# A HoTT Quantum Equational Theory 

Jennifer Paykin<br>Galois, Inc<br>jpaykin@galois.com<br>MURI Project Review<br>University of Maryland

March 8, 2019

With Steve Zdancewic at the University of Pennsylvania.

## Quantum data, classical control

...via embedded languages

## Quantum data, classical control

...via embedded languages

- Quipper [Green et al., 2013]
- Embedded in Haskell, a functional lazy language.
- Uses Haskell types, functions, data structures, type classes, template haskell... to construct quantum circuits.
- Access to Haskell REPL and debugging tools.


## Quantum data, classical control

...via embedded languages

- Quipper [Green et al., 2013]
- Embedded in Haskell, a functional lazy language.
- Uses Haskell types, functions, data structures, type classes, template haskell... to construct quantum circuits.
- Access to Haskell REPL and debugging tools.
- LiQUiD, Q language, Project Q, QISKit, pyQuill...


## Quantum data, classical control

...via embedded languages

- Quipper [Green et al., 2013]
- Embedded in Haskell, a functional lazy language.
- Uses Haskell types, functions, data structures, type classes, template haskell... to construct quantum circuits.
- Access to Haskell REPL and debugging tools.
- LiQUiD, Q language, Project Q, QISKit, pyQuill...
- QWire [Paykin et al., 2017, Rand et al., 2017]
- A formal theory of embedded quantum circuits.
- Implemented as an embedded language in Coq, a theorem prover with dependent types.
- Uses Coq theorem proving capabilities to prove correctness of quantum circuits.


## Quantum/non-quantum calculus



- Based on Linear/Non-Linear (LNL) logic [Benton, 1995]
- Linear types, pairs $(\otimes)$, etc


## Quantum/non-quantum calculus



- Based on Linear/Non-Linear (LNL) logic [Benton, 1995]
- Linear types, pairs $(\otimes)$, etc
$\frac{a: \alpha}{\text { put } a: \operatorname{QExp} \cdot(\text { Lower } \alpha)}$


## Quantum/non-quantum calculus



## Quantum/non-quantum calculus



- Derived quantum operations:

$$
\begin{aligned}
\text { Qubit } & =\text { Lower(Bool }) \\
|b\rangle & =\text { put } b \\
\text { let } b:=\text { meas } e \text { in } e^{\prime} & =e>!\lambda b . e^{\prime}
\end{aligned}
$$

## Quantum/non-quantum calculus



- Derived quantum operations:
Qubit = Lower(Bool)

$$
|b\rangle=\text { put } b
$$

let $b:=$ meas $e$ in $e^{\prime}=e>!\lambda b \cdot e^{\prime}$

- Unitaries (not derived):
$\frac{U: \operatorname{UMatrix}(\sigma, \tau) \quad e: \operatorname{QExp} \Delta \sigma}{U \# e: \operatorname{QExp} \Delta \tau}$


## Reasoning about quantum data

- Denotational semantics
- Spaces are exponential in size of program


## Reasoning about quantum data

- Denotational semantics
- Spaces are exponential in size of program
- Program logics
- Best suited to imperative quantum languages


## Reasoning about quantum data

- Denotational semantics
- Spaces are exponential in size of program
- Program logics
- Best suited to imperative quantum languages
- Equational theory
- Syntactic rules that characterize when programs are equivalent.
- May or may not be directed; difficult to normalize.
- Validated with respect to denotational semantics.


## Goal

Equational theory for embedded quantum circuit language.

## Goal

Equational theory for embedded quantum circuit language.

- Interaction between quantum data and host language control
- NOT equational theory for classes of unitaries


## Prior work - Staton [2015]

- Equational theory for algebra with unitaries and classical control.



## Prior work - Staton [2015]

- Equational theory for algebra with unitaries and classical control.

- Complete with respect to $C^{*}$-algebras.


## Prior work - Staton [2015]

- Equational theory for algebra with unitaries and classical control.

- Complete with respect to $C^{*}$-algebras.
- Procedural axioms based on diagrams
- symmetric monoidal structure



## Goal

Equational theory for embedded quantum circuit language.

## Goal

Equational theory for embedded quantum circuit language.

- Specialized to an embedded programming language
- not algebra or diagrams (e.g. ZX calculus [Backens, 2015])


## Goal

Equational theory for embedded quantum circuit language.

- Specialized to an embedded programming language
- not algebra or diagrams (e.g. ZX calculus [Backens, 2015])
- Fewer "procedural" axioms, focus on interesting axioms.


