussed above (with H/K playing
the role of G and G the role of T'). In other words the fiber bundle
G/K XH/K S is a G-space and the fiber map f is an equivariant map of

G/K X S onto G/H. It follows of course that f-l(H) is an H-slice in

H/K
G/K Xy g

this slice with S. Let II : G/KX S —->G/K X

S (over the whole orbit space). Let us show that we can identify
i d
H/K S be the orbit map an

define k : S8 - G/K X S by k(s) = I(K, s). It is clear that k maps S

into f—l(H) (for f(II(I_gII/<I,<s)) = gH) and it is onto for if z ¢ f_l(H) then =z is
of the form I(hK,s). But T(hK,s) = I(hK, h " hs) = I((h " K)(K, hs)) =

II(K,hs) = k(hs). Moreover we see that k_1 is defined and continuous.
Finally k(hs) = I(hK, s) = II(h(K, s)) = hII(K, s) = hk(s), so h is an equivalence
of S onto f-l(H). Thus we have constructed a G-space X with S as a

slice over X/G. If Y is any G-space with S as a slice over Y/G then by

1.7.10 the identity map of S extends uniquely to an equivalence of X onto

Y. We collect these observations in the following theorem.

1.7.14. THEOREM. Let HSG and let S be an
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H-space. There exists a G-space X with S as an

*
H-slice over X/G. Moreover if K = £\ H and f
s

seS
is the equivariant map of X onto G/H such that
o *
S=f 1(H) then the triple (X, G/H, f ) is equiva-

lent to the fiber bundle with fiber S associated with
the H/K principal bundle G/K. If § occurs as an
H-kernel in a G-space Y then the identity map of §
extends uniquely to an equivalence of X with the sub -

space GS of Y.

We now consider under what conditions a point x of a G-space is
.

contained in an H-slice.

1.7.15. PROPOSITION. If S is a compact (respec-

tively, closed) H-kernel in a G-space (respectively,

normal G-space) X then there is an H-slice § in

X such that § = § N\GS.

PROOF. Let f be the equivariant map of GS into G/H such that

S = f_l(H). Since GS is compact {closed) if S 1is (l.1. 2) and G/H is a
G-ANR (1.5.7) we can extend f to an equivariant map f of an open in-
variant neighborhood O of GS in X into G/H (1.6.1, 1.6.3), Then

~ -

S=% 1(H) is the required H-slice.

1.7.16. COROLLARY. If S' is an H-slice over X/G
in the G-space X and if S' is an H-ANR then X is
a G-ANR.

PROOF. Let Y be a normal G-space and f an equivariant map of
a closed invariant subspace K of Y into X. Then by 1.7.8 S = f—l(s') is

an H-kernel in Y over II_(K). By the preceding proposition we can find an

H-slice S in Y such that S = SM K. Now the closure of S in Y is a

normal H-space and f,S is an H-equivariant map of the closed invariant
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subspace S into S', hence there exists an extension f of £]S to an H-
equivariant map of a neighborhood V of S in S into S'. By 1.7.10 there
is a unique G-equivariant map f of GV into X whose restriction to V is

f. Since GV is a neighborhood of GS = K and clearly £ |K = f the proof

is complete. q.e.d.

1.7.17. PROPOSITION. A necessary and sufficient
condition that there exist an H-kernel in the G-space
X which contains the point x 1is that GXC_:H. If this
condition is fulfilled then there is even a compact H-
kernel in X containing x, namely Hx, and in fact

Hx is a subset of every H-kernel containing x.

PROOF. 1t follows from 1. 7.4 that the condition is necessary, and it
is trivial that Hx is included in any H-kernel containing x. It remains to
show that if GXS H then Hx is an H-kernel. Since Hx is compact and
H-invariant it remains to show that if g is an element of G not in H then
gHx is disjoint from Hx. In fact if ghlx =h_xh, h

1 2771 T2

-1
so h2 gh1 ¢e H and ge hZth = H. q.e.d.

-1
¢ H then h2 ghlx = x

1.7.18. THEOREM. A point x of a G-space X is

contained in an H-slice in X if and only if Gx < H.
PROOF. Immediate from 1.7.15 and 1. 7.17.

1.7.19. COROLLARY (Mostow [12]). For each point x

of a G-space X there exists a slice at x.

PROOF. Recall (1.7.1) that a slice at x is a Gx-slice in X which

contains x.

1.7.20. COROLLARY (Montgomery and Zippin [11]).
If x is any point of the G-space X there is an in-

variant neighborhood V of x such that GV is con-
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jugate to a subgroup of GX for all ve V.

PROOF. Let S be a slice at x and let V = GS. If v =gs e V then

-1
= = " . 4 C s
GV Ggs gng and by 1. 7 GS _— Gx

1.7.21. COROLLARY. If X is a G-space and H SG
then U{X(K) [(K) < (H)} is an open invariant subset
of X.

PROOF. Immediate from 1. 7. 20.

1.7.22. COROLLARY. If X isa G-space and H <G
then \J {X

of X.

< (H)} is an open invariant subspace

(K) (¢

PROOF. This follows from 1. 7.2l since \J{X
[(K) < (K')}.

(K) [(K) < (H)} =

U
&<~ Hx)

1.7.23. COROLLARY. If X isa G-space and HCG
then X(H) is the intersection of an open invariant sub-
space of X and a closed invariant subspace of X.
Hence if X is locally compact so is X(H) and if X is
metrizeable then X(H) is an Fo"

PROOQF. X(H) is the intersection of U{X )](K) < (H)} and the

complement of U{X )f K) < (H)}.

REMARKS. The statements of 1. 7, 21, 1.7.22 and 1. 7. 23 remain

valid if we replace X by X etc., for X = HX(X

(H) (H) ) and HX is

(H) (H)

open and closed.
For a differentiable G-space X we can strengthen 1. 7.19 to say that
at each point x of X there is a slice at x which is an open ball in a Eu-

clidean GX— space.

1.7.24. PROPOSITION (Koszul [8]). If M isa
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differentiable G-space and o ¢ M there exists a
slice S at o such that, in a suitable coordinate
system centered at o, GO_ acts orthogonally and S

is an open ball in an invariant subspace.

PROOF. Inl.6.51let = =Go andput S=f (o). Since ¢ is a Go_-
kernel in = (1.7.17) and f is equivariant it follows from 1. 7. 8 (and the fact
that O is open in M) that S is a slice at ¢. The other properties are part
of the statement of 1. 6. 5. gq.e. d.

We now come to a very important result due to Yang [15].

1.7.25. THEOREM. If M is a differentiable G-space
then the orbit structure of M is locally finite, i.e. for
each o0 ¢ M there exists a neighborhood O of ¢ such
that O meets only a finite number of different M(H)'

In particular if M is compact then it has finite orbit

structure.

PROOF. If dim M = 0 then M is discrete and the theorem is
trivial. Hence we can proceed by induction and assume that the theorem
holds for differentiable I'-spaces N where I' is any compact Lie group and
dim N < dim M. Given o ¢ M let S be a slice at o satisfying the condi-
tions of 1.7.24 and let T be a sphere in S in a coordinate system centered
at ¢ relative to which GO_ acts orthogonally. Since Z is a compact
differentiable Gq—space and dim Z < dim M we can find subgroups
Hl' cees Hk of Gcr such that if ¢' e Z then G(r' is conjugate in GO_ to one
of the Hi (note that since S is a slice the isotropy group of ¢' in Gcr is
the same as its isotropy group Go" in G by 1l.7.4). Since the action of GO_
on S is linear it follows that the isotropy groups are constant along open
rays, hence if B is the ball in S bounded by the sphere Z then the iso-

tropy groups at points of B are all conjugate in Gc tooneof H, ..., H

1 k
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and G itself. We now put O = GB. Then O is a neighborhood of ¢ in
o

M andif y=gbe O, be B, then Gy = ng = gcbg‘1 = ngy‘lg'l where

Y€ Go- and H is one of Hl’ S Hk, or Go_. Hence O meets only the M(H)

where H is one of the above groups. q.e.d.

