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Preface

Nuances, nuances sans couleirs

Paul Valéry

Abstract,

The commonplace simplification of constructive logic as logic without the excluded
middie conceals a more authentic idea of constructivism - that proofs are constructive
functions, while quantifiers should be sums and products. An exact realisation of this
idea requires a very special mathematical setting. Expressed categorically, the idea is
that there is a small category (of "propositions"” and “"proofs"), with all small sums and
products (as "quantifiers”), In ordinary category theory - or in a Grothendieck topos -
such a category must be a preorder (and there can be at most one "proof” from one
"proposition” 1o another; so these “proofs” do not really look like functions). In
Hyland's effective topos, however, a nondegenerate small complete category has been
discovered recentty. It can be regarded as the first mathematical model of logic with
constructive proofs. On the other hand, a significant impulse to the formal development
of such a logic has been given by computer science {especially in the work of Coguand,
Huet and their coliaborators).

In this thesis, we consider two mathematical formulations of constructive logic: a type
theoretical, and a category theoretical. In the end, the former is completely interpreted in
the latter. The purpose of such a connection is to yield a characterisation of type
theoretical structures by categorical properties.

In chapter [, we define the theory of predicates, a type theoretical generalisation of
higher order predicate logic with a type of truth values and the comprehension scheme.
Although presented rather differently, it is closely related to the theory of constructions
with X -operations (as in Hyland-Pitts 1987}, It deviates from the theory of
constructions at two points; on one hand, a severe, but intuitively justified restriction is
imposed on the contexts in it; on the other hand, a new operation of extent is
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introduced, similar to the set theoretical operation 9(X)—> {XI p(X)}]. In a sense, this
operation compensates for the imposed restriction. We show that the theory of
predicates is somewhat more general than the theory of constructions (which is, so far,
the strengest type theory known to be logically consistent), With an additional rule,
which forces some types to become isomorphic, the theory of predicates has exactly the
same expressive power as the theory of constructions (modulo a translation, of course).

The general background for our categorical interpretation of constructive logic is the
picture of a fibration as a variable category of predicates: its base is a category of "sets”
and "functions”, while the objects and arrows of a fibre are regarded as “predicates™
over a set, with "proofs" between them. Chapter II surveys the concepts of
propasitional and predicate logic in this setting. The most important ideas are lifted from
the coniext of indexed categories, where Lawvere introduced them some twenty years
ago. Although many results in this chapter can be considered as basic, for very few of
them a reference can be found. Some of them, however, surely belong to the folklore.

Chapter III is concerned with some fundamental notions of set theory in the setting of
fibred categories. Having reviewed some basic ideas - mostly due to Bénabou this time,
we begin in section 2 a categorical analysis of the comprehension principle. The
property of fibrations, which is proposed as an interpretation of this principle, the
structures induced by it, and the resulting representation of a fibration in its base are
studied in detail in the next two sections. The induced structures include Lawvere's
comprehension scheme as a special case - despite the apparent conceptnal differences.
Another special case are D-categories, used by Ehrhard in his interpretation of the
theory of constructions, though in no connection with the concept of comprehension.

Putting together all the described categorical notions, in section 1 of chapter IV we
define categories of predicates, small fibrations with small products and coproducts,
and some fibrewise structure. There are some well known special cases again. The
most prominent are, of course, elementary toposes: they ¢an be presented as fibred
preorders of predicates, with equality. The categorical structure, introduced by Hyland
and Pitts in their study of the theory of constructions, can be regarded as a category of
predicates generated by 1 (in appropriate sense),

Two pictures of constructive logic, built in the preceding chapters, are superimposed in
chapler IV. In section 1, the interpretation of a theory of predicates in a category of
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predicates is defined; in section 2, a category of predicates is built up from a given
theory of predicates. This gives arelatively simple way 10 systematically obtain artificial
examples of small categories with small suns and products. Completeness of this
semantical coustruction is then proved, so that the two pictures conceptually coincide.
Technically, however, they are complementary: the theory of predicates is a
"programming language”; a category of predicales is its "computer”. Each of them
seems oo complex to be developed alone.

An unusual phenomenon occurs int categories of predicates: the weak, i.e. nonunique
factorisations play a structural role. We discuss two examples: weakly cocartesian
liftings, and weak equalisers. The former are the "existential quantifiers” induced by
comprehension on "sets”. (To express the Beck-Chevalley property in a form
appropriate for this situation, we characterized it in terms of inverse images only, in
section 3a of chapter I1.) These "quantifiers” are wedk because logic is not extensional:
a predicate may contain more than its extent. The weak equalisers, on the other hand,
arise as extents of equality predicates, Multiple proofs of an equality predicate exactly
correspond to the multiple factorisations through the weak equaliser belonging to it.

The final section is mostly devoted to various aspects of the equality predicates. A topos
allows only one; but there can be a fot of them in a category of predicates. Despite their
wekness, all equality predicates support much of the usual set theoretical approach to
functions as graphs. (A connection between comprehension and the Cauchy

completeness seems plausible.)

At the end, we use an arbifrary equality predicate to formulate some internal category
theory {(based on weak equalisers) under a category of predicates; then we construct
another category of predicates over the same base - as a category of "internal
presheaves” in the given one. Starting from any of the known mathematical models for
the theory of constructions, this construction yields plenty of proper categories of
predicates. (It thus multiplies the known examples of nondegenerate srnall categories
with small preducts and coproducts.)

vil
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To the reader.

Although it contains, 1 believe, no propositions which are not reused in the end, this
thesis grew uncomfortably long. But for a reader, I am afraid, it might be
uncomfortably short at some places. While trying to give a betier oversight of a proof, 1
frequently introduce notations, where a sentence or two would do as well. This is
perhaps wrong, perhaps a matter of taste. I like pictures rather than explanations.

Proofs, or outlines of proofs, are usually enclosed between thick points: +...s. Routine
arguments are often omitted, The reader is assumed to understand category theory
sufficiently to be able to lock up, say, Johnsione's Topos Theory (1977) without
difficulties. For the first and the last chapters, some acquaintance with type theory and
its semantics is probably necessary {e.g. Martin-Lof 1984, and Seely 1984). A reader
who wants to supply the inductive arguments omitted in section 1.2, will perhaps need a
bit more than that.

The list of references contains only those papers and books which are actually refered to
somewhere in the text. I do not see the theme of this thesis as ripe for an exhaustive list

of relevant litcrature.

Chapters are divided in sections, sections in subsections. A subsection is usually
organized by bold subtitles; when necessary, it is subdivided by decimal numbers. For
instance, paragraphs 3.12 and 3.111 are both in subsection 3.1, and 3.111 comes
before 3.12. "11.3.12" denotes paragraph 2 in subsection 1, section 3 of chapter I
within chapter I, this paragraph is called "3.12"; within section 3, it is just "12".
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Introduction

Question: What is & proof?

. Answer 1. Formal logic. Begin with obviously true propositions and derive the

conclusion by inference rules which preserve the iruth, in the sense that the truth value
of the premises ajways remains less or equal than the truth value of the conclusion.

Truth values are the elements of a poset (Lindebaum aigebra).

Answer 2. Type theory. A constructive proof is some kind of a function
(according to Brouwer, Heyting and Kolmogorov):

f proves Vxe A.@{x) means f:A — Proofs

where for every ac A f{a) proves ¢(a);
f proves 3xe Ap(x) means f=(a,fy)

where f, proves ¢(a),
elc.

The questions remain: What kind of a function is a progf? and: What kind of a ser is a
proposition? To realizability and beyond, various answers have been proposed. In
general, they were some formal systems in which the terms had been recognized the
dignity of constructive functions. By considering proofs-as-terms and formulas-as-
types, the practice of constructive-logic-as-type-theory has been developed. - Not

without a gain of generality and a loss of intuition: ¥xe A.@(x) has become H P(x),
xeA

and there can be many different proofs for the same formula now.

Truth values are now collected in a category.
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Answer 3. Semantics, A proof can be given by showing a model. "When the
Eleatics argued that the movement did not exist, Diogenes stood up and walked
around.” Anocther example, characteristic for the New Age is: "Cogito, ergo sum":
"The existence of this thought (or of this sentence, if you like) is a model of my
existence”. Methodically, the answer is being produced from the material given in the
question itself; by its actions, the subject constitutes itself as an object,

In mathematics, any abstract group is concretized by its actions on its own underlying
set (Cayley); any category is concretized by its representable functors (Yoneda)!.

Upon this basic idea a sophisticated superstructure of spectral theories has been
developed. It started from the Dedekind-style completisation of a poset by embedding it
in the set of its own lower sets, and evolved through Stone's representation theorems to
the theory of Grothendieck toposes. In it, the dialectic of certain

theories - categorically presented in geometric logic,
their completions - the classifying toposes, and
their models - the points of these toposes

has been disclosed as the ceniral issue.

Theme. We shall be concerned with the constructive proofs - in the sense of answer 2.
We shall try to approach them semantically - in the sense of answer 3.

Constructive logic has at least three levels:
- intuitionism - i.e. Brouwer's ideology;
- formally constructive logic - i.e. formal logic without excluded middle;
- lagic with consiructive proafs - i.e. logic-as-type-theory.

1The importance of the Yoneda lemma for category theory can hardly be overestimated.

It tells what ir's all about. For instance, about the objects: In any category € the objects
?re determined (up to an iso) by the arrows to (or from) them, i.e. by the representable
unctors:

€(A, B) = Nat(VA, VB)
(where VA: €o— Set : X+ €(X, A) is the functor represented by A, and Nat the :
natural transformations) - just as the sets are uniquely determined by their elements: :
A=B o Vxixe A« xeB). :

Introduction

A universe of sets with formally constructive logic is investigated in topos theory.
Although this theory probably hasn't reached its maturity yet, computer science has
propelled the question of a universe of sets with constructive logic in the strongest
sense - i.e. with constructive proofs. This is our theme.

In chapter I a type theoretical generalisation of higher order predicate logic with a type
of truth values and a constructive extent operation is introduced: the theory of
predicates. In chapters If and 111 the corresponding categorical structures are
considered: those corresponding to logical operations it chapter [I, those characteristic
for a universe of sets in chapter IlI. Putting them together, we define in chapter IV
categories of predicates. The correspondence between the introduced categorical and
type theoretical concepts is then spelled cut. Some ways to produce categories of
predicates as models for the theory of predicates are studied.

Method. The central part of this thesis is a categorical interpretation of logic with
constructive proofs. To help us approach it, a ¢ype theoretical interpretation has been
introduced. An effort has been made 10 keep the latter simple; the syntactical machinery
has not been spelt out in detail. This is, of course, a subjective decision, and there is no
doubt that a different approach, concentrated on syntactical aspects, woutd be at least as

appropriate.

Conceived ninety years ago on the soi! of creative subject, constructivism now surfaces
in computers and in some matkematical structures. One often cannot help to feel that
there is not enough intuition for constructive logic any more. Equality, structure,
complexity of proofs do not seem to be a part of our everyday logical experience, Proof
theory - direct syntactical study of formal systems - is probably one of the branches of
mathematics with the highest price per result.

In recent years, a development of a semantical approach to type theory has started. In a
very straightforward way, formal systems are interpreted in the metalanguage of
category theory, and then some models are constructed, as categories with appropriate
structure, The word "model” is in fact a bit sireiched here: not the "meaning” - as in
model theory - but the struciure of a systern is being modelled. The formal type
theoretical expressions are actually just rewritten in terms of categorical operations. - So
what is the gain? A tactical gain is that one more easily finds examples of a given
structure, and perhaps "understands” it better (whatever that might mean!), since

3
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category theory is some kind of a natural language, rooted in mathermnatical practice. The
strategic gain from interpreting a type theory categorically is that given structures are
characterized as properties. Namely, while a type theoretical operation is decreed by
syntactical rules, a category theoretical operation (e.g. lim) in principle originates from a
property (cocompleteness). Connecting one with another creates a movement in both
directions: category theoreticat considerations sometimes lead to meaningful syntactical
rules for constructive logic, when intuition does not help (e.g. the rule 13 in 1.1.2);
and type theory equips some complex categories (e.g. toposes) with an intuitive infernal
language: approaching them without this language can be like programming a computer
using the machine code.

A similar interplay is going on between type theory and computer science. A system of
logic with constructive proofs might serve as a "natural programming language”, in
which programs could closely follow the given specifications. Counversely, the
cornplexity of such a system makes a computational approach to proof-checking in it
indispensable.

Presently, the most efficient approach to logic with constructive proofs seems to be the
combination of type theoretical and category theoretical formalisms and inmitions: type
theory gives a picture with sharp lines, while category theory adds a third dimension to
it. However, the inexorable difference between category theory and type theory - that
one is about properties, the other about structures - which makes their contact fruitfui,
also makes a formal fusion impossible: cf. remark IV.E.1,

Context. The analogies shown in the rows of the following table (or two tabies, glued
in the middle) might offer some readers a rough orientation, - Of course, the alignments
like this must be taken with a grain of salt!

Lo e
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concrete abstract generulized
¥ 3 Abelian
algebra ring category
Grothendieck
georoetry space (opos
propositional Heyting cartesian closed typed
logic algebra category h-calculus
higher order le svsia
. . . ySIEMe
predicate logic tripos PL-calego
with truth object gy Foo
... and with elementary category of theory of
comprehension topos predicates predicates
: Lindebaum categorical
togic algebra structure type theory

Conceptually, categories of predicates should generalize elementary toposes! - This
certainly doesn's have 1© mean that their theory will be as rich. In the worst case, they
may turn out to be just another symptom of a "generalize!"-disease. I can only say that
they did not arise from a pretension to generalize: [ was only trying to understand the
conception of constructive proofs at the confluence of three sources;

- theory of constructions (Coquand-Huei 1986, 1988, Hyland-Pitts 1987);

- hyperdocirines (Lawvere 1970, Hyland-Johnstone-Piuts 1980, Secly 1987);

- fibred categories (Grothendieck 1959, Gray 1966, Bénabou 1975b, 1983,

1985).
The theory of predicates arose from the theary of constructions, and an cbservation
how the multiplicity of constructive proofs spoils the comprehension principle. (Cf.
[.1.54.) A lead towards a solution was found in Lawvere (1970), together with the
complete conceptual equipment for categorical interpretation of logic with constructive
proofs. The passage from Lawvere's indexed categories to fibrations is essential enly
as much as it is the step from structure 10 properties.

In the introduction to his thesis (1988), T. Ehrhard claimed that already the theory of
constructions and a corresponding categorical structure - which he christened dictos -

5
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appropriately generalize the notion of topes. (In a subsequent article (Ehrhard 1989) he
went on to suggest that even Grothendieck toposes and geometric morphisms should be
generalized on the same drift!) My work evolved independently from Ehrhard's, but it
did start off from the conceptual basis of theory of constructions - which ultimately
remains a special case of the theory of predicates, namely that in which truth values can
be reduced to some sets. The relation between the two theories will be discussed in
section 2 of chapter L. We shail see in chapter 1V that a category of predicates is a model
for the theory of constructions exactly when its category of propositions is fully
generated by 1 (in the sense of 1I1.4).

I. Theory of predicates

We are concerned with a type theoretical gencralisation of (1) higher order (2) predicate
logic with (3) constructive proofs and {4} the comptehension principle. The
presentation which we are about to give reveals that these four components are lust
echoes of the same basic structure between two sorts of nypes, Q and @, which we'll
have all reasons to call propositions and sets respectively. This echoing may seem
amazing, amusing, dubious or disappointing - it certainly makes the presentation
shorier,

The idea for this presentation comes from H.P. Barendregt; it is simply 1o extend the
typing relation (_:_) by one more level. This allows for a many sorted type theory: an
expression p:S:A tells that p is a term of type 8, and that type S is of sort A. The typing
relation can then receive different meanings for different sorts. For instance, while
1:5:Q means that p is a proof of a proposition S, p:5:€ tells that p is an element of a set
S.

The same homonymy is then extended on the operations: [1 represents a product on one
side, a quantifier on the other. This is so because the rules, which define this product
and this quantifier, also appear to coincide.

In section 1 we present the theory of predicares and the theory of constructions. The
latter has vecently been developed in computer science. It is the strongest type theory
known to be consistent. Following a “set theoretical” intuition, we drop a "quarter” of
the theory of constructions, and introduce a new, very simple operation - to define the
theory of predicates. In section 2 these two theories are compared. The theory of
constructions is not stronger: it can be translated as a special case of the theory of
predicates - namely the one in which logic is extensional in the sense that propositions
can be identified with a special class of sets,




I. Theory of predicates

1. Type theories

Warning: Formal systems do their best here to look simple and natural. Some subtle
structural questions, which, for instance, an implememation would have to answer,
remain hidden behind the natural deduction notation.

1. Examples.

Conceptually, type theory stems from logic. Formally, it can be regarded as generalized
algebra. Algebra is about operations and equations on a set. Type theory is about paxtial
operations and equations on indexed families of sets (which are now called types; their
elements - terms). This point of view has been explained in detail by Cartmell (1986).
We just give some examples of variable types and operations on them.

A category A consists of:

& constant type: Obg

a variable type: X:0bgy Y:Oba
Homg(X,Y)

terms: X:Obg,

id(X):Homg(X,X)

X:0bg Y:0bg Y:Obsy Z:0bg
f:Homa(X,Y) g:Homa(Y,Z)
a(f,g):Homa{X,2Z)

satisfying X:0bsy Y:Oba Y:0bg
f:Homa(X,Y) id:Homa(Y,Y)
o(f,idy = f

and two more equations.

i A particular category A can be given by specifying its objects P,Q... as constant terms
: of type Obg, and its arrows as constant terms of types Homa(P,Q). Alternatively, a
particular category can be regarded as a model of this type theory. Indeed, by the usual

9



I. Theory of predicates

categorical interpretation of indexed families as arrows (cf. Cartmell 1986, or Seely
1984), every model of the theory above in a (finitely complete) category € will be an
internal category in it

To present large categories, we should introduce two sorts of types: Seis and Classes,
such that

P : Sets implics P : Classes
Then Homa(X,Y}: Sets, while Oby : Classes. Enriched categories could be defined in
a stmilar fashion.

To perform in this type theory the categorical constructions involving the commutativity
conditions, we must express the equality of arrows as & type. Therefore a sort of
Propositions is needed, and an operation I:

fg: P Sets
I(f,g) : Propositions

where some additional rules give a term r:1(f,g) Hf f=g.
If, furthermore, a category B and a functor F;: A—> B are given:

X :Obg : Classes
Fo(X} : Obg : Classes

XY : Oby : Classes
f:Homa(X,Y) : Sets
F1{f) : Homp (Fo(X),Fp(Y)) : Sets

(plus equations saying that F) preserves id and o), then the operation I allows us, for
instance, to express the fact that F is faithful;

10
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XY ¢ Qby : Classes
f.g: Homg(X,Y) : Sets

x 3 I(F((f),F1(g)) : Propositions

p: Kfg) : Propositions

The comprehension principle plays a fundamental role in the type theory of
Propositions and Sels. It can be expressed by the operation

[X:P  : Sets]
@(X) : Propositions

{Xe Pl ¢(X)): Sets

which binds its variable X - i.e. {Xe Pl (X)} does not vary over X:P any more. This
binding is denoted by [_] around X:P.

In a type theory with the operation X, representing disjoint union, it is better to use the
nonbinding operation 1 of exienr which formalizes the notion “such that". The intended

meaning of

X:P: Sets
©(X) : Propositions

@) : Sets
is that LX) # @ iff @(X) is true. Instead of [Xe Pl ¢{X}} we now use ZX:P.uq).

Using the extent operation, we define, for instance, the slice category A/P for P:Obg:
Obap = 5,X:0bs. Homa(X,P) : Classes,
Homgmp(tu) = Zf:Homp (mot,mou). 1(1(1t1t, nluOf}) 1 Sets,

wherte t:0bgp gives ngt : Obg, and m1t : Homy (ot P).

11
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2. Basic concepts.

Now we shall sketch a picture of the formal type theory, touching up those nuances of
this variegated field which are important in the sequel, or which might cause some
confusion, By the way, the relevant keywords will be just mentioned; it is assumed that
the reader already has some idea of their meaning. A discussion of standard notions can
be found at the beginning of Martin-L5f 1984, and in Troelstra-van Dalen 1988, ch. 11.

Many-sorted algebra. To understand what kind of a formal system is a type theory,
let us frrst consider the simplest fragment. There are 1wo levels of acticulation:
- expressions (or words) are strings of operation symbols; there is a set of
distinguished letters A, A'..., which denote soris;
- statements (i.e. formulas): besides equations P=Q, many sorted algebra admits
the sorting statements P:A.
Each operation @ is introduced by a formation rufe
Po:dg Pi:Ay . Ppopidy
GPy... Py A'

The set of premises T = (Pi:A})ic ns: describes the arity of @, The statement
®Pq...Py:A" is the conclusion of T in the above rule. The operations with empty arity
are constanis. Generators (of an algebra) can be regarded as constants, and vice versa,
Starting from either of them, by iterated application of formation rules, the well-formed
expressions are obtained. Note that the class A of all the well-formed expressions of a
many-sorted algebra L comes equipped with the relation of derivability
(FISA®xA,
the transitive reflexive closure of all the instances of formation rules given for L, where
A¥*i= AT, Assuming that there are no constants given (only generators), 'y
1E @

means that I' is a bar in the parsing tree of .

Of course, there is also equality

(=) AxA,
the equivalence refation generated by all the instances of equations imposed o L. An
algebraic study of L is concerned with the equality. A grammatical study is concerned
with the derivability, parsing, and the structural recursion by which A is generated,

12
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A model for a many-sorted algebra is a system of sets [LAT, [A']... to represent sorts,
with some strucsure on them, to represent operations. If U is the union of ail these sets
LAD..., the model assignment will be a mapping

L J:A—U
such that P:A implies [P3e [LAT, and P=Q implies [PI=0QI. The relation () plays

no role here.

Type algebra is many-soried algebra extended by one more level: besides sorted
types P:A, there are typed ferms p:P. Thus,

- expressions can be ferms p, .., types P, Q... or sorts A, A"

- each kind of statements can appear terms as well as for types: there are

equations p=q, and P=(}, typing statements p:P, and sorting statements P:A.
(These four kinds of statements correspond to Martin-L&f's judgements.) The well-
formed terms are obtained by iterated application of typing rules, in the form:

po:Po:Ae priPiAY o PoiPridn Porlidndl - PremiBosm

@po...pn t CPo...Pasm 1 A’

Here p:P:A abbreviates p:P and P:A, Each typing rule must reduce to a formation rule,
when all the 1yping statements are omitted - i.e. when all the terms, cutlined above,
are removed from it. Inductively, one casily shows that every well-formed term must
have a well-formed type, just as every well-formed type must be sorted. A well-formed
term/type always occurs in a typing/sorting statement. To recover the intuitive
difference between the subject "term T with type Q" and the staternent "tertn f has type
Q", lost in the language of type theory, we shall sometimes write fQ in place of £:Q.

A maodel for a type algebra is again a system of sets LAL, [LA']...; their elements,
representing types, are to be some sets again, containing representants for terms. Of
course, it is now required that p:P implies TplelP].

Contexts, Type theory is built up around the refations () and (=) in a similar fashion
as type algebra. In fact, type algebras are missing only one dimension of type theory,
though probably the most important one: indexing, as exemplified above (in part 1). I
is represented formally by the device of contexts. The context of a type or term T is the

13
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set T of the declared variables, on which T may depend. We write I's>T. (Variables, of

course, constitute a distinguished class of terms.)

Each atomic type or term - i.e. a generator - must be given with a context. And the
derivation rules now interfere with the contexts: they impose conditions not only on the
expressions in premises, but also on the contexts; and they yield a conclusion with a
context. The contexts are derived together with the well-formed expressions; the
relations (i) and (=) are defined by simultaneous recursion, In this way, each well-
formed type and term comes with a unigue context. The relation (=) can thus be
regarded as a mapping DV which assigns 1o each type or term T 2 finite set of declared
varizbles DV(T). T is said to be closed when its context DV(T) is empty.

Each type or term thus presents itself by an expression - its name - and a context. The
name can be arbitrary - e.p. any fetter will do for an atom - but the context an intrinsic
structure of a type or term. Generating type theory is a dynamic process, because an
atom may contain complex derived types in its context - and can be used in derivations
only when all these types have been formed, (Cf. "Derivations" below.) Moreover,
there are operations which act on the context of a type or term, without leaving any trace
on the expression which denotes this type/term. Therefore, the derivations in 1ype
theory are not just the parsing trees of well-formed expressions. They are more like
logical derivations. In fact, every logician will recognize the simultaneous recursion of
() and (=) as a sequent calculus.

The logical aspect of type theory is reflected in (i), the algebraic aspect - in (=). The
former was historically far more important: type theory was developed as logic with
constructive proofs, the algebraic side being just a study of the equivalence of proofs.
The equations imposed in a type theory are therefore usually called conversion rules,
while the relation (=) is called convertibility?. Generators are called aroms, and
constants - 0-ary operations - are axioms.

3Trc_>c[stra~van Dalen {1988, 9.4.17) call conversion the relation which consists of all
the instances of conversion rules, For its transitive, reflexive and symmetric closure we
use the term convertibility following Barendregt (1981, 3.1.5.).

14
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To modet type theory, discrete sets are not sufficient: they must be structured by some
arrows, to interprete the indexing. In chapter I'V we shall see how categories can be
used for this.

Declared variables vs, free variables. A paradigmatic picture of contexts can be
acquired by considering the indexed families of eminently constructive sets: data types;
their elements are the fincrional programs. In this setting, a variable represents an input
gate; # context is a list of the declarations of input data. All the data used in a program
must be declared. Some declared data may not be vsed in the program. And yet, even if
the value of the cutput does not depend on the values of some of the declared input, the
existence of the output always depends on the existence of the input: if some of the
declared data do not exist, the program can never become executable. In other words,
the context of a type/term T may contain a dummy variable xP, i.e. one which is not
used in the calculation of T; nevertheless, T depends on x, in the sense that it exists
only if the type P is inhabired, i.e. if there is a closed term tF, to be substituted for x.

Hence the difference between the context DV(T) and the set FV(T) of free variables of
T, namely those variables which determine the value of T. Clearly, there is an inclusion
FV{T)=DV(T), and it can be proper. We use the common convention in accounting for
the (relevant} elements of FV(T) in parentheses behind (the expression) T.

Structure of contexts. {Cf. Hyland-Pitts 1987, 1.3-4.) The type of a variable y can
be indexed by another variable z: in order to know where to choose a value for y, we
must be given a value of z. This provides a notion of natural partial order for cach

context:

YR 1o Re DV (yQ),
{Note that DV(xPy:=DV(P)u{xP}, so thar ZRe DV(yQ = DV(zR) < DV(yQ).) This
partial order can be seen as the relation of "being above" in the trecs of variables in our
examples. For instance, the context of the term p:I({f.g) is

15
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X Y

>

X
We shall denote by MIN(T} the set of minima of DV(T). E. £, MIN(x)={f,g].

Although this may be syntactically nontrivial, contexts will often be collapsed, to allow
the sequent notation, e.g.

X, Y:0b, f.g:Hom(X,Y), x:I(F{f),F(g)) = mIf,2);
they will be truncated, or even omitted when no confusion seems likely.

Natural deduction. In concrete derivations, we shall expand contexis as trees of
variables, like in the examples above, This means that "being above” will denote both
(=) and (). This is the basic idea of the narural deduction. ("Being above" is
conventionally denoted by a separating line: premises are written on a horizontal line
above the conclusion, variables belonging to the context of a type or term are displayed
on a horizontal line above its name. A double line represents several steps in a
derivation.) A practical advantage of this notation is that the contexts need not be
Tewritten in derivations: a variable which was above a premise is above the conclusion
too; the context of the conclusion can be made from the contexts of premises.
Moreover, the partial order of a context presents itself in this notation in such a way that
the permutations under which a context should be invariant are completely obvious,
while the structural rules governing the manipulation with contexts, come as “natural”, -
This convenience does cause cerzain formal disadvantages, but they seem less important
for our purposes.

Structural rules. When building derivations in natural deduction, one should
certainly keep in mind the difference between (=) and {~) - i.e. between open
assumptions under which a formula is valid, and premises from which it can be
derived. In this type theoretical natural deduction, the role of open assumptions is
played by variables. This refers to the "coincidence” that the Jree variables in a predicate
obey the same structural rules as the open assumptions in a derivation:

16

RN

b R TR 4 e 0 e

1. Type thearies

they can be used in any order (provided they are independent of each other),

several times, or not at all.

(These structural rules will be derivable in the type theories which we are about to
introduce. Cf. "Substitution™ below.) In fact, variables are just labels for assumptions.
If an ordinary assumption is in the form “"Suppose that P is provable", assuming a
variable X:P in a context can be understood as saying "Suppose that X is a proof of P".

By nature, variables satisfy the requirement that there are always sufficiently mary of
them: for every derivable type there must always exist a fresh variable. This can be
expressed by the following rule, which will be assumed in all our systens,

P:A
X:P:A

In other words, before we assume that P has a proof, we must kaow that it is well-
formed.

Derivations. We start a derivation from atoms, and build it by iterated application of
derivation rules. Whenever a type has been formed, its variables can be assumed. A
type/term can be introduced in 2 derivation only below its context, i.e. after all the types
which occur there have been formed. When introduced, it is again available as a

premise for a rule.

In these interactions between the rules and the introduced atoms, a derivation tree is
built. Both (-} and (=) are displayed in it. The context of every type or term must be
contained in each of its derivations. (The bottom is considered as a part of the derivation
too. A variable always occurs in its own context.)

Variations. This setion is specific for sorted type theories. Let A’ and A" be sorts of
types. If & variable X:P:A" occurs in the context of q:Q:A" (or of Q:A" alone), then the
term q (resp. the type Q) is said 1o have variarion A'A". A theory has variation A'A" if
the types and terms in it are allowed to have this variation. If a variation is not allowed,

we assume that neither types ror terms may have it.
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L. Theory of predicates

A type with AA as its only variation is called dependent.

In type theories below, the rules will be parametrized by sorts: a A'A"-rule acts in
principle on the variation A'A", i.e. on A'-variabies in the context of A"-typesfterms,

3. Sums and producis.

The essence of logic-as-type-theory is that the fundamental type theoretical operations
IT and Z satisfy similar introduction and elimination rules as ¥ and 3. Namely, by
removing the terms - which we ouline for better visibility - from the typing
rules for IT and X, the usual logical rules for ¥ and 3 are obtained. (Recall: Every

typing rule reduces to a formation rule when stripped of terms.)

Where V and 3 discharge an assumption in a derivation, [T and 3. bind a variable. As
usually, binding is denoted by [_].

(The "coincidence" of the declared variables and the open assumptions is thus extended
to the bound variables and the closed assumptions, used in derivations.)

18

Typing rules.

ITIA'A"

EHAIA"

IEAIA“

EXA'A"

I. Type theories

[X:P:A"
q:Q:A"
AX.q:TIX:P.Q: A"
condition: Xe MIN(g:Q)
p:PA r: [IX:P.Q(X):A"
p : QIX:=pl:a”
[X:P:A'}
piP:A! QA" q:Q(p)A”
{p,gq): ZX:P.Q: A"
gondition: Xe MIN(Q)
[X:P:A"}
[Y:Q(X):A"]
r: 2X:PQ ;A" (3T RS (X, WA

vir, (., %).8) : S(r) : A
conditions: Ye MIN(s:5); Ae fA',A"}
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Conversion rules,

pIiaa” (AX. @p =q[X:=p]

nilja'a” AX. (X =t gondition: Xe DV(1)
BTAA" v(X,Y}, (X,Y).s) =5

MZA'A" vir, LYK YY) = 1) condition: X, YDV (0

Equality. It is, of course, intended that the equals can replace each other. Hence the
equality rules, which tell for each operation that it is well defined with respect to the
relation of convertibility. We won't write them down.

Although no conversion rules have been given for types, the nontrivial convertibility is
induced on them by the equality rule (in 2 condensed notation)
P=q
R(p)=R{q)

Remark. The type theory of I1 and X is an algebra of constructive proofs. The typing
rules are easily recognized as well known logical tules, enriched with terms to encode
proofs3. The conversion rles then define an equivalence of proofs, But in formal logic
any two proofs of a formula are equivalent. So the Jogical experience doesn't help us to
choose the conversion rules. They are actually determined in the categorical
interpretation of type theory. In chapter IV we shall see that the conversion rules given
above just say that X, and [T are respectively left and right adjoint to substitution. (Cf.
also IL3.1.)

Substitution, Given X:P=>q:Q, and p:P, we can define Q[X:=p} and q[X:=p] as the
type and term obtained by first applying IIT, and then EIT. {In the rule BIT, the left side
then defines the notation on the right side.) Otherwise, we could give a separate rule for

30nly EXA'A" deviates from the usnal form of the J-elimination by the presence of

Z:XX:P.Q in the "formula” S. Lemmas 3 explain that this rule in fact presents the
disjoint union, rather than existential quantifier. Compare also proposition 52 and
remark IV.1.4,
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substitution, which would consist in replacing a minimal variable X:P in the context of
q:Q, by « term p:P (under its context). (BT could then read: (AX. )X =q.)

In our systems, substitution includes the structural operations on contexts: weakening
(i.e. adding a dummy} can be represented as a substitution (of twe variables for one)
along a projection 1; {see below), while contraction (i.e. reusing a variable) can be

viexed as a substitution along a diagonal p (idem).

To provide a simplified notation and some bookkeeping of substitutions, we shall
sometimes refer to some declared (and not just to free) variables in parentheses after an
expression, When Z is clear from the context, we shall write T{r) for T[Z:=r]; and
T[X:=pl[ Y :=ql[Z:=r] will be abbreviated by T(p,q,r).

Notation. As usually, if Xe DV(Q), then
TT3CP.Q will be written as P—(QQ, and
2X:P.Q as PxQ.

Furthermore, we abbreviate
idp 1= AXP. XP
fog := AX.f(gX) where f:Q-R, gP—Q
ng = AZN(ZX.Y).X)
Ty = AZVZ,(X,Y).Y)
p = AXEXKX.

Lemmas. 31. n;{Xp, X1} = Xj, i€ 2.
s This is just .+

32 (meZ, M2y =7 \
{noZ, 11Z) 2v(Z, (Xo.X1){melXo0. X 1) 1Ko X 1)) =V(Z, (Xo.X1){Xo. X1 = Z.v

33, s{mpZ, mZ) = v(Z, (Xg.X1).8)

34, s({X.Y) =t({X.Y)) then s = ¢
v SZ) Iv(Z, (X,Y).s(X, YY) = WZ, 06X, YD) 2 e(@).e

21
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4. Unit.

We shall assume that every sort in any type theory contains the wnir rype 1. It represents
the empty context. A closed type - containing no free variables - can be viewed as
varying over 1.

Rules.
1A 1A

DA p:lA
p=0

Notation, @p:1p will denote P(XP):1(XP) (i.e. @:1 with a dummy X:P.)

5. Predicates.

In our theory of sets and propositions, the following notational convesntion will be

respected whenever possible
Sorts Types Terms
Q propositions (truth values): proofs:
o, B..; &. (vasiable) a, b f...; x... {variable)
© sets: elements (functions):
H K M.Q h, k..., u, v; X... {variable)
both sorts:
AAN P.Q,R, 3 p. Q. 1, §; X... (variable)
22
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The axiom
Qe

("the collection of propositions is a set") entails that every proposition - a type in €2 - is
also a term in ©, Hence propositional variables £,0... : 3 among the variable

propositions?, In principle, there are two sorts of variables: for elements and for proofs.
£ is just a notation for X8 If T is a type or term we denote by EV(T) the set of the

element variables in its context, while PV(T) is the set of its proof variables.

The symbols @:1 will be reserved for singleton :1:9; rruth, the unit in €, will be
denoted by @: 7 :Q

Four variations (cf. part 1) are now possible and they correspond to the logical
components which we inveked at the beginning:

(1) @0 - higher order,

(2) 84} - predicate logic,

(3) QO - propositional logic with constructive proofs,

(4) QO - comprehension principle.

51. (Ad 1) Orders are the sets generated by x and — from € alone, Polymorphic types

are the propositions generated only from order variables.

1100 and TO@ give products and sums of sets indexed by sets. Higher order is: being
able to quantify over them, over exponents, over orders in particular.

52. (Ad 2) A predicate is a proposition indexed only over sets - an assignment of truth

values to their elements.

In order to represent the quantifiers, [18Q and Z@Q must be resiricted 1o predicates.
Furthermore, the tule EXOQ must be resiricted to A = Q: we cannot obtain an element

41n general, note the difference between the element variables XX and variable elements
- i.e. functions kB¢ZM); and the difference between the proof variabies xB and variable

proofs tB(X,y).

23

:
|
?
i
;



I. Theory of predicates

K from the truth value YX:K.o{X). (Otherwise a paradox can be derived: cf.
Pavlovié 1989.) This ¥-elimination rule can be further weakened: just as in the 3-
elimination in logic, forbid the dependency of the predicate 8 on the active variables X
and Y. However, this last restriction is inessential: the resuiting operation isn't any

weaker.

Definition. Quantifiers ¥ and 3 are respectively the operations [I@€Q and pAZTe
defined with the following additional gonditions:

on IJ16Q and 13,00 PV(g:Q) =0
on EY 80 XYeDV(S), A=,

The groups [1OQ and YBQ, restricted like this, will be denoted by ¥ and 3
respectively; the rules in these groups are IV, NV, Ed etc.

Proposition. The rule EX@Q, restricted 10 A=Q, is derivable by means of 3 and
£QQ. (The operation V', introduced in ELOQ, is defined in terms of v and {_,_)
belonging to 3 and Q€ and the conversion rules are satisfied.)
. [X:K:9]

[y:0u£2]

siX.y) 1 o((X,y)) : &2

r:dX:Ko: Q {X, ), sX )y Zz(AX:K.o).o(z) 1 Q

vir, (X.9).4X, ), s(X, 90 : Tz@X:K.a).0(z) : Q

Denote the last term by n(r,s). The fact that mon{r,s} = r follows from lemma 34
{because ®on{(X,y}s}= (X,y)). It is routine to check that
v'(r, (X,y).8) = mn(r,s} : o) : &

satisfies the conversion rules.+

53, (Ad 3) The variation £2{2 - propositions indexed by proofs of other propositions -
must be understood from the notion of constructive proof. If a constructive proof - an
inference of one proposition from another - is a function, then a proposition must be the
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set of proofs that it is true, If the constructions are (postulated to be) proofs, then the
sets (of constructively given elements) and the propositions (with constructive proofs)
boil down to the same thing. In that case, there is a higher order predicate logic already
within propositional logic: the type x:a=2((x) is a predicate, if ot is viewed as a set and
every B(x) as a truth value.