## Goal

Equational theory for embedded quantum circuit language.

- Specialized to an embedded programming language
- not algebra or diagrams (e.g. ZX calculus [Backens, 2015])
- Fewer "procedural" axioms, focus on interesting axioms.
- Completeness of axioms by comparing with Staton's theory.


## Homotopy type theory (HoTT): a type theory of equality

- Equality of two terms $a=b$ is a type


## Homotopy type theory (HoTT): a type theory of equality

- Equality of two terms $a=b$ is a type
- Constructor: $1_{a}: a=a$


## Homotopy type theory (HoTT): a type theory of equality

- Equality of two terms $a=b$ is a type
- Constructor: $1_{a}: a=a$
- Terms of equality type $p: a=b$ called paths


## Homotopy type theory (HoTT): a type theory of equality

- Equality of two terms $a=b$ is a type
- Constructor: $1_{a}: a=a$
- Terms of equality type $p: a=b$ called paths
- Path induction:

$$
\frac{H: \forall(a, b: A) \cdot a=b \rightarrow \text { Type } \quad \forall(a: A) . H\left(1_{a}\right)}{\text { path_ind }_{H}: \forall(a, b: A) . \forall(p: a=b) . H(p)}
$$

## Homotopy type theory (HoTT): a type theory of equality

- Equality of two terms $a=b$ is a type
- Constructor: $1_{a}: a=a$
- Terms of equality type $p: a=b$ called paths
- Path induction:

$$
\frac{H: \forall(a, b: A) \cdot a=b \rightarrow \text { Type } \quad \forall(a: A) . H\left(1_{a}\right)}{\text { path_ind }_{H}: \forall(a, b: A) . \forall(p: a=b) . H(p)}
$$

- Equivalence class of an element $a$ : $A$ with respect to a relation $R:[a]_{R}=[b]_{R}$ if $(a, b) \in R$.


## Higher Inductive Type (HIT)

## Definition

The quotient of a type $A$ by a relation $R: A \rightarrow A \rightarrow$ Prop is a type $A / R$ with data constructor:

$$
\frac{a: A}{[a]_{R}: A / R}
$$

## Higher Inductive Type (HIT)

## Definition

The quotient of a type $A$ by a relation $R: A \rightarrow A \rightarrow$ Prop is a type $A / R$ with data constructor:

$$
\frac{a: A}{[a]_{R}: A / R}
$$

... and path constructor:

$$
\frac{a, b: A \quad p: R(a, b)}{[p]:[a]_{R}=[b]_{R}}
$$

## Higher Inductive Type (HIT)

## Definition

The quotient of a type $A$ by a relation $R: A \rightarrow A \rightarrow$ Prop is a type $A / R$ with data constructor:

$$
\frac{a: A}{[a]_{R}: A / R}
$$

... and path constructor:

$$
\frac{a, b: A \quad p: R(a, b)}{[p]:[a]_{R}=[b]_{R}}
$$

Note
If $p, q: R(a, b)$ and $p \neq q$, then $[p] \neq[q]$.

## So what?

- HITs use paths to represent equivalence relations or groupoids.


## So what?

- HITs use paths to represent equivalence relations or groupoids.
- Path induction still holds of HITs:
- Prove theorems about groupoids by showing property holds of $1_{a}: a=a$.


## So what?

- HITs use paths to represent equivalence relations or groupoids.
- Path induction still holds of HITs:
- Prove theorems about groupoids by showing property holds of $1_{a}: a=a$.
- Unitary transformations form a groupoid.


## Idea: Represent Unitaries as paths

## Idea: Represent Unitaries as paths

- UMatrix $(\alpha, \beta)$ is the type of unitary matrices of dimension $|\alpha| \times|\beta|$.
- $\alpha, \beta$ : FinType


## Idea: Represent Unitaries as paths

- UMatrix $(\alpha, \beta)$ is the type of unitary matrices of dimension $|\alpha| \times|\beta|$.
- $\alpha, \beta$ : FinType
- Quantum types: QType = FinType/UMatrix.
- Qubit $=[\text { Bool }]_{\text {UMatrix }}$


