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The old perspective: QCD at large N

◮ Since QCD has no obvious dimensionless expansion parameter (the coupling sets
the scale), ’t Hooft proposed to use 1/N (N being the number of colors) as an
expansion parameter [’t Hooft, 1974]

◮ Generically, a large-N limit can be interpreted as a ‘classical limit’—Identification
of coherent states and construction of a classical Hamiltonian [Yaffe, 1982]

◮ The large-N limit of QCD, at fixed ’t Hooft coupling λ = g2N and fixed number of
flavors Nf , is a simpler theory . . .

◮ . . . in which certain non-trivial non-perturbative features of QCD can be easily
explained in terms of combinatorics [Witten, 1979; Manohar, 1998] , . . .

◮ . . . which is characterized by planar diagrams’ dominance . . .
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Maldacena, Ooguri and Oz, 1999; Mateos, 2007]
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The AdS/CFT correspondence

◮ Maldacena conjectured that the large-N limit of the maximally supersymmetric
N = 4 supersymmetric YM (SYM) theory in four dimensions is dual to type IIB
string theory in a AdS5 × S5 space [Maldacena, 1997]

ds2 =
r2

R2

“

−dt2 + dx2
”

+
R2

r2
dr2 + R2dΩ2
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◮ The conjecture arises from the observation that the low-energy dynamics of open
strings ending on a stack of N D3 branes in AdS5 × S5 can be described in terms
of N = 4 SYM

◮ Geometric interpretation: There exists a correspondence of symmetries in the two
theories

◮ A highly non-trivial correspondence, linking the strongly coupled regime of field
theory to the weak-coupling limit of a gravity model

◮ Identification of the generating functional of connected Green’s functions in the
gauge theory with the minimum of the supergravity action with given boundary
conditions: correlation functions of gauge theory operators from perturbative
calculations in the gravity theory [Gubser, Klebanov and Polyakov, 1998]

◮ A stringy realization of the holographic principle: the description of dynamics
within a volume of space is “encoded on the boundary” [’t Hooft, 1993;
Susskind, 1995] —see also [Bousso, 2002]

◮ The large-N limit of the N = 4 SYM theory exhibits a phase transition which can
be related to the thermodynamics of AdS black holes [Witten, 1998]
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Non-perturbative predictions for QCD-like theories from
holographic models

◮ ‘Top-down’ approach: break some symmetries of the N = 4 theory explicitly, add
fundamental matter fields to the gauge theory by including new branes in the
string theory [Bertolini, Di Vecchia, Frau, Lerda, and Marotta, 2001; Gra ña and
Polchinski, 2001; Karch and Katz, 2002] to get a non-trivial hadron sector with
‘mesons’ and χSB [Erdmenger, Evans, Kirsch and Threlfall, 2007]

◮ Description of hydrodynamic and thermodynamic properties for a strongly
interacting system, like the QCD plasma, from gauge/gravity duality—see [Son
and Starinets, 2007; Mateos, 2007; Gubser and Karch, 2009] and references
therein

◮ ‘Bottom-up’ approach: construct a 5D gravitational background reproducing the
main features of QCD [Polchinski and Strassler, 2001; Erlich, Katz, Son and
Stephanov, 2005; Da Rold and Pomarol, 2005; Karch, Katz, Son and
Stephanov, 2006]

◮ Hard-wall versus soft-wall AdS/QCD, and related thermodynamic
features [Herzog, 2007]



Improved holographic QCD model

◮ Kiritsis and collaborators [Gürsoy, Kiritsis, Mazzanti and Nitti, 2008] proposed
an AdS/QCD model based on a 5D Einstein-dilaton gravity theory, with the fifth
direction dual to the energy scale of the SU(N) gauge theory

SIHQCD = −M3
PN2

Z

d5x
√

g
»

R − 4

3
(∂Φ)2 + V (λ)

–

+ 2M3
PN2

Z

∂M
d4x

√
h K

◮ Field content on the gravity side: metric (dual to the SU(N) energy-momentum
tensor), dilaton (dual to the trace of F 2) and axion (dual to the trace of FF̃ )