Built upon this idea, the Martin-L&f type theory opens an almaost royal road 10
constructive logic. The constructive quantifiers are the products and sums, as intended
from the beginning. The matter seems closed.

Fortunately, we can still ask for more: Martin-L6f type theory doesn’t allow a type of
truth values. Since all the types are truth values, it should have to be the type of all
types, and Girard has shown that this causes a paradox. (See Troelstra-van Dalen 1988,
11.7.4.)

Therefore, the sets and propositions must remair in two separate sorts, each with its
own sums and products, and with a calculus of predicates between them,

54, (Ad 4) The variation Q@ is needed to pass from a proposition describing a set to
the set itself. For instance - going back to examples 1 - if we define the equaliser
X, Y:00:0, {gHom(X,Y )8 = =(f,g): Hom(E(f,g),X):©
the factorisation through it will be given by
aiHom(A X):8, p:I(fea, goa):(2 = 0(a,p):Hom(A,£):0
satisfying
O(a,prox(f,g) = a. .

=(f,g) - -

Bfg—————— X . Y

g
¥ap) a

A
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However, at a closer look this is a bit "too constructive"; the factorisation ¢(a,p) must
exist when the proof p exists, but it shouldn't realty depend on the choice of p. This
dependency can be suppressed by a conversion rule.

Whenever a set must be described uniformly by a proposition, we could first use Q@,
and then suppress it. But we shall rather dump Q@ completely, and let the
comprehension take care of itself.

Definition. The extent operation 1 is given by the following rules:

I a2

Basio: @

condition; PV(z:o) = @

E1 koro®

a2
B T(Ba)=a
I Sttk) =k
I1 1T =1

55, Definition. A theory of predicates (TOP) is a type theory with
- sorts © and ;
- variations ©@, QQ, and 8Q;
- operations [190, Y06, [1QQ, XQQ, ¥, 3,1

The fragment without ¥, and 3 is the calculus of predicates (COP).

A strong theory of predicates (STOP) is a theory of predicates with an additional
operation, defined by;

5In fact, the premis I(fea, goa) can even be completely avoided in this case: cf.
Lambek-Scott 1986, 0.5.4.
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dab {a,by 1 Txon B(x)
{Ba,b) : IX o BTX)

pd v{{3a,b), (X,y).s(tX,y)) =s(ab)
né (B(1k),b) = (k,b.

Comment. The pairing notation for (3a,b} is a mnemotechnic device which allows us
to "derive" the conversion rules from those for X and 1. In fact, 713 tells that the term
{8(1k),b) obtained by Sab for a:=tk is equal to the "honest” pair {6(tk),b}, obtained by
IZ. But if the tenn a contains a proof variable, the term 82 cannot be formed and {8a,b)

is really not a pair.

6. Example.

In chapters II and HI the means will be developed to assign a semantics to the theory of
predicates as a set theory with constructive proofs. Just for orientation, let us take a
quick look at a degenerate model: one for set theory with formally constructive logicS.

Let S be an elementary topos, L3 := (S 3 Q) the Heyting algebra of truth values in it.
. K. .

(Bvery 3 (K,Q) with the induced peimwise partial order < is a Heyting algebra.)

Clearly, § will give the sets and functions, & the propositions and proofs. The main

semantical framework is the category of predicates of S:
1874 = 18/0,

S/%2 (i, ) = {ue S K,M): K Sou),

6Cf. the introduction for the meaning of this expression.
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where ke 3 (K,Q), e 8 (M,L2). This category comes equipped with the obvious
projection functor V@ : S/8-> 5. Denote by @K the full subcategory of S/4
spanned by S(K,Q) (i.e. @K = (VL)1K,)

The interpretation is roughly as follows:

- The sets and functions (©®) are the objects and arrows in 8, The sets
depending on a set K are the objects of S/K... (Standard interpretation of a Martin-Lif
type theory: Seely 1984.)

- The propositions and proofs (€2€2) are the objects and arrows in S /€. The
predicates over K are in o K. {Since this is a Heyting algebra, there i al most cne
proof from « to 3.) The propositions depending on oe | K| are the objects of
@K/ ... (By the standard interpretation, a dependent proposition x:0=p(x} must be
an "arrow” B < o [Tx:oef(x) is then a— B, while Zx:oLB(x) is just f.)

- The quantifiers (B€2) are interpreted by the quantifiers from the topos.

- The extent (1} of ae | K| is interpreted by

W= {Xe K afX)) = &={o, Ty,
where Tg:=Tofg: K3 13, while 2(f,g) denotes an equaliser of f and g.

M
v
o
—_ 108 re———
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Given mM— i in 8 /K, Tn: Ty —> o is 10tem (=M) in S/8. Given a:TM—> &
(i.e. aoa = Ty in 8/£2, §a:M —> 10 {in 8 /K) is its unique factorisation through .

In a trivial way, this interpretation supports a strong theory of predicates: note that
TX:tee1f has the same meaning as (Xx:onf3).
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1. Type theories

7. Constructions.

In every topos there is a one-to-one correspondence between the predicates and their
extents (provided that some representants are chosen for the subobjects). These can be
identified: propositions can be regarded as a distinguished class of sets (namely, the
subobjects of 1). With such an extensional logic there is no reason to avoid O any
more, hence no need for 1: the sets varying over propositions can be regarded as
indexed over extenss. Toposes contain such a logic.

Definition. A theory of constructions (TOC) is a type theary with
- sorts ® and €
- variations 88, QQ, B, Qo
- operations [T and ¥, for each of these variations; EY@€Q is restricted to A:=£2.

The [T-fragment is called the calculus of constructions (COC),

Remark, The calculus of constructions was defined by Coquand and Huet (1986,
1988). The theory of constructions is due to Hyland and Pitts (1987). (The
presentations were different.) Both attracted much attention, from computer science as
well as logic. They appear to be the strongest consistent calculus/theory of types
presently available. Allowing all the complicated contexts they lock much stronger than
the calculus/theory of predicates for one. In section 2 we shall see that this impression
i not quite true.

8. Isomorphisms.

But before we start relating theories, we must relate operations in each of them. Are all
these [Ts and Xs really independent from each other?
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I. Theory of predicates

Definition, Types P and Q are isomorphic (P=Q) if there are terms (isos) fF(YQ) and
2Q(XP), such that f(g(X)) = X and g{f(Y)) = Y. (Using A, there are f:Q-> P and
g P—Q such that fog' = id and g'of' = id.)

Lemmas. The first two of the following lemmas are about the theory of constructions,
the remaining seven about the theory of predicates. However, to prove each particular
statement, only the rules for the operations mentioned in it are needed.

81.Px1= P

82, The statement:

if P~ P and X:P = Q(X)= Q(X) then DX:P. Q(X) = OX:P'. Q'(f(X))
wherg X:P' = f(X):P realizes Pz P'.

holds for all the combinations of sorts for P, P, Q, Q', and for Qe (Z.I1}, with ore

exception;
M = i does not imply Z2X:K.M = EX:Kal.

*» The exception wiil become clear in the semantics. The positive part is very easy for
P,P: A" and Q,Q": A". With terms kM{x}) and al(XM) realizing M = p, the
following seven cases remain:

IDGKM = [IXK.)p

Ox:oe. M = Dxion g

Ox:u. K(x) = DX:M. K(a(X))

Ox:p. afx) = OX:M. a(aX)).

We prove only Zx:L ax) = 2X:M. a(a(X)). The terms
z: Zxpax) = (kimgz), 11zy : XM, afa(X)) and
Z: XML ala(X)) = wWZ, (X.y).a(X}, v @ Zxouox)
should realize the isomorphism.

1y v({k(moz), m1z), (X)), ) & (alk(noz)), mz) = {mpz, M2y 3 2
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2 &m0V Z, (X)) Tv( Z, (X405
v{(Z, (0,9 4(rov(U ). (X.1)-400%),9) VU ), (X, 942X, )

v(Z,(U,v).{k(rg (a(l), v)), 1) {a(U), v) ) =
v (Z, (Uw). &KUY, v =v Z, Uv).U,v» 1z

= =

83, IX:1a1(B(1X)) = 1Exop)
84, 1IX: Kap = «(vX:K.B)
85, w0 e X T)

» The is0 is realized by
X = 6(X,8): 1(1g x T)
Wil x T = ov(tW, (X.8).1X) : wx
As usually, one identity is trivial, and the other requires n:
S(BV(IW, (X,8).1X), 8 L8v(tW, (X,8).(0v(X,8), (X.$).1X), ))&
Sv(tW, (X,830.{81X, e)) = HTW = W

86. HX:la.l(ﬁ({X,cj))) 2 Wk (ot ). Béx))

« We just give the isos.
ZIX0a(BEX.e)) = SAxvx, (X,8).0ZX)): WITx:(wexT).B(x))
W lTIc(oxm3.p)) = lXﬁ((’tW)(X,B)) : l'[X:wm(B{(X,as)})-

87. Assuming 8ab:
C=wWwxT

* This is realized by
X = (O, 0w x T and
zZwx T = v(z, (Z,pj)‘TZ) He R
Here is one of identities:
{ Sv(z, (Z.a].tz), ) 2
Wz, (Z.9)(8v(Z.9), (Z,9).52), ) &
v(z, (Z,0).08(1Z), 8)) =v(z, (Z,8)4Z, 8)) =2z
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I. Theory of predicates

88. Assuming dab:
Txoofixy = IX oL f(zX).

+ Consider
z: 2x:oPx) = {dngz, myz) : IXoee B1X) and
w: X peX) = V(w, (X,y).(‘:X,y)) L Exoe Bix).
The identity on Yx:ct.B(x) is easy; the one on IX:1xx. {TX) is obtained similarly as the

one shown in 88.»

89. Combining the above results, we conclude that with 8ab
oxeefy = woXoef) = oXawap
nx:efp = oXua.f OXacap) x T
holds for oe [2,I1}.

Remark. The rule Sab is derivable in a theory of predicates iff Yx:ce.p=3Xne. . The
rule Sag, obtained by restricting 8ab to B=T, is derivable iff a=10<T.

The following chain of isomorphisms shows that 8ab is derivable from Sag:
Zxap Sgat(zx:a.ﬂ)x‘r 2 (X fxT 4 IAX oL (ifxT) %
= X p.
The step (#) is based on: IZ: (XX K. L).¢=IX:K.AY:L.g.
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i. Plan,

In this section the theories of predicates and of constructions will be compared. It will
wrn cut that the strong theory of predicates is equivalent with the theory of
consiructions, and that the calculus of predicates is stronger than calculus of
constructions (in a sense defined below). This will mainly result from some
considerations about subtheories without variations over propositions.

Terminclogy. A system A is a triple

A ={Sorss, Variations s, Operationsa)
used to define a class of type theories. For instance, TOP, COC eic. are systems. A
particular A-theory A = A(E) is generated by the Operations 4 (defined by a set of rules)
from a given class E of atomic types and terms, whick only have Sorisg and
Variations a.

A subsystem B A has Xp& X for Xe {Sorts, Variations, Operations}. {More
restrictions can be impesed on the typing rules in B. But B is assumed to contain the
whole group of rules by which any of its operations is defined in A; in particular all the
conversion rules.}

If A is an A-theory, a class of types and terms M€ A is its B-subrheory if it is a B-
theory, for B& A. (S0 M has Sortsg and Variationsg, and it is closed in A under
Operationsg.)

Systems. For every system A introduced in section 1, we define a system Ag = AT®
in which only the variations and operations over sets are allowed. Since Q€ is not
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2, Translations

I. Theory of predicates

allowed, there are no proof variables in these systcms."' There are only sets and E

predicates.

In addition to the operaticns for 88 and 8Q, we stipulate that TOPg and COPg contain 2. Definitions. ?

1, while TOCg and COCg have the Q0O-operation (_)x1: 21, Let A and M be two arbitrary type theories. A translation F:A—> M is an algorithm

200 which prescribes how to transform every type from A into a type from M and every

—————— term from A into a tertn from M, so that
{a,Proxl:@

variables go to variables, and
the relations (_:_), {=) and () are preserved.

k:axl:® .
mok::Q Let A and B be two systems. A (ransiation F:A —> B is an algorithm which assigns to
; every A-theory A a B-theory FA and a wanslation FAtA—FA.

Note that COCe & COC, all other Ag are proper restrictions, i.e. subsysterns of A,
22, A (B-)subtheory M of (an A-theory) A is a retract of A if there is a translation

So we have the following systems: F:A —> M such that for every type P from A :
F(P)=P.
STOP ;
- TOC TOP E A system A is conservative over a subsystemn B if there is a translation F:A—> B such
Variations coc l ﬁ] that every FA is a retract of A by Fa.
: . 23. The systems A and B are equivalent if there are translations F:A— B and
16 % G:B—> A, such that for every A-theory A and B-theory M

GFA € Aand FGM € M,
and for all types P from A and Q from M

GF(P) = Pand FG({Q) = Q

(with obvious subscripts).

96 | p ¥ pEosonoo

T
T
1 I I

Q0 I L |nx

Comments. The idea is that systems should be equivalent if and only if they have the :
3 same class of models. For instance, group theory using {+, (_¥1,1) is equivalent to the

one with {—, 0} {(where — is the subtraction).

The theory of Boolean algebras with {v,A,—,-,0,1} is conservative over the one using
only {»,—,8); the sequent calculus with cut rule is conservative aver the one without.

SO PR

TLogically, this can be understood as scholastic rigidity: "Nothing can be predicated
about predicates.”
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I. Theory of predicates

Remark. To eliminate superflucus operations means 1o remove some synonyms from
a language. In principle, the language becomes harder to speak: e.g. the cut-elimination
yields somewhat unnatural preofs. But it becomes easier to understand: less

ambigucus, closer 1o semantics.

As far as type theories are concerned, we want to consider synonymous exactly those
isomorphic types that will be identified semantically. We shall be Jooking for
isomorphisms that will be interpreted as identities in the models.

3. Comparing theories.
Propositions.

31, TOC is conservative over TOCa.
32. STOP is conservative over STOPg.

33, STOP and TOC are equivalent.

Proof of 31. Given a TOC-theory A, we define a translation E:A—> A, such that
E(P)=P
for every type P, while the image of E is a TOCg-subtheory Ag S A.

The idea is that E should translate every variation A'A” - where A" A" {Q,0] - inte
variation @A" and all the A'A"-operations into the corresponding @A"-operations.
Roughly speaking, E just replaces every proposition o in a context by the set axl. The
variables are substituted into an E-image along the terms d to keep the image isomorphic
with the original.

For an arbitrary type or term T we define
E(.XQ..=T(.XQ..)) = ..XPQ..=ITI(.dgXPQ..)

D(...XQ...=T(..XQ...)) 1= . XD, .={T] (..doXPQ..))
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where
LAl = A where A is a letter
CoX:P.Ql = 0X: [P). LQT
[AX.q] = AX. [ql
Tpqd = Epl[q)
[{p.q)1 = {[pl.LqT}
Tvir, (X,Y).5}1  :=w(r], (X,Y).LsD)
[ex] = LoeDxi [K] =LK1
[a] ={Fal. @ [k] = [kJ
dg: DQ}-Q
dy 1= ggo Ty de 1= AxAE ox, 10
dx =ex dg  =¢x
eq: E(Q)-Q
eA s=idp ea  =ida where A is a letter

COX;P.Q = VOOW  €pxXP.Q = Wovg

vo : {OX:EP).EQ)-(0X:P.Q)
vy i= AZ. egeZoep
vy, = V(Z, (X,Y).{epX, eqY})

vy := AZ. €goZoep
vy = V(Z, (X,Y){€pX, €QY))

W (DX:D(P).E(Q))%(DX:E(P}.E(Q)) is an iso from lemma 1.82,
The substitution operation is translated

E(T{X:=t]} := E(D[X:=D(O)]
D(T[X:=f]) ;= D(TY[X:=D(H)].

An inspection of the definition of E now shows that it preserves {_:_} and (=). An
inductive argument which follows the recursive definition of the iso eQ:E{Q}—Q shows
that I'k- p implies E(I)- E(p). So E is a translation. Its image Ag is obviously a TOCg-
subtheory (i.e. closed under the TOCg-operations).

So TOC is conservative over TOCg,+
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I. Theory of predicates

Proof of 32. The approach is completely the same: Given a STOP-theory M, we
define a translation H:M — M, with H(P)= P for every P, and such that Mg := im(H)
is a STOPg-subtheory. H wili translate the variation £2€2 into ©€2 by replacing every o
in a context by wx.

H is defined using algorithms [_I=[_Ig and [_]=[_]g for names, and some terms j

for the substimtion of variables
H(..XQ.. o T(..XQ...)) = . XQ..=LTI(..jgXQ..)

7. XQ.=T(.XQ.)) = XK. .= [T] {..jox'@..)
for an arbitrary type or term T{...XQ...).

The definition of [...1y is the same as that of [__Jg, with

[l =1lced
[5al = 8lal
[k1 = gk

as additional items. But [ ]y is
[o] =1lad [K] :=1KI
[a] = ofal k] =Tkl

The difference with the translation of the context is that there is no terms from
propositions to sets in STOP, hence no iso from H(ee) to J(or). However, lemma 1.87
tells that in a strong theory of predicates ¢ can still be recovered from 10 - up to an iso.
The basic idea for the translations in this proposition is to extend 1aXT = ¢ to
J{ayxT = H(a) (= ). This way, H{P} and P can be kept isomorphic despite the fact
that their contexts cannot always be connected with each other by isos.

Qi IQ-Q
Jo = hget
jk  =hg
hq: H(Q)-Q
ha =ida ha :=ida where A is a letter
h]_a = Bohg_ot HLO‘. = SOHQOT

hgx:p.g = voow ng;p‘Q ‘= wovp
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va : (OX:HP)HQ)) - (0X:P.Q) is defined exactly as above, everywhere with h in

place of e.

w : (OX:3(P).HQ)— (0XH(P).H(Q)) is an iso from lemma 1.89. (We need Sab
when 00 =X and P,Q:Q.)

The substitution is:
H{TX: =] = HID[X:=)f}]
JT[X:=f]) = (T)[X:=]({YL

The preservation properties of H are checked in the same way as above, for E. And just
as above, the image Mg of H is clearly closed under STOPg-operations in M - i.e. it is

a STOPg-subtheory. Hence the result.»
Proof of 33, (We use the notation from the preceding proofs.)

The translations Fg : TOCg— STOPg and Gg : STOPg—>» TOCg are easy to guess,
Feg just rewrites the expressions from a TOCg-theory Ag and replaces:

axl =

{a,@) > &a

mok B> 1k,
while Gg goes in the opposite direction with the expressions from & STOPg-theory
Mg. The preservation properties are immediate: the rules which define each pair of
corresponding operations are completely analogous. (The restrictions which Idistinguish
¥, 3 and t from respectively [100, OO and {_)x1 are superfluous in the absence of
£0.) We can say that TOCg and STOPg are isomorphic.

Given a TOC-theory A, define FA to be the smallest STOP-theory containing the
STOPg-theory FaAg (i.e. its closure under £2Q-operations). Given a STOP-theory M,
let GM be the smallest TOC-theory which contains GaMe (i.¢. its closure under QQ-,
and Q®-operations}, Obviously, GFAS A and FGM&M.

Further define for every A and M the translations F=Fp : A— FA and
G=GM:M— GM by
F :=FgoE, and

39
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I. Theory of predicates

G ;= GgoH
(with E and H as in the proofs of the preceding propositions). Obviously, arbitrary
types P from A and Q from M are translated

GoF(P} = E(P} and FoG(Q) = H(Q).
The required isos

GoF(P) = Pand FoG(Q} = Q

are thus ep and hq constructed above.
So F and G realize an equivalence of TOC and STOP.+

Remark. The danger of working medulo ises is that whole groups (of
automorphisms} can be swept away: reduced to an identity. This doesn't happen if the
types (i.e. the type schemes) are identified only along unique canonical isos.
"Canonical” here means: uniformly defined for all types, natural, "meta-polymorphic”.
The isos used in the previous propositions are obviously canonical. A curious reader
will perhaps want to check that they are unique. (The assertions are: For every canonical
iso f:E(Q)— Q, D(fg)=idp(y) implies fo=eq; for every canonicat iso gg:H(Q)— Q,
J(gQ)=idq) implies go=hq.) - Strictly speaking, the unique canonical isos should have
been demanded already by definitions 2. We refrained from this for the sake of
simplicity,

4. Comparing calculi.

The naive idea behind our manipulations with systems is: "Reduce everything to sets".
However, if you simply "hit" every atomic proposition in TOC by (_)x] and transform
all the TFs and Zs to [1@6 and 2O respectively, some types will become isomorphic
which previously weren't - due to the exception in lemma 1.82. It took the simultaneous
recursion of D and E in 31 above, using not only [TO@ and Y00, but [IOQ and 20Q
100, to circumvent this - as to obtain D(P)= D(Q) iff P= Q. A similar story can be told
with STOP, 1, J and H instead of TOC, ( )x1, D and E. - The translations D and ]
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"reduce everything to sets” in such a way that the images are isomorphic exactly when
the originals are.

However, propositions 3 actually required a bit mote: an iso between each type and its
image (by a iranslation). It was convenient (even necessary in 32) that translations
preserve sorls. We therefore used E and H rather than D and J. Besides, E and H
helped us to define Ag and Mg neatly from A and M. Bur the factis that E:A—> Ag and
H:M - Mg are rather poor as morphisms: there are no terms x:E(c)=>f:E(f3), even if
a=f. - The translations E and H are not "functorial”, while D and J are.

Definition. Le: A and M be two arbitrary type theories. A translation F:A—> M is
sound if it also preserves the relation (=) (i.c. the contexts} and the substitution.

A sound translation F is fulf if for every term F(IN)=r:F(P) in M

there is [=>p:P in A such that r=F{p},
where F([') is obtained from [ by translating each element. It is faithful if for every pair
I'=p.q:R

F(p)=F{q} implies p=q.

[f a sound franslation is both full and faithful, we say that it is complete.

Let A and B be two systems. A translation F:A —> B is soundifullifaithfullicomplete if
all its components Fa:A —> FA are.

We say that a system B is stronger than A if there is a complete ranslation FFA—> B8

Comments. A stronger system is meant to have a greater expressive power: every A-
theory must be completely interpreted in some B-theory if B is stronger. Ring theory is
stronger than group theory; predicate logic is stronger than propasitional logic.

A complete ranslation F establishes for every type I'=»P a bijection between collections

of terms

8Note that the relation "stronger” is reflexive; it should perhaps be called "at least as
strong as". But as far as the following proposition is concerned, COF is strictly
stronger than COC, i.e. COC is not stronger than COP.
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I. Theory of predicates

Frp: (T=p:P] = [K=0FP)).
From the formulas-as-types point of view, this correspondence between the proofs in
the origiral and those in the image seems to generalize the usual notion of a complete
interpretation: "Exactly the images of provable formulas are provable™.

Remark. An inclusion BE A (with components M3 MA, where MA is the closure
of M under the A-operations) is always a faithful translaticn, but it needn't be full. The
inclusions TOCa S TOC and STOPg < STOP are obviously not complete. On the other
hand, D:TOC— TOCg and J:STOP—> STQOPg are complete translations. The
semantics will later tell us that complete wranslations TOP — TOPg and COP—3 COPg
do not exist: the operations in theory of predicates are too independent - TOP and COP
are essentially richer than their respective restrictions.

Proposition. COP is stronger than COC,

Proof, The idea is that D:TOC — TOCg reswricts to a complete translation
C:COC— COCg.

Given a COC-theory A, define A1 10 be its closure under the Q®-operation (_)x1. CA
is then the image by E of A in itself. The translation Cp : A—> CA is just a restriction
of the algorithm for D.

By the definiton (of D), C preserves the contexts and the substitution. The other
preservation properties follow similarly as for E.

For every type '=P in A there is 2 mapping

Crp: (T=p:P} = {CT)=rCP)} : p> Clp).
The difference between I'=>p:P and C(I=C(p):C(P) is that the later eventually
contains {_)x1, {_,@) and mp, which C introduced. The algorithm Crp = "remove
{x1, {_@ and mp from C{[)=2r:C(P)" is easily seen 1o define a mapping

Crp: (CD=nC(P)} — (=p:P},
- inverse to Crp. - S0 Cis a complete ranslation,
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2, Translations

Since Fg and G restrict to isomorphisms of COCg and COPg, all this vemains true for
i, 8, T in place of respectively (<1, {_.@) and ®o. Hence there is a complete

translation
K:COC— COP,
with KA defined o be the smallest COP-theory containing the COPg-theory FgCA and

Ka = FgoCy .+
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II. Variable categories

This chapter is about fibrations ag variable categories. The theory of fibrations, or
fibred categories, is just category theory relative to a base category. Ordinary categories
can be viewed as fibred over 1.

Fibred categories have been defined by Grothendieck (1959) for the purposes of
algebraic geometry. Accidentally or not, no appropriate introductory text on them is
available vei. The only general references (known to me) are: Grothendieck 1971, Gray
1966 and Bénabou 1983. The first two have been written more than 25 years ago, the
third one is unfinished and unpublished. So we have to stant by working our own way
through, to the facts which are in part probably well known to some people, or used 10

be well known some time ago.

The main definitions and basic facts about fibrations are surveyed in section 1. We
couldn't afford to give complete proofs, but an effort has been made to arrange this
folklore material in such a way that a difligent reader could supply them using
elementary category theory. The fibrewise versions of some common categorical
notions are examined in section 2. Section 3, on the other hand, is devoted to some
concepts having no ancestors in the ordinary category theory: the left and right direct
images, and the Beck-Chevalley property. In subsection 3a a characterisation of the
Beck-Chevalley propertty is given in which the direct images are not mentioned. (It
becomes possible to extend this property from bifibrations to fibrations in general.)
Section 4 finally lists some facts about arrow fibrations, which are particularly
important for interpretation of type theories.

It should be stressed that this chapter is not intended as an introducion into fibred
category theory, It introduces only those aspects of fibrations which are really needed
for our interpretation of the theory of predicates in chapter I'V. Nothing has been
included here that could be left out - without causing even more work. A reader with no
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1. Variable categories

patience for categorical abstraction should perhaps just skim through this chapter, and
come back tater, when he needs to.
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1, Fibrations. A bief introduction

1. A motive.

If a family of sets indexed over a set B is a functor from (the discrete category) B 1o
Set, then a family of categories indexed over a category B can be viewed as a
(pseudo)functor from B to Cat. For every set B there is a trivial one-to-one

correspondence of the B-indexed sets and the functions to B:

xeB

f:Set® > SeyB : (1) xeB] »—>[Zh — B}
B

A similar correspondence I s CartB —> Cat/B exisis for indexed categories, but it is
B
not trivial, and not surjective. In the first approximaticn, fibrations over B are the

functors 10 B which lie in the image of J' , i.e. those which correspond to some
B
indexed categories, (Cf. 4 below.) In fact, the nuance neglected in this approximation

contains much of the conceptual power of fibrations. (Cf. Bénabou 1983, 1985.)

2. Cartesianness.

21. Conventions, notations. Categories will be denoted by script letters A, B,
€...; small categories by A, B, E... Small categories are objects of the (two-)category
Cat. We shal! also use metacategories such as CAT, which contains Set, Cat, A, B,
£.... - but mostly for commodity and better view!.

IThis “commodity” relies upon the effectiveness: the functors on metacategories are
defined as procedures, i.e. receipes how to transform an input an output. One can
interprete the quantifiers in this way too, and define certain universal consiructions in
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II, Variable tategories k| i. Fibrations

If F- > B and G:€ — B are functors, we denote their comma category by F/G. The
category of arrows B/B is comma category of two identity functors on B. The slice
category B/1 (over an object i€ |BI) is the comma category of the identity on B and the

constant functor "17:1—> B. The functors
Cod: 8/B—8: (vI—1) +> land

Dom: B/1—>8: (vI—>D) +> I
will be denoted by VB and V1 respectively.

Some data will tacitly be carried over from statement to statement. In particular, we
shall mostly be concerned with a category €, fibred over a base B by a functor
E:€ —> B. The following convention on letters witl be respected whenever possible:

Categories Objects Arrows
fibred: Lgst
A X,Y,Z,A,B,C cartesian: O, vertical: &, b, C
base:
M
8.5, B HLLK h, k, m, u, v

Now we proceed to define wharis a fibred category, cartesian arrows, vertical arrows.

22. Terminology. Let E: €—> B be a functor, 1 |B!. The fibre of E over [ is the
category E1
[&4l = EI(D
E1(4,Y) = B-1(idpne(X,Y).
Furthermore, for every ue B(L)), Xe i€l and Ze 1€ ], we denote
Eu(X,Z) = E-Hu)NE(X,Z),
i.e., the set of all arrows X —> Z over u. Hence funciors
Eu(_7): £1° — Set: Xt—= £ulX.Z}

23, Proposition. The following stalements are equivalent:

some metacategories. (Comma categories, for instance.) - Metacategories are
considered as far as this can be done locatiy, and effectively.
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a) Every functor £4{_,Z) is representable.

b) Every arrow us B(LJ) has a terminal lifting at every Ze {€]l. In other words, there is
an arrow ﬁ% overu (i.e. Eﬁ% =) through which every other arrow f over u factorizes

by @ unique arrow a over id.

X
| vf
Jta|
Al
!f z —_—
1 ¢ -]

« If Y represents £,(_,Z), then 1‘}%& £,(Y,Z) corresponds to ide £1(Y,Y} by the

representation isomorphism €(X,Z}= £1(X,Y) natoral in X.»

24. Definitions. An arrow e £(Y,Z) is cualled (E-)cartesian if it is a terminal lifting
of E at Z. Y is then an inverse image of Z along ED.

An arrow ac € is called (E-yvertical if Ea=id.

F: €' € is a cartesian funcior from E: €'—> B to E: € — B if EF=E' and F takes
the E'-cartesian arrows to the E-cartesian ones. A namral transformation ¢ :F ~> F
between F,F: €' — €, EF=EF, is (E-)cartesian if all its components are E-vertical.
An adjointness (F: €' —> €, G: €—> £, n: id—> GF, &: FG— id} is cartesian with
respect to B': €'~ B and E: £ — B if all its components are cartesian.

25, Comment. The habit of calling all these notions cartesian stems presumably from
the fact that the Cod-cartesian arrows are the cartesian (i.e. pullback) squares.

26. Facts. Under the (equivalent) conditions from proposition 23, E is
full  iff every hom-set of every fibre is inhabited (nonempty),
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faithful iff  every hom-set of every fibre has at most one element (i.e. the
fibres are preorders).

An adjointness {F, G, 1, €) is cartesian with respect to E' and E (all data as in 24) iff F
and G are canesian and for all arrows fe €(FA,C) holds Ef = E'f*, where
f'e £(A,GC) is the right transpose of f.

K - 1 *- ]

3. Fibrations.

¢) Every arrow ue B{1.)) has a cartesian lifting at every Ze |E 5] and cartesian arrows are
31. Proposition, The statements below are related as follows: ) Every an g g !

closed under composition.
(@ (bye(c) f o ‘ .
d) For every ue B(1,J) there is an inverse image functor v* and a natural wansformation
T lac @ B over u (i.e. B(3Y ) = ufor all Ze €5
{dHe(e)= () i T '
u*
{"AC" means that the axiom of choice is needed for this implication.) E £ £
u
a) For every ue B(1,3), Ze €l there is Ye [€)l, such that ¢ B
Eyov(LZ) 2 Ev(Y)
is realized by composition with an arrow ﬂ%e E4(Y.,2). ¢
b) Every arrow ue B(I,J) has at every Ze [€]] a lifting Y such that for every ve B(K,I) Composing with 83 gives €y(_,Z) = V(u*Z).
and f over uv theve is a unique g over v, f = Bjog. l Furthermore, the natural transformations
cUWV vkt — (uv)*,
: induced as unique factorisations by 9, are isomorphisms.
% ¢) For every Xe|€{ the functor

Ex:E/X — B/EX:f > Ef
has a right adjoint right inverse Ghy.

£) The functor
Ec:€/€ — B/E :f > (Ef, Cod(f)}

has a right adjoint right inverse ©g.
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. &
\ E
~ 3
+ (¢)=>(a): For arbitrary u,v and Z, {c) gives Y, W and cartesian liftings 34e €,y(Y,2)

and ﬁ{e £,(W.Y), The fact that 135019{, is cartesian means that it induces
€ gov(LsZ) = VW (by composition). But 3, induces £ Y)=VW,

/€
\ E, Cod

8/E

E/E __I

B/B
Cod

@) 0 = ©z(u). The unit of the adjunction, ngf—> @zEz{f), is the factorisation
of f through 9Ef. ()= (f): Oz(v) = Og(v. 7).+

32. Definition. A fibration is a functor E: £ — B which satisfies (any of) the
conditions (a-c) from the preceding proposition; the category € is fibred over B. IfE
satisfies conditions (d-f) too, it is a cloven fibration: the triple {(_)*, 9, c} is its
cleavage. A cleavage {and the fibration E to which it belongs) is normal if all id’f are
identity functors, Ie [B; it is spliz if u*v* = (vu)* (i.e. ¢¥U=id) for every composable
u,ve B. (Without loss of generality, it can usually be assumed that cleavages are

normal. But see example 51.)

The morphisms between fibrations are cartesian functors. The morphisms of cloven
fibrations must preserve cleavages. The category of cartesian functors E'~—> E is
denoted by CARTg (E'E) or FIB/B(E'E) (- if it exists); the category of cleavage
preserving functors will be CLEAV g (E"E). Fib/B is the {iwo-)category of small
fibred categories over B, with cartesian functors (and cartesian natural
transformations). Cleav/B is the analogous {two-)category of small cloven fibred

categories with cleavage preserving functors.
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1. Fibrations

%3, Potential structure, subfibrations. Being a fibration is a property of a
functor (just as having products is a property of a category). By the axiom of choice,
this property can be fixed as a structure: a cleavage can be chosen. In practice, one

works with this petential srructure of fibred categories, i.e. as if it were given. If a
fibration is not cloven, u*X denotes in it the domain of an arbitrary cartesian lifting 03

(just as XxY denotes an arbitrary product when no particular choice of producis is
given). Locally, we can work as if u* were a functor: given u*X, u*Y and fe E(X.Y),
the inverse image u*(f)e E(u*X, u*Y) is defined as the unique factorisation of fody
through 3 . Then u*{id) = id and u*{flen*(g) = u*(fog) hold.

A subalgebra must be closed under all the operations from its signature, By analogy, 4
subfibration E:€'— B of E:£ — B (given with a cartesian inclusion £'“— €) should
be closed under all the poteniial operations: with every object X, €' must contain alf the
E-carsesian arrows txe £(Y,X}. (In other words, every €'y must be closed under the
isemorphisms in €1. Without this requirement, the intersection £€'ME" of fibred
categories BE'— B and E™:€“—> B with cartesian inclusions £'~—> € and €" — €
- may fail to be & fibred category. Cf. Bénabou 1983, 1.4.)

34, Closure properties. For every functor E the class of E-cartgsian arrows is
closed under left division (i.e. if f and fog are cartesian then g is cartesian). When Eisa
fibration, this class is also closed (in £) under composition and stable under pullbacks
along vertical arrows (and vertical arrows are stable under pullbacks along cartesian
arrows), which allways exist.2

The class of fibrations is stable under all pullbacks, and closed under the composition.
Every fibration F:€’ — € is a cartesian functor to the fibration E:€ — B from E"=EF.
The converse does not hold (i.e. not every cartesian functor is a fibration) and the class
of fibrations is not closed under left division. However, if E'=EF and F are fibrations,

2Given a partial binary operation ¢ on the arrows of B, we say that a class of arrows
A% B is closed under ¢ if a,a'ea and ¢(a,a") exists imply @{a,a)eq; and we say that
d is stable under @ if for every ue B, aea and @(u,a) exists imply @(u,a)e Q. When
(p=pulling back, ¢(u,a)=u*a is the arrow obtained by pulling back a along u.
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II. Variable categories

and if all the fibres of F are inhabited, then E must be a fibration too. (+ An F-image of .

an E'-cartesian lifting of ue B(LJ) at an object We |€'| such that FW=Z is an E-
cartesian lifting of u at Z.+)

Since small fibred categories are stable under pullbacks, the funcior Cod: Fib—> Cat is
a fibration, with fibres Fib/B, and with cartesian liftings defined by pulling back.

4. The Grothendieck construction,

41. The correspondence J : SetB — Sei/B comes down to the fact that every set C

with a function ¢:C—> B can be recovered (up to a bijection) from the indexed set
v:B—8et: x—>clix)
of its fibres. Given a category E with a fuactor E: E—3> B, in order to define the arrow
part of the corresponding indexed category
I:Bo—Cat: T—>Ef
in the first place, we need a representant v*Z for each of the functors
Ey(_,Z): Ef®— Set.
But each function
w* 1 Efl— By : ZH>u*Z,
obtained in this way, can be uniquely extended to a functor (+ fe Bj(Z,W) induces
¢: By(_,Z)—> Ey(_,W) by composition, and ¢ induces u*(f) by the Yoneda lemma-),
and we can define
I'(w) :=v*: B — Bl

This is why we want the functor E: E—> B to have cartesian liftings: by proposition
23, afl funictors By(_,Z) will then be representable, and E will correspond to an indexed
category I'. We see from proposition 31 that I'{uev)=T{v)e[{u) and I'(id)=id hold if
these cartesian liftings are closed under the composition. Hence the notion of a
fibration, And if E:E— B is a fibration, then it can be recovered from the

corresponding indexed category - i.e. pseudofuncior,
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1. Fibrations

42, Proposition, Let Cat B be the category of pseudofunctors B®-—» Cat. There is
an isomorphism of categories

[:Cat® = CleawB : T +-> (E: E— B),

B
where

|l = 2 TI,

I=|Bl

B(LX), (1.2) = 2, TI(X, Tu(Z)),
ueB({L))

{un,ael{v,b} := {uoy, cWolv(a)ob).
(The canonical natural isomorphisms cv¥ ; I'vel'u — I'(uev) are given with I'.) Split

fibrations correspond to strong functors from Cat B,

+ Cf. Grothendieck 1971, 8., Gray 1966, 1.5., Gray 1974, 1,3.5, or Bénabou 1983,
1.2~

43, Some advantages of fibrations over pseudofunctors are:

i) by keeping the cleavage implicite (i.c. as a "possible stucture”), considerable
complications with canonical isomorphisms are avoided;

ii) considering fibrations over a large category and/or with large fibres does not
involve the metacategory CAT;

iii} from every psendofunctor I' a fibration I F' can always be obtained.
B

(Conversely, as we saw in proposition 31, every fibration can be cloven - and
expressed as a pseudofunctor - only if the axiom of choice is assumed.)