## Idea: Represent Unitaries as paths

- UMatrix $(\alpha, \beta)$ is the type of unitary matrices of dimension $|\alpha| \times|\beta|$.
- $\alpha, \beta$ : FinType
- Quantum types: QType = FinType/UMatrix.
- Qubit $=[\text { Bool }]_{\text {UMatrix }}$
- Unitaries are paths:

$$
\frac{U: \text { UMatrix }(\alpha, \beta)}{[U]:[\alpha]=[\beta]}
$$

- $[H]:$ Qubit $=$ Qubit


## HoTT QNQ calculus

$$
\begin{aligned}
\sigma & \in \text { QType }=\text { FinType/UMatrix } \\
\text { Lower } \alpha & \equiv[\alpha]_{\text {UMatrix }} \\
e & :=x \mid \text { let } x:=e \text { in } e^{\prime} \\
& \left|\left(e_{1}, e_{2}\right)\right| \text { let }\left(x_{1}, x_{2}\right):=e \text { in } e^{\prime} \\
& \mid \text { put } a|e>!f| \cdots
\end{aligned}
$$

## HoTT QNQ calculus

$$
\begin{aligned}
\sigma & \in \text { QType }=\text { FinType/UMatrix } \\
\text { Lower } \alpha & \equiv[\alpha]_{\text {UMatrix }} \\
e & :=x \mid \text { let } x:=e \text { in } e^{\prime} \\
& \left|\left(e_{1}, e_{2}\right)\right| \text { let }\left(x_{1}, x_{2}\right):=e \text { in } e^{\prime} \\
& \mid \text { put } a|e>!f| \cdots
\end{aligned}
$$

- Derive $|b\rangle$ and meas e using Lower


## HoTT QNQ calculus

$$
\begin{aligned}
\sigma & \in \text { QType }=\text { FinType/UMatrix } \\
\text { Lower } \alpha & \equiv[\alpha]_{\text {UMatrix }} \\
e & :=x \mid \text { let } x:=e \text { in } e^{\prime} \\
& \left|\left(e_{1}, e_{2}\right)\right| \text { let }\left(x_{1}, x_{2}\right):=e \text { in } e^{\prime} \\
& \mid \text { put } a|e>!f| \cdots
\end{aligned}
$$

- Derive $|b\rangle$ and meas $e$ using Lower
- Derive unitaries...


## Unitaries in HoTT QNQ

Theorem
Let $U$ be a unitary transformation $U: \sigma=\tau$. ( $\sigma, \tau:$ QType $\equiv$ FinType/ UMatrix)
If $\Delta \vdash e: \sigma$ then there exists another expression $\Delta \vdash U \# e: \tau$. (apply the unitary $U$ to e)

## Unitaries in HoTT QNQ

Theorem
Let $U$ be a unitary transformation $U: \sigma=\tau$. ( $\sigma, \tau:$ QType $\equiv$ FinType/ UMatrix)
If $\Delta \vdash e: \sigma$ then there exists another expression $\Delta \vdash U \# e: \tau$. (apply the unitary $U$ to e)

Proof.
By path induction. The proposition is true for $1_{\sigma}: \sigma=\sigma$ :

$$
1_{\sigma} \# e \equiv e
$$

## Unitaries in HoTT QNQ

Theorem
Let $U$ be a unitary transformation $U: \sigma=\tau$. ( $\sigma, \tau:$ QType $\equiv$ FinType/ UMatrix)
If $\Delta \vdash e: \sigma$ then there exists another expression $\Delta \vdash U \# e: \tau$. (apply the unitary $U$ to e)

Proof.
By path induction. The proposition is true for $1_{\sigma}: \sigma=\sigma$ :

$$
1_{\sigma} \# e \equiv e
$$

Note
$[H] \# e \neq e$ because $[H] \neq 1_{\text {Qubit }}$

## Unitaries in the HoTT QNQ

Theorem
Let $U: \sigma=\tau$ and $V: \tau=\rho$ be unitary transformations. Then

$$
V \#(U \# e)=(V \circ U) \# e
$$

## Unitaries in the HoTT QNQ

Theorem
Let $U: \sigma=\tau$ and $V: \tau=\rho$ be unitary transformations. Then

$$
V \#(U \# e)=(V \circ U) \# e
$$

Proof.
By path induction on $V$. If $V \equiv 1_{\tau}$ then

$$
\begin{aligned}
L H S & =1_{\tau} \#(U \# e)=U \# e \\
R H S & =\left(1_{t} \circ U\right) \# e=U \# e
\end{aligned}
$$

We can prove a lot...