1.7.26. COROLLARY. If Vv is a Euclidean G-space

then V has finite orbit structure.

PROOF. As remarked in the proof of 1.7. 25 isotropy groups are
clearly constant along open rays of V, from which it follows that if
(HI)’ ce, (Hk) are the orbit types that occur in the unit sphere of V (there
are only finitely many by the theorem) then the only other orbit type occurring

in V can be the orbit type (G) of the origin.

1.7.27. COROLLARY. 1If G is a compact Lie group
then G has at most countably many orbit types, i.e.
there are at most countably many conjugate classes of

closed subgroups of G.

PROOF. This follows from 1. 7.26 and the well-known fact that to
within equivalence there are only countably many finite dimensional repre-

sentations of .

1.7.28. COROLLARY. If X 1is a separable metric
G-space then dim X = Sup {dim X |H €G} and

dim X/G = Sup {dim X IHSG}

(H)
(H)
PROOF. We recall that by the sum theorem if a separable metric
space Y is the union of countably many FU subsets Yi then dim Y =
Siup dim Yi (6] Theorem III2 page 30). Now X is separable metric by
assumption and X/G is by 1.1, 12. Also the X(H) and X(H) are FO_ by
1.7.23 and the remark that follows it. Finally by 1. 7. 27 there are only

bl ' X, .\'s. ce.d.
countably many X(H) s and X(H) s q.e.d



RICHARD S. PALAIS

1.7.29. COROLLARY. If H and K are closed sub-
groups of G then the number of conjugate classes of

closed subgroups of H that contain representatives of
g

the form H N gKg (ge G) is finite.

PROOF. Since G/K is a compact differentiable G-space, and hence
by restriction a compact differentiable H-space it follows from 1. 7.25 that
the isotropy subgroups of G/K as an H-space fall into a finite number of

-1
conjugate classes. But clearly the isotropy group at gK 1is just HngKg -

q.e.d.
1.7.30. COROLLARY. If a G-space X has a finite
orbit structure and HCG then X has finite orbit
structure as an H-space and any H-slice in X has
finite orbit structure as an H-space.
PROOF. Let (Kl)’ e (Kn) be the G-orbit types occurring in X.

If x ¢ X then the isotropy group at x when X 1is considered as an H-space
-1

is just H /\GX =HN gKig . The first statement is now immediate from

1.7.29 and the second follows immediately since clearly an H-invariant sub-

space of an H-space with finite orbit structure itself has finite orbit structure.

1.7.3l. PROPOSITION. If X isa separable metric

G_space and HCG then dim X, = dim X, - dim G/H.
P = (H) (H)

More generally if X(H) has dimension n at a point x

then }N((H) has dimension n-dim G/H at X = IIX(X).

PROOF. Because of 1.1.13 there is no loss of generality in assuming
that X = X(H)' Choose ge¢ G such that ng - H. Since the operation of g
on X is a homeomorphism, X has dimension n at gx, sO we can assume
that GX - H. Let S be a slice at x (1. 7. 19). Note that if s ¢ S then
Gs EH (1. 7.4) and since also Gs is conjugate to H it follows that GS = H.

Thus H acts trivially on S so S/H is homeomorphic to S. Byl.7.6 it
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follows that the dimension of HX(S) at x is the dimension of § at x.

Since S is a slice in X, HX(S) is open in X/G = i(H)’ hence the dimension
of X(H) at x is the dimension of S at X. Nowbyl.7.9 X at x is locally
homeomorphic to the product of S and the locally Euclidean space G/H. 1t
follows from a theorem of Hurewicz [5] that the dimension of S at x is

n-dim G/H. q.e.d.

1.7.32. COROLLARY. If X is a separable metric
G-space then dim X/G = Sup {dim )Nc(H) - dim G/H|
HCG}. Inparticular dim X/G < dim X.

PROOF. Immediate from 1.7.28 and 1. 7. 31.
If X isa G-space then in 1. 3. 8 we defined XH = {x e X!G = H}.
X

1 1 = .
Clearly GXH X(H)
also x is in X(H) then GX is conjugate to H and so has the same dimen-

sion and number of components as H, so Gx = H. In other words XH is

If x is adherent to XH then of course HSGX. If

closed in its saturation X Denoting the normalizer of H in G by N(H)

(H)
2s previously it is clear that XH is N(H)-invariant. Moreover if g is any
element of G not in N(H) and x ¢ XH then ng = ngg_1 = gHg-1 +H so

gx* XH. In other words gXH is disjoint from XH. We have proved

1.7.33. PROPOSITION. If X isa G-space and HSG

then XH 1s an N(H)-kernel in X over X(H)'

REMARK., If x¢ X then GX is conjugate in G to H and by

elementary group theory {g(I;I)GIgHg'l = Gx} is a well determined coset f(x)
of G/N(H). It is easily seen that f is the equivariant map of X(H) onto
G/N(H) such that X = £™\N(m)).

We are now in a position to analyze a situation that was apparently
first noted explicitly by A. Borel [1]; namely that X(H) is a fiber bundle
with structure group N{H)/H in two entirely different ways. In one case the

fibering is by the orbits of X(H) under G, in the other it is by the sets
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gHg
1.7.34. PROPOSITION. If X is a G-space and HCG

then X(H) is a fiber bundle over G/N(H) with fiber

XH and structural group N{(H)/H. The associated
principal bundle is G/H and the fiber map is
x —{ge G lgHg_1 = GX} so that the fiber over gN(H)

is just X _1-
gHg!

PROOF. This is immediate from 1.7.14 and 1. 7. 29.

We next note that, as was essentially remarked in 1. 3. 9, XH itself
is an N{H)/H principal bundle. Moreover the orbit space XH/(N(H)/H) =
XH/N(H) can by 1. 7. 6 be naturally identified with i(H)’ because XH is an
Suppose now that we form the associated fiber bundle

~

N(H)-slice over X .
(H) (H)

with fiber G/H, (XH X G/H)/(N(H)/H). This is canonically homeomorphic
to (G/H X XH)/(N(H)/H) which is the fiber bundle with fiber XH associated
with the principal N(H)/H bundle G/H. The latter in turn is by 1. 7. 34

canonically homeomorphic to X We leave it to the reader to verify that

(H)

under the combined homeomorphism of (XH X G/H)/(N(H)/H) onto X(H) the

fiber map goes into HXIX(H)' The final result is

1.7.35. PROPOSITION. If X is a G-space and H CcG

~

then X is a fiber bundle over X with fiber G/H
(H) (H) ’

and structural group N(H)/H. The associated principal
bundle is XH under the action defined by (nH)x = nx.

The fiber projection is HX ,X(H) so that the fibers are

just the orbits of X under G.
! (H)
1.8. EQUIVARIANT IMBEDDINGS IN EUCLIDEAN G-SPACES.
In this section we will derive Mostow's remarkable necessary and
sufficient conditions [12] for a G-space to admit an equivariant imbedding in

some Euclidean G-space. The technique will be a combination of Mostow's
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and the independent proof by the author for the differentiable case found in
[14].

We begin with a metatheorem which is often advantageous in proving
a theorem about compact Lie groups. It replaces the awkward technique of

doing a double induction on the dimension and number of components.