Bénabou {(1985) is a programmatic discussion on these matters.
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II. Variable categories

5, Examples.

51. Let P and M be categories with one object, i.e. monoids. A morphism P: P> M
is a fibration if P decomposes on isomorphic right Ker(P)-cosets: for every me M there
is a ©™ such that P-1{m) = ¥™Ker(P) and for all a,be Ker(P) the equality 9Ma=10%b
implies a=b. If P is a group, this is the case whenever P is an epi.

If the axiom of choice is assumed, then we can choose a cleavage for P. When Fisa
group, every element of P-1{m) will do as ™. In that case, thus, cleavages are just the
splittings of P as a function, i.e the functions ©&: M—> P, such that Pd=id. A cleavage
©® will be normal if 91=1 ; it will be split if §MR=3MH", The former can always be
achieved (for every fibration); the latter not: e.g.
P. Z— &y : x> x(mod n)

is a fibration which cannot be split. In fact, when P is an abelian group, then
P: P-— M is a split fibration iff it is the projection from direct product ¥ = Ker(P@M.
For groups in general, P: P—> M is a split fibration iff it is the projection from
semidirect product P = Ker(P) xp M. - Namely, when restricted (o groups, the

Grothendieck construction produces the (right) semidirect product.

52. Let U, H be posets. A monotone map U : U-—>H is a fibration iff for every k<i<j
in H and every x<z in U, such that U{x)=k and U(z)=j, the set

{ve U-I(i): xsy<z)
has a supremum. It is easy to see that this supremum does not depend on k and x; it is
an inverse image of z above i, Since < is antisymmetrical, this inverse image is unique.
Hence, every fibration U from a poset U is canonically cloven, and also normaj and

split.

§3. Let aright action ¢ of a monoid M on a set A be given, i.e. a function
o:AxM — A suchthat
Dox, 1) =xand
2) ofa(x,m), n) = ax, mn)
hold for every xe A, m,ne M. If we define the hom-sets by
Alxy) = {{m,x,yy: me M, o(y,m)=x},
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A becomes a category fibred over M by the obvious projection. All the fibres of this

fibration are discreie (as categories, i.e. they are sets). By the Grothendieck
construction it comesponds to a preshedaf, an object of Set M, i.e. a variable set over M.

Conversely, every presheaf over M can be presented as a right action of M in a unique

way.

54. Let H be a complete Heyting alpebra. Regarded as a category, it has at most one
arrow per hom-set (i.e. H(p,q)#9 1< p<q}. The arrow pait of a functor Ge SetH - an
H-presheaf - can be thought of as an aperation of restriction, i.e.

G(p=q}: Gq—> Gp : x> xlq,

and G can be represented as an action of Hon A = Z G(p) by:
peH

P2 AxH— A {(x,p)q)— (xIpAg, pAg).

For every £e A, p,ge H, this action satisfies:

D B =&,

2) (§Mp)iq =&l (pag),

3) EGElp) =ESAp,
where

E:A—H: {xpy—p.
The Grothendieck construction now suggests a partial order on A:

x<y :¢> Ex<Ey and x=y[Ex,
which extends E 1o a fibration. The operation I assigns 1o every pair {x,p} the inverse
image of x along the arrow ExAp<Ex by this fibration. (3) says that xlpsx is a lifting of
this arrow. It is cartesian by the definition of < in A. (2) says that these cartesian liftings
are closed under composition, (1) that the identities are lifted to identities.

6. Discrete fibrations.

01. Proposition. For every functor E:€ — B the following statements are
equivalent:
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a) E is a fibration and all its fibres are discrete.

b) Every ue B(1,3) has at every Ze |€)] a unique lifting. (Every arrow in € is thus

cartesian.}

¢} For every Xel€] the functor
Bx:€/X — B/EX:f+> Ef
is an isomorphism.

d) The functor
Eg:€/€ —> B/E :f > (Ef, Cod{f))

is an isomorphism, i.e. there is pullback

/€ Cod

) ‘

B/38 =
Cod

62. Definition. A fibration which satisfies {any of) the conditions from the preceding
proposition is called discrere.

63. Given B, any discrete fibration E:€ —> B is uniquely determined by its object part,
[E]:[€] = |B, and by
IDoml:l€/€1— €.

In view of the fact that [E/E]| = |€] |>1<3| B/ Bl (i.e. the diagram under (d) above

remains a pullback if just the object parts of functors are considered), [Doml is in fact an
action

Il Igl |B/Bl—> 1€l

In this way the discrete fibrations generalize examples 53 and 54. (See e.g. Johnstone
1987, 2.14-15.)
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64. The category Dfib/B of discrete fibrations over B is isomorphic with the fopos
5_::;3" The category of internal categories in Set B’ (or in Dfib/B} is isomorphic with
the category of functors B®—> Cat. By the Grothendieck construction, this last
category is isomorphic with the category Sib/B of split fibrations over B. So we have:

Sfi/B _ Dfib/B _ Set B
Cat — Set 7 Set

65. The class of discrete fibrations is not only stable under all pullbacks and closed
under composition; it is closed under left division too. Le.: For any discrete fibration
E:£—>8, a functor F:€'— € (a fortiori cartesian) is a fibration iff E':=EF is. (+ An F-
cartesian lifting of fe € can be obtained as an E'-cartesian lifting of Ef.») Fibrations E
and F are discrete iff EF is, Hence the isomorphisms

FIB/€ =z (FIB/B)/E, and

DFIB/ € =(DFIB/B)/E
for every discrere E.

66. The notion of a fibration is not closed vnder equivalence of categories! Take iwo
groups P and M and a fibration P: P—> M. Let N be a groupoid (i.e. a category where
all the arrows are isomorphisms) consisting of several copies of W, each pair
connected by one isomorphism. Every inclusion U : M~ N is then an
equivalence of categories (i.e. full and faithful essentially surjective functor). But UP is
not a fibration. Considering Ue Cat/N(U,idw), we see that Fib/N is not closed under
the equivalences in Cat/N either, since idy is a fibration and U is not.

However, for functors E:€ — B and F:£'— €, if F is full and faithful and each
Fi:€'1— €] is essentially surjective, then E is a fibration iff E'=EF is. (Here is
€':=(E"Y"1{I) and Fy:=Fr€'y for ke |B|.) Functors like F will be called fibrewise

equivalences.
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7. Lifting homotopies.

We finish this section by considering the topelogical origin of the notion of fibration. A
"opological” characterisation of cloven fibrations is given, with natural transformations
playing the role of homotopies. (This is a slight simplification of the story told in §2 of
Gray (1966).)

71, Definition. (Spanier 1966, chapter 2) Let E, B, I be topological spaces,
p:E— B, ¢:J— E, x:J x (0,11 —> B continuous maps. X is called a homotopy. A
lifting of y along p at ¢ is a hemotopy 9:J x [0,1]— E, such that

ped =%, and

B(x, 1) = ¢{x), for all xel.

p is a Hurewicz fibration if every homotopy ¥ has a lifting along p at every c.

72. Every topological space X gives rise to a category X in a natural way: the objects
of 1X are the points of X, while the arrows are the homotopy classes of paths, ie.
continuous functions g:[0,1]1—> X taken modulo equivalence relation =, Jefined

go= g1 ¢ 0,11 X [0.1]— X ¥ 0 = go A Y1) = 8.
Clearly, ail these arrows are isos. TX is the fundamental grotipoid X. By the same idea,
the whole category Esp of topological spaces and continuous maps is groupoid-
enriched. The arrows from cp to ¢y in Esp(X,Y) are the homotopies ¢: X x{0,}] = Y,
@(_,0) = cg, v{_,1) = ¢y, taken modulo = again:

Py e Vxe Xoo(x) = yix).
Noticing that X = Esp(1.X), we define a two-functor

1t :=Esp(i, ): Esp—> Cat.

On fundamental groupoids the topological and categorical notions of fibration tend to

coincide:
73. Proposition. If p:E—> B is a Hurewicz fibration, then 7p is a cloven fibration.

« This is a special case of proposition 77, in view of the fact that the functor & makes

every homotopy into a natural transformation.s

1. Fibrations

74. Notation. In a two-category, we reserve the symbol o for the composition
within a hom-category, while the "horizontal” composition is denoted ¢ither by * or by

juxtaposition, In the two-category of categories, we have thus

F
- p
* —
A G¥ . g v e
H+Y __ 0 -

{Yo@la = Yaopa :FA— GA-2>HA
(YO)A = (P*P)a = Yga°P(pa) : PFA—PGA — QGA
=Q(paloyra : PEA— QFA— QGA,
The one-cells (functors) can be identified with the identity two-celis (natural
transformations); we shall rather write PF than P+F. (A standard reference for two-
categories is Kelly-Street 1974.)

75. Definition. Consider the diagram

£
C
vy E
C]
Hy
) ¥ i
H, -

A lifting along a functer E of a natural transformation 7 at a functor Cj such that
ECy = Hj consists of a functor Cg and a natural transformation 9, such that y =E*&§
(which, of course, implies ECg = Hp).

A lifting 9 is called carresian if for every
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Hg
) +y B
H,

such that B¥x = y+J, there is an arrow 1 : k—> U*J, consisting of unique vertical

ArTrows.
KX
|
n(xx)| Lx
Y
CylX - C1IX
By
HolX - HJX
XX

(Officially, 1 is an arrow between natural transformations: a modification. In fact, it can
be seen as an honest natural transformation 1 : «k» —> «0*J» where the functors
«K», «3*]»:. K — €/€ are obtained by)

76. The couniversal property of comma categories., To every comma
category F/ G belongs a pair of projections Pg and P; and a natural transformation oc:
Po(X, wFX— GY, Y} = FX,
Pi{X, u:EX— GY, Y} = GY
X, wFX —GY, Y} =

For every (€, Ry, Ry and) p as below, there is a unique functor «p», such that
p=okaps,
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.7 Ry T F
/ \‘ ¥
ol ’5

{

«p»(X) := {RoX, px, R1X},
«p{fy ={Rof, Ryf).

77. Proposition. E is a cloven fibration iff every ¢ has a cartesian lifting at every C;
such that H; = ECy.

Proof. Then: The components of the lifting O of  are the cartesian liftings of the
components of .

By
CaY = C.Y
o 1
/
Colh), C® £
s
» ﬁx
CpX ~C, X
E
Ly
H,Y - H,Y
]
Ho () H, 6 5
xXx
HyX ~H,X

Clearly, the unique factorisations constitute 7|, which is required for ¥ to be a canesian
lifting of .
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If: Consider the diagram

Dom o
E/E Jar _ €
Cod
EE; P E
Py .
B/E 0 B
P, "

where Po{u:l — EX, X) := X. (The other arrows are as previously defined. The natural
transformation arrp = f is the o belonging with €/€ as the comma category of two
identity functors. Dom and Cod are of course Pg and P; of this comma.) Clearly,
EP2=P; and P2E¢ = Cod.

Every lifting © of & at Py induces a functor «9» : B/E—>€/€. Since
orBEexad» = Exarrra» = E¥d = o,
by (the uniqueness part of) the couniversal property of o, Eg*«9» = id holds.

If the lifting ¥ s also cartesian, there is N: «arr» —> «d»*Eg. Note that «arr» = idgse-
Now

Ee*n =id, since the components of 1) are vertical; while

N#«» =id  foliows from the uniqueness of T«ps(a,X) as the arrow

By xy=carm*«d»(u,X) > «O»*+Eg #a¥n(u,X)=0¢y X3

These two equalities mean that 1 is the unit of the adjunction E¢ — «®», while the
counit is identity. Hence Eg has a right adjoint right inverse functor, i.e. E is a fibration
by proposition 31.+

78. Corollary. Given acloven E: € —> &, functors H: € — B and §: C—>€ and
a natural transformation % : H—> ES, there is a functor T ; €~ E,suchthat H=ET
{and a natural transformation @ : T—> S, such that 3 = E*0).

For instance, if a cloven fibration E has a left adjoint S, by lifting the unit of this
adjunction we get a left inverse T of E. If the left adjoint S is full and faithful, then T is
a left adjoint too.

1. Fibrations

79, The last proposition can be used to abstractly define cloven fibrations in an
arbitrary bicategory with the comma construction.

To avoeid cleavage means to lift only paths {(single arrows), and not homotopies (natural
families of arrows); i.e., in an abstract bicategory, to lift only the two-cells

/’--"‘_h-.‘
1Ixd 2B
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1. Basic notions, fibrewise.

Fibrewise structure/property is one which all the fibres possess, and all the inverse

images preserve.

Fibrewise versions of some standard categorical notions can be obtained in a completely
straightforward way. The only question in these cases remains to relate the so obtained
fibrewise notions with the old global ones, in the style: "Fibred category E:€ — B has
fibrewise property P itf categories € and B, and funcior E satisfy condition Q. On the
other hand, some constructions from ordinary category theory are not easily lifted in
fibred categorics. We begin by such an example.

The furctor op. {Bénabou 1983, 4.4.) The functor ()0 CAT-— CAT formally
changes the direction of all the arrows in a category. The corresponding fibred
construction  ¢_)oP : FIB/B — FIB/B3 should change the direction of all the
vertical arrows it E: € — B and leave the other arrows somehow unchanged. While
this is quite hopeless with functors in general, « fibration E induces for every fe € a
vertical-cartesian decomposition f=04, unique up to & vertical isomorphism. Well, since
the arrows in £(X,Y) can thus be regarded as the equivalence classes (modulo vertical
is0s) of the diagrams in the form

one is tempted to try 1o take the arrows in €°P(X,Y) to be the equivalence classes of the

Y

diagrams

3We must denote it differently, because (_}© also acts on every small fibration as an
arrow in Cat.
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X
17
]
by the equivalence relation

{a1.01}~{ay,02) ¢ I vertical (iso) b. a1=azeb A H1=020b,
And this works! If we use the fraction notation:

Bofap := ({a,0) (3,0}~ (20,%0}},
the composition can be defined by:

B/ o B¥/b 1= (e} / bov¥(a).

Y

If E is cloven, a canonical representant of each of these classes is given. Clearly, we get

a cloven EOP.

Limits and colimits. Given a small category [, the diagrams of type 1 in a category
€ are the objects of the functor category €1, There is an obvious faithful functor
Al £ —> €1 which sends every object of € to the corresponding constant diagram.
Some representants of the limits and colimits of the diagrams of type I are given by-a

right resp. left adjoint functor of AL:

This conception of limits and colimits can directly be generalized from the constan
categories to the variable ones - from Cat to Fib/B - by simply putting the fibred
adjoininess in place of the constant one, i.e. by requiring the functors and natural
transformations to be cartesian over B. Of course, the question: What is a small
category 1in Fib/BY - must first be answered, Leaving it aside for a while, let us look at .

the simplest special cases.
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Remark. The axiom of choice is built in into the concept of limits and colimits as

funciors. This can be avoided (by using universal canstructions), but this leads in

fibred categories to much longer definitions.

Products and coproducts. Define the fibration E2:=pb(E,E). £ x £ — 8, and let
B

ihe cartesian diagonat functor be the factorisation A= «idg,idg» : € — € x €.
bi)

B =~ 3B

The binary fibrewise preduct X and the coproduct + are then respectively the right and
the left cartesian adjoint of A,

ExE

X
3\2
+ A Ix
—{ -

E
E

Terminal and initial objects. The fibration id:B —> B is terminal in FIB/B. The
cartesian right adjoint T of Ee FIB/ B(E, id) chooses a terminal object in each E-fibre;
the left adjoint 1 chooses fibrewise initial objects.
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Since all the triangles must commute, we have ET =EL =id; i.e. T and L must be
cartesian sections (i.e, right inverses) of E. However, as soon as a full and faithful
caniesian right (resp. left) adjoint 5:8 — € of E is given, so that ES=id, a cartesian
section T (resp. L) can be obtained by corollary 1.78.

Exponents. In a category € the exponents by Xe 1€ are given by the functor
X— _:€ —> € which is right adjoint to Xx_: € — €, In other words, there is a

functor
—-:8ox€—>E€
and an adjunction
Ix€
W)
X% mp €% €
.._'
e)(e <rX-I,?E1>
&, x}
ix€

for every Xel€l, ie. for every constant functor "X 7: 1— € - which is also
"X':1—=€0

For a fibred category €, the objects Xe €l can be represented by "constant functors”
"XV :=Dom*@yx : B/ E/X -5 E,

with @y as in 1.31(e). X7 is a cartesian functor VI—> E; and every cartesian functor

V1—> E can be obtained in the form "X for some Xe|€y]. (This correspondence is in
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fact the Yoneda lemma, II1.1.1.} The fibrewise exponents in a fibration E:€ — B can

now be described as given by a cartesian functor
—: Eop :>B< E—E

{where E0P >é € := pb({ECP, E)} with an adjunction
‘?x €

((1'[0’—)»
«Ng, 0 LTy

«Eg,k\

tx g
8

for every "constant functor” "X ™: 1> €, where we write  for B/T. It is not hard to
see that "X " isalso "X 7: §— £9P (- since "X is cartesian, all the arrows of 1 are
cartesian, and the cartesian arrows of € and of €99 coincides).

feee. Putting the finite products and the exponents together, we have the notion of the
fibrewise cartesian closed structure. This is what we shall really need in chapter TV,

2. Fibrewise vs, global limits,

Now we shall inquire into the connections between fibrewise limits in E; € — B and
(ordinary) globai limits in €. We first consider the terminal objects, then the pullbacks,
and finally fimits in general. (These propositicns will be used many times later, and a
corollary reducing the fibrewise products to some ordinary pullbacks will be useful in
semantics, which is our main goal.)
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Fact. E:€ — B is a cloven fibration iff every functor Ex:£/X — B/EX (from
proposition 1.3(e)) is a cloven fibration, X |€l. When this is the case, all Ex have

fibrewise terminal objects.

« Then follows from the isomorphism (E/X)/y & €/Y for all ¥y :Y—> X K
follows from the fact that every Ex has a fibrewise terminal object whenever it js a
cloven fibration.s

Propositions.

21. E has fibrewise terminal objects and ‘B has a global one jff € has a global terminal
object and E preserves it.

« Then: T ¢ := T{T )} is a terminal object of €, where T is a terminal object of B, and
T:B—> € a fibrewise terminal object of E. If: T1:= @j*(T¢), where &ie B(, T g). (If
we want T to be a functor, we need the axiom of choice here, to choose one inverse
image. But any inverse image @*(T ¢) is terminal in £1.)+

22, Let a commutative square Q in a fibred category € have two parallel sides
cartesian. Then Q is a pullback iff EQ is.

+ Chase diagrams.»

23. In a fibred category €, the diagram D:

D f

rr— rp———

t
with t cartesian, has a limit which E preserves iff ED has a limit in B. When this is the
case, D is completed to a pullback square in which the arrow parallel to t is also

cartesian.

+ I the square
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_

is a puliback in 8, take

in £ {where ®Y is a cartesian lifting and 2 is a unique factorisation over m of foHY

through t). By the preceding proposition, this must be a pullback square.»

24, Le1 D be a connected diagram in a fibre of €, Every fibrewise limit of D is also its
global limit, (A diagram is connected if it is connected as a nonotiented graph.)

+ Since D is a connected diagram of vertical arrows, all the components of an arbitrary
cone & : A—> D in € must lie over the same arrow, say, ue B. o must factorize
uniquely through & cone of vertical arrows ' : A — u*D. But the fibrewise Hmits are
by definition? preserved by the inverse images, so that o' must factorize uniquely
through u*(A): u*L—>u*D, if A : L-—>D is a limit cone in the fibre of D. Therefore ¢
factorizes uniquely through A.»

25. A fibration E has fibrewise pullbacks and B has global pullbacks of the arrows in
the image of E iff € has global pullbacks and E preserves them,

4in the first sentence of this section
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» Thep: Let t = 0Ffoa and f = BEfoh be some veriical-cartesian factorisations.

-~ -

_ _
I b0 b
r B R
I 4
I 37 v B
v ooa 1 oF ot

Since B has pullbacks, € has pullbacks 11, I1I and IV by proposition 23. (If v is
cartesian because of this proposition, O™ is cartesian because the class of the cartesian
arrows is closed under the composition and left division). Clearly, a' and b’ are vertical
because a and b are. By proposition 24, the pullback I of 2" and b’ in their fibre is their
pullback in £.

If: Given

v

in ‘B, make in € a pullback of 13; and 19[)((‘ Its E-image is a pullback because E

preserves them. This is, furthermore, the reason why every {global) pullback of vertical
arrows in € must remain within its fibre - i.e. why the global pullbacks of vertical
arrows in € are fibrewise.»

26. A fibration E has fibrewise limits and B has global ones iff € has and E preserves
the global ones.
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» Just put propositions 21 and 2§ together, using the fact that all limits can be
constructed from (possibly infinite) pullbacks and terminal objects. (Note: When £ has
a terminal object which is preserved by functor E, then E must be surjective.)s

Corollary. A fibration E has fibrewise products and B has global ones iff € has and E
preserves global products, and pullbacks of the vertical arrows to the terminal object in
each fibre. (The products in this statement include the empty ones, i.e. the terminal
objects.)

Remark. By proposition 25, a fibrewise product, i.e. a pullback over the terminal
object in a fibre, is a global pullback: for X, Yelgy, X>}< Y = pb(mx,ny) in €, where

1 1id —> TE is the unit of the adjunction E~T.

3. Fibrewise fibrations

The formula

fibred structure := structure in fibres + preserved by inverse hmages
can also be applied on a potential structure, such as the notion of fibration itself (cf.
1.33). And again, the fibrewise notien can be characterized in global terms.

Definition. Let E: € —> B and E': £'—> B be fibrations, F: €'— £ a cartesian
functor and Fy: £'1—> €1, Ie |BI, the restrictions of F. We say that F is a fibrewise
fibration over E if all the Fy are fibrations and if E-inverse images preserve the Fr-
cartesian arrows. (Le. for every ue B(1,)) and every Fy-cantesian arrow f, every inverse
image w*(f) must be Fr-cartesian.} Given fibrewise fibrations Fe FIB/ B(E'.E} and
Ge FIB/ B(E" E), a fibrewise cartesian functor H:IF—> G is He FIB/ B(E'.E"), such
that F=GH, and every Hye FIB/ €(F1,G1). Denote by FIBg/E the category of
fibrewise fibrations and fibrewise cartesian functors over E.

Proposition. FIBa/E = FIB/ €.




II. Variable categories

31. We first show that
Fe FIB/ B(E'E) is a fibrewise fibration iff Fe [FIB/€|.

+ Then: Take fe £(X,Y), Ef = u, and Y'e [€°] such that FY' =

| —ee- ]
u
If 9 is an E'-cartesian lifting of u, then F0' is an E-cartesian lifting of u. Let ae|€1] be
the unique factorisation of f through F¥, and 4’ its F-cartesian lifting, 0'ca’ is then an
E-cartesian lifting of f at Y'. Moreover, every F-cartesian arrow must be in this form:
Factorize it through an E'-cartesian and a vertical arrow; the vertical one must be Fr-
cartesian.

To show that the composition of two arrows in the form ¥'ea’ is still in this form use

the fact that the E'-inverse images preserve Fj-cartesian arrows.

If: Bvery Fy is a fibration because it is obtained by pulling back F along €1 €. Every
E'-cartesian arrow Oy as well as every Fj-cartesian be €'3(X,Y) is also F-cartesian.
The arrow Byou*(b) = body is therefore F-cartesian; thus u*(b) is. But then it must be

Fi-cartesian.s
32, He FIB/ E(E,G) iff He FIB/E(F.G).

» Note that all the E'-cartesian arrows, as well as the Fj-cartesian arrows are F-cartesian
to0; and that, conversely, every F-cartesian arrow decomposes on an Fy-cartesian and
an E'-cartesian.s
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4. A lemma about adjointness.

It is easy to see that functors Fe FIB/ B(E'E) und Ge FIB/B(E,E") are cartesian
adjoint (cf,1.24) iff their fibrewise purts Fj: €'7—> €1 and G: €1—> €' are adjoint for
all T [B]. But we shall need a slightly stronger statement.

Lemma. Let E: €—> 8, B : €' — B be fibrations, and F: £'— €, G: £€— €'
functors such that E' = EF, E = E'G. Then
F— G and 1, € cartesian & Ve |Bl. F; — Gy and G cartesian.

ve 8ELY) = [ EuFx) = [ euxon =
ue BEX.EY) ve BE'X.EY)
= £'(X, GY),
since

EWFX,Y) = E1{FX, u*Y) = E'WX, Gu*Y) = £'1(X, u*GY) = £'({(X,GY).
=b: The nontrivial part is that G is a cartesian functor.

Take a cartesian arrow ¥ in € and consider the vertical-cartesian decomposition
GO =9a Back in €, there is

FGX —------- FGY

\Fﬁ el

where ‘b is the unique vertical arrow by which ey=Fd' factorizes through U, Let b be
the right transpose of ‘b. Since GUob is the right transpose of $e’b, while ¥ is the
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right transpose of €yeFd’, from ®e¢‘b = gyoF9' follows Gdob = ¢". But from
Hoach = Gob = ¥ follows aob = id.

On the diagram we see that $o‘boFa = Joex. Since €y, ‘b, Fa are vertical, ‘boFa = £x
must hold. Transposing both sides of this equality, we obtain bea =id.

So a is an iso and GO is cartesian.»

Corollary. Consider a functor Fe FIB/ B(E\E). A functor Ge CAT/B(EE) is its

cartesian adjoint iff it is cartesian and adjoint to it fibrewise.
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1. Hyperdoctrines,

The conceptual basis for the categerical interpretation of higher order logic is the notion
of hyperdoctrine, introduced by Lawvere (1969, 1970} It is basically a
{pseudo}unctor

30> Cat,
where

- the category 8 is cartesian closed, as well as every fibre @K, Ke|S|;

- for every ue S (J,K), there are functors w — gou ~l ux: ol — K,

We shall be concerned with this structure, as translated (by the Grothendieck

construction) into fibred categories. The horizontal structure, which is dealt with in this
section, corresponds 1o the functors uy — gau —1 us.

Logical motivation. S is meant to be a "category of sets and functions”. The objects
of @K represent predicates (p(yKJ over a set K (ie. families (p(y)l ye K} of truth
values). An arrow fe goK((p{yK), Ip(yK)) can be understood as a proof

oy £ y(yK).
The functor g u, usually written u*, represents substitution along the function
ue S{J.K), ie.

w1 pK— pI: oK)= o(utx)).
Note that substitution along a projection ne B(K x L, K) means adding a dummy
variable. Let us write o(yK, 21} for m*{(yK) ).

By adding dummies, it can be achieved that all the elements of a given finite set of
predicates have the same set of variables. This is tacitly supposed when the operations
of propositional logic are performed on predicates: a predicate ¥(x} A ¢(y), depending
on both x and y, is in fact (yA9)(x, ¥) = ¥(x. ¥} ~ @, y}. In this sense, propositional
logic is done fibrewise: one first brings all the predicates in one common fibre by taking
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their inverse images along projections. The fibrewise product and caproduct thus
correspond to the conjunction and disfunction respectively, the fibrewise exponent (o

the implication.

The crucial observation made by Lawvere is that the quantifiers are adjoint to the
substitution. Namely, they are characterized (or defined) by
9y - Vaylz,y) @ YL yIF Wz Y,
Teyiz, y) - oY) & Wz Y F Ly
Moreover, in logic with equality = holds
oY) - Vxu)Ey 1) & pui))}+ ¥(x),
I =yAR) - 9y 10+ elukx).
The logical picture of adjoints is thus:
wly(x)) =3Ixux)=y A y(x), and
ux(¥(x)} = Vx.u(x) =y > ¥(x),

i.e. they just slightly generalize the quantifiers.

In short, the logical meanings are:

% is Ay
+ is v,
T4 is ¥, and

s is 3.

2, Co-, bi-, trifibrations,

Definitions. We say that a functor E:€ —> B is a cofibrarion if Eo:£0—> BCisa
fibration. A functor F:E' — E is cocartesian if F;E? > E® is cartesian. CQFIB/ B is

the category of cofibrations over B, with cocartesian functors.

E is & bifibration if E and E° are fibrations - i.e. if E is a fibration and cofibration.
BIFIB/ B denotes the category of bifibrations over B, with cartesian and cocariesian

functors.
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E is a trifibration if E, EC, and (E°P)Y are fibraticns - i.e. if E and EOP are bifibrations. A
funcior Fe FIB/ B(E'E) is opcartesian if its op-image op(F)e FIB/ B(E'oP,Eop) is
cocartesian. TRIFIB/ B is the category of trifibrations over B with cartesian,
cocartesian and opcartesian functors.

Remark. By the Grothendieck construction, the cofibrations correspond to the
covariant (pseudo)functors to Cat, i.e. there is

j:g;gB—) Cofib/B.
B

Terminology, notation. Let foc €£0(Y,X) denote the arrow fe £¢(X,Y) as seen in the
opposite category.

We say that e €(Y,Z) is E-cocartesian if o° is E9-cartesian. o is thus an initial liftin g
of v=Ec at Y. utY=2is a (left) direct image of Y along u.

The E°P-cocartesian arrows are called E-opcartesian. If we €9P(Y, W) is an E-
opeartesian lifting of u, then uxY=W is g right direct image of Y along u,

We say that a co-/bi-frifibration is cloven if all the fibrations involved in it are.

If (uo)y*:£91— £9) is an E%-inverse image functor for ue B(LI), the (left) direct image
functor is
up = ((u")*)o tE1—Eg
This functor is related to the inverse image functor by the adjointness:
w = u*
because €)(uX, Z) = £4(X,Z) « €1(X, u*Z) holds naturally in X and Z.

E°P is, of course, a cloven fibration whenever E is. Clearly, its inverse image functors
(u9"M* will be

(uOPY* : (ER);—> (E%P) = ()0 : (EP—> (€.
Given the left direct image functors (UeP):(E1)0—> (£))0 of EOP. we define the right
direct image functors of E

us =((WOPN )0 : €1~ €.

The adjunction is now:
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u¥* — .

A cocleavage of B is a triple {{_)1,6.¢" where {_)=(_)2*C, o=132 and ¢'=c? for some
cleavage {(_)*,0,c) of EO, An apcleavage of E is a triple {( )+, y.¢), (a=(0, =0

for some cocleavage {(_),0,c) of EOP.

In brief, we systematically replace the prefix "co-" by "op-" when considering a
cofibration EOP. We sometimes say that E is a right bifibration when E®P is a

bifibration.

Opcartesian arrows. Translated from €9P to €, the statement that y = 0/¢ is E-

opcartesian reads:
Vae Ef{u*Z X} la‘e £){Z,u.X). a = gou*(a’)

X—ll_"l.lsx X H*X

’ \E/ i

|
I Ja* utusX I

vE -— W Ja

[ u*(a’) ’
L ] ]
Z 7, —————= 7

("Vfe E0P,(X,Z)" is translated to "Vae E{u*2,X)", where f=0/a; and "a‘oy=f" in £°P
comes down in £ to "a = geu*{a‘}".)

Note that the class of arrows ye £9P satisfying this condition must automatically be

closed under the composition. This follows from the first proposition below. The
second one answers the question: When can we put an arrow ﬁ!e £, uxX) in piace of

an opcartesian arrow ye £9P(X,u«X), so that "the diagrams remain commutative"?
(The answer is: When u« is a full functor.)

Propositions,

21, Let E be a fibration. If every arrow ue B(LJ) has a cocartesian lifting at every
object Xe €], then E is a bifibration.
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» We show that E satisfies the dual of condition 1.31¢b). Given an arrow fe €,,(X,2),
there is unique vertical arrow a, such that f=9%sdVvay,

M oY
vEu*Z - %7, -7
v
/
s
Ya b d
“Ag
s
s
X . - wX
o
v u
K - | -]

Since GV is cocartesian, there is unique vertical arrow b, with begV=9Voa. Taking
g:=1loh,
we have f=gogl, and Eg=y, as required by the dual of 1.31¢b).

To show the uniquencss of g, suppose that g' satisfies the same pair of conditions.
From Eg'=u follows that there is a vertical arrow ', such that g'=$¥eb. From
f=g'oq, we conclude that $Wobog¥=0teb'ocY. Since both boc¥ and b'oaV are over v,
and B satisfies condition 1.31(b), beG¥=b'ac¥ must hold. But 6¥ is cocartesian, and
therefore b=b" must be true. Hence g=g'.«

22. Let E be a right bifibration. Choose for ue B(LJ) and Xe [€]| an E-opcartesian

lifting y = 0/e € £90(X,uxX). Thus, for every E-cartesian 9% E(W*Z,2) a bijection
O EHu*Z,X) > €5(Z,u:X)

is given. Then holds
(=B

for

©) e Ey(X,uxX) YI=0Y/ae EP(X,Z). {yoa =a‘oV and

3 vYel€il Vbe EyusX,u:Y) Jae £1(X,Y). b=ux(a).
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» It is easy to see that
() « e Ey(X,uaX). Poe=0.

On the other hand,
(B) <> Te. eoe=id (i.. € is a split mono).

Namely, the functions
£, Y)—> Ef(u*ueX.Y) & > a0g

are surjective for every Y iff Je. ece=id. Extending these functions along
E1u*u+X, V)= EjluaX,usY)
we get

E104,Y) > £5(uaX uxY): ak—> uxa).

So we need to prove
. Poe=0 < Je. ece=id.

=: The splitting e is the vertical factorisation of { through 8.
e ) = 0oe.e

3. Beck-Chevalley condition/property.

Motivation. If direct images are 1o represent quantifiers, they must be stable under
substitution. A logical picture of this is that e variables must be independent, in the
sense that y must be invariant under Jz. One way to express this is to require that

quantifying over z commutes with adding a dummy y.

g4

3. Horizontal structure

y(x, ¥lz)

g
Wix, 7)

/

Fzyix A, 2)

N

.y, 2)
KxLxM

K xM V\(\

I

=L

o

EN

ot
K
For the quantifiers generalized by means of an equality predicate =, the independence

of variables can be expressed over an arbitrary square S.

Plu(x))

Ix.mix)= waBluix)}

e

)

\ Ty kiy)= v(wIABy)
v*

Jy.k(y)=zAB(y)
I

NN
]
s

M
v

AL

\
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A derivation Ix.m(x)= waf(u(x)} + Iy .k(y)= v(w)iaf{y) can be given if the

commutativity of § is provable, i.e.
F k(u(x}) = v(m(x)).

On the other hand, a proof Jy k(y)= viw)AB(y) - Ix.mlx) = waBu{x)) follows from
k{y}=v(z) - Ixux)=y Amx)=z,

which tells that § is a {(weak) pullback. In this way, logic suggests the requirement that
Ix.m(x) = wapu(x)) = Jy.kiy) = v(w)IABly)

holds over the pullback squares S.

Definitions. A cloven bifibration E : € — 8 is said to satisfy the Beck condition over
the square S {as above) in B if there is a cartesian natral isomorphism

tmou* = v¥aky,
We say that E has the Beck property if it saiisfies the Beck condition over all the
pullback squares.

A cloven trifibration has the Beck property if both E and EP do.

The Chevalley condition on a commutative square

5

in a bifibred category € is:

(89 if s and 1 are cartesian and f is cocartesian, then g is cocartesian,

A bifibration E is said to satisfy the Chevalley condition over a square § if every
commutative square Q over S satisfies this condition. E has the Chevalley property if it
satisfies the Chevalley condition over all the pullback squares.

A wrifibration has the Chevalley property if both E and E°P do.
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Lemma. A bifibration E satisfies the Chevalley condition over 8§ jff every Q over §
sarsfies:
*)  iffand g are cocartesian and s is cartesian, then ¢t is cartesian,
or equivalently
C#)  if sis cartesian and f cocartesian, then
tis cartesian iff g is cocartesian.

+ (Cy=(C"): Take a cartesian t over v.

By (C), the unique factorisation g' of fs through t' is cocartesian. Both g and g’ are
cocartesian liftings of m; hence there is a veriical isomorphism p, such that g'=pg.
From tg=(fs=1'g'=)t'pg follows t=t'p by the cocartesianness of g, Thus t is cartesian. e

Remark. The Chevalley condition {5 the Beck condition expressed without cleavage.
* If the unique arrow g over m by which oo 8 Factorizes through 9V is cocartesian,
then the unique vertical arrow g induced by g

u

wB——= R

YI
gl k

m; u*B G
DR
P
V¥, B —— k, B

oY

must be an iso. (Alternatively, p can be induced by t: mu*B— kiB, the unique arrow
over v by which oke8U factorize through o™.) Given any vertical iso mu*B =v*kiB, g
must be cocartesian, and the canonical iso p is obtained.» Since we can, on the other
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hand, interprete the Beck condition as a statement about "all the possible inverse and
direct images” along the given arrows (i.e. cleavage-free), it makes sense to talk about a
Beck-Chevailey conditioniproperty - as everybody already does. We shall sometimes
abbreviate it to "BC-property", It is a standard notion in topos theory, However,
neither Beck nor Chevalley ever published anything on their condition(s). (Early
references are: Bénabou-Roubaud 1970, Lawvere 1970, A recent one: Hyland-
Moerdijk 1990.)

Fact. A trifibration E has the Beck-Chevalley property iff either E or E®P hasitas a
bifibration.

» £3(BktvaD) = Ex(laB,vsD) = Em(v*kiB.D) = Em(mu*B,D) = Ex(u*B,m*D)
= E3(Busm*D)+

A simple non-example. Let Pos be the category of posets and monotone maps and
IPos/il = {{A, % A aposet, =TI A},
Pos/Q((A, T), (B, J)) = (fe Pos(A, B): (<1},
where Th:=(ye A: 3xe L.xsy). Pog/t2 is bifibred over Pos by the obvious projection,
and
+(B,J) = (&, T£1(0),
fi (A = (B, THI).

Consider the pullback square

e 2
H

in Pos, where 2 =(0<1}, 1 = {@), (@) = k. Then
ueu®{1,13 = {1, @) #'{1, 1) = 1* {1, 1}
With the discrete "poset” 2 = (0,1} instead of 2, the Beck-Chevalley condition would

be satisfied.

