
The geometric cobordism hypothesis

Dmitri Pavlov (Texas Tech University, Lubbock, TX)

These slides: https://dmitripavlov.org/nyuad.pdf

arXiv:2011.01208, arXiv:2111.01095 (joint with Daniel Grady)

1/1 1/16

https://dmitripavlov.org/nyuad.pdf


Origins of functorial field theory

1948 (Feynman): path integral formulation of quantum
mechanics

1949 (Feynman–Kac): the Feynman–Kac formula

Later: path integral used in QFT, no longer rigorous

1980s (Witten): properties of path integrals for (conformal)
field theory

1980s (Segal): mathematical formulation of conformal field
theory
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Further developments

late 1980s (Atiyah, Kontsevich, . . . ): topological theories:
easier to construct and study, but less relevant for physics

1992 (Freed, Lawrence): extended field theories (correspond
to locality in physics)

1995 (Baez–Dolan): the topological cobordism and tangle
hypotheses

2002 (Stolz–Teichner): modern formulation of nontopological
field theories (including supersymmetry); the Stolz–Teichner
program on 2|1-EFTs and TMF

2004 (Costello): the (∞, 2)-category of topological
2-dimensional bordisms

2006 (Hopkins–Lurie); 2015 (Calaque–Scheimbauer): the
(∞, d)-category of topological bordisms
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Previous results on the topological cobordism hypothesis

2008 (Lurie): outline of a proof of the topological cobordism
hypothesis

2017 (Ayala–Francis): a different approach, conditional on a
conjecture

2004 (Costello), 2009 (Schommer-Pries):
the 2-dimensional topological cobordism hypothesis

2006 (Galatius–Madsen–Tillmann–Weiss);
2011 (Bökstedt–Madsen); 2017 (Schommer-Pries):
the invertible case
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Low-dimensional nontopological field theories

Examples of 2-dimensional nonextended nontopological field
theories:

2007 (Pickrell): Riemannian 2-dimensional field theory

2018 (Runkel–Szegedy): volume-dependent 2-dimensional
field theory

Classifications of holonomy maps, transport functors, and
1-dimensional nontopological field theories:

1990 (Barrett), 1994 (Caetano–Picken),
2007 (Schreiber–Waldorf): parallel transport for bundles

2000 (Mackaay–Picken), 2004 (Picken),
2008 (Schreiber–Waldorf): parallel transport for gerbes

2015 (Berwick-Evans–P.), 2020 (Ludewig–Stoffel):
1-dimensional field theories
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Features of the geometric bordism category

Locality: k-bordisms with corners of all codimensions (up to
d) with compositions in d directions
=⇒ symmetric monoidal d-category of bordisms

Isotopy: chain complexes to encode BV-BRST
=⇒ must encode (higher) diffeomorphisms between bordisms
=⇒ symmetric monoidal (∞, d)-categories

Geometric (nontopological) structures on bordisms:
Riemannian/Lorentzian metrics,
complex/conformal/symplectic/contact structures,
principal G -bundles with connection and isos,
higher gauge fields (Kalb–Ramond, Ramond–Ramond)
=⇒ an (∞, 1)-sheaf of geometric structures

Smoothness: values of field theories depend smoothly on
bordisms
=⇒ (∞, 1)-sheaf of (∞, d)-categories of bordisms
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How to compose bordisms
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Geometric structures

Definition

Given d ≥ 0, the site FEmbd has

Objects: submersions T → U with d-dimensional fibers,
where U ∼= Rn is a cartesian manifold;

Morphisms: commutative squares with T → T ′ a fiberwise
open embedding over a smooth map U → U ′;

Covering families: open covers on total spaces T .

Definition

Given d ≥ 0, a d-dimensional geometric structure is a simplicial
presheaf S: FEmbopd → sSet.

Example:

T → U 7→ the set of fiberwise Riemannian metrics on T → U;
(T → T ′,U → U ′) 7→ the restriction map from T ′ to T .
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Examples of geometric structures

fiberwise Riemannian, Lorentzian, pseudo-Riemannian metrics;
positive/negative sectional/Ricci curvature;

fiberwise conformal, complex, symplectic, contact, Kähler
structures;

fiberwise foliations, possibly with transversal metrics;

smooth map to a target manifold M (traditional σ-model);

smooth map to an orbifold or ∞-sheaf on manifolds;

fiberwise etale map or an open embedding into a target
manifold N;

fiberwise topological structures: orientation, framing, etc.

fiberwise differential n-forms (possibly closed).
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Examples of geometric structures: gauge transformations

Definition

Send a d-manifold M to (the nerve of) the groupoid
B∇G (M):

Objects: principal G -bundles on T with a fiberwise connection
on T → U (gauge fields);
Morphisms: connection-preserving isomorphisms (gauge
transformations).
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Examples of geometric structures: (higher) gauge
transformations

Principal G -bundles with connection on M (gauge fields, e.g.,
the electromagnetic field);

Bundle gerbe with connection on M (B-field, Kalb–Ramond
field).

Bundle 2-gerbe with connection on M (supergravity C-field).

Bundle (d − 1)-gerbes with connection on M (Deligne
cohomology, Cheeger–Simons characters, ordinary differential
cohomology, circle d-bundles).