1.8.1. METATHEOREM. Let P be a statement valued
function defined for all compact Lie groups. If whenever
G is a compact Lie group the truth of P(H) for all

H C G implies the truth of P(G) then P(G) is true

for all compact Lie groups G. Hence in a proof that
P(G) is valid for all compact Lie groups G it suffices
to prove P(G) for an arbitrary compact Lie group G
under the assumption that P(H) is valid whenever

H CG.

PROOF. If P(G) were false for some compact Lie group G there
would be at least integer n which was the dimension of a compact Lie
group G for which P(G) was false. Among all compact Lie groups G of
dimension n for which P(G) was false there would be one G* with fewest
components. But then clearly P(H) is true for all H C G*, q.e.d.
The following theorem is apparently due, at least in its present form,

to J. Milnor.

1.8.2. THEOREM. Let X be a paracompact space
with covering dimension n and let {Ua} be an open
covering of X. Then there is an open covering
{Giﬁ}BeBii =0,1, ... n, of X refining {Ua} such

that GiB/\GiB' is empty if B 4 g',
PROOF. By making an initial refinement of {UQ} we can assume

that the order of the covering {Ua} is at most n. Let {4)0} be a locally
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finite partition of unity with support cba < Uoz' Given i=0, 1... n let Bi =
the set of unordered itl-tuples from the indexing set of the {Ua}. Given
= e = { > = <
B (ao, , ai) € Bi set GiB x e qu)a«' x)>0 and a¢ B ¢a(x)
¢ (x)j=0,1, ... 1i}. Since in a neighborhood of any point x only a finite

number of ¢ are not identically zero it follows that each G. i is open.,

Clearly G_Fi is disjoint from G. ig! it B -ir B', and G ca‘e ﬁ‘ U so {Giﬁ}
1s a covering of X. Given xe X let ao, ey am be the 1nd1ces such that
¢a(x)> 0, so arranged that (b (x) = d)l(x) = = ¢ ( )>¢a (x)>...>

i+l

q>a (x). Since x e n support ¢ C f\U and {UQ} has order < n it

m j=o J'JOJ'

follows that m, and hence i, is <n, and clearly xe¢ G q.e.d.

e , oo, a)

o i
1.8.3., PROPOSITION. Let X bea separable metric
G-space of dimension n < ®© and let H CG. There

ex1st n+tl H-slices S o Tt Sn in X such that

U Gs, = U X, (K) < (H)}.

PROOF. Let {ga} be the collection of subsets (automatically open)
of X/G which are of the form g = II (S ) where Sa is an H-slice in X.
It follows from 1. 7.18 that {S } is an open covering of U{X I(K) < (H)}.
Now by 1.7.32 dim X/G <n, so by the preceding theorem we can find an open

covering {G Q}B B k=0, ... n of U{)NC(K)'(K)S_(H)} which refines {ga}

and is such that G (\ G. B! is empty if B :} B'. Now by 1l.7.2 it is clear

that an open reflnement of {S } s actually a subset of {S } so that there

is an H-slice G,. over G... Then by 1.7.3 S =-\Uac is an H-slice
ip ip oF ip

over § = \U/ Gyg: Since USNi = U{X [(K) < (H)} it follows
Be B; i=

that U as, = ( §i) = U{X(K)[(K)g (H)}. q.e.d.
=0

i=o

H.
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-

1.8.4. THEOREM (Mostow [12]). Necessary and suf-
ficient conditions that a G-space X admit an equivariant
imbedding in a Euclidean G-space are that X be separable

metric, finite dimensional, and have finite orbit structure.

PROOF. Necessity is obvious from 1.7.26., we note that in Proving
sufficiency we can assume that if HC G then the theorem becomes true if
in the statement we replace G by H (1. 8.1). Let (Hl), cen, (Hk) be the
orbit types occurring in X. Because of 1.4.7 we can Suppose that no H, =

i
G so that each Hi € G. Now the sets U(Hi) = U{X(Hj) “Hj) < (Hi)} are

open (1.7, 21) and cover X, sobyl.4.8 it suffices to show that each U(H \

1/
admits an equivariant imbedding in a Euclidean G-space. By 1. 8. 3 there are

a finite number of H,-slices, say Sl, e, S1 such that U = GSIU. AV
; i o n (H;) o
GSn. Since each GS; is open it will suffice, again by 1.4.8, to show that
each GS; admits an equivariant imbedding in a Euclidean G-space. Now
each S; has finite orbit structure as an Hi-space by 1. 7. 30, and clearly
each S} is separable metric and of finite dimension. Since W€ may assume
the theorem proved for Hi’ because Hi CG, each S; admits an H.-equi-
i

variant imbedding in a Euclidean H.-space. The desired Consequence now
i

follows from 1, 7, 11. g.e.d.
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2. THE CLASSIFICATION OF G-SPACES
In this chapter we will be interested in the following question. Sup-
pose X is a locally compact, second countable space and {S,((H)} is a
partition of X into subsets indexed by a collection of orbit types of some
compact Lie group G. How many different (in the sense of equivalence) G-

spaces are there having X as orbit space with {)N( } as orbit structure,

(H)
and how can these different G-spaces be constructed in a canonical way. The

first section is devoted to making this question precise.

2.1. THE =-CATEGORY.

Let = be a collection of G-orbit types which we consider as fixed
during the following discussion.
2.1.1. DEFINITION. A T-space is a locally compact, second

H)}(H)EZ
> such that for each (H)e¢ = U{X(K)’(K)S_(H)} is open. If X and Y are

countable space X together with a partition {X( of X indexed by
T-spaces a T-map of X into Y isamap f:X—Y such that f(X(H))EY(Hj
for all (H)e T. If suchan f is an homeomorphism of X onto Y itis
called a T-equivalence of X with Y. If I is the unit interval and X is any
>-space we denote by X X1 the Z-space whose space is the product of X
and I and partition (XXI)(H) = X(H)XI for (H)e . If X and Y are Z-
spaces and fO is a ©-map of X into Y then a ¥-homotopy of fo is a
Z-map f of X X1I into Y such that fo(x) = f(x,0). In general for te I we
write ft for the Z-map ft(x) = f(x,t) and we say that fO is strongly Z-
homotopic to f.. We say that two Z-maps fo and f. of X into Y are

1 1
weakly £-homotopic if there is a T-equivalence h of X with itself such

1° h. We denote by M(X, Y) the set

of E-maps of X into Y, by m(X,Y) the set of strong T-homotopy classes

that fo is strongly £-homotopic to £

of =-maps of X into Y, and by '\YC(X, Y) the set of weak ¥-homotopy
classes of Z-maps of X into Y.

REMARK. If we give ™ (X, Y) the compact-open topology then
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’}NY\(X, Y) is just its set of arc components. The group of T-equivalences of
X induces a group of permutations of ™(X, Y) in an obvious way which,
since it preserves arc components, in turn induces a group of permutations
of %(X, Y), and 'Y\‘\*(X, Y) is just the orbit space of ‘\;\(X, Y) under this
permutation group.

We note that a T-space being locally compact and second countable
is separable metric. Using arguments entirely analogous to 1. 7. 22 et. seq.

we see,

2.1.2. PROPOSITION. If X is a Z-space and (H)e I
then X K)< (H is open in X. Each X ,

U & ) [8) < ()} is op (H)
(H) ¢ = is the intersection of an open and closed subset
of X hence locally compact and an FU_, so that (since

Z is at most countable) dim X = SUP {dim X(H) ’(H) e T}

by the sum theorem.

2.2. G-SPACES OVER A T-SPACE.

In this section X is again some fixed collection of G-orbit types.
By a G'M of type X we shall mean a locally compact, second countable
G-space all of whose orbit types belong to X. The following proposition is

immediate from 1. 7. 21 and 1.2. 4.