88

3. Herizontal structure

4. A characterisation of the Beck-Chevalley property,

Propositions 2.22 and 2.23 told us that in every fibred category € the class of the
cartesian arrows is stable under all pullbacks preserved by E; and that a square with two
cartesian sides is a pullback if it is over a pullback. If the square § in the definition of
the Chevalley condition is a pullback, then so is the square Q. In fact, the Chevalley
property can be reformuiated by saying that the class of the cocartesian arrows in € is
stable under all the E-preserved pullbacks along cartesian arrows. These facts point
towards an abstract characterisation of the Beck-Chevalley property.

Lemma. Given a functor E:€ — B, defing E* by the puliback

gre———=E£/E

|

E* E/E

B* S B/ B

where B* < B/ B is the category of awrrows of B, with pullback squares as the
arrows between them; and
E/E:€/€—>8/B: f~> Ef

Then E is a fibration iff E/E is jff E* is.

* An E/E-cartesian lifting is a pair of E-cartesian liftings. An E-cartesian lifting of
ue B{LJ} at X is obtained from an E*-cartesian lifting of {u,ude B*(idy, id)) atidx.+

Proposition. If E is a bifibration, let G/ € <> £€/€ be the full subcategory spanned

by the cocartesian arrows, Define U and E; by the following commutative diagram:;
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id
s 0L e
\j\ o ,,ﬁu A
£ C—--—>€/ £ —_—
_| Y
E* E/E
]
pr*<e—— o B/B (by=>(a): Take an arbitrary commutative square §, and let g be the unique factorisation

over m of oKod" through 0¥, as in remark 3. Using (b) and the closure properties of

Then E has the Beck-Chevaliey property iff Er is a fibration and U a cartesian functor. carlesian arrows (1.34) we have:

. . o cocartesian then o¥ cartesian then o¥o¥ = B¥og cartesian then g cartesian
+ Er-arrows are the squares in € which lie over pullbacks in B and have two sides ]
. . ] . . then g cocartesian.
cocattesian, That U is cartesian, means that the Ei-cartesian arrows are pairs of E-
cartesian arrows. The Chevalley property tells us that every object of €/ has an inverse {c)=>{a): Since B has pullbacks, the square $ factorizes through a pullback square P,

image in £ ajong every arrow from B*.« and then we lift:

5. The Beck-Chevalley condition over all commutative squares,

Propositionr, The statements below are related as follows:
(a)ye(b)=(c)
(c)=>(a) - if B has pullbacks.

a) E satisfies the Chevalley condition over every commutative square. v

b} An arrow in € is cartesian ff it is cocartesian, The factorisation q over z of 9 through ¥V is cartesian. By (¢), it is then cocartesian.
. . . L . The factorisation p over j of aked¥ through BV is cocartesian by the Chevalley
¢} E has the Chevalley property; and: if an arrow in E is cartesian then it is cocartesian. .. K
property. Hence the factorisation g = peq over m of cfo@Y through ¥¥ must be

* (a)=>(b): cocartesian, »

Corollary. For a cleven fibration E, the conditions below are refated:
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(a)e(b)=(c);

A fibration with small products and coproducts is called hyperfibration. (le.,itisa
(c)=>(a} - if B has pullbacks.

fibration with Beck-Chevalley property.) HYP/B is the full subcategory of
fri

i iti ; : ich consists of hyperfibrations.
a) E satisfies the Beck condition over every commutative square, : I_&EELE/ B whic yp

Example, Every (ordinary) category € gives rise to a split family fibration
Ve : Set/€ —>Set,
. in which the fibres

_ (Set/€):=C1 . _
consist of the functors [—> €, i.e. the I-indexed families (Cy ! x 1) of objects of €,

b) All the inverse and direct image functors are equivalences, i.e. for everyue B

ureu® = id and u*ou = id,

¢) E has the Beck property, and every inverse image functor is full and faithful, i.e.
uteu® = id, .
with [-indexed families of €-arrows. The inverse image funcior over wI—>J is

u*(By i yel} = (Bugxy | x€ 1. ' .
The fibration V€ has small (co)products iff the category € has small (i.e. set indexed)

* (c)=>(a) is now simply: liou* = piozioz*ow® = plow* = vkoki e

Remark. The diagram "(a)=>(b)" above shows that in every bifibration E with the
{co)products in the usual sense. They arc

u (Ax ! xel) :=( Z Axlye J}
uix =y

us (Ay i xe D) :=(H Ay lye J)
ui=y

BC-property a lifting of a monic is cartesian iff it is cocartesian; i.e., every direct and
every inverse image functor along a monic is an equivalence of categories in such E,

Proposition. (Bénabou 1975b) (AC) Let B be a category with pullbacks. A fibration

: as small oduets iff the cartesian functor A:E—» Fam(E)
6. Hyperfibrations. E:£ —> B has small copr

Terminology. In a bifibration with the Beck-Chevalley property, the direct images are N Idse &

called coproducts. The right direct images in a right bifibration with the BC-property are

called products. (Le., Products and coproducts are direct images which are stable under E/B -B/B

the inverse images.)

Ids
Definitions, A fibration E is said te have small coproducis if it is a bifibration with

the Beck-Chevalley property. The full subcategory of BIFIB/ B spanned by the
fibrations with small coproducts is denoted by FIB:/ 8.

B
We say that E has small products if EOP has small coproducts. The corresponding

subcategory is FIB«/B = BIFIB/ B, | o
has a cartesian left adjoint. (The functor Ids takes every object to its identity ATTOW.)
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+ The BC-property boils down to the fact that the functor Z — A,
Z(X,wEX— 1) =uiX,

is cartesiagn.

7. Closure properties for co-, bi-, tri-, and hyperfibrations.

The class of cocartesian arrows is closed under the right division and stable under
pushouts preserved by E - dually to the class of cartesian arrows (cf, 1.34 and 2.23)

The class of cofibrations has, on the other hand, cbviously the same closure propert
as the class of fibrations: it is stable under all pullbacks, and closed under compositios
Tdem for the class of bifibrations, of course. As for rifibrations, it is routine to see that
they are stable under all pullbacks (+ for every functor C:€ — B hold
(C*E)or g CHE), where C*Ee [FIB/ €] is a pullback of E along C; hence if EOPi
bifibration then (C*E)OP is one+); but they don't seem to be closed under th
composition,

We shall now show that hyperfibrations are closed under the composition (74), ang
stable under pullbacks along pullback-preserving functors (71).

Terminology. A bifibration E:F — € over a fibred category € has th
vertical(-cartesian) Beck-Chevalley property (abbreviated vBC and veBC) if it satisfies
the Chevaliey condition over all the puliback squares in € in which two opposite sides
are vertical {while the other two are cartesian}.

Propositions. Consider a functor C:€ — B and fibrations E:€ — B, EF —¢
CH*E ; l‘3>é€ —€ and F := EoE: F — 8. (In the proofs, ¥ wili denote the F-cartesiar

arrows in ¥ and the E-cartesian arrows in £; generic notation for E-cartesian arrows i
F will be 8. Same for the cocartesian arrows. F:=F-(1).} :
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1, 1f C preserves pullbacks and E has small (co)products, then C*E has small

) (o'o)prodﬂc[&
i we prove that C*E has the BC-property if E has it.

A C*E-cartesian lifting of pe €(U,V} is in the form {p,5°P); a C*E-cocartesian lifting

of p is in the form {p,oCP). A square Q in E’>é8, over a pullback square 8 in €, and

..S"uch that s and ¢ are cartesian and f is cocartesian, is projected as follows:

(u, ﬂcu ﬂCu
'| e
<m;Y)L Q J v i Q- 14}
ﬁ ¥
C*E E
.{u CuT
| _I

C Cv
Since CS is a pullback sguare, and E has the BC-property, the arrow ¥ is cocartesian ia
€. The arrow g = {m,Y} is therefore cocartesian in t‘3§€.-

72 I E and E have smal! coproducts, then F has them.

» Again we know that F is a bifibration, and just prove its BC-property.

~ The formula is:

F-(cojcartesian arrows are E-(co)cartesian liftings of E-(co)cartestan arrows.
(Namely, if h is an E-cartesian lifting of u at EZ, §% is an F-cartesian lifting of u at Z.
Every F-cartesian lifting tof u at Zis t= ?5% for h:=Et.) The two F-cartesian sides of a

square Q in F are thus E-cartesian too; its F-cocartesian side is E-cocartesian.
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E s E
] g L > _
Y | Q a-f g EQ f m g k

Since bifibration E is a cartesian and cocartestan functor, s and t are E-cartesian, fisE
cocartesian; because of the BC-property of E, g is E-cocartesian, By 2,22, BQ i3
puliback square. Because of the BC-property of E, v is E-cocartesian. By the formuyl
¥ must be F-cocartesian.«

73. If EoP and E°P are bifibrations, the latter with the veBC-property, then FoP jg 8

u*y -

bifibration. If E is a hyperfibration and E a trifibration, then is F a trifibration. G

» FOP is certainly a fibration, because F is. We show that FOP is a cofibration; given-
ue B(LT) and Ce |Fil, we define
an F-opcartesian lifting l‘|:! =8 ofu at C, using
an E-opcartesian lifting y = 0/¢ of u a1 EC, and

The square Q consists of two cartesian and two vertical arrows in €, By the hypothesis,
£op has the veBC-property. The unique factorisation pif := pB/E over © of YoOUP

through P must therefore be E-opcartesian,

an E-opcartesian ifting \r = B£ of 0 at €*C (an E-inverse image) {3"3/ v

as follows: C ¥" .
St o] N
8:=8.

— |gutp v L
We show that li} is indeed opcartesian. For an arbitrary ge F1(u*B,0), consider

3
e
t\

Ege €1(u*Y,2). Since v is opcartesian, there is a unique pe € (Y, uxZ) such that Eg
factorizes through £ by u*p.

ab

I
|
I
u*B =B
5=’
Let a be the unique H-vertical factorisation of g through §€eTU*P. The cocartesianness
of p¥ means that there is a unique E-vertical a‘ such that a = pE ob, where b is an E-
inverse image of a* along 9%e £(u*Y,Y), Now let
g'=0en’,
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Since p was E-vertical, g* is F-vertical. Since B is (by the formula) an F-cartegi

.FELIUELE/:B(E‘,E} is a (fibrewise) wrifibration in TRIFIB/ B if all Fi:€'1— €1 are

lifting of u, the F-inverse image is u*(g*) = ﬁ”fpo b. Hence .. . . . i
" ifibrations, E-inverse images preserve Fi-cartesian, Fl-cocartesian, and Fr-opcartesian

g =£ou(g").

" grrows, and E-direct images preserve Fi-cocartesian arrows.

The second assertion follows by just adding to this reasoning the fact that F ig

Facts. Denote by op(F)e FIB/ B(E'oP,EOoP} the image of Fe FIB/ B(E'.E) by the
bifibration if E and E are.

arrow part of the functor op.

74. Hyperfibrations are closed under composition. 1. Fe FIB/ B(E'E) is a fibrewise cofibration iff op(F)e FIB/B(E'P,EOP) is a

« If E and ¥ are hyperfibrations, then F is a trifibration by 73. By 72, the bifibration fibrewise fibration.

has the BC-property. From fact 3 follows that FOP has this property 100, (Otherwig

a .32, Fe BIFIB/ B(E'E) is a fibrewise bifibration iff F, op(F) and F° are fibrewise
check directly that the BC-property holds for the arrow y defined in 73.)e

fibrations.

83. Fe TRIFIB/ B(E'E) is a fibrewise wifibration iff F, op(F), F* and op(F°P) are
fiorewise fibrations. ¢+ The domain of op(F°P) is obtained by first making
Fop.£'op—> £, and then op(FP): (EFePyop —> E0D. The fibration (EFOP)OP has the same

8. Fibrewise co-, bi-, tri-, hyperfibrations. cartesian arrows as EFOP, thus the same as E'=EF.+)

Remark. All the above definitions give rise to appropriate categories: for instance, the
fibrewise cocartesian functors between fibrewise cofibrations Fe FIB/ B(E',E) and
'GeFIB/ B(E".E) should be the functors He FIB/ B(E'E™), such that F=GH and
Hie COFIB/ E1(F1, Gp). But we shall only need the following categories:

A category of predicates, structure on which we shall focus in chapter IV, will be
hyperfibration over a hyperfibration, i.e., a hyperfibration in which every fibre is aga
a hyperfibration, and the inverse images preserve this fibrewise structure, This m
sound complicated, but we shall show that it boils down to a bit less than two honest:
hyperfibrations. 8o we first give some lengthy definitions in the by now comin

“fibrewise-structure-preserved-by-inverse-images™ style, and then characterize th IBIEIB/E| i= the fibrewise bifibrations over E in BIFIB/B,

defined notions globally BIFIB/E(F.G) := {(He (BIFIB/B)/E1 V1LHe BIFIB/E1(F;, G}

Definitions. Fe EIB/B (E'E) is u (fibrewise) cofibration in ELB/8 if all its ITRIFIB/E| = the fibrewise ifibrations over E in TRIEIB/S,
TRIFIB/E(F.G) = {He (FRIFIB/ B)/E | V1.Hje TRIFIB/ € (Fy, G}

testrictions Fp:£'y—> € are cofibrations and if E'-inverse imuages preserve the F

cocaresian arrows. . and the full subcategories

BIFIB;/E < BIFIB/E and

HYP/E < TRIFIB/E
spanned respectively by the fibrewise bifibrations and wrifibrations F with the
" components Fy which have the Beck-Chevalley property. (In other words, all the Fi
have small coproducts in the first case, and they are hyperfibrations in the second case.)

Fe BIFIB/ B(E'E) is a (fibrewise) bifibration in BIFIB/8 if all FE'1—> £} are

bifibrations, E'-inverse images preserve Fj-cartesian as well as Fi-cocartesian arrow:

while E'-direct images preserve the Fl-cocariesian airows.
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Moreover, we denote by
BIFIB,()/ € =BIFIB/€
M\'(c)/ € =TRFIB/£
the categories of bifibrations resp. trifibrations with the v(c)BC-property.

Propositions.

84. i) BIFIB/E = RIFIB,./€.
i) BIFIB{/E = BIFIB,/€.

» We only show the corresporndence on objects. The correspondence on arrows follows

immediately from proposition 2.3.

& If F is a bifibration, then all the Fy are bifibrations, E'-inverse images preserve the
Fi-cartesian arrows, and E'-direct images preserve the Fi-cocartesian arrows - by
proposition 2,3,

(i) The Fr-cocartesian arrows are just the F-cocartesian liftings of arrows from £y; the
E'-cartesian arrows are the F-cartesian liftings of E-cartesian arrows. The preservation
of the Fi-cocartestan arrows under the E'-inverse images is just the veBC-property of
F.

(ii) If F has the vBC-property, then it also satisfies the BC-condition over all the
pullback squares which lie in €1. By proposition 2,24, the inclusion £ £ preserves
the pullbacks. Since every Fj is obtained from F by pulling back along €1— €,
proposition 71 applies: all Fj have small coproducts,

—: If F is a fibrewise bifibration, both F and F® are fibrewise fibrations, and by 2.3
again, both F and F°¢ are global fibrations. We now derive (ii) the vBC-property of
Fe BIFIBI/E. (The veBC-property of Fe BIFIB/E is an obvious part of the same

argument.}

Take in €' a commutative square Q such that FQ is a pullback, t and s are F-cartesian,
and f is F-cocartesian. Let Ff and Fg be vertical; hence E't=E's =ue B(LJ). Consider

the E'-vertical-cartesian decompositions of s and t.
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/,__.5_\\
d B
g P u*(f) R f
b Ty

Since both t and O are F-cartesian, b must be Fi-cocartesian. Idem for d. Since E'-
inverse images preserve Ij-cocartesian arrows, u*(f) is Fi-cocartesian. The square P is
a pullback because both R, and Q=P+R are (by 2.22). Thus FiP is a pullback (2.22
again). The BC-property of Fy says that g is Fi-cocariesian, thus F-cocartesian 100.-

85. i} TRIFIB/E = TRIFIB, /€.
ii) HYP/E = TRIFIB,/ €.

» +: Given an Fe'TRIFIB,¢/ €|, E=EF is a trifibration by 73; Fe TRIFIB/ B(E'E) is
immediate. FIP is obtained from FOP by pulling back - so that the conclusion that Fj is
¢) a trifibration or (i) a hyperfibration follows just as in the preceding proposition.

—: We know from the previous proposition that Fe ITRIFIB/El is a bifibration over €

with (i) the veBC-property; and if the components Fy have the BC-property, F has (ii)
the vBC-property . In view of fact 3, it is now sufficient to show that FOP is a
cofibration.

Given fe £(X,Z), Ef=ue B(1.J), with a decomposition f=0Vea, and Ce |€'x| such that
FC=X, we define

an F-opcartesian lifting w =0/¢ of fat C, using

an Fr-opcartesian lifting yn = 8/e;of a at C, and

an E'-opcartesian lifting w'= 6'7€' of v at asC,

Since F is a morphism of trifibrations, it preserves the E'-opcartesian arrows. Fy' is
thus E-opcartesian. So it forms in £ the lower diagram on the following picture.
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Course, £ is B'-vertical, so by the assumption on y', there is a unique E'-vertical

w g such shat

gI=€°P

for the E'-inverse image p of q along u. Since F is a cartesian functor, Fp is an
‘. orse image of Fq. Since F is opeartesian, F§'/Fe' is an E-opcartesian arrow, Putting
s6 two facts togsther, we conclude that Fqe €1(Z, uxu*Z) corresponds 10 Fe'oFp =
€ E1(u*Z, U*72). By the uniqueness, Fq=n. Let g* be the unique arrow in €'z such

itq =dMog*. Clearly
p:‘ﬁ“?l o [19u)*(gi)'

rofn the cafculation:

Gpe a¥gD = gio ¥} @ egopomn @
g o SWN o (BU*(g) o B2 =
£ o DU e 8 o F¥(z") 0

BFEo g o 9V Mo D)o fH(g) =

BFE's UM o 93 o b¥(e) o fH(g) =

_ 0y o b¥*(ey = £*(g")

fﬁllows a*(g) = b*(e) o £*{(g'), and by (2) and the definition of £
| g=eofig)e

‘Asymmetries. Given fibrations E:€ — B and F:£'— €, the cartesian arrows of
.E'=EF are easily obtained: they are the F-curtesian liftings of E-cartesian liftings. Idem

Xx- 1% A

a il
for E-cocartesian arrows. But it wasn't so simple to get the E'-opcartesian arrows: this

For b := u*nea holds a = Fe'ob, because Fe'ou*n =id. was the contents of proposition 73,

Given fibrations E:€ — B and E:£' — B, and a fibrewise fibration F:E'— E, it was
- easy to obtain the cartesian arrows of F:€'-— € by composing E'-cartesian arrows and
* the Fl-cartesian arrows (proposition 2.3). Idem for F-cocartesian arrows. And again,

The upper diagram is in €', The E'-vertical arrow €' decomposes

1 g=9Fae

with respect to F, n*(€') is the unique fuctorisution over 94 of §' through 4. Define:
& = gy o b¥(e) |
6 :=1*(8") o B,

the F-opcartesian arrows demand more: the last proposition.

The preservation of the Fj-cocartesian arrows by the E-inverse images takes globally
- the form of the vBC-property. The fact that the Fr-cartesian arrows are preserved by the
" E-inverse images corresponds to the closure of the F-cartesian arrows under the

Given a ge £'x(f*D,C), by the assumption on i there is a unique
gl€ E3'11*2((13“)”‘& a*C), such that

2) g = eroa*(gy). composition (2.31); the preservation of the Fr-cocartesian arrows under the left E'-
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direct images corresponds to the closure of the F-cocartesian arrows under th 3a, The Beck-Chevalley condifion without direct images

composition. However, we could not requre that the Fi-opcartesian arrows ar
preserved under the right E'-direct images, because the right E'-direct images don'
preserve the FioP-grrows in the first place, Namely, they needn't preserve the cartesig,
arrows,
1, Interpolation condition.
In the preceding section (part 3} the Beck-Chevalley condition was introduced as a
categorical expression of the logical concept of independence of variables - in the form:
“Every variable is invariant under quamifying over other variables”. There is, however,
another wuy to express the independence of variables:

ax,y) - yiy,2) &

there is an interpolant P(y), such that ox,y} - B{y) - ¥(v.2).
(Le.: "The different variables do not interfere with each other in 4 proof”. This means
that x cannot play any role in a proof of ¥(y,z); and z cannot play a role in a proof from

a{x,y).)

At the first sight, this seems 1o be a different idea of independence of variables.
Surprisingly, it is not: in the logic with quantifiers, the two forms of the independence
of variables are equivalent. Lifting logic in category theory, we gel a direcr-image free
characterisation of the Beck-Chevalley condition. In other words, there is a property of
fibrations which a bifibration will have if and only if it has the Beck-Chevalley

property. (This characterisation will be applied in 111.4.2.)

Definitions. Let E: € — B be a fibration, and § a commutative square in B, An
(S-Yinterpolant of an arrow de Ef{u*A, m*C) is a triple {a, B, ¢}, where BelExl,
a€ E7(Ak*B), ce Ep(v*B,C), such that

d = m*(c)otou*(a).

* (The wnique factorisation t of 920, 5 through ¥3e, T, is a vertical iso because these

two arrows are cartesian liftings of ku = vim.)
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An interpolant {ap, By, co} is initial if for any other interpolant {a, B, ¢} (of the san
arrow, over the same square) there is a4 unique'arrow be Ex(Bg, B), such that

a = k*{(b)eag.
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An interpolant {ag, Bo, ¢} is strong if for any other interpolant {a, B, ¢) (of the same
arrow, over the same square)
a = ap impligs ¢ = cp.

A fibration E satisfies the interpolation condition over the square S if there is an S-
interpolant for every de €1{u*A, m*C). It satisfies the strong interpolation condition if,

besides, every initial interpolant is strong.
Propositions. Let a bifibration E and a square S (as above) be given.

11, E satisfies the interpolation condition over S iff the canonical vertical arrow
p:pA:m!u*A-% v*kA (Le. such that 8 J,opoo i, = Ggoﬁx) is a split mono for

every Ael€)l.

12, E satisfies the strong interpolation condition over S iff it satisfies the Beck-
_ Chevalley condition over 8.

Proofs.
111, If: Suppose eop = id. Define an interpolant:
B = kA

a:=1:A—> k¥kiA is the unique vertical arrow by which ok : A — k1A
factorizes through ¥ : k¥kiA —> kiA;

¢ :=‘dee : v¥B—> C, where ‘d : myu*A—> C is the unique vertical arrow by
which #Mad : uw*A— m*C—> C factorizes through ™ : v*A — myu*A.

' {When E is cloven, a is a component of the unit of ki — k*, while ‘d is the left
transpose of d ; u*A—> m*C. But even without & cleavage, all the usual adjunction
tricks go through: cf. lemmas 3 below.)
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II. Variable categories 3a, The BC-condition wilhout divect images

isan initial interpolant. By assumption, it must be strong. From the =-part of lemma

k 8" 8™ . :
ki A = A= u*A - m*C - C 14 it follows now that p is an epi.
| I A
| I J" i I ‘d gince ¢ is an epi and a split mono, it must be iso.»
I I _
id al u*a : mcl miu*A . gemark. In « bifibration, from any interpolant (a, B, c) of de E1(u*A, m*C) an initial
! | | jnterpotant of the same arrow can be obtained, namely {1, kiA, cov*(‘a)).
e
! + Y I d
kA -1;;- k*k,A T u*k*B —=m*viB e v*B w4 =m*C
u*(a) m*(c)
To prove that d = m*(c)oten*(a), it is sufficient to show OFed = ﬂ&“cm*(c)otau {
But 9ed = ‘dec, B, (by the definition of ‘d), and BTom*(c) = ‘doeod, Ty (b u*G) KB - m*v*R
1
definitions of ¢ and m*), so that it is enough to prove
UUTA =301(}VTBQT°U*(3). u*k*(‘a) m*\’*{‘a)
But this is follows from eop =id and lemma 31 below. urk*k A = mvrkA

T

112. Then: Let {ay, By, ¢y} be an interpolant of the "unit”
1 u*A — m*mu*A,

defined as above, and let ‘ap, : kiA—> B be the "left transpose” of ay. The arrow
& :=cyov¥*('ay) : vkA > v¥B — muutA '

is then a left inverse of p by lemma 33, ‘2. Uniform interpolation.

121, If: Suppose that every p is an iso. As we saw in 111, -In fogic with quantifiers, the interpolation condition can be expressed in the following
MA—= kYA, kA, dop-livikA— C) _
is an interpolant of d, Tt is initial: if (a, B, c) is another interpolant of d, then a factori

through 1 by k*(“a). If {ag, Bo, co} is another initial interpolant of d, then ap = 1

- may:
alx,y) - 1ly,z) &
there is an interpolant B(y), such that 3x.alx.y} - BOy) - Vexiy,z)

the uniqueness of their factorisations through each other). So it is sufficient 0. An initial interpolant 3x.0(x,y) is now given, as well as a terminal one, Vz.(y,z).

that (M, k1A, ‘dep-1} is a strong interpolant. But this follows from the <-part of I& L - .
34 (Tld t: P ) | g p. ndeed. an i par e efinitions, Let E be a trifibration, the other data as above. We say that the

»and the assumption that p is an epi (indeed, an iso). nterpolants of d are uniform if for each two of them, say {a, B, ¢) and (@, B, ¢}, holds
122, Then: We proved in 112 that every p is a split mono if there is an interpolah clo‘a =cotu.
each de Ef{u*A, m*(C). On 1he other hand, every triple

(N:A—>K¥KiA, KA, covikiA —> C)
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3a. The BC-condition without direct images

II. Variable calegories

+If: The following diagram in E0P

C——'-—»-]LV*C
1 i

v¥*(*a) a

VA — 2 kA

shows that in every trifibration
cov¥(‘a) =Cov*(‘a) e clo'a =g o'd.

1 Byt lemma 33 tells that
. cov¥(‘a) = CovF(‘T) & m*(c)otouH(a) = mM(C)oteu*(d)
“holds whenever p is epi. Hence, when the Beck-Chevalley condition is satisfied, i.e.
y . - when p is an iso, the interpolants are uniform.
Then: Suppose cop = op for some ¢ and ¢. By lemma 34, (1, kiA, ¢} and (n, kiA, ¢)
J S M are interpolants of the arrow m*{c)ep* = m*(c)op*. Since ‘N = idi, s, from the
uniformity follows c* = C*. Since ¢ and ¢ were arbitrary, this means that p is an epi.
.Butp is certainly a split mono by proposition 1. Hence p must be an iso, and the Beck-
k Y .Cheva]lcy condition is satisfied over 5.+
K

. Lernmas. The following statements are true for any bifibration E.

1, pog™ = BMotou*(n).

satisfies the Beck condition over this square.
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Y3. Variable categories 3a. The BC-conditivn without direct images

« By the definition of p, the left side is the unique factorisation over m of U}{o"a
through 9,],. But the right side is such a factorisation too, as the following diagra

- 133, Each of two squares below commutes iff the other one does.

WA m——— ¥

shows.

u*a n*g
‘d
mutA— C
u*k*B " m*v*B

v¥B
vk A W

+Clearly, each of the triangles in the following diagram commutes iff the other one

does.

A L = k*k A
\G- k!A 8 m
a ‘al k*(‘a) ‘q
m!u*A
k*B ~= k*B &
id ‘(tou*(a)) om
v¥B

Thus we are done if we prove v¥(‘ajop = ‘(Tou*(a))

sfor this equality, compare the following diagrams:
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I1. Variable categories 3a. The BC-conditien without direct tmages

u*A---——um mu¥A nt, u*A o’ wtA holds by “adjunction”: ciep is the unique vertical factorisation of 3™em*(ci}op*
) ’ through ©™; m*(cq)op* is the factorisation of ¢jopoc™ through HM.
urkFk A R p u¥(a)
u*k*(‘a)l “(rout(a)

in

w*k*B m¥vr A=y ¥k A u*k*B

lm*v*{‘a) v¥(*a) : T
m 718
m*v*B LV*B V*B-I--‘l(-}-— m*v*B

The pentangle R commutes by lemma 31, the rest by definitions. From lemma 32,'
follows that u*(a) = w¥k*(*a)eu*(n). Hence ‘(toeu®(a)) and v¥(*a)ep are vertic
factorizations of the same arrow 9Metou*(a) = §Metou*k*(*a)eu*(n) through o™ B
the uniqueness, they must be equal.+ '

34, clop =cpop < m*(er)oTou*(M) = m¥{cp)eTon*(M).

™
G
Uk A = L U*A

e

P uvk*kiA g | p
+/’=

m*vrk A ——mm— A
m¥*(cy) m*(cy <] Cy

m*C _"“‘55"'_"' C

Again, R commutes by lemma 31. Since the upper square commutes by the definiti
of p‘, we have Tou*(m) = p‘. But

c1op =czep & m*(c1)ep’ = m*{cz)op’
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4, Families of arrows

-1, Examples,

The simplest fibred category of arrows is V8et = Cod: Set/Set—> Set. Itis a

perfibration. If we use the correspondence I (fromx 1.1} to represent the fibre
1

'(Sﬂxs;ﬂ)] =§et/ I as the category Set! of I-indexed sets (i.e. if we regard VSer asa
 family fibration), the horizontai structure over a function ue $ei(1,J) will be
' u*: Set) —> Set! : [(pyl yeJ}H {(pu(x)l er}

ur: Sett—Set : { vl xel]»—){ e | ye J}
xeu ()

u*:ﬂﬂlﬁfﬁﬂ*:{hlxel}lﬁ{ vx | ye J}‘

_ xeuiy)

The subfibration Mon < VSet spanned by the indexed sets (¢} in which every yx has at
iost one element - is a hyperfibration too. The subfibration Epi € VSet, consisting of
Y} where every ¥ has at least one element - has small coproducts; it has small
feducts iff the axiom of choice is true. Without the axiom of choice, Epi has only the
products along the elements of

Fset := {ue Set | Yye Cod(u). ui(y) is finite].

This family of arrows also spans a full subcategory Fset/ Set < Set/ Set, which is stable
nder all pullbacks, which means that VFset:=V Setlpeer/get is & subfibration, This
jbrarion has the products and coproducts only along the elements of the family Fset.
I elements can be viewed as sets {yx) where every ¥y is finite.)

We shall say that categories of arrows Epi and Fset/ Set, fibred over Set, are relative
yperfibrations with respect to the family of arrows Fset & Set, or that they are Fset-
yperfibrations.

:b__P Cat and Fib—> Cat are also fibred categories of arrows, and subfibrations of a
ic fibration, namely VCat. They are both trifibrations, with the direct images given
the Kan extensions; neither of them has the Beck-Chevalley property, since they
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IT, Variable categories 4, Families of arrows

contain the counterexample 3.3. Dfib is the full subcategory Dfib/ Cat spanneq

Cat/Cat by the class of arrows Dfib, while Fib is not full in Cat/Cat gemark. The relativized versions of many propositions from the preceding sections

'm easily obtained - provided that Q satisfies appropriate closure conditions. For
VCat itself is, of course, a bifibration. It is, moreover, a Fib-trifibration: Va0

the direct images along fibrations. {(But the construction scems quite complicated.)

" jnstance:

1) 1.31¢H. (AC)Y E is an Q-fibration iff the functor A*(Eg), obtained by pulling back
g along A/E—> B/E, has a right adjoint right inverse.

734, Pull back along @/ B <> B/B the whele diagram used in this proposition; keep
fhe same names. B becomes the category of Q-arrows with pullbacks as arrows
between them. The proposition now reads: An Q-bifibration E has A-coproducts iff Er
:is_ a fibration and U is a cartesian functor,

2. Relativisation.

Notation, Let @ € B be a class of arrows, and C:€ —> B a functor. The caté
a/C is then defined to be the full subcategory of the comma category B/C, sp

3) 1.6. (Bénabou 1975b) Let A be a calibration. (The definition follows below,) Given
by the objects {a:I—> CX, X}, where ae . The definition of the category ¢

4 ﬁbration F:€ — B, the fibration Famg(E}:E/a —> B and the cartesian functor
Aq:E—> Famg(E) are defined as in proposition 3.6, but with a/B in place of B/ 8.
E has G-coproducts iff Aq has a cartesian left adjoint.

analogous.

We shall mostly consider a/ B ;= a/idg, with the projection

va:a/B—8 . Gi—L =)
The fibres will be A dJ:=(c1/ B)}. (When Q is a category, there is also va:ale
with fibres a/J:=(a/a)l;.) .

Definitions. A functor E: € — B is a fibration relative to a family Q of arr Intrinsic structures and closure conditions for families,

an A-fibration, if every ge B(1,1)~a has at every Ze [€) a carresian lifting
that for every ve B(K,I) and every f over gv there is a unique g over v, f = Qg
1.31(b).) '

efinitions. A calibration (Bénabou 1975a) on a category B is a family of arrows
€8, which satisfies the following conditions:
 is stable under the composition with all isemorphisms (i.e. feQ

E is an Q-bifibration if it is a fibration and a relative a-cofibration (i.e. EOis. implies ifojeQ for all appropriately composable isos i,je B)

fibration), An Q-bifibration is said to have the Q-coproducts if it satisfies th
Chevalley condition over the pullback squares with two opposite sides belongin;

1 contains al} the isomorphisms of B;
the pullbacks of A-arrows along arbitrary arrows exist, and Q is stable;
Q is closed under composition, and

E is an Q-trifibration if E and EOP are a-bifibrations. It is an A-hyperfibrationi under left division,

a-products and G -coproducts. i
attirated family of arrows A satisfies satisfies (C0) and (C1). A stable family

atl_s_ﬁes (C1) and (C2) (and (CO) a fortiori); a saturated subcaregory satisfies (CQ),
) and {C3).
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1I. Variable categories 4. Families of arrows

If B has a terminal object T, we say that Q is a display family if 1t satisfies the 'a'is.'

condition (Taylor 1986):
D) a contains K—> T for every Ke Bl

Terminology. The arrow fibrations, cofibrations, etc. are generally considered , Arrow cofibrations and factorisations.

al . ) A B tricti ' - Ce
form of codomain functors. A codomain functor A is a restriction of the {, Definition. (Relativisation of Freyd-Kelly 1972, 2.2) Let d & B be a saturated

aily. A factorisasion system relative 10 d, or a d-factorisation system is a pair
o) of saturated families € ' = d such that the following conditions are satisfied:

funcior
VB =Cod:B/B—B.

to a subcategory S <> B/ B, Thus, "arow fibration A" always means that A=V for every ned there are <10, se @, such that
_ , se &, such that u=aoes;

A (fibrewise or horizontal) structure in S is called intrinsic if it is preserved for all a.a'em, s,5'€ © (and u,v arbitrary), voaos = a'os’sn jmplies

inclusion in B/ 3. E.g., the intrinsic inverse images are given by pullback
intrinsic direct images by composition {i.e. ui(a)=uca), the intrinsic (fibrewise) te

that there is a unique arrow g which makes the following diagram
comrutative:

objects are identities. VB itself is always a split cofibration with terminal objects, - 2

a fibration, it always has the small coproducts (i.e. the Beck-Chevalley propert :

even if VB is not a fibration, we consider its subfibrations, just as we co u g v
subgroups of a monoid. An intrinsic (co-, bi-,...)fibration is a sub(co-,“.)ﬁl.a-r_a ¢ : o

V8. Intrinsic structure is a partial structure in V3,

) ié elements of the class & are called epis isati
Facis. For a class of arows Q € B, consider the functor . pis of the factorisasion, the elements of I are

A=Va.:a/B— 3,
the restriction of VB on the full subcategory /B <8/ 8.

HOS,

felative factorisation system is stable if class € is stable under pullbacks.

31. a satisfies (C1) iff A has intrinsic terminal objects. inmas. Let {& i} be a d-factorisation system.

32.a satisfies (C2) (and (C0)) U A is an intrinsic fibration. The assertions (x ) are ali equivalent, for xe (ab,c},je {&,m ).

33. a satisfies (C3) iff A is a split intrinsic Q-cofibration. A is a split
cofibration iff @ is a left ideal in B (i.e. for every appropriately composable ve
holds uefe Q).

J isclosed in < under composition: p,qe j and pged jmplies pge j.

e . . tight s - ' i

AR m] is closed in d under the { 1§ﬁ } division: p',p ,{g,l?q}ej andqed
34. G is a stable subcategory iff A has terminal objects, inverse images &
coproducts, everything intrinsic. [ff, besides, a/B=a/a, then A is a calibratio
only calibration satisfying the display condition is a=8.

f the condition (F2) is satisfied for some fed in place of{ — } then
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II. Variable categories 4. Families of arrows

first equation induces a unique arrow r such that a=for=acser, g=uor, res=id is the
If any of the above conditions is satisfied, the closure properties of d {in By

wique factorisation of § through itself, while ser=id follows by another application of
reflected on € and IT1:

condition {F2).¢

i) If d is closed under composition, then both € and I are.

44, Proposition. Let d be a stable family in B, a =d, and let d be closed under the

Teft division by Q (i.e. aqe d and ac & implies ge ). Then the statements below are

ii) If 4 is closed under {l}ffl:t } division, then L%} is closed too.

- elated as follows
L o @e®S ©.

* (arn )=> (b ): Suppose that &ofem for some de 1 and fed. Let f=ae 1l these implications remain valid when all the outlined parts are omitted.

factorisation of f given by {F1). Apply (F2} on a:=af, si=s, a"i=hef, s'=id, g

vi=4, So there is g such that gos=id, dofeg=foar, Since acaren, from &carosfogs Va:a/B —> B is a d-bifibration with intrinsic inverse images, intrinsic terminal

)
follows spog=id, by the uniqueness of the factorisation, Since s¢1s an iso, and vjects, and the BC-propery.

saturated, ferr. _ )
1 is a family of monos of a stable d-factorisation systemn.

(b )=>(crm ): Putting in (F2) a:=ay, s:=sg, a=f, and the remaining arrows identi ble family and th /B /
. S is 4 st 2l the i iona i ioi
we get g such that gesr=id and agospog=ar. By the left division, the second equy ) is a stable family and the inclusion > A/ 8 has a cantesian left adjoint.

gives spog=id. So s; is an isomorphism again. ifany of these conditions is fulfilled, the following is true:

(e )= (am): Suppose that for ag,ai,a2e ™, 5.51€© and arbitrary, u\y )@ is closed under the composition in d and under left division in B. {l.e., (ag). (bg)

ind {cq) from 42 are all true).

vieagesp=azearosow’. First apply (F2) to ai=ap, s:i=sp, a':=az, su=id, ui=ayg
v:i=v', to get g such that azeg'=v'oag and gesg=aresou’; then set ar=id,
a==ag, $i=s), W=, vi=g to get g such that g'=ajog and gesp=siou’. This g Y fd is a stable subcategory in B, 4 is a calibration.

