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The old perspective: QCD atlarge N

Since QCD has no obvious dimensionless expansion parameter (the coupling sets
the scale), 't Hooft proposed to use 1=N (N being the number of colors) as an
expansion parameter ['t Hooft, 1974]

Generically, a large-N limit can be interpreted as a “classical limit—Identi cation
of coherent states and construction of a classical Hamiltonian [Yaffe, 1982]

The large-N limit of QCD, at xed 't Hooft coupling = g2N and xed number of
avors N, is a simpler theory . ..

...in which certain non-trivial non-perturbative features of QCD can be easily
explained in terms of combinatorics [Witten, 1979; Manohar, 1998] , ...
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Formal connection to string theory: loop expansion in Riemann surfaces for
closed string theory with coupling constant gswing  1=N [Aharony, Gubser,
Maldacena, Ooguri and Oz, 1999; Mateos, 2007]
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The AdS/CFT correspondence

I Maldacena conjectured that the large-N limit of the maximally supersymmetric
N = 4 supersymmetric YM (SYM) theory in four dimensions is dual to type |1B
string theory in a AdSs ~ S® space [Maldacena, 1997]
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be related to the thermodynamics of AdS black holes [Witten, 1998]



Non-perturbative predictions for QCD-like theories from
holographic models

I “Top-down' approach: break some symmetries of the N = 4 theory explicitly, add
fundamental matter elds to the gauge theory by including ne w branes in the
string theory [Bertolini, Di Vecchia, Frau, Lerda, and Marotta, 2001; Gra  fia and
Polchinski, 2001; Karch and Katz, 2002] to get a non-trivial hadron sector with
‘mesons' and SB [Erdmenger, Evans, Kirsch and Threlfall, 2007]

I Description of hydrodynamic and thermodynamic properties for a strongly
interacting system, like the QCD plasma, from gauge/gravity duality—see [Son
and Starinets, 2007; Mateos, 2007; Gubser and Karch, 2009]  and references
therein

I “Bottom-up' approach: construct a 5D gravitational background reproducing the
main features of QCD [Polchinski and Strassler, 2001; Erlich, Katz, Son and
Stephanov, 2005; Da Rold and Pomarol, 2005; Karch, Katz, Son  and
Stephanov, 2006]

I Hard-wall versus soft-wall AdS/QCD, and related thermodynamic
features [Herzog, 2007]



Improved holographic QCD model

I Kiritsis and collaborators [Glrsoy, Kiritsis, Mazzanti and Nitti, 2008]  proposed
an AdS/QCD model based on a 5D Einstein-dilaton gravity theory, with the fth
direction dual to the energy scale of the SU(N) gauge theory
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Caveat: The effective ve-dimensional Newton constant Gs = 1= 16 MSN2

becomes small only in the large-N limit; at nite N, string interactions can be
non-negligible above a scale MpNZ=3 "' 2:5 GeV in SU(3)
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Lattice results vs. Improved holographic QCD model
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Lattice results vs. Improved holographic QCD model
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Lattice results for SU(N) vs. AdAS/CFT?

The SU(N) plasma tends to become exactly conformally invariant only inthe T ! 1
limit, where it is no longer strongly coupled
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In the temperature range investigated in this work, the lattice results approach
approximate scale-invariance only for T ' 3T, where the plasma is still (relatively)

strongly coupled ...
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Lattice results for SU(N) vs. AdAS/CFT?

...and the entropy density is comparable with the supergravity prediction for N = 4
SYM [Gubser, Klebanov and Tseytlin, 1998]
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Lattice results for SU(N) vs. AdAS/CFT?

...in which the entropy density is comparable with the supergravity prediction for
N = 4 SYM [Gubser, Klebanov and Tseytlin, 1998]

S 3 45 _
=24 = 3)2) ¥+
) 4 32()( )

Entropy densitys. 't Hooft coupling

E 4

509 i
0,81 appgec
07

2 o6

=l

3 05—

s I 2

]

204 B 238; == -

s r . - ]
03f - sUGs) El ,

8 1 - SU@E) t 1
021~ - Su@®) kS —

L ---- supergravity modg|

@ 0.1f E i

07””\”H\H“\“H\““\Hwégwi

5 55 6 6.5 7 75 8 85 9

Note that a comparison of N = 4 SYM and full-QCD lattice results for the drag force on
heavy quarks also yields ' 5:5 [Gubser, 2006]



T2 contributions to the trace anomaly?

The trace anomaly reveals a characteristic T2-behavior, possibly of non-perturbative
origin [Meg’as, Ruiz Arriola and Salcedo, 2003; Pisarski, 2006; A ndreev, 2007;
Buisseret, 2009]
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Extrapolationto N !1

Based on the parametrization [Bazavov et al., 2009]:
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Conclusions and outlook
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Conclusions

I Equilibrium thermodynamic observables in SU(N) YM theories at temperatures
0:8T¢ T  3:4T. show a mild dependence on N

I Successful comparison with holographic predictions
! seems to have a T2 dependence also at large N
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Projects for the future - |

(in case “plan A' fails . ..)

SU(N) screening masses and spatial string tensions, comparisons with
AdS/CFT [Bak, Karch and Yaffe, 2007] and with IHQCD [Alanen, Kajantie and
Suur-Uski, 2009]

Observables related to thermodynamic uctuations: speci c heat, speed of sound
et c. [Gavai, Gupta and Mukherjee, 2005]

Renormalized Polyakov loops [Dumitru et al., 2004; Gupta, Hibner and
Kaczmarek, 2008; Gavai, 2010]

Transport coef cients [Meyer, 2007]



Projects for the future - Il

(in case “plan A' fails . ..)

High-precision thermodynamics for SU(N) theories in 3D (work in progress with

Caselle, Castagnini, Feo and Gliozzi; see also [Bialas, Daniel, Morel and

Petersson, 2008] )

D=2+1 SU() trace anomaly in the confined phase

(preliminary)
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D=2+1 SU() trace anomaly in the deconfined phase

(preliminary)

SU(3) (including data from P. Bialas al, NPB 807 (2009) 547)
SU)