2.2.1. PROPOSITION. If X is a G-space of type =
then X and X/G with their respective orbit structures
are X-spaces and IIX is a Z-map of X onto X/G. If
Y is a second G-space of type Z and f: X —>Y is
isovariant then f and 7 : X/G—Y/G are Z-maps.

if fO:X—>Y is isovariantand f: X X1 —Y is an
isovariant homotopy of fo then { is a Z-homotopy of

f0 and T is a Z-homotopy of ?O,
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2.2.2. DEFINITION. Let Z be a Z-space. A G-space over Z is
a triple (X, Z,h) where X is a G-space of type £ and h is a T-equiva-
lence of X/G with Z. If (X', Z,h') is a second G-space over Z then an
equivalence f of X with X' (as G-spaces) will be called a weak equiva-

lence of (X, Z,h) with (X', Z,h'), and will be called a strong equivalence

if h'o fo h-1 (which in any case is a T-equivalence of Z with itself) is the
identity map of Z. We will say that (X, Z,h) and (X', Z,h") are strongly
(weakly) equivalent if there exists a strong {(weak) equivalence of (X, Z,h)

with (X', Z,h').

We can now state with more precision the problem whose solution (or
reduction) will occupy the remainder of the chapter.

2.2.3. PROBLEM. Given a T-space Z describe a method of con-
structing a complete set of representatives of the weak and strong equiva-

lence classes of G-spaces over Z.

2. 3. INDUCED G-SPACES.
Let Z be a T-space, (X, Z,h) a G-space over Z and f an iso-

variant map of X into a G-space Y'. Then we have a commutative diagram

X — > x

where the map f’; of Z into X'/G is the Z-map '\floh_l. We would now
like to point out that given any Z-map f:272-—>X'/G there is a G-space over

Z, (X, Z,h), which is unique to within strong equivalence, for which it is
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possible to fill in the above diagram.

2.3.1. DEFINITION. Let Z be a Z-space, X a G-space of type =
and f::< a Z-map of Z into X/G. Define Y = {(x,z)e¢ X X ZIHX(X) = f*(z)}
and make Y into a G-space by g{x, z) = (gx, z). Define f:Y -2 by
f(x, z) = x. Noting that the map (x,z) —z of Y into Z is invariant we
define h:Y/G—Z byh T_(x,z)= 2. We call the triple (Y, Z,h) the G-

Y %
space over Z induced by £* and denote it by £ —l(X), The map f: Y —X

is called the canonical isovariant map of Y into X.

2.3.2. PROPOSITION. If Z is a Z-space, X a G-
space and f*: Z—X/G is a Z-map then (Y, Z,h) =

f*-l(X) is 2 G-space over Zandif f: Y —X is the
canonical isovariant map of Y into X then f is in

fact isovariant and the following diagram commutes:

Y~£_>.X

Moreover if (Y', Z,h') is any G-space over
Z and {' : Y' - X is an isovariant map making the
analogous diagram commute then there is a map
T:Y' —Y whichis a strong equivalence of (Y', Z,h')
with (Y, Z, h).

PROOF. 1t is a matter of direct verification from the definition that

f is isovariant and that the diagram commutes. It is also clear that h is
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continuous and one-to-one and, since the map h T : (x, z) — z 1s an open

Y
-1
map of Y onto Z, h= (hell ) ° II is an open map of Y/G onto Z and
so a homeomorphism. If (H)e = then f( )CX because f is iso-
vl =) = ()
variant, and since f (X (H)) = Z(H) because f is a T-map, it follows
:}:_1~
that h f C Z from which it follows that h: Y/G — Z
(Vi) = £ X ) € 2

is a ©-equivalence. This completes the proof that (Y, Z, h) is a G-space
over Z and of the first part of the proposition. Now let (Y', Z,h') be a
second G-space over Z and f' : Y' —X an isovariant map such that the

following diagram commutes.

1
yr—t sx
Ty Ty
fl
Y' /G ——> X/G
hl
£
z

*

Then since HXf‘ y'y=£f h' IIY' (y') it follows that T :y' —(f'(y'),

h' o HY' (y'")) is a map of Y' into Y (see definition of Y, 2.3.1). More-
over T is clearly isovariant and we have the following commutative dia-

gram
Y! —————-——>~Y

N,/

Y lx Y

N
Y v

Y'/G ——>Y/G

N
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The only non-obvious commutation relations are f' = fo T and h'oII =

h"l'IY

Yl
© T both of which follow directly from the definitions of T, f, and h.

Since h and h' are both homeomorphisms it follows that so is T

and hence by 1.1.18 that T is an equivalence of Y! with Y. Moreover by

the ab

ove diagram hT = h! or hTh'_l is the identity map of Z, so T is a
g y P

strong equivalence of (Y', Z,h') with (Y, Z,h). q.e.d.

(1)),

dimen
dim Z
of X)

is of t

and f2

We can now state the solution of the problem 2,2.3, If » =
.o, (Hk)) is a finite collection of G-orbit—types and Z is a finite *
sional T-space we can find a G-space X depending only on

s «s., dim Z (and in fact we will give an ex licit construction

(Hy)
which is "universal' in the following sense. Every G-space over Z

¥ ] *-
he form f 1(X) for some Z-map f 1 Z—>X/G. Moreover fl 1(X)

1(X) are strongly (weakly) equivalent if and only if f;< and f; are

strongly (weakly) Z-homotopic. Thus the set of strong (weak) equivalence

classes of G-spaces over Z is in natural one-to-one correspondence with

m(z,

2.4,

this w

X/G)( Mz, X/G)).

THE COVERING HOMOTOPY THEOREM.,
The proof of the title theorem of this section is by far the hardest of

ork, Fortunately however much of the spadework has been done in

Chapter 1.

2.4.1. COVERING HOMOTOPY THEOREM. Let X
and Y be locally compact second countable G-spaces
and let fo : X =Y be an isovariant map. If X/G x

such

T
I1-Y/G is any homotopy of the induced map ?’o

that (% Y i
( (H) X 1) SY(H) for all H € G then there exists

an isovariant homotopy f: X x1 — Y of f with in-
o

duced map 1.

The proof of this theorem will pProceed by a sequence of lemmas. In
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all that follows all G-spaces are assumed to be locally compact and second
countable. We first make a definition.
2.4.2. DEFINITION. Let X and Y be G-spaces. We shall say

that Y is admissible for X if the conclusion of 2. 4.1 holds for every

fO :X—Y and f: X/GXI—Y/G which satisfy the hypotheses. We shall
say that Y is admissible if it is admissible for each G-space X, and we
shall say that a compact Lie group G is admissible if every G-space is
admissible.

We now fix a particular Lie group G and note that 2.4.1 is e:;luiva—
lent to

2.4.3. COVERING HOMOTOPY THEOREM. G is

admissible.
Because of 1. 8.1

2.4.4. LEMMA. In proving 2.4.3 we can assume that
if HC G then H is admissible.

2.4.5. LEMMA. If HCG and Y is a G-space such
that there exists an H-slice S' in Y over Y/G then

Y is admissible.