)=3{b): The staternent "{¢,p)e a/ B(a,pi(a)) is VA -cocartesian” means:
"Va'ed Vq,re B. a'g=rpa then 3'g such that the diagram

the condition {F2) for a:=ag, s:=sp, a:=azoay, §':=81, w=u, v:=v', By.
aealeIN. '

(aeY=>(cpn): (Freyd-Kelly 1972, proposition 2,2.1.) Consider again this arro

which gesr=id and fog=ay. Since (ag)=>(be), the first equation implies ge €. B q B -
sjoge &, and from fog=asospog=ar (by the uniqueness of the factorisation) fi P ~ &
srog=id. So g is an iso.» 53
. ~ : a p((a) a
43. If d is stable under { g;ﬁ;g&ﬁ } in B, then !r%} is stable too. I
J
+ Let S be a pullback of a'en =d along v. Denote by u the arrow opposite to P r

let f be opposite to a'. Since fe d, there is a factorisation aes=f. Condition

. . , . . co "
s':=id) now gives an arrow g so that a'og=voa and u=ges. Since § is a pulibs mutes .
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4. Families of arrows

Ay

Il. Variable categories

(Note that py(a)= (pay(id), and ob = ofl)

The pair {¢,Q) is a d-factorisation system, where

G := {oe Bl (o,p} is Va-cocartesian, ped }. " _ J k)
(F1) follows from p=pi(id)ocl. Since d is closed under the left division by 4/ vtk @ o —_—
implies 0 S d. (F2) is obtained if we take q:=s'0, 1=v. A 5 %
r———
v

It remains to derive the stability of G under pullbacks from the BC-property

a/B-—>B. So consider a pullback square § with o0& C.

_
/m /id

Sincﬁ the back, front and bottom squares on this diagram are pullbacks, the top square
ﬁust be one. By the stability, s' must then be an epi of the factorisation. Since
Pafa)e A, the left hand square is cocartesian,

{)=>{b): The pair {1).Q) is a d-factorisation system, where 1} is the (family of the

.J
id * id womponents of the) unit of the adjunction.
VR .
,A S / @=crHA L a/B<—B/8B isdefined by
—— “.. H(p):=pr(id}.

i () can also be obtained from proposition 3.6.)

B

Clearly, the right hand square is a cocartesian lifting of ¢, while the back and the f
squares are cartesian liftings of u and v. By the BC-property, the left hand squaré: _ii:Nute that for the d-factorisation system {G,Q} the condition (cg) from lemma 42 is
glisfied. The lemma now tells that (aq). (beq) and (cq) are true, For the left division,
;_aq, act implies qed by the assumption about d; but now (bq) says that from ag,aeQ

qed follows gea.

be cocartesian, i.e. ge G. But m=g.

{h)=>(a): Suppose that {¢,a} is a d-factorisation system. By (F1) there are {3

arrows, which we suggestively denote) pr(a)e d and e € such that
pea = pi{a)es

With vi=r, u:=q, §":=id, the condition (F2) tells that {o,p} is a cocartesian lifting of

) Ird is closed under the composition in B, then 4 is closed too, by (i) and 42(i).+

_ . Remark. When B has a terrninal object 1, and d =138, the reflection in (¢) restricts
a (full) reflection of @ in B. It is the resuli of Cassidy-Hébert-Kelly (1985) that there
i Galois connection between (full replete) reflective subcategories and B-factorisation

a, and that pi(a) is a direct image.

We further prove that the stability of the epis of the factorisation implies the.
property of /B —> B. So consider & pullback square S, with a cocartesian Lifg
{=factorisation) of k, and with cartesian liftings of u and v,

ysjems: reflective subcategories of B correspond exactly to those factorisation systems
which epis are closed under the left division. Translating through the last
foposition, we conclude:

- Reflective subcategories of B exactly correspond to the arrow bifibrations over
inwhich the class of cocartesian arrows is closed under the left division.
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H. Variable categories 4. Families of arrows

- A reflective subcategory of B is a localisation - i.e. its reflection preserves
finite limits - exactly when this corresponding arrow bifibration has the Beck-Chevgj
properiy.

46. Corollary. A finitely complete category B is regular iff the fibration
YMon : Mon/B— 8,

(where Mon< B is the family of the monemorphisms) has the smafl coprod

' Right arrow bifibrations.

Lemma. Every (relative) right bifibration with intrinsic inverse images has the Beck-
(Regular categories arc those in which every arrow factors as a mono followed chevalley property.
regular epi - ie. a coequalizer of some pair - and regular epis are stable '

pullbacks.) Consider a pullback square S in B, cartesian liftings (s,u}, {t,v), and opcartesian

{f", k). Op-arrow {g'/g", m) is induced as a unique factorisation of (f/f", k}o{s,u}
y(t,v): ¢ by pulling m back, and g" as a factorisation through the pullback on the
pack side of the cube. On the following diagram everything commutes, and all the
;'.-_s_qual“CS are pullbacks.

» Street 1984, theorem 3 (attributed to Joyal): The epis of a factorisation sysfept
{e Mon) in a finitely complete category B are coequalisers of their kernel pairs.s

47. Lemnia, (Probably Bénabou.) Let & be a stable subcategory, and @ =d. Thqg
(aqged and ae G implies ged) < Vasd. pacd,
where py:={id,idye d4J(a,a ¥ a) is the diagonal arrow in the fibrewise caﬂes

strycture.

b4
m*(X) \

Iu*(b) /
v¥k,(b) \\J kb \

.- We must show that {g/g", my) is opcartesian. (We use description I1.3.2.) An arbitrary
"_'__vertical arrow c:m*(x} —> u*{b} induces sc:k*(vx) —> b, since k*{vx) = uom*(x). Since
(/" k} is opcartesian, there is a unique arrow d:vx —> ks(b) such that f"ef*(d)=sc.

+ ¢=: Suppose aqed and ae Q.
—L
[UAN
NN
d
afa\ ]
i a
g a
I+II pullback, aged = a'g'ed.
I, TI+111 pullback then III pullback.

III pullback, pae d then ded.
2'q’, ded then q=a'q'ded .+

= But the front square is cartesian, and there is unique arrow ¢ such that d=tc® and
- k=v¥ka(b)ec’. The equality g"og™*(c*)=c is now obtained by chasing the diagram.»
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11. Variable categoevies 4. Families of arrows

Proposition. (Swreicher 1988, chapter 1} In every right bifibration Va:a/8 | ﬁﬁ;{i;zﬁfr moreover that 4 sutisfies the display condition, i.e. that it contains alt
{relative to a stable family) the right direct images must be intrinsic if the inverse im
':l‘he following characterisation itself is proposition 2.6 in Hyland-Pitts 1987. In fact, it
can be traced back to Freyd (1972, 1.34) and Day (1974, 4.1) (who both considered
:ﬁhl)' locally cartesian closed categories - but the proof is essentially the same). We

gots it for completeness.

and terminal objects are intrinsic.

« Let k«(b) be a right direct image with respect to a/B, and ve B(M,K} an arbj

arrow. Let S be a puliback as before, i.e. ve B(LI)isa pullback of v along k.
B/K(v, k*{b)) = B/M(id, v*k*(b)) =
alM(id, v"‘k*(b)) = CllM(id, m*u*{b)) = all{id, u*(b) =

B/1¢id, u*(b)) = B/J(u, b) = B/ I(k*(v), b)

oposition. B is a relative cartesian closed calegory with respect to a stable
abcategory Q iff Va:a /B — B is an intrinsic Q-trifibration with intrinsic terminal
objects. The cartesian closed structure is then intrinsic, and Va is an Q-hyperfibration.

Corollary. Let d be a stable subcategory, and a < d a saturated famil;
va:a/B—> B is a d-trifibration, then it is a d-hyperfibration; the right direct
over d are intinsic. If d is closed under left division by a (e.g. if d=8), then:j
direct images over @ are intrinsic too; Va : a/da > is then a subhyperfibrad

1t is immediate to check that for every ae la L]l

ax _=apea*( Yy:all—all and

a—_ = axea®* ) all—ral)
‘Jefine the required vertical structure. It is preserved under the inverse images by the
roperty. The proof that as (and therefore a-» _) preserves the Q-arrows can be

und in Hyland-Pius (1987, 2.5.)

a locally cartesian closed category: see below}

+ The first sentence follows from the preceding proposition and fact 3.3. Th

one from proposition 44+ ;
Then: We show that a right direct image of bela /Il along an Q-arrow a:l—> 17 is the

lowing VQ-inverse image (i.e. pullback):

ax(b) := (i”)*(a—w b},

Kre

6. rece i*eall{id,a—a) is the right transpose of i:=idje @ {J(a,a), and
a—bed/Ja—ab,a—a)is the image of be 4/ J(aba) by a—»_:a/J—a/lL.
Definition. A category B is category:locally cartesian closed {or It
VB:B/B—> B is a fibrewise cartesian closed category (cf. 2.1). B isrelt
cartesian closed with respect to a stable subcategory A< 8 (or: B1sand
va:a/B-> B is a fibrewise cartesian closed category and each exponentiatio
a—_:adT—> AT preserves the A-arrows (i.. resiricts to a-_alI—ald.

References. The last notion has been introduced in Taylor 1986, IV
Hyland-Pitts 1987, definition 2.7. The original definitions are in term
characterisation which we formulate below. In fact, for type-theoretical T2
original definitions are slightly stronger: Hyland and Pitts require that B
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4. Families of arrows

1I. Variable categories

. Fibrewise rcce.

14 category of predicates the predicates will be fibred over sets. The quantification will
je interpreted by the horizontal structure: categorics of predicates will be
_'yperfibrations. Within this framework - inside each fibre - constructive jogic in the
fjorm of Martin-L&f type theory will be implemented. So each fibre will be a relatively
;mesian closed category. {Cf. Seely 1984, Cartmell 1986, Hyland-Pitis 1987.3

iven a fibred category E:€ — B, we consider families I € € of vertical arrows.

pefinition 3 is adapted for this situation simply by putting "vertical isomorphisms” in
tace of "isomorphisms" in (CO) and (C1}); and "vertical arrows X— TEX" in place of

For arbiteary ke ka4, we calculate rrows K—> T in condition (D).. [nstead of a calibration, saturated family etc. on B,

alla*&),b) = [ceall(axk,ab) lbec = w:axk—a}=
[e*eallk, a—ab) | (a—b)ec™ =% (k— (a—-a)}
{c*eallk, a~ab) [ {a=rb)oc™® =i¥ok} = .
=ali®k,a~b) =
= ali(k, (i#)a-n).
The step (3) follows from the fact that ke A J{k.id)} is the terminal arrow,'sq-
¥ =i* ok : k—> id—> (a—a). Qdi®:= (a/B)j= denotes the set of arrows over i

we obtain a vertical calibration, vertical sauturated family etc. on a fibred category €.
Hquivalently, we could have defined that a family I € £ of vertical arrows is a vertical
hration (vertical saturated...) if it is stable under inverse images and every I'p=I'mE)

1

4

s calibration (...).

Afibred category € will be fibrewise relatively cartesian closed with respect to a vertical
si’able subcategory I (should we call it I-freec?) if every fibre €1 is relatively cartesian
fosed with respect to I'[, and the inverse images of

. Ew=BoVr :r/€—>€£—38

Remark. The functors ax_:ct 4J—> ad] slways preserve the Q-arrows, and res reserve the fibrewise cantesian closed structure of all Vry : r/ €~ Er.

ax_:a/J—> a/l. But lemma 47 implies that the G LJ-products axa’ are produg
a/Jiff a is a calibration. (= The projections from the @ dJ-products are certainly ¢
arrows. So it is necessary and sufficient that the diagonals py to the a {J-product
a/J-arrows.») We conclude that & is a sub-leccc of an d-recc B iff A is a calib

§pplying proposition 6, we conclude that &€ is an I"-frece iff every VItyis an Iy
byperfibration with intrinsic terminal objects, and the E-inverse images preserve the
artesian, cocartesian and opcartesian arrows of all Vrp.

(A statement to this effect appears in chapter 2 of Streicher 1988.) L .
S_l.ncc Vry are split intrinsic cofibrations, their cocartesian arrows over u are in the form

id,u). Obviously these Vri-cocartesian arrows will be preserved by the E'-direct
mages, if they exist. Thus, when E:€ — B is a hyperfibration, VI is a fibrewise

Note, moreover, that for a calibration Q, 8 is an d-rece iff va:a/B—> Bisan
{(+since the functors a— _ then certainly preserve the QA -arrows*).
Myperfibration {definitions 3.8) relative o I, The obvious relativized version of
toposition 3.85(ii} now implies that € is an I'-freec iff Vrir/€ —> € isan -
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hyperfibration with intrinsic terminal objects. But by proposition 6 again, thig
is equivalent with € being an honest I'-rcee, To resume, : IIL. Notions of size
€ is r'-frcee & Vry are r'-hyperfibrations + ...
& Vrelr-HYP/E =
o Vrelr-Hyp/€l &

& £ isr-rece.
hapter LI we re garded fibrations as variable categories. Discrete fibrations were

Sarable sets; and the base category could be thought of as a category of truth vaives and
dructive proofs (in the style of Brouwer-Heyting-Kolmogorov), or of possible
ids and causal connections (in the style of Kripke). In the first case, for a variable
£:6— B, an object EX gives the truth value of the statement "Xe £"; in the second

, fibre £ represents the set € at the moment K of history.

erent conception is that the base stands for the category of sets and functions.
¢ry fibration is just a category, given with all the set-indexed families of its objects
mows. The family fibrations (IL.3.6) are paradigmatic. Discrete fibrations now
fie classes. Such a class is small if it is representable in the base category.

scond point of view, propagated principally by Bénabou (1985), leads us into a

ircle of notions.

- ghapter 11 chapter I
variable categories ¢« fibrations - categories
variable sets — discrete fibrations ~ — classes
propositions +—  objectsin base - sets

fiont | we consider small fibrations — those coming from internal categories in the
8- and the ways in which their functorial behaviour is represented in B. Intemal
ves and descent data appear as objects of Yoneda-type representations.

Selicn 2 discusses the meaning of size for some important discrete fibrations as classes
can be derived from fibrations as categories. In particular, the question of
hension for fibrations is considered. An idea of a constructive exient operation is
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IIL. Notions of size

) 1. Yoneda
given a categorical formulation, Comprehensive fibrations are introduced: they wilj

applied in the next chapter as a setting for the constructive comprehension principle
presented in the theory of predicates. The underlying concept connects, in a seilst
Bénabou's (1985) definability with Lawvere's (1970) comprehension scheme.

Several characterisations of comprehension are given in section 3. In section 4 we sty :- I Representable fibrations. :

the relation of a comprehensive fibration E:€ — B and the exient fi fibration \E: 18-3

‘The first category theoretical approximation of the slogan
associated to it. iE is an arrow fibration which tells "how B sees€". The gory Y £

All mathematics can be done in set theory,

Most of mathematics can be done over the calegory of sets.

“Brery category € appears as a family fibration VE over Set (cf. 11.3.6); in particular,
severy class C gives rise to a discrete fibration V<. Class € is small, i.e. a set, iff V¢ is
representable in Sgt.

 second approximation is:

A bit of mathematics can be done over g category of sets.

:"_In;other words, we take an abstract base category B and think of its objects as sets.
Fibrations over B are 10 be thought of as categories, discrete fibrations are classes. The
~notion of size is determined by representability in B.

Definition. For I |Bl, the discrete fibration
V1:B/1— 8 :u+—> Dom(u)

-is called representable, The functor
V:B—FIB/B: 1> VLu > uel )
isthe Yoneda embedding.

Yonreda lemma. (cf. Bénabou 1983, 2.8.3) For every fibration E:€ — B and 1| B},
the functor

YiE : FIB/B(VL,E)— &1: F > F(idy

:.is'full and faithful. The family of functors Y is natural in I and E.

When E is cloven, Y] E Testricts to an isomorphisim CLEAV R (VI,E) sE1.
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{I1. Notions of size 1. Yoneda

Let a lax cocone ¢ : VE—> E' be given. We must define a cleavage preserving functor
FE—> E', such that @x = FOx, and oe(n) = F(B{v)). Since Ox(idgx) = X, the first
-+ equality holds iff

- FXi=gx(dex)-

- fn a similar way, the equality 8¢(idgx) =T, together with the requirement that F

« For every cartesian functor F:VI— E and every ue B /T(u,idp) the arrg
F(u):u*F(idy) — F(idy) is cartesian. Every cartesian natural transformation ¢:F—>G
uniquely determined by @;q:F(idy) — G{idyp), since @y= *pig):F(u) — Glu).

Using a cleavage or the axiom of choice, we can define

-1 . . * +
Y1) : VI E:u > u*(X). preserves cleavages, determines

o Ef N
The Yoneda embedding is full and faithful (i.e. an embedding). « Since V] Ff =gy o orlidex).

cloven, the Yoneda lemma gives FIB/B(VE,VI) = (B/1)y = B(J).e

Representables generate, For every cloven fibration E:€ — B holds

E =1axVE,
(whereVE : € — B — FIB/B is regarded as a strong diagram). E is discrete i{f 2. Small fibrations.
E=lmVE.

. 11, Notation, references. An internal category C consists in principle of an object

of objects Cp, an object of arrows Cy, arrows do,01:C1— Cg representing domain and
codomain, and N:Cy—> C) representing identity arrows of C; and then there is an object

» (Some references on Jax limits are listed in Gray 1980.) The X-component of {

colimit cocone 8;VE > E will be the cartesian functor 8x:=Y-1(X) which correspon

by the Yoneda lemma to Xe [Egx|. We need a cleavage to choose such a funcior:
Ox : VEX—E : ur> u¥X), (siv—u) > Bl ofcusy1,

(i.e. Bx = Dome®y - where ®x is from I1.1.31(¢) - is a "constant functor” FX

which we used in 11.2.1, to define exponents).

of composable pairs Cz,obtained as a pullback of dg and d;. and a cempesition
" uCz2—> C1. The intended meanings of these data are expressed by a set of equations
imposed on them. Unless specified otherwise, pp will denote the arrow obtained by
pulling back dp along 81; pi is obtained by pulling back ¢ along dg. Moreover, we

o : shall denote the arrows dp, 1, it, N belonging to a category € alternatively by cg, ¢,
The f-component of  is obtained by the naturality part of the Yoneda lemma. F

fe E(X,Y), we have VEf = Efo(_), and 8ysVEf{u) = (Efeu)*(Y).

" ¢, <0 respectively. catpg is the category of internal categories in B. An introduction to
~ Internal categories can be found in chapter 2 of Johnstone 1977.

VEX " The notion of a small fibration is due to Bénabou (1975b}. A recent reference is

- Hyland-Robinson-Rossotini 1988.

verl  |os E
/ 22, Example. Small categories are just the internal categories in Set. A functor
VEY 0 F:C—>1 consists of an object part Fg:Co—> lp, and an arrow part F1:C1—> 11, with
Y

~ the obvious commutativity conditions.
Define

Bt : 0x—> OY)(VED s u > (cELUou*(D) : Ox(u)~> Oyo VEf(W),
where T is the unique vertical factorisation of £ (i.e. = ﬂ}%ffOT). {Checking that Of1

naturgl fransformation is an exercise using the properties of ¢.)
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IIL. Wotions of size 1, Yoneda

Ci— " Ca———mCy ile lcatsl| and a fibration E:€ —> B, an I-presheaf in € is an internal category
_.J i ' +|(cale Yl (ie. EC=I) in which the domain arrow 9 is cartesian. (This implies that 1)
F2 Flj j I*;} andP are cartesian too, the latter because of the equation d1p=a(p1.) pshedl) is the fult
2 ig fcateBory of (cate }y spanned by the presheaves,
O arl YU LI A /
— Y sccent data over 1 is an internal category Ce [(cate )i which consists of cartesian

By proposition [1.1.61{d), the functor F will be a discrete fibration iff the amrow.
pullback of i1. If we regard the arrows Fp and Fy as objects of Set/ Set, the préce;
diagram becomes an internal category I in Set/ Set. This category is projected b
fibration ¥ Set = Cod on the internal category ¥ in Set, We can say that Fisa e X

ws. dese(D) is the full subcategory of {cate M spanned by the descent data.

Comments. Ecy-cartesian liftings of ue catg(LF) at Ce l(catg)1l consist of E-
frtesian liftings of the components of w at the appropriate components of C.

over I with respect to the fibration ¥/ Set. Discrete fibrations - or presheaves - over

exactly those categories F over I (with respect 0 V5¢f) In which the codomaii g D?\ 2
f1:=(c1,i1}:F1 —> Fo is cartesian (i.e. a pullback). The categories F over I in whi "?*Cl h o cat
domain and codomain arrows are cartesian correspond 1o the discrete bifibrati d]\\\\\\ \do c\w &
descent dara) over 1. They can be viewed as the functors [—> Bij, where Bij v Co o Co
category of sets and bijections {i.c. the largest groupoid contained in Set). («N Jz—_'L"' I By
discrete bifibrations must satisfy the Beck-Chevalley condition over all the commiut \\_\ u N
squares. By IL3.5, the inverse and direct image functors must be equivalences; i ) I caty
bijections, since fibres are sets.s) \\\J ug \\\\I

0 0

These notions can be generalized from the fibration V Set to an arbitrary fi
E:€ —> B as soon as the categories £ and B allow internal category theory, and
E projects categories on categories. nduced as factorisations. Dy can now be defined either as an jnverse image of C; along

23. Definitions. Let LEX be the category of finitely complete categories '
exact functors. Let LEXFIB/ B be the category of fibrations E:€ — B
£,BeILEXI, and Ee LEX(E,B); with the left exact cartesian functors as a
between them. (Cf, 11.2.2). The functor
cat: LEX—LEX : Br—cals

tly, pshe and dese are subfibrations of cale.

Apresheaf C over I is determined by an object C over kg and an arrow y:ij*C—> ig*C

lifts 10 11. C is the object of objects of C, 11*C is the object of arrows, ¥ is the vertical

af ¢p. There is an equivalence of categories

cat: LEXFIB/ B —» LEXFIB/catp :
P pshe(— pshle @,

(E:€—>B)H(E€alzcitg—)gﬂ3),
re
where Egy takes the categories in € into their E-images: since E is left exaci

images are categories in B. IpshOe @] := {<C"Y>E > EnrX.ig*X)| iMy=id, ip*y= PO*Y"C"pi*Y}

Xeley)
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pshOe(MUC,Y, ©.,8)) := { fe €1,(C.D) | ig*foy = Soi*£}.
(c is the canonical isomorphism pi*ig*y—> po*ir*y. In general, for arrows f and g,
"f= g" means "3 isos cg,c1. f=cgogoc)™.)

For the sake of simplicity, we shall frecly move between psh and psh®; but this could
be avoided, and no assertion will really depend on representation.

A presheaf {C,y) represents a descent data iff v is an isomorphism. If [ is a groupoid,
then all the E-presheaves are descent data. (+ [ is a groupeid iff there is an involution
T:Iy—> 14, ip=iyt, which takes each arrow of I to its inverse: ip«t,id»=i%ip and
igeid,T»=i01; (where «id,t»:1; —> I3 is the factorisation induced by ip=i1T, while
«T,id»:I1 —> I2 is induced by ipt=i1). For arbitrary Ce pshe{l), consider the gnique
arrow 0:Cy—> €y over 1T such that cp=c (0. This equality induces «id,0»:Cy —> Cs,
which is cartesian since p«id,u»=id, and the puilback pj of ¢ along cp is cartesian.
Therefore, the equality co«id,v»=cle1a nust held for some vertical automorphism a,
since both sides are cartesian liftings of the same arrow at the same object. But now
cr1vv=cgu=cgea«id,u»=cgclc a=cja implies that vu=a. This means that v is an

isomorphism, and cp must be cartesian,s)

25. Lemma. Consider the following commutative diagram in €

pRwd

t2
&

8 t )
—

AL

i
G

where arrows r and s are cartesian, while squares Cin € and ED in B are pullbacks.
The following implications are true:

iy If ECis a pullback and t3 is cartesian then D is a pullback,

ii)If D isapullback and 1g is cartesian then t) is cartesian.
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+ We use the name of each data to abbreviate the assumption about it: {r) stands for "r is
cartesian”, (C) for "C is a pullback” and so on.

i} dou=d1b = cora=csb g Itx. ra=ppx and sb=pix H{))
doa=d1b = EdgoBa=Ed;oBb £ 3th, Ea=Eqqoh and Eb=Eq oh :(B)
(0} and (B) = EpoeEx=EpgeEtzch gnd Ep)eEx=Epi10Etzoh

€ Ex=Etpoh 8 3ty. Ey=h and x=nyy )
(0 and () => ra=rqoy and sb=sqry "=’ a=qoy and b=quy.

ii) Ex=Etzeh = E(pox)=EreEqgeh and E{p;x)=EscEqich

(.T—L? Iia,b. ra=pgx and sb=p1x and N (1))
Ea=Eqgeh and Eb=Eqoh (B

Since (t) = tpdga=tod b and (B) = E(dga)=E(db},
(o0 and (B) Y doa=d1b B 3ty. a=qoy and b=q1y )

C
() and (v) = pox=pot2y and p)x=pil2y E x=toy oD
{B) and (y) = EqooEy=Eqoeh and EqcEy=Eqi°h E Ey=h.

26. Definition. The exrernalisation of le catg is the split fibration
Vi:B/1— 3B

where
[B/1) .= B/Igl
B/Kk,m) = {{£,0)e BIK.M)xB(K,1)) ! o=k, dj@=mof },
for k: K —>1p, m:M —> Ip. The externalisation functor is
V:catp—>FIB/8B : 12 V],

with the arrow part induced by the composition.
A fibration is small if it is fibrewise equivalent with one in the form VI,

27. Yoneda lemma. Given e lcatg! denote by 10 the category obtained by
interchanging dg and @); consider VIO:=V(10) = (VI)oP. For every fibration E;€ — B
and fe Jeatal, the following functor is full and faithful:

Yy : EIB/B(VI0, B) = pshe® : F > (Fldig), Fw)),
where v:=(id;, id), ¢ B/1%(dg,91)=8/1(21,00). The family of functors ¥ is natural in I
and E.

141
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When E is cloven, Y E restricts to an isomorphism CLEAV @ (V][O,E)gns_he(l)_

(Therefore, when the axiom of choice is assumed, Y1 g is surjective on objects; hence -

an equivalence of categories.)

+ We only prove the surjectivity of Yy g for a cloven E. Given {C.vyepshe(D), the .
Yoneda lemma for representable fibrations gives FgeELB_/IB(VI(;,E) such that

Fo(idj,)=C. We now extend Fg to Fe @/B(VIO,E) such that F(idrg)=C and |

F{v)=y.

The subcategory B/Io of B/° contains all the objects and canonical cartesian arrows
of the latter. We define Fe ﬂﬁ/B(VHO,E) to restrict 1o Fg along B/Ip<> B/To
(i.e.FIVIg:=Fp). Tt is now sufficient to supply the definition of F on vertical arrows
{id,}, and then set

F{f,} 1= Fo(HoKid,0).

Every vertical arrow (id,@}e 8/I(ko,k1) appears as @=¢o€ B/1p(kg,00) and as

p=@1e B/1g(k1,81). Since Fo(pg) and Fo(p1) are cartesian arrows, F{id,p} can be

defined by the following diagram.

F;
Fyky -——O((ﬂl- Fdi

Rid,) = ¢*y ) Fu) =y
i

1
k J
FU(}WFDU

It remains to prove that F is a functor. We first show that its vertical components

preserve the composition.

For every internal ategory C the following diagram commutes.

142
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C C
Cl / ]"\.._ \

<
o
Cy Co
Co

For Ce cate (D), this diagram induces in €1, the following one:

P Cox W *ap*Cy

where £ denotes the vertical component of £ (while pi:Iz — 1) is, as before, obtained by
pulling dj back along 8}, j#ie 2). If Ce pshellD, the short arrows in the first diagram are
cartesian. As defined above, F determines a choice of cartesian liftings, so that the
second diagram reduces to

id Fad, .
F(id‘ R /JJ/ \{ ld
—— Fd, p )

F(2 po = F@h) F@1pd = F@om1) F@; Wy = Fl@ym)

(because ¢y’ and ¢’ are identities, while y=c(’). Thus F(id,poyeFid,p1y=Fid,i}.

Every composable pair yo,y1:K —> I of K-indexed families of arrows in I induees in
B an arrow «yg,W1»:K—> [z so that W=pj«Wo,W1», i€ 2. The proof that
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F(id, woyeF(id, y)=F(id.n«yo,y17)
follows directly from the preceding arguments. Bur p«wyo,y» is the internal
composition of g and 1. So F preserves the composition of vertical arrows.

F preserves the composition in general because for

holds
F(h,y)oF{f,@) = Fo(h)oFid, o Fo(f)=Flid.¢) =
= Fo(hyeFo(fyeF{d,x == F{id,p) =
= Fothof)oF(id pef*y,o») =
= Flhof, p«f*y, @)

k
B FOWTE} ]

F<id,tp>l
Fpmf Fm Fd,

Folt)
mf ——
Pﬁd.xﬂl Fﬁdool o

Fnhf i, 110 wF.n
v Fn(fnh)ﬂj Fyth) rb.

28. Yoneda embedding. Externalisation is full and faithful:
Cleavs (V1 V1) = carg(ly).

« If we forget the (_)0-busyness, then the preceding proposition gives an isomorphism
between Cleavp(VI,V]} and an appropriate category of pairs

(ce I(B/ D1yl Gid, e (B /.H)11(ig*c,i1"‘c))‘

Now ce B(1g,Fp) will be the object part, and e B(Iy,J1) the arrow part of 4 functor
1513, since (B/D)y,lig*c.ir*e)= B/ JoxJo{(cig.cir).Go.j))-*
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1. Examples.

E1. Every category € carries some classes with it, For instance

) aclass of objects OBe (or [€]);

2) classes of arrows HOMe{X,Y) (or (X, Y));

3 classes of isomorphisms ISOe(X,Y) (S HOMe(X,Y));

4) classes of cones CONEg (X,A), where A; D — € is a diagram.

In a similar fashion, from an aribtrary fibration E:&€ — B we can derive some discrete
fibrations as fibred classes, (For simplicity, we present these discrete, hence split
fibrations as functors 10 the category SET of classes.)

Ad 1) "Morally”, the fibred class OBg should have the class of |€4l as its fibre over
Ie |Bl. However, while the arrows of a category € can always be removed to uncover
the class OB of its objects, removing the vertical arrows from a fibred category £ will
result in a fibration only if E:€ —> B is a split fibration. There are two extremal ways to
“"force” E to split: one is 1o replace each fibre €7 by its skeleton [€1] (i.e. a quotient of
€1, in which isomorphic objects are identified); the other way is to put FIB/ B(VLE} in
place of €] (remembering the Yoneda lemma). Hence two fibred classes of objects
assigned to each fibration:

OBg : BO—SET: 1> (€11}, and

OBR'g : BO— 8ET : I [FIB/B(VLE)|.
The arrow part of OBg is determined by the unique object parts of irverse image
functors; the arrow part of OB'g is induced by composition. ({OB'g appeared in
Bénzbou 1983, exercise 11.)

Agd 2) The definition of fibred hom-classes goes easier. (It is due to Giraud 1971, 2.6.)

For Ie /B[ and X,Y& (€|
HOME(X,Y) : (B/D°— SET : (vK—> [} Ex(v¥ X, v*Y).
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(It only remains to check that nothing depends on the choice of inverse images here.) If
B has binary products, a fibred class HOM'E can be defined also for objects which are
not in the same fibre, If X is over Jg and Y over Jy, then

HOM'E(X,Y):=HOMg(mo*X, 11¥Y) : {B/JgxJ| )0 — SET,
where wj:Jo x Fy —> I, i€ 2, are projections.

Ad 3) The obvious
ISOR(X,Y) : (B/D)°o—> SET : (viK—> [} {ae Ex(v*X,v*Y)) a is is0)

can equivalently be defined to map
v {fe € v X, Y)I f iy cartesian).

Ad 4y Let A:D— €1 be a diagram,

CONEE(X.A) : (B/1)2— SET : vi—> CONE, (v¥X,A),
(whecre CONE(v*X,A) denotes, of course, the class of cones 6:v¥X —> A over v, i.e.
such that Ed=v).

12, Some predicates on a category €:

5) isoe(X,Y)="thereisan iso X —Y";
6) isoe(f):= "fis an iso"
7 coneg(X,A):="there is a cone X —» A"

In an abstract category of sets - a (opos - the truth values appeasr as subobjects of the
terminal object. In EIB/B they are the subfibrations of the terminal fibration id:B —> B
- i.e. discrete fibrations which contain at most one object per fibre. They can be
presenied as cribles, "downward” closed families of objects of B: Xe crible and
B(Y,X)=@ imply Yecrible. More generally, just as predicates are viewed as subobjects
of sets, fibred predicates are taken to be the subfibrations of representable fibrations
VI:B/I—> B. And they are just cribles in B/1.

Ad 5) The fibred predicate isop{X,Y} can be derived from ISOp(X,Y} by saying that its
fibre over v contains one element iff the fibre of ISOE(X,Y} is inhabited. As a crible, it
is

isop(X,Y):= [VE {B/1l | there is an iso v¥X —> V*Y]

Ad6) isop(D:= {ve B/ 1 v*(f) is iso (i.e. fo0Y is cartesian)}.
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AdT) coneg(X,A)= {ve|B/11! there is a cone of cartesian arrows v*X—> A }.

13. And now, the idea is to lift some set theoretical and logical concepts among

fibrations by postulating that .
class -t . )
a fibred {predicalc} is deﬁnablc} if i1 is representable.

Besides technical problems, like that of formulating OBg, some deeper coaceptual
problems arise in the realisation of this idea. In the sequel, we first briefly survey a
development of category theory in FIB/ B, using fibred classes; and then we turn to the
concept of comprehension for {ibrations, viewed, in particular, as categories of

predicates varying over a category of sets.

2. Locally and globally small,

Definitions. A fibration E:€ —> B is globally smail if the class OBg is representable,

E is locally small if ali classes HOMg(X, Y} are representable.

Examples. A family fibration V€ :Set/ € — Set is locally small iff the category 2 is,
ie. if its hom-classes are small. V€ is globally small iff € is equivalent to a calegory

with small class of objects.

Every sinall fibration VC:B/C— B is locally small: a representant of the discrete
fibration HOMyc(kg,k1) is an arrow CK(ko,k;}:Ké}C] — K, obtained by pulling
back (90,81} along {ko,k1):K — CoxCyp. If B is a topos, VC is globally small too: the
skeleton [C] can be constructed, and its object of objects [Clo is a representant of
OB v

An arrow fibration Va:a/ 8 —> B is locally small iff B is relatively cartesian closed
with respect to @: the exponent kg—kje latKl represents HOMvqa(ko.k1). The
statement that Va is globally small means that the class @ consists of the pullbacks of a
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generic arrow £ [ 4 Q. This arrow can be regarded as an £2-indexed family of objects
of B; or as a small full subcategory of B spanned by these objects. (Cf. Johnstone
1977, 2.38; the idea aitributed to Bénabou}. A globally small arrow fibration over a
locally cartesian closed category must be small (assuming the axiom of choice: cf,
Hyland-Robinson-Rossolini 1990, lemma 3.2.). A basic fibration VB is both globally'
and Jocally small iff B is equivalent with 1 (Pins-Taylor 1989).

A simple non-example. Consider the category

ISetf2] = 18et/2]
Setf2(cty>2.B5 —2) = {(u,He Ser(1)xSet(2,2)} fo=pu)
fibred by

¥2:3e1f2 - Set : o> Dom(e), {u,Hr>u.
Take ¢:2—> 2 to be the constant function 67, and 3:2—> 2 the identity. For
ug: {0} == 2, us: (1} 2, the sets (S_e_[h){i}(uj*a,m*ﬁ) are both inhabited (for
ie2). If ¥2 is Jocally small, then both sets Set/(i} (ui, 1o, B)) must be inhabited, i.e.
1(c,B) must be surjective. This contradicts the fact that Set2(id,1(e,3)) must be
empty, since (Set/ 2)o(c, ) is empty. |

Representants. For a globally small fibration E there is a representant £2¢ |B| and a
cartesian isomorphism

H:0Bg—VQ.
Since every ge (B/Q)1=B(1,Q) is q=q*idg, every abject Qe [[€1]] must be the inverse
image of H-(ida)e [€q] along q:=H{Q):

Q =H-l(g) = H(g*ido) = ¢*(H 1(ida)-
Each element Ee €] of the equivalence class H-1(idg) {of isomorphic objects from
£q) is a generic object for the fibred category £, in the sense that for every object
Ae 1€l there is a unique arrow " A ™ :I—> Q such that

Az TATHE
The mapping "—": |€|—> |8 /€ is obtained by composing the isomorphism H with
the obvious surjection JE]— [[£]].

The representants of HOMEg(X,Y) will be generically denoted 1{X,Y):D{X,Y)—> 1. For
any ve B(K,D), each ae Ex(v*X,v*Y) is an inverse image of a generic arrow
(X, Y)e Epx, vy(1¥X, 1*Y) along a unique " a1 K—> D(X,Y),
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The arrows 1(X,Y) display each fibre €} of a locally small fibration F:£—BasaB/I-
enriched category. (Standard reference for enriched category theory: Kelly 1982.) The
isomorphism 1(v*X,v*Y):v*(1(X,Y)) means on one hand that the inverse image
functors appear as enriched fully faithful. On the other hand, this implies that if E is
Jocally small, the pullback of every representant WX, Y) along any arrow in B must
exist. Bearing this in mind, we obtain the enriched structure as follows. For every X,
y, Ze €l the ransformation
B/1(v, WX, Y) X 1(‘(,2)) = ER(vXv*Y) X ER(VKY VFZ) —

- Exv*X, v¢Z) = B/1(v, UX.Z)),

natural in ve BOK,D), induces by the Yoneda lemma a composition arrow in B/1
WXY.Z) 1 X Y) x (Y, 2) 2 UXZ)

such that for pg: 1(X,Y) X WY, Zy—> (X, Y) and p1: UX.Y) X UY.Z2)—> uY,Z)
pr(r(Y,2)otopo* (X, ¥)) = Tou*(¥X,2))et",

where ©,7,t" are canonical vertical isos. On the other hand, the identities arrow
X} id— XX

corresponds by the representation to ide £1(X,X), so that
n(y(X, X)) = id.

The bulk of category theory over B can be expressed in terms of this structure.