◮ Dilaton potential defined by requiring asymptotic freedom with a logarithmically
running coupling in the UV and linear confinement in the IR of the gauge theory

◮ First-order transition from a thermal-graviton- to a black-hole-dominated regime in
the 5D gravity theory dual to the SU(N) deconfinement transition

◮ The model successfully reproduces the main non-perturbative spectral and
thermodynamical features of the SU(3) YM theory

◮ Can also be used to derive predictions for observables such as the plasma bulk
viscosity, drag force and jet quenching parameter [Gürsoy, Kiritsis,
Michalogiorgakis and Nitti, 2009]

◮ Caveat: The effective five-dimensional Newton constant G5 = 1/
`

16πM3
PN2

´

becomes small only in the large-N limit; at finite N, string interactions can be
non-negligible above a scale MPN2/3 ≃ 2.5 GeV in SU(3)
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thermodynamical features of the SU(3) YM theory

◮ Can also be used to derive predictions for observables such as the plasma bulk
viscosity, drag force and jet quenching parameter [Gürsoy, Kiritsis,
Michalogiorgakis and Nitti, 2009]

◮ Caveat: The effective five-dimensional Newton constant G5 = 1/
`

16πM3
PN2

´

becomes small only in the large-N limit; at finite N, string interactions can be
non-negligible above a scale MPN2/3 ≃ 2.5 GeV in SU(3)
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Lattice results vs. Improved holographic QCD model
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Lattice results vs. Improved holographic QCD model
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Lattice results vs. Improved holographic QCD model
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Lattice results vs. Improved holographic QCD model
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Lattice results for SU(N) vs. AdS/CFT?

The SU(N) plasma tends to become exactly conformally invariant only in the T → ∞
limit, where it is no longer strongly coupled



Lattice results for SU(N) vs. AdS/CFT?

In the temperature range investigated in this work, the lattice results approach
approximate scale-invariance only for T ≃ 3Tc , where the plasma is still (relatively)
strongly coupled . . .
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Lattice results for SU(N) vs. AdS/CFT?

. . . and the entropy density is comparable with the supergravity prediction for N = 4
SYM [Gubser, Klebanov and Tseytlin, 1998]
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Lattice results for SU(N) vs. AdS/CFT?

. . . in which the entropy density is comparable with the supergravity prediction for
N = 4 SYM [Gubser, Klebanov and Tseytlin, 1998]
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Note that a comparison of N = 4 SYM and full-QCD lattice results for the drag force on
heavy quarks also yields λ ≃ 5.5 [Gubser, 2006]



T 2 contributions to the trace anomaly?

The trace anomaly reveals a characteristic T 2-behavior, possibly of non-perturbative
origin [Megı́as, Ruiz Arriola and Salcedo, 2003; Pisarski, 2006; A ndreev, 2007;
Buisseret, 2009]
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Extrapolation to N → ∞

Based on the parametrization [Bazavov et al., 2009]:
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Conclusions

◮ Equilibrium thermodynamic observables in SU(N) YM theories at temperatures
0.8Tc ≤ T ≤ 3.4Tc show a mild dependence on N

◮ Successful comparison with holographic predictions
◮ ∆ seems to have a T 2 dependence also at large N



Projects for the future



Projects for the future - I
(in case ‘plan A’ fails . . . )

◮ SU(N) screening masses and spatial string tensions, comparisons with
AdS/CFT [Bak, Karch and Yaffe, 2007] and with IHQCD [Alanen, Kajantie and
Suur-Uski, 2009]

◮ Observables related to thermodynamic fluctuations: specific heat, speed of sound
et c. [Gavai, Gupta and Mukherjee, 2005]

◮ Renormalized Polyakov loops [Dumitru et al., 2004; Gupta, Hübner and
Kaczmarek, 2008; Gavai, 2010]

◮ Transport coefficients [Meyer, 2007]



Projects for the future - II
(in case ‘plan A’ fails . . . )

◮ High-precision thermodynamics for SU(N) theories in 3D (work in progress with
Caselle, Castagnini, Feo and Gliozzi; see also [Bialas, Daniel, Morel and
Petersson, 2008] )
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