PROOF. Let X bea G-space andlet f :X —7Y and f:X/GX1I—
Y/G be as in 2.4.1. Let S = f;l(S') so that by 1. 7.8 S is an H-slice in X
over X/G. Then clearly SX1I is an H-slice in XX I over X/GXI. It
will suffice to show that there exists an H-isovariant homotopy f* SXI—
S' of f_ [S such that M, (f (s, 1)) = f(II (s), t), for then by 1.7.10 f(gs,t) =
gf (s t) w111 define an isovariant homotopy of XXI-—Y starting from f
whose induced map is clearly . Let us identify S/H with X/G and S' /H
with Y/G via the maps Hs(s) —>HX(X) and HS' (s') —’HY(s' ) (see 1.7.6).
Given K CH it follows from 1.7.29 that we can choose closed subgroups

K= Kl’ KZ’ “en Kn of H which are conjugate in G such that each closed
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subgroup of H which is conjugate in G to K, is conjugate in H to precisely
one of the Ki. Then under the above identification of S/H with X/G it fol-

lows from 1. 7, 6 that i(K) is the disjoint union of the closed subsets

S, . ..., 8 and similarly ¥
(K,) (K,) Y NK)
sets S sy ee., S . Now by 2. 4. 4 the existence of the desired map f
(K,) (Kp,)

will follow if we can show that ?(

~

is the disjoint union of the closed sub-

~

S(K) X I)E s Given s e we will

. g
~ N E =~ K) ~ (K),
ihow that f(s X I) C—:SEK)' Since f(s XI)C f(S(K) X 1) Ef(X(K) XI1)cy and

(K)
. . . - . . N‘ - ~' ~l
Y(K) is the union of disjoint relatively closed subsets S(K) = S(Kl), v (K‘n)
it will suffice in view of the connectivity of ?(gx I), to show that Nf‘(g, o) e gzK)

If we choose se¢ S with II_(s) = s and Gs = K then ?(g, o) =?O(HX(S)) =

X
. . . _ N )
~HY(fo(s)), and s1nce~ fo is isovariant Gfo(s) = Gs = K, so fo(s) € S(K) and
] — !
f(s,0) ¢ HY(S(K)) _S(K)' q.e.d.

2.4.6. LEMMA. Let X and Y be G-spaces. If Y
is admissible for X - X(G) then Y is admissible for
X.

PROOF. Immediate from 1. 2.6.

2.4.7. LEMMA. Let Y be admissible for X and
let fo and f be as in 2.4.1. L.et U be an open in-
variant subspace of X and C a closed invariant
subspace of X included in U. Let f* :UXI—>Y

be an isovariant homotopy of fo |U with induced map
?IHX(U) X I. Then there exists an isovariant homotopy
f:XXI—->Y of fo with induced map T such that
flCxI=f |CXI.

PROOF. Immediate from 1.2.12.
2.4.8. LEMMA. If Y is a G-space which is ad-

missible for every compact G-space X with X(G) = ¢
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then Y is admissible.

PROOF. Let X be any G-space and let fo, T be as in 2.4.1. In

constructing the desired f we may, by 2.4.6, suppose that X Let

G)~ *

{X } be a sequence of compact subspaces of X/G with X C interior X n+l
-1

and X/G=UZX . Put X =1 (X) so that by 1.1. 9 {X} is a sequence
n n n X' 'n n

of compact invariant subspaces of X with XnC interior Xr1+1 and X =

U R = = . i 1
ey Xn Moreover (Xn)(G) Xn(\ X(G) ¢. By hypothesis we can find an

isovariant homotopy £2 X2 XI—=Y of fo ’XZ with induced map ?I}NCZ X1
2 :

(we are using 1.1.13). Suppose that we have constructed maps f, ..., fk

such that f‘] X. XI—=Y is an 1sovar1ant homotopy of f lX with induced

map f]x X 1, and lexJ S X 1= gl }x X 1. Then by hypothesm and 2.4.7

-2
k+1
we can construct f so that : Xk+l X1 —Y is an isovariant homotopy
s ~y k+1 B
oi fo le+1 with induced map { IXkH X 1 and such that f le_l X1I=
’Xk 1>< I. It is now clear that f =1lim f is an isovariant homotopy of fo
with induced map 1. q.e.d.

PROOF OF COVERING HOMOTOPY THEOREM.

We now prove the Covering Homotopy Theorem in the form 2. 4. 3.
Let Y be an arbitrary G-space. Let X, fo, ? be as in 2.4.1. We must
construct an isovariant homotopy f{ of fo with induced map f. By 2.4.8

we can suppose that X is compact and X(G) =¢. Let Y' = H,;,l(?(X/G X 1)).
Then clearly it will suffice to show that Y' is admissible for X. Now

~ A~ o~
f i dh by 1.1. i ', d ! f X1
(X/G X I) is compact and hence by 9 sois Y', an Y(G) Y( (X(G)

is empty. Thus we can assume that Y is compact and that Y(G) =¢. By

1.7.19 we can find a slice S at each point y of Y (i.e. a Gy-slice con-

taining y). Since GY C G (because Y = ¢) it follows from 2.4.5 that

(G)
GS is admissible. Since the set of such GS cover Y and since GS is open
(by definition of a slice) it follows from the compactness of Y that we can

find a covering of Y by invariant open sets Ul’ . Un such that each Ui
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is admissible as a G-space. Let ﬁ Y(U ). By an obvious argument with
Lebesgue numbers we can find compact sets V1 e §m whose interiors
cover X/G and an 1nteger n such that for any choice of i = 1, 2... m and
tel f(V x [t - H’ t + ;1-]) C some UJ.. It will clearly suffice to construct

f(l) : X xJ[o, i—l] — Y such that f(l) is an isovariant homotopy of f with

induced map T IX/G x [o, —] for then we can in the same way construct

(Z)lxx i

= ]

] =Y anisovariant homotopy of fl( ) with induced map
~ 12 . . n :
f1X/G x [;, ;] and in n-such steps we w111 have the desired map f: X X1 —

Y defined by f(x,t) = f(l)( ,t) 1——1 <t< —, In other words there is no loss of

generality in assuming that n = 1, Hence foreach i=1, 2, ... m we can

assume there exists a well determined integer j(i) such that f(V X I)C U i)
Let 5‘(1, ey }N(m be a covermg of X/G by closed sets such that X Cin-

terior ’\7 and put X = X(X ), V. X(Vl). We shall now construct in-

ductlvely a sequence of functions f(l) e, ¢(n) with the following proper-

)

ties: W_ X1—Y is an isovariant homotopy of f IWi with induced map

?IH (W, )X I, where W is a compact invariant neighborhood of X v ... UX..
i

In fact since f(V X I)C U. i) and U, i) is admissible we can find f(l)'\~ :

1
V. XI—->U, (1) — Y an isovariant homotopy of fO ’Vl with induced map f[V X1

1
and we put (l) (1) W1 = Vl. Now suppose (1) ce ey (1 b
constructed. Since f( V. X 1) Cﬁ,(_) and U, i) is admissible we can find a

()% V XI—U, i )C Y which is an isovariant homotopy of f ,V with

have been

map f

induced map flVi X I. Moreover, by 2.4.7, if w! is any compact in-

i-1
variant neighborhood of le. . .VXi 1 included in the interior of Wi 1 then
(i)* ; (i-1) o,
we can suppose that f ’(Wi ani) XI=f kWi Ta Vi) X 1. We now de-

fine W, = w! UV, and ) f“'”[w' v g% Clearly 1), PW. XTI oY
is an isovariant homotopy of f lW with 1nduced map f’II <W1) X1 and W1
is a compact invariant nelghborhood of Xlu N Xi. If we take f = f(n)

then f is an isovariant homotopy of fO with induced map t. q.e.d.
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2.5. CONSEQUENCES OF THE COVERING HOMOTOPY THEOREM.

2.5.1. SECOND COVERING HOMOTOPY THECOREM.
Let G be a compact Lie Group, T a collection of G-
orbit types, and fo a T-map ?.,f a X-space Z into a
G-space X of type Z. Let fo be the Z-map IIXO fo
of Z into X/G. Then if £ : ZX1—-X/G is any
Z-homotopy of f: there exists Ja >~ -homotopy
f:ZXI—-X of fo such that f =HX° f.