Comments. The notion of a locally small fibration is due to Bénabou (1975b) again.
The corresponding pseudofunctors have been introduced by Penon (1974), under the
name “locally internal categories™; see also Appendix of Johnstone 1977. Recently,
locally small fibrations have been studied as spang-enriched categories (namely, the
representants of HOM'E are spans in B) in a series of papers by Beiti and Walters
(1987, 1989) and by Betti alone (1989).

And while locally small fibrations reappear so often, the notion of a globally small
fibration may seem a bit dubious, Why did we choose to require the representability of
OBg, and not OB'E? To produce an essentially surjective cartesian functor OBg—E
(for the role of OBe < €), one needs the axiom of choice, while the cartesian funcior
OB'g — E: F—> F(id) is canonical and sutjective on objects.
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Well, the point is that OB'g tends 1o be very large. For instance, if G is a groupoid with
two objects and one arrow in each hom-set, the class OB'yg(D) of cartesian functors
V1> V@ is proper for every inhabited set L. (The fibre (Set/ @), on the other hand,
has just 2! objects!)

Moreover, if the goal of constructing a fibred class of objects is to realize a
representation of Ae{€)f by "A" € B(L,Q), so that A= T A *E, then it is reasonable to
identify in this fibred class the isomorphic objects of fibres - as we did in OBE - since
they cannot be distinguished as inverse images of £ anyway (unless a cleavage is

given).

The unpleasant fact remains that some cocompleteness of B is needed to make a smalt
fibration VC globally small, The definition of globally small should perhaps be relaxed

to the requirement that OBE is just weakly representable, i.e. that there is a weak
representant Qye |Bl, equipped with a natural surjection V{2, —2 OBEg. (A weak
representant for OBy is the object of objects Cp.) With this weaker notion of globally
small, the following proposition would extend to "globally+locally small <= small”.

However, we shall need the stronger notion in chapter I'V.

Proposition. Let B be a finitely complete catcgory. If a cloven fibration E£E—Bis
globally and locally small then it must be small: there is an internal category 2 in B and

a fibrewise equivalence VG —>E.

+ With generic data of E denoted as above, we shall also wrile
Ei=m*(E) for 2 — Q, i€ 2;
Ei=m*(E) for m; 2 — Q, ie 3;
Riji=(m,m): Q3 — Q2 1je3.

Of course, 2 := Qx€), Q3 = QxQx{).

The hypothesis that E is globally and locally smail means for every X, Ye (&4l
E1(X, V)= €y X HE, TY 0= B/Q2 ((CX,TY ™), wko, E1).

The internal category €2 is defined as follows:
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Qu=L2
Qy:=D(&p, &1
(Bo.01=1&p. §10:Q — QpxQ;

n:6—> Q1 is the element of B/00xQo{(idid), 10, £1))=Eqy(§,8) which

corresponds 1o id;

€9, a puilback of 99 and 21, is also (isomorphic with and can be chosen to be
equal to} the domain of
€0k 5 1B 182 = (@), )  (2xGo.an):

and then

w0y -2 () will be pgzop(g,o. E 1,52), where

U(EO'E 1.52):1(20‘5 1) % 1('5: 1,52)"91(2 o,gz)
is as defined above, while

poz: 7oz & 0, §2) > 1E0.L1)
is obtained by pullting back 702 along UEe.E1)-

I is obvious from the definitions that {30,d1M=(id,id} and (30,0 )1=(Icp0.d1P1),
where po is still the pullback of 9 along d), p1 of d1 along do.

Let us check one of the nontrivial commutativity conditons required from the internal
category £3. Consider the arrow «idna»: Qs —> Qy, induced by dpendi=djoid. It

should satisfy
Lo «id$ﬂal»:idﬂl
{which means “feid=f" in £2). First note that we actually have
«idndy»e 3/93((30,31,31), WEg E 1) x u(E 1,g2)).
This arrow clearly comes from
(G @ondnye 8/03(Go.d1.00, rn*(0.kn))
x 3/93((30,31'31), 12 (l(ﬁo,’il))) =
£0,(00*E.01*8) X €0, (91*E.01*E).
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In £q,(30*§,01*E) the same arrow corresponds to {id,d1%¢ B/ Q3 and 10
ide B/O%(36,91), WEg.E1)); to the latter corresponds Ep.E1) by definition.

In £g,{91*§,01*), the same arrow corresponds to {99,Md1}e B/ Q3 and 10
note 8/02((31,01)1(%e.E1)); by the definition of n, this arrow must be
ide €0,(9y*E,01*E).

So when we compose these arrows in £y, the result will be ¥(§0.81).-

The mapping

8/03((@0.31.00). (E 0. E a1, E2) — 8/03((00.01.00. 1E 0. E»)
induced by the composition in €, is represented in 8 by composing with
(€, &1,€2). (Such is the definition of 1{X,Y.Z).) This means that we have above
actually concluded that the arrow

wE0,E 1 E pocid e 8/03(@0.01.01), 1E0.E)
corresponds to y(En.E)e €. If we ranspose u(EO,E l,gz)o«id,nal» along the
adjunction '

8/03((20.91,91), m0r*(1(80.80) = B/ Qmg2(30,91,01). 150.51))

by postcomposing ppa:mopet(€ O‘E 2)—> 1(Eg,&1), the resulting arrow in B/ Q2 will
still correspond o Y(Ep.£1)e £, Hence
Ho«id,no1»=idg, -

So we defined £ catp. The cleavage preserving functor
F:VQ2—E
will be the one represented by (Lﬁ, Y(ag*&,é)l*é))e pshe{Ct). Using the cleavage, we

first define
FpVQ—> E: u-> u*E;
and then proceed as in 1.27. It remains to prove that F is a fibrewise equivalence.

F is fibrewise essentially surjective because & is a generic object: every Ae |€kl is
A=F"A™).
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The vertical parts Fx:(B/Q)g —> € are full and faithful because the natural
isomorphism

B/ 0k, ki) = B/x{(ko.k1), (0.80) = Exko*S, ki*e) =

= Ex(Fk(ko), Fi(k1)

is realized by

9> (9*(00*EIE)  ko*E—> ki),
which is just

i) > (Fr(ia @) : Fietko) = Fr(k).
But a cartesian functor is full and faithfult iff its vertical components are.

3. Definability.

Motivation. As everybody knows, comprehension is the assignment

AX) 3 [xl A{x)],
where A is any given descriprion. In sct theory, descriptions are just the definable
classes, i.e. those given by a formula. The comprehension principle says that for every

set X the class
ANX = {xe Xl A(x)}
must be a set. Every definable subclass of a set must be a sei.

The question is: Which fibred classes should be considered as definable, so that the
comprehension principle is satisfied in FIB/ B? Certainly not all of them: e.g., the
crible R:={fE [Set/2l; im(fy< (0) or im{f) < {1} } is a nonrepresentable subfibration
of a representable fibration. Bénabou (1985) offered an answer again. (But he avoided
technicalities very consequently, and gave just a six lines long definition, in the
glossary to his article. The explanations which follow here are completely apocryphal.)

For every object X of a fibred category € define £nX to be the full subcategory of

E£/X spanned by the cartesian arrows 1o X. The functor
€nX—> B/EX : > Ef
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is an equivalence of categories. Being thus essentially representable, the fibred category
ENX—3B
can be thought of as a "subset”, a "small part” of £. As we saw in 1.1, € is a lax
colimii - "union" - of such small parts. The faithful cartesian functor
By ENX—E/X—E

can be taken as a "canonical inclusion”.

The discrete subfibrations of € are, of course, its subclasses. For every subclass
A: G €, the pullback along 8x gives the subcategory £nX € EnX, consisting of the

cartesian arrows to X with the domain in £,

cAx ¢ " EnX

g

Dom B E/X

RN

(;C_.._..._...._.-s
A

Since £ —> B is a discrete fibration, the fibration

LAX—>L—8
must be discrete too. The mapping £nX > EnX—> B/EX is therefore an injection,
and we may assume (for simplicity) that £rX is a subf ibration of B/EX, and not of
£mX, as above.

Definition. A discrete subfibration € of a fibred category € is definable if for every
object Xe |€}, the crible

£AX = {ve|B/EX!{ v¥XelLl}.
is representable. (Or in terms of 13; A fibred subclass L of £ is definable if all the
fibred predicates £mX are.)

Examples. Let H be a complete Heyting algebra and E:A—> H an H-set (example
11.1.54). An H-subset is a subset L A such that xe L implies xIpe L for all pe H.
Such a subset L is definable iff every H-subset Lrc={xe L! x=clEx} contains a join,

i.c. an element x¢ such that Lre=(ze Al z=xlEz).
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A discrete subfibration G of a family fibration V€ is a class of set-indexed families of
objects of €, closed under reindexing (i.e. with every (Cjlje]), the reindexing
(Cy()l i€ 1) must be in £ too, for all functions w:l—> J), £ is definable iff for every
object X = (Cji jeI) there is a set 1o(X) <= J such that exactly those reindexings of X are
in £ which consist of Cj, ig1¢(X).

Fact. If £ is a cloven globally small fibration {with a generic object §), its discrete
subfibration £ is definable iff £~E is representable. If £ represents OBg and if
1:D>—>  represents L&, then a definable subclass L must consist exactly of the
inverse images of 1*(£), with the cartesian arrows between thern.

4. Constructive comprehension,

Motivation. The extent {xe Kl @¢{x)} of a predicate ¢ over a set K coilects the
elements of K on which ¢ is satisfied. The idea for a constructive extent is that it should
collect the pairs (x,p{x)}, where p(x) is a proof of @(x}, i.e.

{xe Kl @(x)) := E up(x), where

x€K
up(x) = the set of proofs of @(x).
This extent is equipped with a canonical projection
19 {xe Kl g(x)} — K : xpp—x
If there is at most one proof for every @{x), the projection 1@ is reduced 1o the inclusion
{xe Kl o{x}} = K. Otherwise, it can be regarded as representing a K-indexed set
(1p(x)l xeK}.

In order to find a categorical presentation for the notion of a constructive extent, Jet us
take up the paradigm of a variable category of predicates again: imagine that the fibre
€k consists of predicates over the "set” Ke|BI, with proofs as arrows between them.
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Observe first that the notion of definability has still a natural inrerpretation. A class-as-
discrete-subfibration can be understood as a class of predicates. Discrete fibrations
LX (for Xe [€xD could now better be written as

Ang: (B/K)O—>2: (vI— K)H;»l LI Vy: LAV ) A@tviy)

0 otherwise _
This logical picture seems open to various generalisations. But to make a link between
the definability and the constructive extent, we shall make a detour from both.

If logic is to be fully constructive, the nolion of a description cannot be reduced to
definable classes any more: a description must wake the constructive proofs into account,
We shall look for descriptions not just among discrete subfibrations A:C“— €, but

among more general diagrams A:G — €.

For a diagram/description A:G —> £ and a predicate ge |€, the derivations of @ from
A are contained in the comma category A/ @.

e £/

\/
/\

A logical picture of a fibration "measuring” the A-part of [xe K! ¢(x)} will be

A : (B/K)0= SET : (vii=>K) > [ proofs of Vye LA((¥)~ p(v(y) }
The idea is that a "proof of ¥ye LA(v(y)}— ¢(v(y))" should be a cocone: a derivation
of ¢ from A should respect the proofs contained in the description A (i.e. commute with

the arrows of the diagram A).

This idea suggests which diagrams could be considered as descriptions on a category of

predicates.

Definitions. Let E:£ — B and G:G — B be librations. A description (on E) isa
cartesian functor A:G — €, satisfying the following conditions:
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i) for every AelG | and every E-cartesian arrow d€ |€/AAl there must be a G-
cartesian arrow %' |G /Al such that ¥ = A%,
ii) for every ve B(1,K) and every cocone B:Ag — X in €k there is a unique
cocone ﬁ :A1—> X over v, such that for every G-cartesian arrow
¥'e G (v*A, A) helds
B A =PacAl.
{As before, Ar:G 1> £1 denote restrictions of A on fibres.)

A description A is comprehensible if for every object Xe €l the discrete fibration
A-X: (B/K)o—> SET: (v:I—>K) > COCONEy(A, X)
(= COCONEA], v¥X))
is representable. (To define the arrow part of A— X, use condition {ii).)

Fibration E is comprehensive if the functor id:£ —> £ is a comprehensible description.

Comments. It follows from (i) that the diagram v¥Ag: G g —> €| is contained in the
diagram Ay:G — €1. Condition (i1} tells that the cocone " v*Ag — X, obtained from
(3, has a unigue extension B : A;—> X.

What do these conditions mean in the logical perspective of a fibration-as-category-of-
predicates? Condition (i) just demands that a description should be stable under
substirution. This condition generalizes to arbitrary cartesian functors A:G ~> € the
requirement that a subfibration £ € should be stable under inverse images. Another
way to express (i) is to say that A must be a B-fibration over €, Condition (ii), on the
other hand, tries to capture the idea that a deseription should be uniformly applicable to
the elements of all seis: e.g., A(x):="x is a red apple" should aliow x to be anything,
and pick the red apples absolutely everywhere. This is at least in part conveyed by
demanding that the derivations/cocones from fibrewise parts of A are invariant under
inverse images - that nothing from A is lost when substitutions are performed.

(Some people will undoubtedly prefer tc forget this "explanation”, and regard condition
(i1) just as necessary to define the arrow part of A-»X.}
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Notation, terminology. Generic letters for representants are again L and D: a
representant of A— X will be 14X : DoX—> EX. For A=id we omit the subscript and
write 1X:DX —> EX. The arrows 1X are extents of X.

CFIB/ B will be the category of comprehensive fibrations with the extent preserving
cartesian functors (i.e. F:E'—> E must satisfy (E(FX) = (E'X),

Facts. If a locally small fibration E:€ — B has fibrewise terminal objects T:8— €,
then it is comprehensive, with the extents \Z:=(TEZ, Z).

A fibrewise cartesian closed fibration (I1.2.1) is locally small iff it is comprehensive: a
representant of the fibred class HOM(X,Y) is 1(X, Y ):=1(X ~ Y).

Examples, A diagram Ap: G {—> a il over a fibre of an arrow fibration a/8 — B
(cf. IL4) can be regarded as a cocone 81: Dom(Ay) — L. If a description A: G —a/8
is such that each & is a colimit cocone in B, then A is comprehensible, and each ac Q
represents A—a. « Namely, the cocones v: Aj~> a over ve B(LK) in a/ B are in one-
to-one correspondence with the cocones ¥': Dom{A]) —> Dom(a) in B such that
a oy'L=uody 1. for every Le Bom(Ap).

Dom(A ) L= Dom(a)
f

7
8, E a

Ve

I——K

But if &7 is a colimit of Dom(Ay) in B, the cocones y' are in one-to-one correspondence
with the arrows g:I— Dorn(a). Since a colimit cocone is joindy epi, if asgedyp =
aoy'L = vedy [, holds for all Le Dom(Aj) then aog = v. So we have a correspondence
COCONE{Ara)= B/K(v,a).»

In particular, every arvow fibration with intrinsic terminal objects is comprehensive.

The empty class @~ € is comprehensible for every €: the representants are
wX:=idx, for Xe|€], + because COCONE(B,X)=1°. On the other hand, & can never
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be definable, « since a crible @NX={ cannot be representable: it should conrain at least

a reprcsenlianl'.

If E is a discrete fibration, COCONE(E1,X)=@ iff €] has at most one object. The
representable fibrations VI1:8et/J—> Set are comprehensive: the exlents are

w@ - Dom(u).

Let G be a fibred category over Set, and consider a diagram A: G — Set/ €. Trs vertical
part AL G — €lis a family (A1 ;: G 1— €lie]) of diagrams in €. The isomorphisms
ALV AY= AR vi(A) (forall vI— K, ie], Ae |G k) tell that A is cartesian. Condition
(i) now requires that (the image of) each A is closed under isos. Condition (ii) tells
that every Ak v(iy:§ Kk — € must have a unique extension to Arj:g1— €,

The most "uniform” instance of a description on Set/ € is the cartesian functor
@: Fx8et— Set/€ consisting of

&= (F.F— ElieD,
for some category F and a functor F, (the image of) which is closed under isos. If the
classes

Qc = COCONE(F.C)
are small for all Ce €|, @ is comprehensible, with representants

10X Z Q¢ —K
keK

for X = (Cyl ke K). If A:=limF exists in €, then Qc= €(A,C), and 1pX is just a
representant of the fibred class HOM'ge(AX).

Just apparently different is the description W : Set/'F —> §¢t/€, where

¥ = (Fomp F1— €l ie]).
It is comprehensible under the same condition and with the same representants as . If
we take F := €, and W :=id, we see that V€ is a comprehensive fibration jff the
classes

Q¢ = COCONE(€.C)
are stnall for all Ce €. I € has a terminal object T, then of course Qc = €(T,C). A
locally small category € with a terminal object induces a comprehensive family
fibration. The extent of a family of objects X = (Cl ke K) will be
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X= 2.8(T.Co—K.
ke K

5. Associated arrow fibrations.

Fact. For every definable subclass £ € and every comprehensible description
A:G —> €, the classes of representants 15 € B, Ue (A,L), are stable under pullbacks.

o B/K(w,v¥(10X)) = B/1{(vw,15X) =
H{COCONEW(AM,X) = COCONEW(AM,V*X}}~
CAXivw) = SnvEX(w)
= B/K(wig(v¥X))
implies that v*(15X) & 1a(v¥X) holds for De (A,C}.

Consequence. Given a fibration E, to each comprehensible description A and each
definable class £ arrow fibrations Vig:15/8 — B, oe {A,C}, are naturally
associated. An associated arrow fibration is like a shadow which a subclass or diagram
casts on the base category: Vi tells how B sees 0.

‘The fibration Vi :1/8 — B spanned in B/ B by the extents of a comprehensive
fibration E:€ — B is called the extent of E, and denoted 1E : 1€ —> B. It is, in a sense,
the best approximation of E by an arrow fibration: each predicate ¢e |€] is
approximated by the set 1 of its proofs. How accurate is this approximation? Which
parts of the structure of E are preserved in it? When is the logic carried by a category of
predicates E extensional, in the sense that every predicate in it is completely determined
by the set of its proofs? - We shall answer these questions in section 4,

3. Aspects of comprehension

1. Homogenous descriptions.

We begin by considering descriptions which satisfy a bit more than required by
condition (i) (from definition 2.4).

Definition. A description A:G — € is homogenous if for every Xe ekl and
ve B(LK), every cocone 3 : v¥Ag — X over v can be extended in a unigue way to a

cocone 6 A= X over v.

Proposition. Let A:G — € be a description on a locally small fibration EE£-—->B.If
B is complete (o the maximal size of fibres G1, Ie|BI), A is comprehensible.

+ For every Xe |€, the diagram A :G g — €k induces diagram

w(GrIO—B/K: A —uAX),

(tA—B) 13, Xe B/1(yB,X0),4A,X))

where R:=Aj(x). The arrow ut,X) is defined to correspend by the representation of the
fibred class HOME(A, X) to

1B.50o(1B 0P ® € Engg o (WBOPA, (1B, X))*X).
Using the correspondence €y v X)=B/ K(v,l(ﬁ,X)) for ve B{LX), it is routine to
check that the cocones v¥Ax — X over v in £ bijectively correspond to the cones
v—>W¥ in B/K. Tt follows that

COCONEW(v*AL, X) = B/K(v, lim ¥}
holds naturaily in v. But the hypothesis that A is homogenous means that the
transformation

COCONE(A], X) — COCONE{v*Ag, X) : B> Plv¥ag,
natural in v, is an isomorphism, Hence a natural iso

COCONE(A], X) = B/I(v, lim ¥,

which means that we can take
=lim ..
14X l}:_'n
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2. Descriptions with colimits.

Consider a fixed diagram A:§ —> € on a fibred category E:€ —> 8. Suppose that € has
the fibrewise colimits to the maximal size of all § [, Ie|B| (regarded as diagram

schemes). (In other words, for every JKe B, every diagram F:G;—> €x hasa

colimit v: F—> limF in €, and for every ve B(LK), the cocone v*y: v¥F—> v*(limF)
is a colimit in €. Cf. IL.2.) If A now satisfies condition (i) {from definition 2.4), then
condition {ii) is equivalent with the existence of a cartesian section

ImA:B—>€ I lim AL
Of course, the axiom of choice is necessary for the then-direction. If we want to avoid
the axiom of choice, we can consider the subcategory G4 €, consisting of il the
colimits firn-A; and all cartesian arrows between them. The diagram A (with colimits as

above) is now a description iff it satisfies condition (i) and La > £ is a subfibration.
(£ 4 is a description on £ as soon as it is its subfibration. £4 is then equivalent with
3,

A diagram A, characterized in any of these ways will be called description with

colimits.

A description with colimits A:G — € is comprehensible iff the corresponding
description L5 £ is (+since there is one-to-one correspondence between the
cocones over some v from A and those from Ca+). In particular, if the category & has
fibrewise terminal objects, then it is comprehensive [ff the subfibration T €,
spanned by the terminat objects, is comprehensible (s because the terminal objects are
just the colimits of whole fibress).

Applying the axiom of choice, for a description with colimits 4, the discrete fibrations
A—X can equivalently be defined
A-X 1 (B/EX)0—> SET: (viI-—5EX) > &.(lmay, X)

(independently of the choice of representants lim Ag), or
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A-X:lmA/X— B/EX : fr—> Ef.
A will be comprehensible iff every A— X is isomorphic with a discrete fibration
apaX» : B/DaX — B/EX : v 1aXov,
Putting all the A— X together, discrete fibration
A/€ limA/€E->B/E: (1, f: im A[— X)I—é (Ef: I— EX, x)
is obtained, which must be isomorphic to
«y»: B/Da— B/E: (v: I— DyX, x)r—-> (1,5Xov: I—> EX, x).

Proposition, Consider a description with colimits 4:G — €, given together with a
cartesian functor imA : B — €. The following statements are equivalent.

a) A is comprehensible.

b) There is a right adjoint Da:€ — B of lim A and a natural transformation 14:Da— E

such that
aXof'=Ef
holds for every fe E(lim Ay, X) and its transpose f'e B(I, DaX).

¢) There is a right adjoint R to the functor

L:B/B—E/B: (vI—>K)—{im Ar, v).

This adjointness is cartesian with respect to the functors V8 and Fam(E).

+@=>0b) ElimaL Xy = | Evllim AL X) =
ve BLEX)

[ B/EX(v,1aX) = B( DaX).
ve B(LLEX)
The statement "taXof'=Ef* just meuans that the adjointness isomorphism
lim A/ € = B/Da commutes with the functors A/€ and «ia» defined above.

(b)={c): R{X, w:EX —>K) := woiaX.
The transpose of

e E/B(Lv, (X,w)) (i.e. fe E(lim A1, X), such that woEf=uov)
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is
{ue B/ Biv, R(X,w).

©=a): £im Ay, X) = E/B({im Ap,idp), (X,idex)) = 8/8(dy, 14X).
Since the adjointness is cartesian, every two transposes must be projecied to the same

arrow. The correspondence above restricts to
€ (lim Ap, X)= (B/ZB)\.(idI, mX)=:B /Kiv, 1X) .«

3. Comprehension structures,

Let A:G — € be a description. Assuming the axiom of choice, the property that A is
comprehensible can be expressed as a structure. As one might have noticed in the
preceding proposition, whenever we choose for cach Xe €| one representant
1aX:DaAX—> EX of A—X, the construct Da: £ —> B becomes functorial, and 14
appears as a natural transformation Da—> E.! » The Da-image of fe €(X,Y), is the
arrow Dafe B/EY(Efo1X,1Y) which corresponds to foexe COCONEEfo1x(Ap, X, Y);
the generic arrow exe COCONE x(Ap,x. X) is the one that corresponds to
ide B/EX(X 1X).+

A comprehension (ransformaiion of a comprehensive fibration E is a natural
transformation

1:D—E:E~>3
which consists of extents 1X : DX— EX.

On the other hand, by the couniversal property of comma categories {I1.1.76), each
natural transformation ¢:G— H: A — € corresponds to & unique functor
«@»: & —> €/€, such that ares «g»=0, where

arr: Dom—>Cod : €/ €

1Th§s is not true for the representants induced by a definable class. Analogous
definability structures™ cannot be obtained in this way.
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has the components arrp:=f. Hence another presentation of the comprehension structure:

A comprehension functor of a comprehensive fibration E is
«» 1 E38/8 : XX, (EX—>Y) > (Df, Ef).

Tt follows from fact 2.5 that «1» is a cartesian functor. The extent fibration 1E1A€ — B
is (the subfibration of B/ B equivalent to) the image of «1».

The morphisms in the category of fibrations over B equipped with comprehension
wansformations would be, of course, the cartesian functors preserving 1 (ie. FE—E
such that 1E+F=(E). If VB is a fibration, it is the terminal object in this category. (Its
comprehension transformation is arr : Dom—> Cod : B/ B — B.) The comprehension

functors are the terminal arrows.

The question now arises: Which transformations ¥— E, which functors € > B /B
represent comprehension on a fibration E? When E has some addirional
siructure/properties, there are intrinsic characterisations of its comprehension
structure(s) - by simple adjunctions. In terms of these characterisations - in special
situations which they cover - both kinds of comprehension structure have actually been
considered before. In his seminal paper about hyperdoctrines (1970), Lawvere
introduced comprehension functors using coproducts and terminal objects. By means of
terminal objects only, Ehrhard (1988, 1989) described comprehension transformations,
and used them in his interpretation of the theory of constructions - although without any
connection with the concept of comprehension, and under a different name. The
following characterisations show that our notion of comprehension restricts to these

two.

4. Ehrhard's comprehension.

Proposition. For a fibration E;€ — B the statements below are related as follows:
© = (@ Lo T = ®

a) E has fibrewise terminal objects and it is comprehensive.
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Tl forq:TI—TJ
eryeC(q) forq: Y11

CQo(prp i forq:TI—X
C(q) forq: X— Y.

b) There are functors S and C such that
EH18S—IC:£— B,
and § is full and faithful,

Di(q)=

¢) There are funciors T and D such that is easy to see from the constructions that E— T — D, and that eE and nD are

E-4T-HD:£~>B,
eE:ET —id and 12:id —> DT are identities ET = DT =id}, and
1= D#nE = B+eD,

(Remember that * denotes the horizontal composition of 2-cells: 11.1.74.)

sentities. The equation D¥nE = E+eD then follows from lemma 43,0

emark. Perhaps the simplest view of a comprehensive fibration E with terminal
pjects is that it is a triple E— §—1C as in (b) above. This is the structure used by
hr.hard‘ In this form it is obvious that comprehensive fibrations are closed under the
» {c)=>(a): (1) The right transpose of fe €(TLX) is always f':=D(on? ¢ §( mposition; that Fe FIB/E is comprehensive iff it is comprehensive as Fe FIB/€ and
since 1111)=id;, f=D(f). s extents are E-vertical; and so on. (» Use lemma I1.2.4 for the if-direction.») For
mprehensive fibrations as defined in 2.4, these and similar facts require much longer

(2) Since €F = id, certainly NE+ T =id, and therefore njof = TE(DnE =TE(f) .
} guments.

It follows that
Xof = DME)ef* L DME)oD(t) = Dinfof) € DTE(®) = E(h.

Applying proposition 2, we conclude that E is comprehensive.

xamples. Let € be a small category with a terminal object 1 and an initial object 0.
ien there is a comprehensive fibration A— A— T : Set ! C — Set defined
A:F—= F),

(b)=>(c): T is obtained from S using corollary 11.1.78, by lifting the natis B:iAR> (R:iC0 = Set: X > A ida),

id~> ES. D is obtained from C using the following diagram: I:F = FQ),
(F := F(0—> 1),
Cf C Ch
CTY ~ CX——Fm CY ~CT) _
n the other hand, for a set C there are T— A— IT: Set € — Set:

T:F> Y F(x),

Prr|= Pxi= Pyl Gry|= xgé
A A (A:C = Set:x > A),

I » DX ~DY - :
ET; = Dp - STJJ II:F+> E:F(x).

is a discrete fibration, and a comprehensive one, as we mentioned in examples 2.4
Eextents are tF:3<—> ¥'F. But A is not full, not a terminal objects functor, and the
fiiple Z— A— IT has nothing to do with the comprehension.

where isomorphism ¢1: CTI— CSI—> 1 is obtained by composing the inverse
unitn$:1—> CSI and the C-image of the iso xz: T1—> SI, obtained by liftirig id-
Hence, for X,Ye Imi7), we have
l_night be helpful to mention the trivial but paradigmatic example of comprehensive
ow fibrations once again, The comprehension strucire on them now becomes

Cod— 1lds— Dom:a/B— 8
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{where Ids; X+ idx).

Lemmas. Consider functors E — T — D; denote the data of the first adjointness by
NE, ek, the data of the second one by 1D, eD,

41. id= DT iff T is full and faithful iff ET =id2.
42. D is full and faithful iff TD = id iff id = TE iff E is full and faithful.

43. If T is full and faithful, then D+nE =~ E+gD, More precisely, there is a natural
transformation 1 ; D— E, stich that

D#nE = (nP+E)o1,

E+eD = 10(eE+D).

* Define 1y : DX—> EX by the requirement that T(yx) =1‘|§os§ . The equalities then

follow by chasing the diagram:

ETD £2D) - D n?D
E#el i D*ED
]]: L
1 D
id
E
B E 041
! 1 !
ETE - E = DITE
EE*E 1 D*E .

X =Y means "3f : X2 Y". Lemma 1.3. in Johnstone-Moerdijk 1989 tells that any

natural isomorphism id= DT forces the unit of the adjunction T— D to be an
isomorphism.
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5. Eawvere's comprehension.

Hyperdoctrines bis, Each topos S gives rise to two hyperdoctrines:
V5:80>CAT: K— 5 /K, and
g 89> CAT : K> gKi=8(K,Q).
The logic is implemented in S along the tines of the so called docirinal diagram:
Ju

——

1 u*
M u K
o Tvg 0

hy |- im hy ik
_an

S/M=TA— H— s/

(Cf. 11.3.1, 1.1.6.} Comprehension is here represented by the functors
i pK—> S /K oy = ({yKt ayX)) > K),

which are right adjoint to
hg:S/K—> pK: (w:M—> K)—=> IxMy(xM)=yK

Lawvere (1970) used this adjunction to define comprehension abstractly, in
hyperdoctrines, We translate his definition into fibred categories.

Definition. Let E:€ — 8 be a cloven bifibration with chosen terminal objects. We say

that E is Lawvere comprehensive if the functor
h: B/8— € : k> ki (TDom(k))

has a right adjoint 1, so that Cod(iX)=EX and the unit and counit of this adjunction are
cartesian natural transformations.

Remarks, If (u,v}e B/B(m,k) (i.e. ku=vm),

h{u,v) : m!(TI) —> k!(TJ)
is defined to be the unique arrow over v such that h(u,v)ocﬂm$}OTu, where
E=Dom(m), J:=Dom(k}. The functor h is cartesian if E has the Beck-Chevalley
propetty.
By leruma 1.2.4, the functor i must be cartesian if VB is a fibration. In that case, the

above definition can (» by the same lemma +) equivalently be expressed by demanding
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that i is cartesian and fibrewise right adjoint to h. {This is perhaps closer to the spirit of

Lawvere's original definition in terms of indexed functors.)

Thus, when B has pullbacks, and E the Beck-Chevalley property, the definition just
asks for a cartesian adjointness h— i.

Proposition, A cloven bifibration with chosen terminal objects is comprehensive if it
is Lawvere comprehensive. The functor i is a comprehension funcior,

« If E is Lawvere comprehensive, then it is comprehensive by proposition 4, and
D ;= Dom*i — h*Ids = T,
(Ef i* T=Ids, then nP: id —> DT is identity.)

It remains to prove that iX : DX— EX is indeed an extent. First note that every
fe E{h{m),X) is projected to the same arrow as its transpose f*=i(f)ony, since

VB(E) = Cod(i(fyonm) = Cod(i(h) = EF,
Therefore, for me B{I,M) the correspondence

|J &vmi(TD, X) = Ethmy, X) = B/B(m, iX) =
ve B{M,EX)
= U B/v (m, iX)
ve B(M.EX)

restricts over each v separately:

Ex(TK, (vk*X) = €,{my(TD), X) = B/v (m, iX)) =

= B/EX (vm, iX).

Then: By reversing the last step - making the unions, instead of partitioning them - we
see that the corprehension functor «u» is a right adjoint of h.e
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1. What do they inherit?

In this section we shall study comprehension functors as essentially surjective functors
«1»:€ —1E. £ is a comprehensive fibred category with terminal objects.

We shall first formulate some propositions in the form:

"If € has a property/structure P then 1€ has and «u» preserves P."
In 2.5 we saw that this holds for P = "inverse images". It obviously holds for P =
“terminal objects". And more?

Propositions. Let E be a comprehensive fibration with terminal objects. Let d &8 be
a stable family (I1.4.3).

11.1€ has and «1»:€ —3 1€ preserves all kinds of fibrewise limits which exist in €.

+ Since

n: €k EK/TK: X (nx:X% TK)
is an isomotphism of categories, AL —> A is a limit cone in Ex Hf YAIML—=>NAisa
limit cone in £g/ TK. But the image of A by «i» is the image of (&) by D, and D
preserves limits, because it has a left adjoint T .«

12. If € has d-products, then 1€ has and «1» preserves theni.

€5 (1Y, 0sX)) = B/I(1Y, 10eX) ) = Epy(T, 1¥*unX) i
eDY(T . (Dﬁ“)*l(u*Y]*X) =
Epur)((DON* T, 1u*Y)*X) =

Eppny(T, 1w Y)*X) = B/1(1u*Y), 1X) =
B/Iu*Y, 1X) = 1£)u* LY, 1X)

11

EH

It

24
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The step (#) follows from the Beck-Chevalley property of €, and the fact that the

sqnare

u
Du*Y) —2% DY

-~

Ku*Y) 1Y

[———= ]
u

is a pultback (since «u» is a cartesian funcior).»

13, If € is globally small, i€ is. « If Ee|€¢)) is the generic object of €,1£e hEgl is the
generic object of 1€ .+ (If, morecver, B is lcce, then 1€ is small. « See the last example
in 2.2.9)

14. Corollary. If E is a globally small cloven fibration with d-products and finite
fibrewise products, LE is equivalent to a small arrow fibration with fibrewise cartesian
closed structure, and with d -producis. ’

* The cartesian closed structure is
1Y 2= Y xZ);
WY =12 = 1Y siY¥(Z).

Using the diagram from 12, we derive
IB/J(u, xY*lY*(Z}) = 81('1', u*LY*lY*(Z}) A
o EI(T, l(u*Y}*(Dﬁ“}*tY*(Z)) -

= SD(UW)(T, (lYODﬂ”)*Z) 2
= B/3(uout(Y), 12).
Now put w:=tX, and note that 1X X 1Y = 1Xo1X*(1Y).

By facts 24,18 is locally small. By propositions 13 and 2.2, it is ther: equivalent to a
small fibration.s
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2. Weak coproducts.

In general, the coproducts in € don't seem to induce coproducts in 1€. Let us see what

they do induce.

Definitions. An arrow se £(X,Y} is weakly cocartesian with respect to a functor
E:€ — B if for every fe £(X,Z) such that Ef=roEs (for some 1), there is an arrow g

(not necessarily unique) such that Eg=r and gos=f.

E is a weak d-cofibration if every d-arrow has a weakly cocartesian lifiing. E is a
weak A-bifibration if it is a fibration and a weak d-cofibration.

We say that E has weak d-coproducts if it is a weak d-bifibration with the strong
interpolation property {relative to d).

Remark. Wouldn't it be simpler o say that a weak d-bifibration E has weak
coproducts if it has the weak Chevalley property? Let us first spell out what would a
weak Chevalley property be.

Consider a commutative square Q=(f,g.s,1} over S=(k,m,u,v) as in 11.3.3; suppose

k,med. The weak Chevalley condition on Q is:

Cw) if s and t are cartesian and f is weakly cocartesian, then g is weakly
cocartesian,

A weak d-bifibration E has the weak Chevailey property if it satisfies the weak

Chevalley condition over all pullback squares 8 (with k,med).

If we denote by kiA and mA some weak direct images, and if g: u*A —> vk A is the
unigque arrow over m such that tg=fs3, and 6™ : u*A — mu*Ais a weakly cocartesian

lifting of m, the weak Chevalley condition just says that there must be vertical arrows

3Look at the picture with remark 11.3.3.
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. . A ¢ =roqht + m_ :
p:mu*A—> v¥kiA and ev¥kiA —> m*A such that g=pec™ and 6T=eog, Noy fue B and Xe €1, and if e E(TDX,Y) is an E-cocartesian lifting of ustX,

more. This would be the corresponding weak Beck condition. o (DG, we 1EX,1Y) is a weakly 1E-cocartesian lifting of v at 1X. {Dg,u} is indeed
arrow from 1X 1o 1Y, since

Clearly, when restricted to strong d-bifibrations, the weak Beck-Chevalley pro
. 1YeDg = D{nyog) = D{Tuenyoey) = unX,

doesn't imply the strong one. In fact, on weak d-bifibrations, the weak }

Chevalley condition is gquivalent with the interpelation cendition. consider arbitrary re B(.K) and (qrwetE(X1Z). If ‘qe £(TDX, Z) is the left

nspose of g, then

+ To prove this, first notice that lemmas 31 and 32 in I1.32 go through with :
i E('q) = E(gze TQ) = 1Zoq = rouo1X jmplies 3!g. Eg=r and g5='q

cocartesian arrows instead of cocartesian arrows. The same weakening of the remy

, . TDZ
two lemmas in I1.3a gives: T
33,,. cov¥(‘ajopoo™=‘doG™ & m*(c)oTou*{a)=d Thg
TDX 5= TDY &2
34y, c1opeaP=rpepoc™ & m*(cy)oTou*(N)=m*(c)oTou*(M). & l \ 181’
S
|
Given g and 6™ as above, the existence of a vertical arrow p i mu*A — v¥kA; X Y — £ . z
that g=poo™, is an immediate consequence of the fact that ¢ is weakly cocartesia n xl ln y Y,
DL F
L o o TI T ~TK DZ
If the weak BC-condition is satisfied - i.e. if there is erv*kiA— mju*A s Tu Tr
; q

g=poc™ and ¢M=cog - an interpolant can be defined as in [L3a.111. The

oM=gopog™ js sufficient 1o let the argument given there go through. Dg

e DY
j 1
J

=~ K

Conversely, if the interpolation condition is satisfied, an arrow e : v¥k)A —> i)

be defined as in [L.3a.112:
e 1= cpov¥(‘ag),

where {an, By, cy) is an interpolant of 1 :u*A — m*miu*A. 33, just say

._..._U

u r
ow {Dg,rye 1€ (Y 1Z) is a factorisation over r of (g,ru) through {D¢,u). (Dg,r) is an
ofM=egog, since “N=id.» irrow in 1€ from 1Y 1017 because

1ZeDg =DMzeg) =D TreDny =rolY.
nd {Dg,rde{Dc,u) = {q,ru} because

DgoDe=D{'q)=q.*

The strong interpolation condition just means that for arrows p and e given by the weak
Beck-Chevalley property holds pee = id.