Geometric tangential structures: geometric Spinc -structure,
String (Waldorf), Fivebrane (Sati–Schreiber–Stasheff),
Ninebrane (Sati). (Vanishing of anomaly.)

differential K-theory (Ramond–Ramond field). Requires
∞-groupoids.
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The main theorem

Ingredients:

A dimension d ≥ 0.
A smooth symmetric monoidal (∞, d)-category V of values.
A d-dimensional geometric structure S: FEmbopd → sSet.

Constructions:

The smooth symmetric monoidal (∞, d)-category of bordisms
BordSd with geometric structure S.
A d-dimensional functorial field theory valued in V with
geometric structure S is a smooth symmetric monoidal
(∞, d)-functor BordSd → V.
The simplicial set of d-dimensional functorial field theories
valued in V with geometric structure S is the derived mapping
simplicial set

FFTd ,V(S) = RMap(BordSd ,V).
Can be refined to a derived internal hom.
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The main theorem

Conjectures:

Freed, Lawrence (1992): FFTd ,V is an ∞-sheaf.

Baez–Dolan (1995), Hopkins–Lurie (2008): if V is fully
dualizable,

FFTd ,V(S) ≃ RMap(S,V×).
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The main theorem

Conjectures:

Freed, Lawrence (1992): FFTd ,V is an ∞-sheaf.
Baez–Dolan (1995), Hopkins–Lurie (2008): if V is fully
dualizable, FFTd ,V(S) ≃ RMap(S,V×).

Theorem (Grady–P., The geometric cobordism hypothesis)

Part I: Bordd is a left adjoint functor:

RMap(BordSd ,V) ≃ RMap(S,V×d ),

where V×d = FFTd ,V , i.e., V×d (T → U) = FFTd ,V(T → U).

Part II: The evaluation-at-points map

V×d (Rd × U → U) = FFTd ,V(R
d × U → U)→ V×(U)

is a weak equivalence of simplicial sets.
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Applications (current and future)

Consequence of the GCH: smooth invertible FFTs are
classified by the smooth Madsen–Tillmann spectrum.
(Previous work: Galatius–Madsen–Tillmann–Weiss,
Bökstedt–Madsen, Schommer-Pries.)

The Stolz–Teichner conjecture: concordance classes of
extended FFTs have a classifying space. (Proof: Locality +
the smooth Oka principle (Berwick-Evans–Boavida de
Brito–P.).

Construction of power operations on the level of FFTs
(extending Barthel–Berwick-Evans–Stapleton).

(Grady) The Freed–Hopkins conjecture (Conjecture 8.37 in
Reflection positivity and invertible topological phases)

Construction of prequantum FFTs from geometric/topological
data.

Quantization of functorial field theories.
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Recipe: computing the space of FFTs in practice

Step 1 Compute V×d (once for every V).
Step 1a Guess a candidate W for V×d . (Standardized guesses exist.)

Step 1b Guess a map W → V×d . (Typically straightforward.)

Step 1c For every U ∈ Cart, prove that

W (Rd × U → U)→ V×d (Rd × U → U)→ V×(U)

is a weak equivalence. (Easy.)

Step 2 Compute RMap(S,V×d ) as RMap(S,W ). (Like differential
cohomology.)
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Example: the prequantum Chern–Simons theory

Input data:

G : a Lie group;
S = B∇G (fiberwise principal G -bundles with connection);
V = B3U(1) (a single k-morphism for k < 3; 3-morphisms are
U(1) as a Lie group).

Output data: a fully extended 3-dimensional G -gauged FFT:

BordB∇G
3 → B3U(1).

Closed 3-manifold M 7→ the Chern–Simons action of M;
Closed 2-manifold B 7→ the prequantum line bundle of B;
Closed 1-manifold C 7→ the Wess–Zumino–Witten gerbe
(B-field) of C (Carey–Johnson–Murray–Stevenson–Wang);
Point 7→ the Chern–Simons 2-gerbe (Waldorf).

Step 1 Compute V×3 = (B3U(1))×3 .
Step 1a W is the fiberwise Deligne complex of T → U:

W (T → U) = Ω3 ← Ω2 ← Ω1 ← C∞(T ,U(1)).

Step 1b W → V×3 : a fiberwise 3-form ω on T → U
7→ framed FFT: 3-bordism B 7→ exp(

∫
B ω).

Step 1c The composition

W (T → U)→ V×3 (T → U)→ V×(U) = B3C∞
fconst(T ,U(1))

is a weak equivalence by the Poincaré lemma.
Step 2 Construct a point in

RMap(B∇G ,W ) = RMap(Ω1(−, g)//C∞(−,G ),B3C∞
fconst(−,U(1))).

(Brylinski–McLaughlin 1996, Fiorenza–Sati–Schreiber 2013)
Step 2′ Even better: can compute the whole space RMap(B∇G ,W ).
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Example: the prequantum Chern–Simons theory

Step 1 Result: V×3 = (B3U(1))×3 = B3C∞
fconst(−,U(1)).

Step 2 Construct a point in
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fconst(−,U(1))).

(Brylinski–McLaughlin 1996, Fiorenza–Sati–Schreiber 2013)
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Quantization of functorial field theories

X : the prequantum geometric structure
Y : the quantum geometric structure (e.g., a point)

FFTd ,V(X )
GCH
≃

//

∫
��

RMap(X ,V×d )

Q
��

FFTd ,V(Y )
GCH

≃ // RMap(Y ,V×d )

d = 1: recover the Spinc geometric quantization when X is a
smooth manifold, Y = Riem1|1, V = Fredholm complexes.
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