%1 ¥
PROOF. Let (Y, Z,h) = fo (X) be the G-space over Z induced by

st
£

fo and let FO be the canonical isovariant map of Y into X, so we have

cammutativity in the diagram

Y ——>X

b

If we define F =f o h then by 2.4.1 there exists an isovariant homotopy
F:YXI—X of F_ with induced map F. Recall that Y = {(x,2z) e XX Z|
HX(x) = fo(z)} and that h e HY(x, z) = z, Fo(x, z) = x. We see that ¢(z) =
(fo(z), z) is a map of Z into Y such that fo = FOO ¢. Then we get the

desired map { by letting f(z,t) = F(é(z), t). g.e.d.

2.5.2. THEOREM. Let X be any collection of G-
orbit types and Z a Z-space. Then any G-space over
Z X1 is of the form Y X I. More precisely if

(W, 2 X1, k) is a G-space over Z X1 then it is

strongly equivalent to (Y X I, Z X I, hX id) where
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(Y, Z,h) is the G-space over Z induced by the map
z —>k_1(z, o) of Z into W/G.

PROOF. Let f = k_l so that f. is a T-equivalence of Z X I with
W/G and (Y, Z,h) is the G-space over Z induced by the map f: Dz —>fﬂ<(z, o).
Let fo be the canonical isovariant map of Y into Z, so that we have com-

mutativity in the diagram

ote

Now f=f o (h X id) (i.e. the map (y,t) —»fq~(h(y), t)) is a T~equivalence of

Y/G X1 with W/G, and at the same time a Z-homotopy of fO° By 2.4.1

there is an isovariant homotopy f: Y X1 —W of fo with induced map f,

-1
and by 1.1.18 f is an equivalence of Y X1 with W. Since k of o(h X id) =

kal sk

f o f o (hXid)e (h X id) L = identity map of Z X1, f is a strong equiva-

lence of (W, ZX1I, k) with (Y XI, ZXI, hX id). q.e.d.
Suppose Z is a T-space, Z' a closed subspace of Z (made into a

Z-space by Z! =Z'N Z ), and (Y, Z,h) is a G-space over Z. Then if

(H) ~

-1, - -1
we put Y' = HYl(h 1(z')) and h' =h|h™(Z') it is clear that (Y', Z',h') is

(H)

a G-space over Z', which we call the part of (Y, Z,h) over Z'. Moreover
if X isa G-space, f :Z—X/G is a Z-map and (Y, Z,h) = £ "N(X) then it
is also clear from the definitions of both sides that (Y', Z',h' ) = f' *-I(X)
where f' = f|Z'. Now suppose f>:< : ZX1—>X/G is a ZT-homotopy and let

(W, ZX1, k) = f"\_l(X), Then by what we have just remarked it follows that,

if we identify Z with Z X {0} and Z X {l} in the obvious way, then f:—l(X)



58

and f -

1

RICHARD S. PALAIS

1(X) are respectively the parts of (W, Z X I, k) over Z X {0} and

Z X {l} respectively. On the other hand we know that we can write

(W, ZX1I, k) (to within strong equivalence)as (Y XI, ZXI, hX id) where

(Y, Z,h) is a G-space over Z (2.5.2). Then (y,0) = {y,1) is clearly a

strong equivalence of the part of (W, Z X1, k) over ZX {0} with the part

over

namely

Z X {1}. We have proved a basic fact for our classification theory,

2.5.3 THEOREM. If Z is a T-space and if f; and
f; are strongly Z-homotopic maps of Z into the orbit #
space X/G of a G-space X of type X then f -I(X)

and f (X) are strongly equivalent G-spaces over Z.

2.5.4. LEMMA. Let k be a S-equivalence of a =-
space Z with itself. If f* is a T-map of Z into the
orbit space of a G-space X of type T then f*°1(X)
and (f*o k)_l(X) are weakly equivalent G-spaces over
X.

1

sk b3 -
PROOF. If we put £ “(X) = (Y, Z,h) and (£ o k)"X) = (Y', Z,h')

sothat Y = {(x,z) ¢ XX Z[f (2) = T ()} and Y' = {(x,2) ¢ XX Z[" (k(2)) =

HX(x)} then it is easily seen that (x, z) — (x, k-l(z)) sets up the desired

equivalence of Y with Y'.

£
2.5.5. COROLLARY. If Z is a T-space and if fo

*
and f are weakly £-homotopic maps of Z into the
orbit space of a G-space X of type T then £ _I(X)

-1
and fl (X) are weakly equivalent G-spaces over Z.

PROOF. By hypothesis there exists a T-equivalence k of Z with

1tse1f such that f and f o k are strongly Z-homotopic. By 2.5.3

fo (X) is strongly equlvalent (and, a fortiori, weakly equivalent) to

(1 ° k)~

(X) and by 2.5, 4 the latter is in turn weakly equivalent to fl—l(X).

q. e. d.
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2.6. UNIVERSAL G-SPACES AND CLASSIFYING SPACES.

Z will again be a collection of G-orbit types. By a T-dimension
function we mean simply a function d from I to the set of integers
greater than or equal to -1. We denote by 1+ d the Z-dimension function
whose value at (H)e = is 1+ d((H)). A Z-space Z will be called a (Z, d)-
space if dim (Z(H))Sd((H)) for all (H)e Z. A G-space Y of type = will
be said to be oft_ypg (z,d) if Y/G is a (Z,d)-space. If ¥ consists of a
single orbit type (H) and d({H)) = n then we shall write ((H), n) instead of
(Z, d).

2.6.1. DEFINITION. Let d be a £-dimension function. A G-space
X will be called (=, d)-universal if it is of type Z and for every G-space Y
of type (Z,d) and any isovariant map f of a closed invariant subspace of Y
into X there exists an extension of f to an isovariant map of Y into X
(note that X is not required to be of type (X, d)). A 3-space will be called
(z, d)-classifying if it is the orbit space of a (X, 1+d)-universal G-space.

We now come to the main classification theorem for G-spaces. Note
however that it only gains content when, in the next section, we show (by
explicit construction) that at least if ¥ is finite there always exist (X, d)-

universal G-spaces.

2.6.2. CLASSIFICATION THEOREM. Let X be a
(Z,14d)-universal G-space so that X/G is a (=, d)-
classifying space. If Z is any (%, d)-space then the
map which assigns to each strong T-homotopy class

[f*] (respectively, each weak -homotopy class (f*))

of Z-mappings of Z into X/G the strong (respectively,
weak) equivalence class of G-spaces over Z which
contains f*-l(X) is a one-to-one correspondence
between ');\(Z, X/G) (respectively 'h'{k(Z, X/G)) and

the set of all strong (respectively, weak) equivalence
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classes of G-spaces over Z.