» From gM=gopog™ follows BYopogM=4vopoeopocM, and then pegM=poeop
34,, now tells that the interpolation is srong iff poe=id.»

.If € has the d-coproducts, then 1€ has the weak d-coproducts.

. Let us first introduce some notation (for the weak cocartesian liftings constructed
Propositions. Let d be a stable subcategory of B, such that 1=d. Iiove)'

21. If € is a d-bifibration, 1€ is a weak d-bifibration, p(X) := {(perXy TDX),
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o} = DoP X,
for arbitrary ped.

Consider a commutative square S=(k,mu,v} in B, with kmed. The following
diagram shows how we construct an interpolant (T],k!(lA),C) for an arbitrary arrow

de 181(1:*(1A), m*(LC}). (In fact, we should write "{d,id)" instead of "d".)

4o
VAN, m
m*(c)
uk(A) m*(C)

g
C
L
m
v¥k1A=m u*A
\ }
M
k
k!lA v
K
Since sC -
viki{1A) =V*l((k01A)!T) = L(v*k!LAgT) = L(m;u*lAIT) ~

= 1(m!(1(u*A})1T) = m!(l(U*A)) =

= mu*(lA),
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we can choose the pullback v¥ki{(1A) so that the equality v¥lg(LA)=mu*(1A) holds. The

AITOW
ce1Epm(v*k(iA), 1C)

is now induced as a factorisation of {D0Pod,m} & 1E (u*(1A), 1C) through the weakly
cocartesian arrow {G M, ) € 1€ (u*(lA), mgu*(lA)).

It remains to prove that every initial interpolant i3 strong.

It is easy to see that (T],kI{lA),C> is an initial interpolant iff (c¥,k)e 18(1.A,k1(1A)) is
(strongly) initial, i.e. a cocartesian lifting. If this is the case, then there must be an iso
ag=1] for any other initial interpolant (ag,Bg,co}. To prove that the interpolation in & is

strong, it is sufficient to show that ¢, determined as above, is unique (up to
isomorphismy) if {G¥ k) is (strongly) cocartesian.

By the lemma below, {0 X k) is \E-cocartesian iff eye €x,,a)(TDY,Y) is E-
cocartesian, for Y:=(kolAWTDA,

But if ey is a cocartesian lifting of ki{1A), then ey»y = v¥ey & E(TDV*Y,v*Y) must be
a cocartesian lifting of v*ky(LA)=miu*(1A). Applying the lemma again, we conclude that
the arrow {7, ,m} is 1E-cocartesian, i.e. strongly initial. Therefore, the factorisation
ce 1€M(mgu*(1A), 1C) through it must be unique.»

Lemma. The lifting {D¢,u) construcied in proprosition 21 is strongly initial - i.e. a 1E-
gocartesian arrow - iff the counit eye £,y(TDY,Y) is E-cocartesian.

» To every (h,r}e 1£(1Y 1Z) corresponds a unique ‘he EL{TDY,Z). If ey is cocartesian,
then ‘h=geey; thus k=Dg.

Conversely, if for every {q,ru}e 1€ X 17Z), {q,ru)={h,rYe{D¢c,u} implies h=Dg, then
*h=gogy holds for every arrow *he ETDY,Z). This g is unique as a factorisation of ‘h
through &y, because it is also the factorisaticn of *q=‘he TDg through cecartesian
g=EyoTDg»

A final remark. The weak coproducts are to be used for an inferpretation of the type
theoretical weak X. (Cf. IV.1.2)) And nothing less than the full Beck-Chevalley
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property can allow a sound interpretation of variables (in view of the explanations j; ,
11.3.3). This is why we had fo use the strong interpolation condition in the definition of .« ¢) € is fully generated by its terminal objects.
coproducts, (And this is why we went out of our way in IL3a, to characterize the Beck d) «u» preserves the fibrewise exponents.
Chevalley condition without direct images.)
¢} € has fibrewise exponents
X-=Y =1X0X¥(Y).
(If it has fibrewise binary products, they are
X xY=1XnX*(Y).)

« (a)=2(b}: If €& is (equivalent to) and arrow fibration with terminal objects, then
gy = {id,u} € E(ds*Dom(u), v}

is clearly cocartesian.

). Which comprehensive fibrations are arrow fibrafions?

In other words, when is the comprehension functor «1»:€ —> 1€ an equivalence of Z
categories? - Exactly when € has and «1» preserves the L-coproducts of terminal © i
objects! 1 ‘ i g q
Definition. Let E:£ - B be a fibration with terminal objects. For every X,Ye ISIII . ’
each arrow fe £1(X,Y) induces the functions ' Ids*Dom(u) & !

Ov: EL(T,X) = ELT,Y) : g>faq !
naturally in ve [B/1i. Hence the mapping ! b ] P K

G xy: ExX,Y) — Nat (HOMg(T,X), HOME(T,Y))

We say that € is generated by irs terminal objects if all G xy are injections. It is fully -
generated by its rerminal objects if all G yy are bijections. '

(b)=>(a): i exe E(TDX,X) is cocartesian then every {u,v)e1£0X 1Y) induces a
unique arrow ge £(X,Y), over v such that eye Tu = gegy.

TDY......E_._-—Y

n/ /'g(

Proposition. For every comprehensive fibration E with fibrewise terminal objects the
conditions listed below are related:

(e b)), TDX ——=X
If E has fibrewise cartesian closed structure, then py—Y . EY
(a)e=>(d) u v
holds too, If E has 1-producis, then DX EX

(a)y=(e).
From the last equality follows that Dg = u (since D*e=id); thus {u,v) = «i»(g).

a} «»€ —> 1€ is an equivalence of calegories.

(a)e>(c): 1X is a representant of HOMEg(T,X). By the Yoneda lemma
b) The counits exe £(TDX,X) of the adjunction T-- D are cocartesian, Nat (HOMEg(T,X), HOMg(T,Y)) = B/I1aX.Y).
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This correspondence is realized by the mapping

¢ > ex(ee Ex(TDX,Y) = B/IGX1Y).
(exe € x(TDX, X} is here the generic arrow, i.e. the one which corresponds to id %)
Postcomposing on G xy, we get

£1(X,Y)=> Nat {(HOMEg(T ,X), HOME(T,Y)) —> € x(TPX,Y)= B/I1X 1Y)

£ - G xy(D > fogx —  Df

{Dfe B/T0X 1Y) was defined to be the arrow corresponding to feex. Cf. 3.3.) Singe .
«1»1(F)=Df, we see that '

«»y is full and faithful iff G xy are bijections for all X, Ye|€ql.
But «» is ful} and faithful iff all «i» are.

(d)=3(a): «i»p: €1—>18€1 is full ang faithful because the correspondence
EILY) = €T, X-Y) = B/1Gd, u(X-Y) = 1€1(id, 1X-1Y) =
= 1E10X,1Y)
is again realized by f+— Df.

(e)={a): E1(X,Y)

2

ELT.X-Y) = 8](T, 1x*1x*(v)) x B
epx(IX*T . 1X*Y)= €x (T,Y) = B/IX,1Y) =
=1e0X1Y).

1

(a)=>(e): A fibrewise equivalence preserves and reflects fibrewise cartesian closed
structure and horizontal structure. Thus
£ has \-products = 1€ has 1-preducts Xy 1IXaX*¥(Y)in £ =
= X =Y 21 XaX*(Y)in €.
The step (#) is sound because axa*(b) is the exponent a-» b in every arrow fibration

A/ B with terminal objects and A-products (al! intrinsic):
allab) = alKdd, a*(b)y = adK@*id), a*(b)) = adl(id, axa*(b)).s

180

IV. Semantics

In this chapter we should capitalize the investments in "abstract nonsense", and
interprete the theory of predicates. In section 1, all the previously described concepts
are put together, and a categorical meaning is formally assigned to each operation of the
theory of predicates. The notion of a category of predicates is introduced: it is a small
hyperfibration, with the rece structure in the base as well as in the fibres. The theory of
predicates is the natural logical syntax for categories of predicates.

In section 2 we show how a given theory of predicates generates a category of
predicates. This semantical construction is then proved to be complete. The proof has
been built according to & standard scheme (c¢f. Lambek-Scott 1986, 1.1%, I1.13-16), and
upon the standard completeness result for the Martin-L6f type theory (Seely 1984).

In the last section, a first effort has been made to put the syntax and semantic together at
work - 10 speak & natural tanguage of predicates. At the end of this section, we show
how to produce "mathematical” examples of proper categories of predicates. A category
of constructive internal presheaves is constructed in an arbitrary category of predicates,
(In particular, this can be dene in each of the well known "mathematical” models for the
theory of constructions.}
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1. Interpretation

1. Conceptual elements of the interpretation.

Sorts, types and terms. The idea for a categorical interpretation of type theories
was concetved in late sixiies, in Lambek's papers on deductive systems (cf.
bibliography in Lambek-Scott 1986). It points out the basic aralogy:
types —  objects,
terms B> arrows,
substitution > composition.
Of course, this works only for simple 1ype theories, with no variable types. A model
assignment of such a type theory A in a cartesian category € is a mapping
C.D:ASE,
which respects the basic analogy, and satisfies the conditions:
[X:P=q(X):Ql e €(IPI, [QT),
Lq[X:=p]1 = [qloLpL.
The central result at this level is the correspondence of simple typed A-calculi and

cartesian closed categories (Lambek-Scott 1986, chapter I).

The base, and most of the superstructure needed for the categorical interpretation of
varinble types, was contained in Lawvere's articles on hyperdoctrines (1969, 1970). In
principle, variable types are interpreted as objects of variable categories. The basic
analogy is now extended:

Sorts > categories

variations > fibrations

types varying objects (and arrows)
over a type P = of the fibre over [P]

(and their terms)

substitution in

a variable type > inverse images
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I1Y. Semantics

To produce a model for a type theory A, one first chooses a category LAT for each of
its sorts A. For every A, the class Ap of A-types and terms, will be interpreted
according to the basic analogy by a model assignment '
[..14: Aa—> CAT,
A variation A’'A" of types, which is allowed in A, will be represented by a variation of
categories: a fibration
[A'A™D : TA"T—TA']
tust be chosen. The model assignments must now satisfy the conditions:
[X:PA=Q(X):A"] e [TA Tgpyl,
[X:P:A" x:Qo:A"=q(x):Q1:A"T & LA Tgpy{LQol, £Q,1),
Substitution is interpreted by inverse images: for
[pI=LY:R:A'=p(Y):P:A'T e [AI(ERT, [PT),
[Y:RA =QX:=p(Y):A"] = [pI*L Q1 e |ITA"Igg1l.

(N.B. To add a dummy variable Y in Q, means to substitute Q[X:=no{X,¥}] (also
written QU¥)), i.e. to take an inverse image along a projection, In semantics, this is
done all the time: types and terms must be brought under the same context - in the same
fibre. It is therefore helpful to regard a type Q together with all its instances with
dummies, i.e. to think of EQD together with all its inverse images along projections.)

The inheritance of variation is interpreted by compoesing fibrations: the contexis with
more than one layer are represented using towers of fibrations. For instance, if besides
variation A"A’, theory A allows a variation A"A™, a fibration EA"A" ;LA™ —> EA"]
will be used 1o assign

EX:P:A", YiIQ(X3A"=S8(X,Y):A™T e |[A™Dgq3i.

A particular case are variations AA. Each of them is interpreted using an {intrinsic)
arrow fibration LAAT over category [AD. This is the well known representation of
dependent types by display arrows - the well ploughed ground of categorical semantics
for Martin-L5f type theories. The main sources are: Seely 1984, Cartmell 1986,
Hyland-Pitts 1987; the literature is quite extensive.
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The complex contexts of dependent types of sort A can now be interpreted within the
category EAT, as trees built of arrows (since a fibrewise arrow fibration over an arrow

fibration is just another arrow fibration).

To resume - for a categorical interpretation of the theory of predicates, we shall need

two categories:
B = L1 for sets, and

€ = [Q3 for propositions.
The three variations which this theory allows will demand three fibrations:
E = [QQ1 : £ — B for predicates,
va =[0861:a/8— B fordependent sets, and
Vr  =I[Q0Q1 :r/€—> € for dependent propositions.

Sums and products. Type theoretical operations are, of course, interpreted by some

adjunctions.

It is implicite in the basic analogy that the type theoretical machinery of variables must

use finite products:

[X:P,Y:R=q(X,Y):Ql « €(IPIxIR1, [QI).
h-abstraction is then interpreted by the exponents - right adjoints of the product
functors:

LY:R=AX.q(X,Y)P—QI := [ql‘e €(IRT, [P1-LQT),

(As always, f* is the right transpose of f.)

Just a step further is Lawvere's observation (1969} that the universal quantifier is the
right adjoint to the substitution, while the existential quantifier is its left adjoint. See
11.3.1. The quantifiers, as presented in our type theory, will thus be interpreted by the
horizontal structure of hyperfibration E = [G£21.

With the restrictions from definition 1.1.5, the quantifier rules just express an
adjointness (see below). The X-rules for B0 and Q. on the other hand, are

essentially stronger, and their interpretations demand more than just adjunctions.
Namely, they allow a first projection Kg:=AZ.V(Z,(X,Y).X) to be formed; for every
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IV, Semantics

type P there is a bijective correspondence between the types depending on P and the
projections my on P:

(X:P=Q) ~> (Y:IX:P.Q=ngY:P).
On the side of semantics, a dependent type becomes syrenymous with a particular term
- the projection from its sum: this type and this term are interpreted by the same arrow!,
(The basic analogy "typest— objects” is preserved by changing the point of view: while
q=LY:ZX:P.Q=nrgY1 is regarded as an arrow, q = [X:P=Q1 is an object of arrow
category.) This determines the interpretation of YAA:

I3X:P.QF =DomLY: 2 X:P.Q=nyY:P] = DomLX:P=>Q1.
Moreover, since a composition of two first projections is {(isomorphic to) a first
projection,

E374TX:P.OO.R]I = [EX:P.EY:QRT

ET[D:H
[Z:3X:P.Q=R1

IX:P=EY:QRI

CPI
the distinguished class of arrows which interpreie the projections and the dependent
types must be closed under the composition. Hence, 2AA will be interpreted by
camposition. - Recalling I1.4, the sums and products of sets and of propositions will be
interpreted by the fntrinsic horizontal structures of arrow hyperfibrations ¥Q and Vr

respectively,
Polymorphism is type-theoretically expressed by the axiom (2:0, i.e. by the fact that

every proposition is a type {of the sort £2) and a term (of the type £2) at the same time, A

category theoretical expression of this "impredicativity” seems to be the requirement that

Un terms of 11.1.1, the indexed set [y« xe B) is identified with the projection

Z'yx > Bi{x,c)> x.

x€B
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the fibred category E of propositions over Sets is globai)
a(XK) as a type is interpreted by an object A=flqY < |€[K
category €, the corresponding arrow "A *e B(IK1I, Q)

Y small~. If 5 proposition
3 of & globally small fibred
B iti (The object Q¢ | APPEALs as am interpresant of
the same proposition as g term. (The object Qe | B which re _

; ’ Presents:the ¢lass
OBE, is assigned (0 the type :@)) s_\th.e fibmd A
Extent operation of the theory of predicates wil] be in

terpreted by the extents of the
fibred category E=I®Q1. So E will have to be compr Y the exteats of th

ehensive. Since i is fibrewise
cartesian closed, it will be locally smail (fact 111.2.4),

Remark. This parallelism of type theory and category theory suggests that they are like
two langnages which refer to the same things. The peint is, as we explained in the
introduction, that they approuch these things differcmly: type theory studies some
operations as structure, while they arise in category theory from some properties. This
difference is, of course, the reason why it is worth-while to speak both languages. But
1t is also the source of various problems.

For instance, the mapping *._.": €| — B(1,£2), which represents objects of a globalty
small fibration by arrows {as defined in IT1.2.2}, is generally not injective. This means
that two propositions could be interpreted differently "as types”, but equally “as terms"!
The solution of this problem comes from an unexpected direction. The requrements that
a fibred category of predicates is globally and locaily small, add up (by proposition
1I1.2.2) 10 tell that it must be small, i.e. equivalent ro one in the form VQ: /02— B.
Moving along this equivalence solves the problem: the objects of (B/Q} are the
arrows from B(I,Q0), and " _" can now be taken 1o be identity. Moral: For the
interpretation of type theory, it is not inessential which of the equivalent "copies” of a
category is taken.

This is emphasised even stron ger by the fact that type theory demands split fibrations.
Namely, one of the basic principles of substitution is that that P[X:=u(Y)][Y:=v(Z)] is
identical with P[X:=u[Y:=v(Z)]]. Interpreting substitution by inverse images, this
means that v¥u*P=(uv)*P must hold.

Taken in the form VLI, the fibration E=L[OQ] is, of course, split. On the other hand,
the splittings of the arrow fibrations Va=I QO and Vr=LQ0] should have to be
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1V. Semantics

explicite: in fact, they should be contextual categories (Cartmell 1986, 14, Su'eii_‘::her
1988, 1.1). It has, however, become a tradition in interpreting Martin-Lof type theiy <
to neglect this splitting requirement, and 1o consider stable families instead of contex,
categories. The interpretants of P{X:=u{Y)][Y:=v(Z)] and P[X:=u[Y:=v(Z)]] m
be identical, but just isomorphic. Quietly, the semantics seems to have Tela'ﬁéd
syntactical principle in our minds. -

2. Categories of predicates,

Definitions. Let a category B with a terminal object be relatively cartesian closet
respect to a display family Q. A category of predicates over (a category of setsy
small Q-hyperfibration E:€ —> B with terminal objects, such that its class of exteni
contained in . Moreover, the category € must be relatively cartesian clos

respect to a vertical display family I".

A category of predicates which is equivalent 1o an arrow fibration is called a categ

constructions.

Remarks. Since a is a display family, B must be cartesian closed. Sinc
vertical display family, € is fibrewise cartesian closed (+ using [1.4.7+).

Corollary 111.4.14 sells that the extent € of a category of predicates € m

equivalent o a small fibrewise cartesian closed category too. The same corollary i
says that 1€ has @-products. Proposition 111.4.22 tells that it has weak Q-cop:

From the lemma below, it follows that the requirement
l=d,

imposed upon the class 1 of extents by the definition of a category of predicates

equivalently be expressed by demanding
D{ryeq,
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where D:€ —> B is any extent functor of €. Moreover, when £ is an arrow fibration,
ma lemma implies that 1=1". The definitions can now be resumed:

category of predicates :=
a-rcee B +
I-rece € +
small ¢L-hyperfibratien E:€ — B, such that
E(r) sid,
Direy,

category of constructions =T £a € B, such that
BisG-rcec +
r-rece +
Vr is a small A-hyperfibration,

is an elementary tepos iff it constitutes a category of constructions with =38 and
Onics.

ome characterisations of categories of constructions among categories of predicates
n be found in IIL4.3.

rom FIL4.1 and I114.2, it follows that the extent fibration 1E of an arbiwrary category
predicates E misses being a category of constructions by very little: it has all the
rueture as it should, excepr that its coproducts may be weak. In terms of the
terpretation which we are about 1o give, this means that 1E will support the theory of
anstructions, with the exception of the rule n20L; or the strong theory of predicates
ithout 3.

ources. The structure of a category of constructions has been described in detail by

Hyland and Pitts (1987); they only did not give it a name. Ehrhard's (1989} dicios is

uivalent to a category of constructions with A=8. Streicher's (1988, 1.16) doctrine
f constructions, on the other hand, conceptually corresponds to a category of

anstructions without any left direct images {i.e., replace the words "rece” and
hyperfibration” in the definktion by “right bifibration™), However, this correspondence

0t precise, since Streicher is working with contextual categories, which carry more
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. emmanings

structure. (A contextual category is a split arrow fibration Va:a/8—> B, such thay
the mapping Dom:|a /3| — |Bl has an inverse p, and the endomorphism .
f:=Codop: Bl —> B induces a tree structure on B, with the terminal object 1 as root -
i.e. for every Ie |BY, the orbit {1, f(1), £2(D), 3(I)...} is finite and contains 1=f(1).)

3, Simplifying contexts,

One of the crucial philosophical problems in the categorical semantics of type theories is
"explaining away the variables” {cf. Lambek 1980, section 1), Variables are an
eminenily syntactical part of logic ("universalia™); an honest category doesn't seem to be
Lemma. Let E:€ —> B be a comprehensive fibration with terminat objects. (U is the - a natural environment for them.

class of its extents, and D(—T— E) is an extent functor.)

However, if a type theory is strong enough, the variables which occur in a type or term
i) D({r) <t holds for every stable family r S €. can be bound, and then unbound without any loss. In the meantime, an interpretation
can be defined, not having to cope with them. For instance, every extensional typed A-
if) If I is a display family, L is the smallest saturated family containing D(r"). catculus A can be recovered from its class Ag of closed terms, and a notion of

+ i) Consider Be €1(B,A)~F. Let tA: TDA —> LA*(A) be the vertical factorisation of application on them. A model assignment [_1:A—> € is thus uniquely determined by

eac £,A(TDA,A), and define By by the pullback of LA*(B) along TA,
A
L B

y _
AB) p

Bt

A
U A
;
€p
TDA

This puilback must exist in Epa because A*R)er pa, and ' pa=Epant is a stable
family. From D' = Dea = idpa, follows DY = idps, because a square with two
vertical and two cartesian arrows (at the opposite sides) must be a pullback (by

11.2.22), and D preserves pullbacks. Hence
Br = Dnpr = D(peoea) = D(Potd'goq) = DB,

its restriction to Ag, assuming that the interpretation of the application is known.

By another sort of binding, using the surjective pairing, any context can be reduced io

one variable in a simple single-sorted type theory (with no dependent types):

Xo:Po,.. Xp1Pr-1 = (X, . X511 Q

J

Z:x P = f(rpZ,...,”Fp-1Z) : Q.
En

Assuming that the pairing and projections are interpreted in a cantesian category € by
the appropriate cartesian operations, a model assignment will be determined by its
restriction to the class of terms with a single variable. Since [ x Pyl:= x EP;], from

1En

L[fle e(m,x P, I[Q]I)
we get e.g.

[AXo.f1:=Efl‘c® (ix*OI[PiIU, 1Pyl - IQI );
and for [s1e € (L$1,LPyT), there is

i) If I~ contains all the fibrewise terminal arrows Mxe Eex(X, TEX), then D(} span i[f{Xo:=s]]l:=Ef]lO(Esﬂ_§UEP1])e e (ES]]?:D[[PiEs QI )
X L

L, because 1X = Dmny.+

By the lemmas 1.1.31-2, all this can immediately be extended to dependent types:
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1. Interpretation

a packing of a function I'g, Wg => m:M) in two parts will be
XK, Z-Mg= m:M;;

a packing of a proposition I'g,['g = 1 will be
XK, xiee =y

and a packing in two parts of a proof T'g.I'q, W = ciy1 will be
XK, xiot, zyp = oYy

Xo:Po,X1:P1(X0)-nXnPntXn-1) = f(X0, . Xn) : QX0,...Xn)
1
2:5X:Po{ EX 1. AZXn-1:Po-1-Pr)) = [G10Z..., aZ) : QUROZ,..FaZ)-

Note that the sum in this last context is isomorphic with
5Zn1:( %20 (£Z1:(EXoPoP1).P2). Po.2 )Prut ) Pa.
Top-down, bottom-up, and all the mixed applications of 2, on a sequential single-sort

context lead to isomorphic results.

Unpacking. A set

XK Y LXK)=MX,Y)

will be packed to
Z: 3K K LX) M{np2Z,n Z)

and then interpreted by an Q-arrow
[MIe [adLIX:K.LX)DI.

Before this, an interpretation of X:K=L(X)
ILIela ik

must have been known, since [ X X:K.L{X}E has been derived from it

Terminology. To bind a context I' oeans to apply the operation EAA somewhere |
it. We say that a context is bound when this cannot be done {any more). A boi
context obtained from I" will be denoted by Z(T).

We say that a type or term is packed when it is presented with a bound context. To de
with the terms more naturally, we shall sometimes pack them in two parts. Given :
I=R:A, and
T W = r:R:4A,

. To unpack M means to look at it as dependi .
where all the elements of ¥ are in the sort A, the term r is packed in two parts when it pending on L and K, and not on ZX:K.L. To

unpack EM1 means to view it as an arrow to ELT, and not to EXX:K.L1.
37X KL.M]

Ml

presented in the form
¥, L) = A
(3(¥) is of course the resuit of applying ZAA in ¥ as long as possible.)

. [Li
Packed types and terms. Clearly, every context can be bound. Different approacheg [¥X:KLI—™ @K1

to the sequentialisation and binding produce isomorphic results. Le.,

IMIelallKDyloL]y,
where (AQJIKI)VILT is the [LJ-fibre of the full subfibration
a/(@iEK1)— (@lIK1) of V(alIKD) spanned by Q. (Remember that a LIK1 is

the LK 1-fibre of the full subfibration Q/B3 — B of V8, spanned by Q; in other
words, of a/(al1}— (all), since Bzall)

A sequentialized context in a theory of predicates must be in the form
I'=Ta,TQ
where
g = Xo:Kp, X1:Kieos Xm: K},
g = (Xp:0tg, X130, s Xniln),
m,ne &. Clearly T(T'e) is in the form (X:K); T} is (XK, x:a). Remark. Packing makes no sense in the theory of constructions, since a packed
context can still be arbitrarily long there. A formal interpretation of the theory of

constructions and a description of its term models tend to be quite a bit more
complicated.

A packing of a set T'g => M} will be in the form
XK= Mp;
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41k, Constants.

[1:0] := telBl
[X:K=:11 := @rxye B{IKT, 1)
4. Definition of the interprelation. [T:QD:=Tel€l
_ LXK, x:=>¢:T1 := gpgre €y (Lal, T I[K]l)
The essence of the interpretation is the fixed correspondence between the operations. [Q:81 = Qe|B[

the theory of predicates, and those which constitute the structure of a category of

412. Variables.
LX:P1 :=idgpa
[£:Q1 =EclEql

predicates. Every model assigniment
_1A—E

of a category of predicates E 1o a theory of predicates A is defined by 4 structural

recursion which follows this correspondence of operations. The ground case of the,

recursion - the interpretation of the generators of A - must be chosen, respecting some

conditions {413 below).

413. Generators (atoms).
[X:K =MIe lallKIl
[X:K,Z:Mg = m:M3 ¢ aJlKD (EMoI, IM11)
[X:K, x:o=y11e rrgyllall
[X:K, x:0, z2¥p = biysd e rgxpdLad (Dyo3, Iy 1)

Note, however, that the generators arc added dynamically in type theory: a basic typg_"ér
term may vary over derived types. Of course, 8 generator can be assigned a meaning

a medel only when all the elements of its context have been interpreted. But clearly,.this .
. 42. Substitution, If I'=nR, and XPe T, the substitution of p(ZQ):P for XP

produces T=>rR{XP:=p], with ZQ replacing XP in I, It is routine to show that p
induces a unique term from E{f‘) to Z(I"). Just as in 2 above, it is sufficient to take into

~ account the substitution in packed types and terms. We now suppose that they are
packed in one part.

is a well founded process.

In order to simplify the assignment of an interpretation to a generator, we shall always
pack it. If the interpretation of a context I" is known, the interpretation of X(T") carbe
readily obtained. And when the in terpretation of a packed type or term is known, it ¢

easily be unpacked in the model.
- 421. A function

u:= IZ:H=>u:KIe B{H,K),

" is substituted for the element variable XK in EX:K = m:M32 by the Va-inverse
. images, i.e. pullbacks:

IM[XK:=o(ZH)]D = u*IMT € lalHl,

Im[XX:=u@ZM)]1 ;= v*Iml e alH(id, v IM1).

Let us now fix a theory of predicates A, and a category of predicates E, and list the

items of the interpretation.

41, Types and terms. To simplify notation, we shall often use the same name fo

typefterm and its interpretant:

CKID =K,
[X: K=ol =«a, - 422, Before u is substituted for XK in [X:K,x:a = eyle e Lall, it must be
LXK x:a=fO0x):B0OT =1 etc. substituted in Loclle [€ki. The B-inverse images do this.

CofXKi=u(ZH)1 .= u*led < €4l

[y{XX:=uZH)]3  =u iyl e Irglual,
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[o[XKeu@M] = u*lcd e rriuta (id, v*IyD). f:=If] e €x(y, L*g),

g:=0gll e Eg(Lyy, ¢).

. of ‘ | - |
423 Lc;‘a_ ET)OC-K Y:L,zoy=t:0le Ex (W, L ), The quaatification will be interpreted by:
be given, where

L= [X:K=sL] e lalKl

YL = [IX:K.LT = Dom(L),

yi=Tyle [€xl. ' .
To substitate f for x® in LXK x:a = €173, we first add dummy variable Y\ in ey,
ie. take the E-inverse image of Lexyd along L. When al} the types and terms are in the.

same fibre €51, vertical pullbacks, i.e. VI gL-inverse images are used 1o Interprete.

431, the right bifibration structure of E:
IvY:.L¥]  :=Laye €,

CAY.cE =c' e Ex(B, Lay),
[4Y1 ='de Ex (L*B, vn

© 432, the teft bifibration structure of E:

[3Y:LyT  :=Lyye i€kl
substifution, Cv(w,(Y,2).f1:= ‘T e Ex(Liv, @)
E'Y[xa;—_-f{z‘?)]'ﬂ = f*(I,*'['Y]l) € |rEL‘LWI E(Y,2)3 =1 e ExL(y, L*Liy.
Le[s%=fz¥)]1 = o(LALeT) e raly (id. +IYD).

- To check the soundness, note that

- BY: AY.e)Y=c¢ means ‘{c')=¢,and

nv: AY.dY)=d is (‘dy =4,

B3 v({Y.2).(Y.z).0} =f is(ranslated in L*(‘f)en =, and
nd: viw,(Y,2).g((Y.2)) = glw) in ‘L¥gon) =g

(By 11.2.25, inverse image along L + € g1 -puliback aleng f = €-pullback alon‘g_
Blofe EL(y,0).)

43. Quantifiers, A variable which is to be bound must be unpacked. We shall ng
consider a partially unpacked proposition

XKY:LX) = v,
with an interpretant

v:=IIX:KL=vl e | €51,

#4, Sums and products. The Martin-Lof theories of sets and of propositions,
contained in the theory of predicates - its @8- and QQ-fragments - are interpreted by
. the relatively cartesian closed structures in the base B, and in the fibres Ex respectively

-in the standard way, exhaustively treated in the literature (referred to in part 1 above).
Furthermore, we shall need

~Propositions must be brought in the same fibre (under the same context of sets) using
XK, Y:Ly:BCY) = e, the E-inverse images (i.¢, adding dummy variables).
XKyp=dvYLy
XK, Y:L2:y = BQ(Y, 7, 5. Extents, For o« = EX:X = ale i€kl and a = [X:K,Y:L = a:aBe €51 (T ,L*a)
X:Kw:AY Ly = gow) define

(YLe DV(B) means that the condition Yle MIN(c:y) is still satisfied, although therg 15

[X:K =100 = e ladKl,
L ,¥e DV(o) is the familiar condition on E3.) Given 3, e 1€k, these IXKYLo8atal = Doboa) e alK(Lic),
B DV(0). Yl Z1e DV(Q)
restrictions just mean or arbitrary u = [X:K,Y:L = unaJe QKL 10),
¢ =[cl & Ex (L, v, - [X:KY:L = tueel := u*(ta)e Ex (T, L*a),

d:=[d] e Ex(B. L+y)
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IV, Scmantics 1. Iaterpretation

where TO € €Du(TDo'., ux*(a}) is the vertical component of the couny

=

-~ Ly
|

f / \L‘: Cv'{w, (Y,z).090
L]

Eg€ ELQ(T DOL,U.}.

The arrow [8a1 is indeed an element of alK(La) because
1eeD (D 0a) = D(Ngo¥gon) = D(TE@L)on seea) =DTL =L

To check the interpretation of the conversion rules, note that the adjunction T

1 L*L. q{ L (pu

induces P«Y,2) t S

E(T L, ) 3 'ﬁrLoa — D(‘l')LO a) 3B (ZL, Do) %(Y,z)]] \

B(ZL. Doy > v+ OLeur(te) e E(TIL, &) v . - Ly

. * o

The rule

fu  dw)=v i Is this interpretation well-defined? It has been given by an induction along the
: i La = hich just says that (‘u)* = u; while :
is wansiated o the equation D(DTew(ren) = i, WHERJE ! derivability refation (1-); while only a type or a term (with its context) is actualty being

m:  wda)=a

g - lfferent ln‘erp elants, 1o pt'()\"e tha[
L )*‘ta =a Whlch 15 rue, bccause lhe 1 f T: 'I'
bOllS down to tht’, quullemcnt lhat (D(l} Da) N . I Tivatlons mi ht Ie‘;l]ll in (]

- this will not be the case, one should show that any two operations which commute in
side is the vertical component of *((plen)’) = Blea. .the theory (so that they could be applied in various orders and produce different
~derivations of a type or term) are interpreted by operations which commute in all
‘modets. For instance, the Beck-Chevalley condition interpretes the commutativity of the
" quantifiers with substitution {as we explained in I1.3.3). The fact that the extents are
stable under the inverse images {I11.2.5) reflects the commutation of the extent
operation and substitution in the theory, And it follows from the propositions II1.4,1-2
that the relation of the extents and quantifiers, sums and products is the same as in the
_theory, as described in L.1.8.

Remark. Translated to the notation from 432, proposition 1.1.52 tells thata theory
predicates does rot become stronger if the restriction we DV(@) is dropped. This mean
that our categorical interpretation niust remain sound if we consider

K w: YLy = @{w), and

X:K,Y:Lzy = X Y.2:9(Y.2),
i.e. the interpretants

¢ € Irgilnl

QUY,Z) = ﬂ*(L*tp‘) e [rsL i, and

¢ e rely (id, @UY.2)).
The term

XK, w:aY Ly = viw(Y,2).0) ¢ ¢, ; h
constructed in 1.1.52 will be interpreted by the vertical factorisation shown at’t

But a detailed proof of this waits to be written down.

following diagram. . Internal language of a category of predicates,
By this interpretation, 10 every category of predicates E corresponds a theory of
Predicates A(E) in a natural way:
- the packed sets and functions of A(E) are the objects and arrows of G/ B;
198
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IV. Semantics

) 2. Term models
- the packed propositions and proofs of A(E) are the objects and arrows of 1/

- the operations of A(E) are defined by the structure of E, as indicated in'the
interpretation. -
Using projections, the variable types and terms arc unpacked. They could have beg

defined directly too, as appropriate well-founded diagramsinQ and inr. 1. From a theory to a category of predicates.

The canonical model assignment [_T:A(E) — E is the identical mapping: o ey In the preceding section we saw how to produce a theory of predicates, given a
packed type/term, it assigns that same type/term, regarded as object/arrow. For e\}"'
theory of predicates A’ and each model assignment C[_1:A"—E, there is a unig
translation @:A'—> A, which preserves all the operations of the theory of predicates;

category of predicates. Now we go the other way round.

Let A be a theory of predicates. The "free” category of predicates E(A):€ — B
generated by A consists of the following data.
and such that
[_] = [..Te.
To interprete a theory of predicates in E means to translate it into A(E).

‘11, Base category B:

[BI  :=closed sets K,

B :=closed functions w:I—=J.
In this sense, AE) is the internal language of category of predicates E. Of cousse, the functions are taken modulo conversion (=). Identities, composition, and
"ihe canonical cartesian closed structure of B are recognized by the notation in the theory

f predicates. (Cf. I.1.2)

12. The class A € B of display maps consists of all the terms (modulo conversion)
isomorphic to some first projection nge BEX KL, K):
a = {wl=T13 sets K, L(X¥) D isos #:1- XKL, 3K~ 1. u=jongeil}

'@ is a stable display subcategory (cf. 11.4.3}. It is saturated, and satisfies the display
-condition because the identities and the terminal arrows are special projections, It is
stable because projections are.
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1V. Sematics 2. Term models

H o7
~ L8
M l 8(Z}
n,
TY:M.LY(Y)) (WEX:K.L(X) a(vZ) (X}
_ o 1 f(vZ) l £
o fluvzy) BuX) BCY)
o
! K - [ -]
Y| " - K v u

£ is fibred over B by the obvious projection

E:€—8: p(XKy—= K, (u,BH—u.

Since the substitution induces its inverse images and cartesian arrows;
e*(BY)) o= Plaxh

o8 = {u, idp},

The diagram showing that the projections are closed under composition has been dr'_'awn

in 1.1. Puiting ali this together, the functor
Va:a/B—8
is an intrinsic left A -bifibration. It is easy 10 check that it is a right Cl-blﬁbrauon'--tqp

For this fibration is split (and normal}. Each fibre €y has a canonical cartesian closed
L =mpe BEXKL, K) structure, preserved by the inverse images.
M =mpe BOIZ(EXKLIM, IXKL), -
o . 14, The class I'x & €k of display maps will be
she right direct image 15

LM =npe B(EX:KIIY:LM, K). K= <idK, LEXKy - (P(XK)) 13 isos i1y~ Tx®B, jio— @. f:jo‘n:ooi}

€x is an I g-rece by the same argument as in 12. Since substitution commutes with all

the operations which constitute the rcce structure of £k, the category € is fibrewise I'-
weee, for

I = U 'K
. KelBl
I1.4.7, € is an I"-rcce.

So B is an a-rece (by proposition 1L4.6).

13. The fibred category of predicates € consists of
ey = the predicates ¢{XX), K closed

closed, X! the
eaxh, p(YH) = {(u:l—»l , (XD Buxh} ! uoniy variable of f

{The pairing operation in this definition comes, of course, from the metalanguage.) Th
composition in € is (just like in the Grothendieck construction):

18, E is an < -hyperfibration. Consider a projection L=nge B(ZX:K.L,K), and an
{(u,Holv,g) = {uev, v¥{f)og).

object Y€ |€3x:k LI The predicate Z:ZX:K.L=Y(Z) can be unpacked as
. XK, YL =7 {X, Y.
direct images are now

Liy =3Y:Ly({X,Y)), and
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2. Term models

Lay = VY:LAYXY)).
"The canonical cocartesian and opcartesian liftings are:
c‘;, = (L M(nlz Xy 7(2)—>EIY:L.'\(((1|:()Z,Y))),

= (1d, Ay.y(MZ): VY Ly(moZ, Y- YD),

= lW.((Uovono)W, (Sof((von(])w)n‘roﬁog(ﬂ:()W)otonl)w) -

= lW.((uovorm)W, (aof((vonOJW}og(nOW)otom)w) =
= C(UOV, v*fog) = C((Ll,f)°<\",g>}.

" Now we check T~ C.

: = AXK.(XK, @) e B(K, CTK),

Ep(x®y = (mp:Co—K, T(?‘C]ZC‘P);(p) € E(TCy, @).

ETKeTNK = (Mp: ZX:K.T - K, 13 T)o(AXK (XK, @), id) =
={idg, id1) = idTi.

An inverse image functor along an isomorphism i must always be a strong equivalenc
of categories: the functor (i-1)* is left and right adjoint to i¥; m1 the case of a split 5o
fibration, i* is an isomorphism of categories, with *) = (i-1y*, Thus, for an arblm
display map a = joLei € Q, where 1,j are isos and L. is a projection, the direct i image
will be

any = (TD*oLlgeli-h*, oe(l, *).

Cepmce =AZETCR((myem)Z, (Bor(R1o7E)ZIoTomZYOAXCOLK,B) =
= JLXCCPZCTC‘P((RQOEQ)Z. (301:{(11'1ort0)Z)oton1)Z>(X,Ei) =
= AXCO.(roX. BoUmX)or(D)) =

16. E is globally small. Each propositional variable £:Q is a generic object Ee| 2 AXOH, (x50 oo

predicate oXKyelekl is classified by Lhe function
T = AXK (XK K- Q

{ote that the extent of p(XK) is
{i.e. o is an inverse image of & along "o 7; of. 111.2.2.)

1@ = E{eg) = mp:Co- K,
o that the requirement

it hat B
17. E is comprehensive. This follows by proposition 111.3.4 from the fact thal eq

full and faithful right adjoint .
T B €K (XK= ), (- D> G, idr

which has a right adjoint
C:£98: oXX) —>EIXKig,

(Qu, Xl — Y)Y =2 AZ{(womo)Z, (BoimoZIoTom)Z),
(where f{ﬂgZ):=ﬂXI:=Tt{}Z] is an instance of F00 = BX)).

satisfied.

8. Since E is fibrewise cartesian closed and comprehensive, it is focally small, by fact
1.2.4. Since it is globally small too, E is a small fibration. This follows from
position H1.2.2, with the following two adjustruents. For a split locally and globatly
mali fibration E, this proposition gives not Jjust a fibrewise equivalence, but an

_ morphism V£1—> E (as we already noticed at the end of 1. 1}. On the other hand, it
+ Is C a functor? C(id id) = id, follows from the rule f1. For arrows as above inl

es through with a weaker assumption than that of finite completeness of B: it is

hold ufficient that the representants 1{X,Y) used in the construction belong to a stable -
olds
vig) = play subcategory Q < B - and this is the case here,
C(ll f)oC v.g; =
= AZ.{(Wong)Z, (Bof(noZ)oteRNZYoAW. (verpW, (5°g(mw)oﬂm)w Q=
W wn)W

= AWZ.((uero)Z, (50f(ﬂoz)“"“‘)z)(((wm)w (GeglmaW)e Q) = ZEE1.1E0—~E));

204

205




IV. Sematics 2. Term models

[_%:A—>EA),
which (ust as [_1 : A(E)— E in the preceding section) does not move the "material”,

but changes the point of view: every type and term is interpreted by itself.

£y = TEgE b= &) x W&~ E2)

9= AZmZ : -0y, ie2;

N = AL, & 8(ide)) : Qp— Qs IFE:€'— B' is another category of predicates, every model assignment
[_I''A—F
Ho= lZ.(nOZ, noZ, 8((1(1r42))(1(n32)))> 1 - LY. induces functors

Fg:B—B': K IKD, (-1 CuxID, and
FQ: €€ XKy [ol,

The isomorphism is
(u:l—-> I, f(X)(X) - ,B(uX))l-—) QLUXIL fxo:B(uX)2,

LU E— VR XK T K- 0,
(u:l—)J. £0X):0(X) = B(ux))}_:)@;l_é]’ Fe ;]..)Ql>, which preserve the rcec-structure of their respective domains, and the horizontal
: structure of E:€ — B:
Fa(Loy) = (FeL)p(Fay), for Oe 4,1},

So F = (Fg,Fp) preserves all the structure of categories of predicates; it can be

where
T = AXKpXK)

T = lXL(a(XI), BuxY), a(f(xl))>.

regarded as a morphism F:E— E' of categories of predicates. As such, F is the unigue
morphism E— E' by which the model assignment [_T" factorizes:

[..T'g =FgeL_1lg,

L.0'q =Fpol_1q.
This factorisation will be written:

[_1'=FoI_T.

The inverse functor is obtained using
o="¢"%¢,
f="fTy,

where generic arrow ye £q,(30*E, di *£) is the term
Z:{h = tmZynpgl— w2,

19, If A is a strong theory of predicates, i.. if it obeys the rule dab, then E:€— B
category of constructions, + Using the rule 8ab, lernma 1.1.87 gives an isomorphis:r'ﬁ"-

ar o = wxT b, _
It is easy to see that for the E-cocartesian arrow ¢'$ and counit € of T— C -
defined above - holds

0% = acgy € Byl T, LX)

Eg = bﬂ(flg €EfT, o); L
£q is thus cocartesian, By proposition [11.4.3, the fibred category £ must be equiv_étlé

- 1. Semantical completeness.

A semantical construction E( ) is said to be complete if every theory A can be recovered
from its model E(A). For logical theories, a completeness theorem has traditionally been
i the form

YP. AFP @ E(A)EP,
here "Al-P" means " the formula P is provable in A" and "E(AYEP" asserts that "P is
e in E(A)”, i.e. an element [P1e E(A), assigned to P, has some property which we

with 1E
{N.B. This is the semantical version of proposition 1.2.33.)
The term model is a model, There is an obvious model assignment

2
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1V. Sematics

call truth in E(A). Whea A is a type theory - regarded as a logical theory “"i.‘h_.'
constructive proofs - while E(A) is a category E - with terms-as-arrows - th

correspondence should be refined 10 a bijection between proofs and their semant

reatizations
vPVQ. {X:Q=pP} = E@QLIPD)
(as we already remarked in 1.2.4). The constructive completeness of E(_) thus mca:nsﬂ
that the model assignment
[_T:A—>E(A)
is "full and faithful" for every A.

To express this precisely, we shall now describe the connection of theories and models,
realized by model assignments, as an adjointness between a semantical functor E and a

syntactical functor A.

Terminology. Let E:€—> 8 and E:€'—> B’ be fibrations. We say that a pair of

functors

F={FpB— 8 F:€—= £", such that E'Fy = FoE,
preserves a property P if F] preserves this property. (Thus,
functor if the arrow Fi{f) is {co-, op-)cartesian whenever fis.)

F is a hyperfibration

Categories. By definition, the category TOP consists of theories of predicates, with -

the translations which preserve all the structure (defined in L.1).

Objects of the category CAP are the caweg
Fe CAP(E,E) is a pair of functors
F = (Fg:B— B', Fo:€ —> E°), such that
Fe(@)=a', so that Fq : /B -a'/B*: ut—> Pel(u) is induced
Fo(r)er', hence Fr:r/& —>r'/e' + = Falfy

F = (Fo,FQ)| must be hyperfibration functors
Fg = {Fa.Fe) preserving terminal abjects

and extents.
FS = (Fr 'Fﬂ)

Since E = Vit and E' = V¥, it is not hard to see that Fg is complesely determined b
an internal functor fg: FeGi—> ¥ in B’ (cf. T1.1.28}. :
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ories of predicates. A morphism

2, Term models

Functors. A definition of the arrow part of the functor

E:TOP—>CAP: A E(A)
follows from the observation that E{A) is universal among the models of A. An
erpretation @& TOP(A, A" induces a model assignment

[_1°:=[..Do®: A— A —>E(AD,
and this assignment induces, as we have seen above, a unique morphism
E®eCAP(E(A), E(A"), such that
: E(@)ol_T = [..Tod.

The arrow part of
A:CAP—TOP Er> AE)
has been implicitely defined in the remark about the intemal language, at the end of the

. preceding section. Every morphism Fe CAT(E,E') induces a model assignment

[_3°:=Foll_T : A—> E(A)—>E(A"),
and this assignment induces a unique translation A(F)e TOP(A,A"), such that
Fel 1 =[_ToA(F),

:_ Comment. The equations we used here are equations of model assignments. A model

__assignmcm is just a mapping from a theory te its model (or from two sorts to two
-categories); it does not live in any of our categories, but "in between".

'~ Adjointness. The unit and counit of E— A are induced as follows:

N : A—> AE(A) is the unique translation by which [_¥": A — E(A) factorizes
through £_1: AE(A)—> E(A);

€ : EA(E)—> E is the unique CAP-morphism by which I3 A(E)— E
factorizes through [._D: A(E) — EA(E).

1is injective; hence E is a faithful functor. € is « split mono; A is thus a full functor.

In fact, & is an equivalence of categories. It is not an isomorphism only because the

.i.mernal language has made V& and VI cloven. On the other hand, each term
omorphic in A to a first projection has became in AE(A) a type. 1 is not an
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1V, Sematics

isomorphism because of this surplus?, - But

completeness of the construct E( ).

i i 3 o a ha .
At this point, our story about constructive logic may seem to be close ppY
ending: the marriage of ks o
lead to love some day. It may be so, but it is dubious 1 ‘ v prediomes 1o
surmount the difficulties of a constructive life. ‘The last section will unc

these difficulties.

A eE

i jections i i Iready in
21t does not oceur if the class of first projections 18 closed under isos already
in the presence of equality types.
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already the injectivity of 1 means the o

TQP and CAP locks stable and it can be expected that it will . .
this wilt help predicates to .-

3. First steps

I. Generating small complete categories.

In order to really do mathematics in type theory, one needs o represent equality in it.
Externally, of course, equality has been there all the time - generated by the conversion
relation. In the Martin-Léf type theory, this relation can be immediately internalized, by
introducing for every pair of terms p(XP), g(YQ):R an equality type I(p,q)), so that
3t: lp.q) 1< p=q.

But which conversion rules should be imposed on the terms of an equality type?
Translating this question into: "Which proofs of the statement p=q are equivalent?" does
not seem to help much,

Martin-Lof (1984, "Propositional equality") has stipulated that there s at most one term
of a type I(p,q). Since it fails to reflect even the constructive contents of various
derivations of p=q (cf. Troelstra-van Dalen 1988, 11.1 -7.), such an equality type [{p.q)
could better be thought of as the set [ {X,Y)ePxQI p(X)=q(Y)}, than as a
constructive predicate. Interpreted categorically, 1(p.q) becomes the pullback of p and g
- and the unique term of this type corresponds to the unique factorisation through this
pullback. - Martin-L6f type theories with equality types correspond exactly to locally
cartesian closed categories. (+ Without equality types, they correspond to relatively
cartesian closed categories. But if the display family a & B of an recc B must contain
the arrows TI(XR,YR)T = pb(idp,idg) = p:R — RxR for all Re [B], then lemma 1.4.6
and fact I11.4.34 jmpiy a=B8.+) Seely (1984) has given a detailed account of this
correspondence.

The idea of the theory of predicates with equality types (in both sorts) seems rather
appealing. A term model of such a theory is a small lcce with small products and
coproducts - over an icce. In particular, this small category is small complete, since it is
fibrewise finitely complete, and has small products. An argument of Peter Freyd
(MacLane 1971, proposition V.2.3) shows that such a category in the setting of
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classical sets must be a preorder (with small meets), With constructive sets from .

categories of predicates, this clearly need not be the case.

One concrete example of such a small complete category of predicates (indeed, of .
constructions) is the category of modest sets fibred over the category of separable
objects of the effective topos (as described in Hyland 1988, Hyland-Robinson-

Rossolini 1988, Longo-Moggi 1988 etc.). This example shows that adding equality
types to the theory of predicates does not lead to paradoxes. Smail complete categories
obtained as term models of theories of predicates are thus not degenerate. :

2. Equality predicates.

Notation. For an arbitrary predicate ae [Ex] (i.e. a(XX)), we write
ko when Hfe Ex(T,0) (e If0e);

and say that & is provable. We shall also use
akf for Fo-f.

By &(u,v) will be denoted the equality type which can be formed only it v and v ha'v'_

the same context (and not just the same type). The operations ] and /E are obwously.-__:
derivable from each other (+ by adding dummies, and by substiwting along lhc__ :

diagonal +). Interpreted in a category, I(p.q) is a pullback of [pJd and [qd, whil
Z(u,v) is an equaliser of [ul and Tv.

Note that we sometimes combine categorical and type theoretical notation, forgettin_g

[_Z, and confuse
{u, vy and  ofu,v), or
ol X,Y) and  {mg,1*on

Definition. An equality predicate a(XK, YKy must satisfy:
Fo(XK,X¥) and
E o (XK, YK)AQ(XK,Zg,...Zn) = 9(YK, Z,.... Zy), for every ¢.
Generically, such a predicate at(XK,YK) will be written XK= YK,
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3. First steps

Facts. For every equality predicate = holds
EX=Y « Y=X,
EXaYAY=EZ - X=Z,
EXz2Y - VK- L2.¢X)— o{Y).

Examples, It follows from the last fact that the Leibniz equality, defined for arbitrary
terms u{XD), v(X1} ;: K (i.e. for arrows u,v: [—>K)

uZ v i=VEK-Q.00)« plv),
is weakly terminal among all the equality predicates over a set K.

If the equatity type E(XK,YK) is given on K, then there is a weakly initial equality
predicate too, namely the Lawvere equality:

uBv:=32:Euv).T.
In categorical notation, this is uBv := &'T, where ®:/£ > L is an equaliser of v and v,
Lawvere (1970, p.6) has shown that 8 is an equality predicate. To show that it is
weakly initial, consider an arbitrary equality predicate = over the same set, Since
ue=vae, the reflexivity of = implies that there is a proof of ue=va, i.e. a vertical
arrow T —> 2*(u,v¥(=). Hence

ubv =T —{uvy* (=) =u=v,
In other words, writing

&(u,v) = ng: DXLEX),v(X)-L,
from

Fu@(Y))=v(z(Y))
we Obtain

FZ: B0V TEWX)=viX).

{The idea behind the Lawvere equality becomes perhaps clearer if we consider X0Y
written categorically mg8m) = py(T) (where p:=(id,id): K—> KxK is an equaliser of
m, 7 KxK — K). If wi{y) can be thought of as 3Z. w(Z)=X~y (11.3.1), then X0Y is
just IZAZ,Zy={X. YY) A T.)

. In a topos - which is a category of constructions by L1.6 - the Leibaiz equality and the
Lawvere equality coincide: cf. Lambek-Scott 1986, I1.2. This means that every topos
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h unue & Llah[ p;edlc » S al 5 pICdlCa 1
as a ate, * 1NCe T mao 1 one IODf flon.'l a

ca exist therer.

i tin it
Propositions. Let E:€ — B be a category of predicates, Ke |Bl a setin

. = y .the .
21. For every equality predicate =& l6xxk] with an extent 1{(=)={e0.e1). the

ing arrows exist: EET
fouow“jiﬂemig, me B(K, D(=)), such that {ep.e1)°m = (id.id);

- Symmetry ag 8(D(=), D(= y), such that {ep,e1)0a = (er.eak

transitivity ce B(P. D(E)), such that {eg.e1)oc = {€0°P0, €1°P U, where o

pic B (p, D(= y) is obtained by pulling back cj along ¢; for i#j& 2
l »

« A reflexivity arrow m exists because the set )
8/K2((id,id), w=)) 2 €k (T, (=)
must be inhabited, since (ididy*(=) =LX= X

A symmetry arow a corresponds by the isomorphism
8/%K2((e1,20)- {eo.e1)) = En(=)XT, e1=e0)

= eq derived using
to a proof of e1= €0 ‘ e
(ie. the one which corresponds to ide B/ K2(1(= U= )))-

A transitivity arrow is constructed in o similar way.

i LK), the extent
22, For every equality predicate =€ |€ ks, and arbitrary u,ve B(LX)

Wu=v)is a weak equaliser of u and v. Hence
u=v ¢>Fusv.
t = mouch=meveh, where m isa .

=vyoh, consider N

+ Gi n arrow h such that ueh=veh, e sV)=-

?]N?n-a ap. Then {eg.e1)ot = {u,v)oh, and h must factorize through 1(uE V)=
reflexivity map. ’

{u,vy*eo.e1)-

)z id(uEv))an

< A proof of u= v gives by the coespondence E(T u=v)= 13/1(1d,;(u ) L

‘ - =y) = =v) thus follows".
arrow s, such that Yu= v)os=id. From u=v and usl@=V) = vouu=v) S

u=y.*

214

kX =Y -Y=X from the generic proof of eg=ey - .

3. First steps

23. Suppose that pxe B(K, KxK) is a display arrow in B, so that the Lawvere
equality € can be defined on K. For all functions u,ve B(LK), the extent Wubv) is an
equaliiser of u and v, Moreover,

u=y <> ufva T

+ The «=-direction of the last assertion follows from 22; and = directly from the
definitiion, » because the equaliser &=id if u=v-.

Since uBv = vBu, the identity on D is a symmetry arrow for the Lawvere equality and
10 must be in the form {e,e}, But now

e = {id,idy*(e,e} = 1(idGid) = (TK) = idk.+

Comment. The Lawvere equality predicate inherits from the equality types their

noncoastructive strength: unique proofs. Consequently, any other equality seems 10 be
a better choice for constructive logic.

For every arrow he B(H,I) such that uh=vh, the factorisations of k through 1(uz v)
exactly correspond to proofs of uh = vh. The constructive contents of predicate u=v are
reflected precisely in the weakness of W(u=v) as equaliser. Remarkably, the norunique
factorisations through 1{u= v} do not appear as a point of disorder (as it is usnally the
case with weak universal constructions): they are positively structured by internal
constructive logic. Informally, an element of a weak equaliser of u and v can be thought
of as a pair (X, p{X)}, such that u(X)=v(X) is true, and p{X) proves this fact. Using
the constructive extent operation, this set can be presented as T X:Li(uX =vX), (Cf.
11L.2.4.)

3. Describing functions,

But will a constructive equality predicate - the Leibniz equality in particular - not be too
weak to carry mathemarics? For instance, is it strong enough to allow the usual
description of functions, characterization of menics, epis and so on? How much of the
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power, with which "the internal language at work” governs a t0pos (cf. Lambek- Sc(m
1986, I1.5-6.), subsists in our more general case of categories of predicates? : S

31, Notation. {X:K | a(X)} := Da = TX:K.1a.
w =g (XK T aX)) - K.
anf=axp.
Y KoYy = IV K.alY) A ¥YY Ko(Y)raY)—= Y=Y

32, Definition. Let E:€ — B be a category of predicates, ae {€1xk, (Q0.q1):=10x,
We say that the predicate  is funcrional if the following two conditions are satisfied:

3 qo is a retraction and

1y qoh=qok implies q1h=qik, for each pair of functions h.k.

Propositions. Consider a category of predicates E, with equality predicates on sets K
and L.

331. For every function ue 8(K), the predicate uX =Y is functional.

« Consider {ug,u;} := UuX=Y). The equation

) youg = Uy :
follows from proposition 22, since u(upZ)=u1Z = {ug,u)*(uX=Y)is a provablc
proposition {as every wo*{@) is: its proof 1Z:0(Z) is the generic one). Further define an

arrow n by the following puliback

I “\ meu
s T e
id, v
(l]o 153 ) = <f'0- e]) —
WX=Y) =)

(where me 33(K, Di(= )) is a reflexivity map, from 21). We have
2) upen = id, and
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£} ujen =
The equation (2) just says that the predicate uX =Y satisfies condition (3), It satisfies
condition (1) because

d )uug(—) unug.*
332. If ae i€l is a functional predicate, then there is a unique function ue B(I,K)
such that (uX 2 Y) is a retract of 1 (in B/IxK). In particular, every function u can be
recovered from uX=Y),

+ Given a functional predicate ct, with {qo.q1):=10¢ and & section p of gg, take

u = qp.
Condition (!} implies that u does not depend on the choice of p; and that ugp=q;. The
retraction r: e —» w{uX & Y} is obtained as a factorisation on the following diagram:

D(uX Y) Tmeu, mou,
Qo ;)
o 9 {ugup) = e &) =
uX=Y) (=)
IXK—— & KXK
u xid

(because (u x id)o{qo, q1) = (uqo, q1) = {q1, q1) = (eo, e1yomoqy). Df is the image of a
proof £ : uX=Y-»a(X,Y). To construct this proof, use
uX=YF qopX=XaqpX=Y,
and the fact that
o(gopX, qipX) = {qop, qipy*(er) = priot(a)
is a provable predicate.

Suppose, finally, that there is another function e B(LK) such that (lig,01) :=y{aX=Y)
is a retraci of yo: there is a retraction T :10—» OX = Y), with a splitting i (so that
Ti=id, and {qo.q1)°i = (Wg,01}). If T is a section of Ug, then

goeien = ugen = id] = qpep implies qioion = q)op.
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But then

G = i1of = guoien =qrep =1 DEYuX = YAY =uX?)

AN

D(uX-YAY uxX) l

1LAN

D(UX_Y) D(Y=UX )
I K I

(because ujenopg = uepg = uop) = ujenepy). Since
ZY:K.[(UX =¥YAY = uX') = {ugerp, uporL),

333. Consider a predicate o€ i€l in a category of predicates €. There is a (unique)

function ve B{LK), such that
EFuX=Y o a(X,Y) (and tuX=Y) is a retract of 10t)

iff o satisfies the following conditions:
D EVICI Y KoX,Y),

ii} there exists 8 : L(E!Y K.o(X, Y)rod X', Y))—= YK WX, Y)raX Y))
+ Then: We only show that condition (ii) is satisfied. We first prove it for o(X,Y) ;=
aX=Y, ue B(LK).
Using aproof ¢: Y'aY"— @AY:KY = YAY=Y"), observe that

op1)=t(3YKuX = YAY =uX')

is a weak kernel of u.

De
=Y we have
_J l(HY:K.uXE YaYs= uX') = {pg,p1} = {uonpo.ugnp1) = {ugrgs,ugr1s) =
{po> p1)= AY.Y=YAY=Y") = LY:K1(uX=YAY=uX) o 5.
Y uX=YAY= uX) : .
f For an arbitrary predicate o such that FuX =Y — a(X,Y) holds for some function u, it
[%] ———m K@K : is not hard to construct the arrows >
uxu =
(YK aX,Y)aaX, ) —1(3Y: = -
Namely, if uetg=uety, the arrow {utg, uty) factorizes through WY'=Y"), by proposition SYK 1(uX— YAY = X‘))-9 ZI‘E’ K .IE.UX_ YaY=uX ))and
. : “ Bt = =u Kl afX, Y)Aa(X'Y)
22 H , ot t fact th h {po.p17- : . . X))
ence, (o) must factorize through (o1 i Using them, the arrow s, required for by condition (ii), is obtained from the one fi
» ne for

uXsY.

The required arrow s is now obtained as on the following diagram:
. If: From a proof of VX:I 31Y:K.a(X,Y), we can derive proofs

N XeX -3Y:KoaX, Y)I~a(X,Y), and
£: X Lo, V)AX, Y- Y=Y"
(To derive 1, define B(X,X"):=3Y:K.o{X,Y)A(X',Y), and use
IY:K.oX,Y) E B(X,X), and
XKeX'ABXX) B BX')
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Consider the following arrows:
D1 ;X=X = 1(3Y K.aX. Y)Ae(X,Y)),
s (BY:K.oX VAa(X,Y)) — TY:K{a(X, V)aaX,Y)),
10 {aX, YA, Y)) = (e Y)).

DX =X)

{on
DEY .o X, Y)Aed X', Y))
S

Do X, Y)AO‘.(X Y )}

SN

DX, Y) DadX'.Y)

ANZEN

Note that the arrow ZY:K“;(OL(X,Y)AO:(X',Y)) : D—> IxI is obtained just by '_

projecting away the middle component from ‘I,(()‘,{X,Y)AU.(X',Y}) : D—> IxKxI.
Taking again {qo,q1) := 1, both TY:K.1{a(X,Y)aa(X",Y)} and {a(X,Y)ac(X",Y))
have the arrow qgery as the first component. Hence '
qoetgeseD1 = e,
where X =X") = {eg, e1). If m is a reflexivity arrow (i.e. a section of eg), then
p = rpesebrem
is a section of qp. Hence, « satisfies condition (3) for a functional predicate.

To prove that ¢ satisfies condition (1), we vse the fact that
Fat(u,v) e there is an arrow h, such that {u, v} = {gg, q1,°h.
For any pair of arrows h,k : L~ D{X = X"} holds
F a{qooh.qreh)ralqoek.qiok).
If qooh = qoek then
F 3XidlolX,qrehaa(X,qrek).
Using €, we now derive
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F qieh=qiek;
and therefore qoh = gpok must be true, by proposition 22,

o is thus a functional predicate, and we define u as in proposition 332. A proof
fruX=Y-ofX.Y)
is construcied same as there. A converse proof
g X, Y)-uX=Y
is derived from &, i.e. from a proof of ct(X,uX)Acu(X,Y)—uX=Y. (Once again, note
that (X, uX) = a{qgopX.,q1pX).)+

34, u is a split monic (:qg EFYXY luXsuY—-X=Y @ u is monic.

= a} Since uX=uY F e(uX)=e(uY) always holds, ecu=id jimplies uX=u¥Y k X=Y.

b) ug=up & Eu(pX)=u{gX) = FpX=qX @ p=q.*
351, B3I 3Z: [ Y:KI oY)} .uX 2107 & u factorizes through 1o,

» =: For clarity, we write out explicitly the dummies whick must be added in u and
when they are substituted in =. Obviously, we have
WX Ziz Xz F Toleu(X,Zi= "o sla(XZ).
But " o7 o1¢¢ classifies (and is identical with} the provable proposition 1o*(cr). Using
B'="y F Ber,
we derive
wX.Zh=w(X72) & ouX,2)
(since " e eu(X,2Z) classifies ot(uX,Z3). Hence
AZu(X, Zi=1(¥.Z) F o(uX).
From the given hypothesis it thus follows that an arrow ke B/I(id, l(a(uX))) must

exist,
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{X: a(uX}}—h—r— (YK oY)} ——»

- J

k Lu*o) W, £

Now
g = hke B/K, 1)

352, Bvery function u factorizes through a display arrow
im(u) = u3IX:LuX=Y).

» This follows from 351, using the fact that the proposition
YXI3ZAY:K)IX Lu)=YhuX=im(u)Z

is provable,s
36. uis a split epi B EVY:KIXLuCO=Y B uis epi.

+ a) Notice that FVY:KIX:Lu{X}=Y means exactly that im{u} is a split epi.
22)
by ku=hu &’ EkX)=h@uX) = kkY=hY B k=h

37. Remark, Why are propositions 34 and 36 so poor; why can I not prove that
monics are monics and epics are epics? There is perhaps a deeper reason for this than
my own incapability, Examples show that the base category of a category of predicates
need not be balanced: an arrow can be epi and mono without being iso. (E.g. modest
sets: Hyland 1988.) It can even be provably epi and mono {(i.e. FVY.KAX:LuX=Y)
and still lack & splitting. (Only im(u) must be iso then.) Perhaps something like
condition (ii) from proposition 333 is needed to characterize epi, mono, 180 functions.
Or it might be that the theory shoud be improved at this point. Some additional
requirements imposed on the class of extents {and expressed in the theory of predicafes
by some additional rules) could be useful. Perhaps there is some particular eguality

predicate which is better than others.
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But let us not confuse the imperfections of the theory with the points at which only the
nonconstructive simplicity is lost. For instance, the fact that each function has an image,
but that this image is not a subset of its range may seem odd for a while, but it is
certainly not a deficiency! According to the constructive conception of the extent
operation, the image of a function w:I—> K should consist of some points Y of the
range K, equipped with proofs that 3X:LuX =Y, If these proofs are constructive, there
can be several of them for each Y. It is the constructiveness of proofs that spoils the
inctusion of the image {Y:K) 3X:1uX =Y} into the range K.

4. Procreation of models.

Finally, we are in a position to show how the examples of categories of predicates come
about in the "real world” - how seme other models for the theory of predicates can be
produced, besides term models. Starting from any category of predicates E and an
internal category Je catg in i1, we construct the category of presheaves over I, which is
a new category of predicates. In particular, each category of constructions gives in this
way numerous categories of predicates. Since they are clearly not generated by terminal
objects, these categories are (+by 11L.4.3+) not categories of constructions themselves.
The well known mathematical models for the theory of constructions (modest sets:
Hyland 1988, Hyland-Robinson-Rossolini 1988, Longo-Moggi 1988; algebraic
toposes: Hyland-Pitts 1987; Girard-style demains: Coquand-Gunther-Winskel 1989)
thus offer a source of relevant examples for the theory of predicates too.

It seerns that not every category of predicates can arise in this way, i.e. over a category
of constructions. » Namely, the extent fibration of each of thase which do must be a
category of constructions. As we remarked in 1.2, this is almost the case exceps that the
induced coproducts may (it seems) remain weak.s But appropriate examples stifl wait to
be found.
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The theory of internal categories formulated in the internal language of a category of
predicates - using some constructive equality - differs from the usuial btheory o‘f -mtemal
categories {e.g. in Johnstone 1977) by the fact that the commutativity condmo[}s are
imposed by means of extents Wu=v), and the used limits are weak. However, in the
spirit of comment 2, a weak equalizer gives in this context not less than the strorfg one,
But more: W{u=v) not only equalizes u and v, but also issues some proofs that it does
so. In this theory of internal categories, each performed construction c?.rrics a
constructive proof of its own soundness. Quite involved already, the m.tcrnal
formulations of category theory become even more complicated. Qur arguments in this
part had to be severely truncared: completely written down, the constructed terms tend

1o be completely unreadable.?

Terminology. An infernal category ¥ in the category of sets B underlying a .category
of predicaies E will now be described in the internal language by the following types
and tenms:

- set of objects Ip,

- hem-sets X,Y:Ip = [(X.Y),

- "identity arrows" function X:Ig = XXX,

- "composition" function XY, Z1p, g1 (X,Y), £:1,(Y.Z) = w(f.g)h(X.Z).
The following equations must be satisfied:

@), f=f

wf, n(Y)) = £

u(u(f,g), h) = p(f, wig.h)).

We say that all the arrows in § are retractions (split epis) if there is a
- "gplitting” function F11(X,Y) = (1 (Y. XD,

such that
pEif)) = 1Y)

30f course, 1 did perform the proofchecking here omitted. But the fact is that such

things should be done by a computer.
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Remarks, A category Ie catg, described in this way is distinguished only by the fact
that its domain and codomain arrows constitute a display map: {do,d1)e d. This

assumption is, however, not necessary for the propositions below. All our
constructions could be performed with arbiirary Ie catg - but the descriptions would

then resemble a bit less to what one does in ordinary category theory. Furthermore, if B

is finitely complete, Lawvere's equality can be used for =, and then everything really
boils down to the usual internal category theory.

As for the equations imposed on an internal category, it would perhaps look more
constructive if we demanded an explicite proof for VI.u(n(Z), f)=id, ete. to be given.

But lemma 25 gives a canonical proof of this proposition whenever the equation
pwn(Zy,6) = fis true.

Propositions. Let E be a category of predicates.

41. For arbitrary internal categories I and I», there is an internal category [1, I3] (the

"functor category™) such that (I x k., $3]=[L, [L, D}] holds vor every inteinal category
L.

. [, Dlg := { F: £Z:1g—-Dg £XY:Ip. [)(X,Y) -~ D1(ZX,ZY)l fungtor(noF,x1F) }
functor(Fp.Fy) := ¥X:Ip. Fi(X,X)en(X}=n({Fo(X)
AVXYZIV g1 (X YIVETY,Z). Fy(X.Zu(E) = (P X, YT, Fi(Y,Z)g)

[, DIy(E,G) = { y:TIX:16.D1(FpX,GoX) | natural(y,F,G) }
natural(y.,F,G) := functor(ngF,m1F) A functor(moG,n1G) A
AVXY:IoVELX,Y) piyY, F1 V)0 = (G 1{X, Y)EwX)

F:[I,D]p = n{E) : [I, D)((F.F) is defined:
N = AX.N{FpX), da}

¢:{L,DH(G.H), y:[I.D}E,G) = p(e,w} : {I, DIi(F.H) is:
n(e,y) == (AX p(eX,yX), 6b)

{The task of deriving proofs
a : nateral(AX n(FoX), F, F) and
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b : patural(AX.pu(oX,wX), F, H)
from the proofs that I? is a category is still an easy exercise.)

Let us now sketch the defionition of the component

j:1x1, Dlp—> [L, I, D}lo
of the isomorphism [I x L, D]=[L, (I, B21]. Given a functor (I x L, D)o, from itg
object part

Foi=npF ; IpxLo- Do
we derive

(iF)o := AAX.Fp(X,A} : Lo—={Ip— Do)
The arrow part Fy:=niF, i.e.

XY, ABiLg=

Fy{ (X, A0, (Y, BY): [i{X, Y)xL1(A.B)—~ D1 (Fo(X, A)Fo(Y,B)),
gives

AB:Lo = (F)1g: Li(A.B) - [TX:10.D1 (Fo(X,A),Fo(X,B)) as

@10 := M. (F1(0GA) K BREON ).

For every given h:L)(A,B), the term (iF)oh is a natural transformation between the

functors AX.F(X,A) and AX.F({,B}. Namely, for arbitrary £:11(X.Y), a proof of
n(F (VA CY BNV, F1 (GG ANY ANENAN )=
= Fi{(CANY BINER) =
= {(F1(0CB, (Y BYE (B, Fr{(X,A) (X BYMOO, ) )

is obtained from proof that F is a functor. (The step (#) is just composition with
identities, using associativity.) Encoding this proof, we get
h:Li(A,B) => (jF)11h : wnawural((F)10h)
and define:
AB:Lo = (iF)1: L1(A,B)~ [LDI((jF)A, (F)eB) as
GF)1 = {GFno. P11}

Having encoded a proof that (jF); is a functor, we use the corresponding element
(jF)p:ifunctor((jF) 1) to def; ine
jE := (jFg, jF1, jFp).e

42.1f VI : B/D—> B is an a-hyperfibration, then V[L,D} is an Q-hyperfibration to0. -
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+ The idea for a proof comes from the fact that the fibration

Vpshe(@) : P —> B, with fibres

Py = pshe(IxK)
is an & -hypesfibration for every I, whenever E:€ — B is. Namely, for arbitrary
ue B(K,I)ra, and e (1,4}, the direct images are:

g 1 psh(EXK) = psh(IxI) : {F, v) b {{{pxw)gF, T1xu)pp)-
The fact that un preserves the presheaves and their morphisms, and that it gives the
{coyproducts in P follows readily from the BC-property of E.

The propositions II[.1.27-8 and proposition 1 above, imply that every fibre
(B/[LD})k is isomorphic with a category consisting of
- objects {C, ¥, p), where {C,y)e pshp(IoxK), and p:functor(C, v}
- arrows {y, q) 1 {C, v, pp—> {C', ¥, p’}, where y is a presheaf morphism
{C,— (C, ¥y (cf.IIL1.24), and g:patural(y).
Thus, to construct the direct images of V[ILD], one needs te encode proofs
fig : functor(C.y) - functor((IpxwgC, (rxw)ny) and

fin : naturalty)— natwral{ Toxwaw),
for every ue B(IK.Hra, o {!,#), and to append them in the above construction of the

direct images for P

43, If VD is a fibrewise cartesian category, then V[L D] is, If each map of 1 is a
retraction, and if VID has exponents, then V[LI¥] has them, - If each map of K is a
retraction, the foee structure (11,2.1) on VI induces the fece structure on V[ILDE,

+ A product of two functors is consiructed pointwise:
(C, 7. py x(C, 7, p} :=(CxC, vy, p",
just like in ordinary category theory. An exponent of functors will be pointwise oo, if
every arrow of the source category is a retraction?, By an argument as in IIL1.24, the
splitting T of the arrows in Lis lifted in every presheaf € over I0: there is a splitting
2CUX.Y) = v(g):C1(Y,X),

4What is really needed here is that every arrow in the image of the functor splits. One
way to enswre this is 10 demand that every arrow in the source category splits.
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with

Hig,v(g) = n(Y).
Passing on the representation of presheaves as pairs {C, ¥} (described in IIE1.24), we
conclude that for every presheaf over I, its component ¥ must split: there is V(y) such
that yeu(y)=id. Hence the definition of an exponent:

€, 1 Py (CL Y, pY:=(C~C v, p2),
with

AFC X Y*C A C —Emm JgC’

V() x0T~ C) e

3*C % 3t (C—C") aprC

— o -

@)
Y= ('y'oeo (vm)xag (C— C')))‘: d*C-CH—> 9 ¥C—CY,
p~ : functor{C—C', y).

44, If each map of I is a retraction, and if VI3 is a category of predicates, then V[I,B] - -

is a category of predicates.

+ We already saw in 42 how the horizontal structure on VD induces one on V[I,D].
Now we extend 43 and consider how the rece-structure passes from VI on VLI,

A vertical display family I = B/I? induces another such family

n = {{(y.q)e B/[L,D] Il yer
(with all the possible proofs q), B/{I,D] is an N-rccc if B/ D is an r-rece. The
fibrewise exponents are constructed using the same idea as in 43. This time we must
find an exponent of N-arrows

(v, @2 (A, ¥a, pay— (X, vx, px} and

(w'a) t (Alyanpay — (X1x.px)-
The definition will be

W (v'a) = (w-w'a") (A" vampan) = (Xrx.px)-
Y-y is the exponent of I"-arrows, and we denote its domain by A", To obtain the
arrow

YA" 1 Q*Oy =y — IOy - ),

228

3. First steps

put ¥ in place of C everywhere in diagram 43. ('YA"'YX>r30*1|I'——> D1y will now
replace ', and (0(YA),0(yx)) : 0%y —> do*y will serve as v(y).

{Finding proofs

pa™ functor {A",y4") and

q" : napral (y—y")
is a considerable exercise in encoding ordinary category theory in the theory of
predicates.)s
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