PROOF. 1t follows from 2.5. 3 and 2. 5.5 that the mappings in
question are well defined. If (Y, Z,h)} is any G-space over Z then the
isovariant map of the empty set into X extends to an isovariant map f of
Y into X, because X is (Z,1+d)~universal and Y is of type (X,d). Thus

we have a commutative diagram

f
Y ——me———3> X
l
I
Y HX
v T
Y/G ——M—m>X/G
h - %
f
y

where fﬂt is by definition fe h_l., It follows from 2. 3. 2 that (Y, Z,h) is
*-1
strongly (and, a fortiori, weakly) equivalent to f (X), which proves that
the mappings in question are onto. It remains to show that they are one-to-
-1 %-1
(X) and (Yl’ Z'hl) = f1

strongly (weakly) equivalent G-spaces over Z where f: and fik are ele-

one. Suppose then that (Yo, Z,ho) = fz (X) are

o

ments of M(Z,X/G). We must show that f; and f'1 are strongly (weakly)

Z-homotopic. Let fi be the canonical isovariant map of Yi into X so that
we have commutativity in the diagram

f,
Y —1 X
1
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and let k : YO — Y1 set up the strong (weak) equivalence of (Yo, Z, ho) with
(Yl’ zZ, hl) (i.e. k is an equivalence of YO with Y1 and in the strong case
h1 * ke h;l is the identity map of Z). Let C be the closed invariant sub-
space Yo x {0}y Yo X {1} of Yo X1 and define F : C —X by Fly,o) = fo(y)
and F(y,1) = fl(k(y)). Now F is clearly isovariant and since Yo is of type
(Z,1+d) and since X is (X, I+d)-universal we can extend F to anp isovariant
map F' of Yo X1 into X. If F' is the induced map we define f* :
ZXI—>X/G by f*(z,t) = F! (h;l(z), t). We will complete the proof by
showing that f* is a Z-homotopy of fO with f;k e (h1 ok °h;1) {and hence

with f; in the strong case). Given z e Z choose ye Yo with HY (y) =
o
-1 *
h ° = ! = = = =
o (z). Then f (z,0)=F (HY(y), 0) HX(F(y, 0)) HXfo(y) fO(HY {y))

o
-1 * * ! - - } -
£y (2) = £ (2) and £(z,1) = F My O1D =Ty (Fly, 1) = 1145, (e(y))) =

* % % -1

f1 ° h1 ° HYl(k(y)) = f1 ° h1 o k(HYO(y)) = fl ° (hl k °hl )z). q.e.d.
2.7. THE CONSTRUCTION OF UNIVERSAL G-SPACES.

In this final section we will show how to construct a (T, d)-uni-
versal G-space whenever Z 1is a finite set of G-orbit types and d is an
arbitrary ¥-dimension function. Our first goal is to reduce the problem to
the construction of an ((H), n)-universal G-space where (H) is an arbitrary

G-orbit type and n > -1.

2.7.1. LEMMA. Let X bea locally compact

second countable space, U an open subset of X,

C a closed subset of X and F a relatively closed
subset of U, If f isa continuous map of C into I
which is positive on C N\ F and vanishes on C.U then
f can be extended to a continuous map f* of X into

I which is positive on F and vanishes on X-U.

PROOF. OQur extension fa‘ will be of the form min (1, f1+ fZ) where



62

1

RICHARD S. PALAIS

f. : X —>1 is an extension of f that vanishes on X-U and f2 X =1

vanishes on C U (X-U) and is positive on U-C. To get f1 first extend f

to be identically zero on X-U (this is continuous by assumption) and then

extend to X by Tietze's Theorem. To get f2 let {gn} be a locally finite

partition of unity in U-C with the support of each g, compact. Then

= Zungn(x) is positive on U-C and approaches zero as we approach the
n

boundary of U-C. Then f, is this function extended to be zero on X -

(U-C) = C w(X-U).

2

2.7.2, LEMMA. Let X be alocally compact, second
countable G-space, U an open invariant subspace, C a
closed invariant subspace, and F a relatively closed
invariant subspace of U. If f is an invariant map of
C into 1 which is positive on C M F and vanishes on
C-U then f can be extended to an invariant map of X

into I which is positive on F and vanishes on X-U,

q.e.d.

PROOF. Recalling the relation between maps of X/G —1 and in-

variant maps of X into I (1.1.5) this follows easily from the preceding

lemma.

PROOF. Let 0= {J {Y(K

Alternatively we may use the preceding lemma and 1.1. 6.

2.7.3. LEMMA. Let X be an ((H),n)-universal
G-space which is a G-ANR, and let Y be a locally

compact, second countable G-space with dim Y <n.

Let C be a closed invariant subspace of Y, ¢ (HC) —1
an invariant map which is positive on C I\YH and
f:¢ _1((0, 1]) =X an equivariant map. Then there
exists an extension Yy of ¢ to an invariant map of

Yw into I which is positive on Y(H) and an extension
f of f toan equivariant map of 41'1((0, 1]) into X.

)

[(K) < (H)}, so that by 1. 7.2l and 1. 7. 22
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O is an open invariant subspace of Y and Y is relatively closed in O,

(H)
Let D{f) = ¢-1((O,1]) be the domain of f. We note that D(f) CONC, for if
c € D(f) then, since f is equivariant GC EGf(c) and, since X = X(H)’
(Gc) < (Gf(c)) = (H). Since by assmuption ¢ is positive on C /N Y(H) it
follows that D{(f) A\ Y =CNY Moreover since C is closed in X and

(H) (H)
Y(H) is closed in O it follows from D(f) C ON C that (closure of D(f)) N

both . if f!
Y(H) and D(f) N\ closure of Y(H) are both equal to C N Y(H) Hence if
is an extension of f[(C N\ Y(H)) to an equivariant map of Y(H) into X
{which exists because X is ((H), n)-universal and dim Y(H) < n) then f{" ="
f Uf' is an extension of f to an equivariant map of D(f)y Y into X.

(H)
Since D(f) is open in C and C is closed in X, (0-C)v D(f) = O - (C-D{f))

is open in X and, since CA Y E D(f), it is a neighborhood of Dfy)V Y .

(H) (H)
Moreover since Y(H) is closed in O, D(f) € O, and closure D(f) S C it is

clear that D{f) VY is closed in (O-C) v D(f). Since X is a G-ANR

we can extend f" téHazn isovariant map f'" : U — X where U is an invariant
neighborhood of D(f) UY(H) included in O. Since Y(H) is relatively closed
in O it is relatively closedin U. If ye C - U then ye C - D{f) so ¢(y)
= 0. It follows from 2.7. 2 that we can extend ¢ to an isovariant map ¢ :

Y —1 which is positive on Y(IH) and vanishes on Y-U. Since Lp_l((O, 1)) CcuU
we can now define f = £ g0, 1. q.e.d.

2.7.4. THEOREM. Let I = ((Hl), e, (Hn)) be a
finite collection of G-orbit types and let d be a -
dimension function. Suppose that for each i = 1, 2,
.. n Xi is a ((Hi)’ d((Hi)))-universal G-space
which is a G-ANR. Then X = X1 N Xn is a

(=, d)-universal G- space.

PROOF. Let Y be a G-space of type (Z,d) and let C be a closed
invariant subspace of Y and f and isovariant map of C into X. We must

extend f to an isovariant map of Y into X. Now by 1. 3.10 f(c) =
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(¢1(c)f1(c), oo ¢n(c)fn(c)) where
(1) the ¢i form an invariant partition of unity in C

-1
(2) fi is an equivariant map of ¢i {(0,1]) into Xi

(3) for each ce C we have ¢i(c) 4 0 and Gc = Gf () for somei=1, 2...
i
If ce Y(Hi)(\C then let ¢j(c) 40 and ij(c) =G_. Since (H,) =
e _ _ . L
(Gc) = (ufj(c)) = (Hj) (because Xj Xj(Hj)) it follows that i = j, hence ¢i

is positive on Y(H )/\ C. By 2.7.3 we can extend ¢i to an invariant map

1

$. : Y —1 which is positive on Y(

; and extend fi to an equivariant map

H.)
1

e n *
1((0,1]) —X,. Let ¢i"(y) - Lpi(y)/ & ¢j(y). Then ¢, is an extension

£ : )

i qu

of ¢i to an invariant map of Y into I which is positive on Y(H ) and
i

1 %

LN L 3 w
2 ¢1 (y} = 1. Since ¢,1 ((0,1]), fi is an equivariant map of ¢i""1((0, 11
i=1

into Xi' If yve Y(H_) then ¢i(y)+0 and Gy: Gf,(y) (that Gyc—:Gf.

1 1 l(y)

follows from 1.1.16, that we must have equality follow because Xi = Xi(H )
i

)). Thenbyl.3.10 y — (d)::(y)ff(y), ey

i fi(y)

(y)) is the desired extension of f to an isovariant map of Y into X.

so that (G )= (H.) = (G
Yy

e o2
s b3

¢n(y)fn
q.e.d.
2.7.5. LEMMA. Let (H) be a G-orbit type and let
X and Y be (H)-simple G-spaces (1.3.8). Then
f —>f|XH is a one-to-one correspondence between
all isovariant maps of X into Y and all N(H)/H-
equivariant maps of XH into YH (where as usual
N(H) is the normalizer of H in G).
PROOF. As remarked inl.3.9 XH is an N(H)/H-space {in fact an
N(H)/H-principal bundle) under the action (nH)x = nx. If f: X —Y is iso-

18 h = = =
variant then, for x e XH, Gx H so Gf(x) GX H so f(x)e YH so f

n.
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maps X_. into YH and of course f|X_ is N(H)/H-invariant. Conversely

! H
if £ XH — YH is N(H)/H-invariant (and hence automatically isovariant
because XH and YI—T are N(H)/H-principal) then £ is N(H)-isovariant and

hence by 1.7.10 and 1. 7. 33 f is the restriction to X__ of a uniquely de-

termined isovariant map of X into Y. This proves tI}{lat the mapping is

one-to-one and onto. q.e.d.
Recalling that by 1. 7.6 and 1. 7. 33 if X is (H)-simple then X/G is

homeomorphic to XH/N(H) = XH/(N(H)/H), so that in particular they have

the same dimension, it follows immediately from the above lemma and

1. 7.16 that

2.7.6. THEOREM. A necessary and sufficient con-
dition for an (H)-simple G -space X to be ((H),n)-
universal is that for every N(H)/H-principal bundle
Y with dim Y/(N(H)/H) < n and every equivariant
map f of a closed invariant subspace of Y into XH
there exist an extension of f to an equivariant map

of Y into XH. Moreover if in addition XH is an

N(H)-ANR then X is a G-ANR.

2.7.7. THEOREM. Let X be an (H)-simple G-space
such that XH is n-connected (i.e. it is connected and
its first n-homotopy groups are trivial), polyhedral,
and an N(H)-ANR. Then X is ((H),n)-universal and

a G-ANR.

PROOF. That the conditions of the preceding theorem are satisfied
follows from [2] 1° proof of Théoreme 6, VIII, 7.
We are now in a position to construct an ((H, n)-universal G-space

for any H C G and any non-negative integer n.

2.7.8. THEOREM. If HCG and N(H)/H is
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m-connected then (G/H)('sk) (i.e. (1.3.6) the k-fold
reduced join of G/H with itself) is an ((H), k{m+2)-2)-

universal G-space and a G-ANR.

PROOF. By l1l.3.9 (G/H)(*k)
(G/H)H = N(I—I)/H)XH = (N(H)/H)(Ok). Now by [9] Lemma 2.3 XH is

k{(m+2)-2 connected. Since N(H)/H is a compact differentiable manifold it

= X is (H)-simple and (since clearly

is polyhedral, and clearly the join of polyhedral spaces is polyhedral, so
XH is polyhedral. Hence by 2.7.7 it remains only to show that XH 1s an
N(H)-ANR. Now N(H)/H is an N(H)-ANR (1. 6.7) and (1.4.1) admits an
N(H)-equivariant imbedding in a Euclidean N(H)-space. The desired result

then follows from

2.7.9. LEMMA. Let Xl’ cees Xk be G-ANR's which
admit equivariant imbeddings fi : Xi —>Ei in Euclidean

G-spaces. Then X = X1° vee oXk is a G-ANR.

PROOF. Since fi(Xi) is a G-ANR we can find a neighborhood Ui of

fi(Xi) in Ei which admits an equivariant retraction P; onto fi(Xi)° It is
k
trivial that f: (t.x,, ... t. x ) — E t.f.(x.) is an equivariant imbedding of
11 k' k j=p 111

Xlﬂ.., OXk into E1€B @Eka Moreover u1+ oo + uk—*p(ul) + o0 +
p(uk) is an equivariant retraction of U = U1 + ...+ Uk onto f(le e °Xk).
Since U 1is a neighborhood of f(X1 cen Xk) it follows from 1. 6.4 and the
fact (1. 6. 2) that E1 S...d Ek is a G-ANR that f(Xlo e OXk) and hence

X1° oo °Xk is a G-ANR. q.e.d.

2.7.10. EXISTENCE THEOREM FOR UNIVERSAL
G-SPACES. Let X = ((Hl)’ oo s (Hn)) be any finite
collection of G-orbit types and let d be a -dimension
function. Let N(Hi)/Hi be mi—connected. If ki is

any positive integer greater than or equal to d((Hi)) +
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Z/rni + 2 then

(#k))
(G/Hl) * ... % (G/H )
n

is a (=, d)-universal G-space,

PROOF. Immediate from 2.7.4 and 2.7.9.
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List of Special Symbols

Meaning
orbit of x
isotropy group at x
orbit space of X
orbit map of X —»X/G
set of subgroups of G conjugate to H
orbit type of & = (GX) for any x e Q
union of orbits of X of type (H)
set of orbits of X of type (H)
partial ordering of orbit types
isogenies of X

join of Xl’ e, X
k-fold join of X
reduced join of Xl, e Xk
k-fold reduced join of X
fxe XIG =H}

X

normalizer of H in G

associated fiber bundle of principal bundle
X with fiber Y

a collection of G-orbit types

Z-maps of X into Y

Page
on which
introduced

10
10
10
10
10
12
16
16
16
16
17
17

33

46

46
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Page
on which
Symbol Meaning introduced
(X, Y) strong homotopy classes of S-maps of X 46
into Y
’Wl*(X, Y) weak homotopy classes of Z-maps of X 46
into Y
(X, Z,h) G-space over a X-space Z 48
f*_l(X) G-space induced by £ : 2 -X/G 49
(£,d) and ((H), n) 59
Index of Terminology
canonical isovariant map 49
Cech G-compactification 24
differentiable G-space 7
equivalence of G-spaces 6
equivalence of Z-spaces 46
equivariant map 6
Euclidean G-space 7
G-absolute retract (G-AR) 25
G-absolute neighborhood retract {(G-ANR) 25
G-compactification 24
G-space 1
(see also differentiable, Euclidean, induced, join, product
reduced join, Riemannian)
G-space of type = 47
G-space of type (Z,d) 59
G-space over a Z-space 48
induced G-space 48

invariant map 3
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Page
on which
introduced

invariant metric 4
invariant set 2
isogeny 12
isovariant map 6
see also canonical
isovariant homotopy 13
join of G-spaces 16
kernel 27
operation i
orbit 2
orbit space 2
orbit structure 10
orbit type 10
product of G-spaces 15
Riemannian G-space 7
reduced join of G-spaces 16
saturation 2
slice 27
strongly £-homotopic 46
strongly equivalent G-spaces over a Z~-space 48
> -dimension function 59
S -equivalence 46
Z-homotopy 46
Z-map 46
> -space 46
T-space of type (Z,d) 59

(z, d)-classifying space 59
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Page
on which
introduced
(X, d) universal G-space 59
weakly ¥-homotopic 46
weakly equivalent G-spaces over a Z-space 48
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