Theorem
$U^{\dagger} \#(U \# e)=e$

## We can prove a lot...

Theorem
$U^{\dagger} \#(U \# e)=e$
Theorem
$\left(U_{1} \otimes U_{2}\right) \#\left(e_{1}, e_{2}\right)=\left(U_{1} \# e_{1}, U_{2} \# e_{2}\right)$

We can prove a lot...

Theorem
$U^{\dagger} \#(U \# e)=e$
Theorem
$\left(U_{1} \otimes U_{2}\right) \#\left(e_{1}, e_{2}\right)=\left(U_{1} \# e_{1}, U_{2} \# e_{2}\right)$
Theorem
$\operatorname{discard}(\operatorname{meas}(U \# e))=\operatorname{discard}(\operatorname{meas}(e))$


We can prove a lot...

Theorem
$U^{\dagger} \#(U \# e)=e$
Theorem
$\left(U_{1} \otimes U_{2}\right) \#\left(e_{1}, e_{2}\right)=\left(U_{1} \# e_{1}, U_{2} \# e_{2}\right)$
Theorem
$\operatorname{discard}(\operatorname{meas}(U \# e))=\operatorname{discard}(\operatorname{meas}(e))$


Theorem
$X \#|0\rangle=|1\rangle \quad \operatorname{meas}(X \# e)=\neg \operatorname{meas}(e)$

## ...but not everything

Theorem
$\operatorname{SWAP} \#\left(e_{1}, e_{2}\right)=\left(e_{2}, e_{1}\right)$
Proof.
????

## ...but not everything

Theorem
SWAP \# $\left(e_{1}, e_{2}\right)=\left(e_{2}, e_{1}\right)$
Proof.
????
Theorem
let $(x, y):=$ SWAP $\# e$ in $e^{\prime}=\operatorname{let}(y, x):=e$ in $e^{\prime}$
Proof.
????

## ...but not everything

Theorem
$\operatorname{SWAP} \#\left(e_{1}, e_{2}\right)=\left(e_{2}, e_{1}\right)$
Proof.
????
Theorem let $(x, y):=$ SWAP $\# e$ in $e^{\prime}=\operatorname{let}(y, x):=e$ in $e^{\prime}$

Proof.
????
Similar results for behavior of other "structural" unitaries:
ASSOC : $\sigma_{1} \otimes\left(\sigma_{2} \otimes \sigma_{3}\right)=\left(\sigma_{1} \otimes \sigma_{2}\right) \otimes \sigma_{3}$
LUNIT : ()$\otimes \sigma=\sigma$

## Partial initialization axiom

SWAP is a structural equivalence of type $\forall X, Y . X \otimes Y \rightarrow Y \otimes X$ defined by the function

$$
\operatorname{swap}(x, y)=(y, x)
$$

## Partial initialization axiom

SWAP is a structural equivalence of type $\forall X, Y . X \otimes Y \rightarrow Y \otimes X$ defined by the function

$$
\operatorname{swap}(x, y)=(y, x)
$$

Structural equivalences all correspond to unitaries

$$
\widehat{\mathrm{swap}}: \forall \sigma, \tau . \sigma \otimes \tau=\tau \otimes \sigma
$$

## Partial initialization axiom

SWAP is a structural equivalence of type $\forall X, Y . X \otimes Y \rightarrow Y \otimes X$ defined by the function

$$
\operatorname{swap}(x, y)=(y, x)
$$

Structural equivalences all correspond to unitaries

$$
\widehat{\text { swap }}: \forall \sigma, \tau . \sigma \otimes \tau=\tau \otimes \sigma
$$

The partial initialization a state $X \otimes Y$ is a pair of expressions.

$$
\begin{aligned}
& \operatorname{init}_{X} e \equiv e \\
& \operatorname{init}_{\text {Qubit }(b: \text { Bool })} \equiv|b\rangle \\
& \operatorname{init}_{\sigma \otimes \tau}(a, b) \equiv\left(\text { init }_{\sigma} \quad a, \text { init }_{\tau} b\right)
\end{aligned}
$$

## Partial initialization axiom

SWAP is a structural equivalence of type $\forall X, Y . X \otimes Y \rightarrow Y \otimes X$ defined by the function

$$
\operatorname{swap}(x, y)=(y, x)
$$

Structural equivalences all correspond to unitaries

$$
\widehat{\text { swap }}: \forall \sigma, \tau . \sigma \otimes \tau=\tau \otimes \sigma
$$

The partial initialization a state $X \otimes Y$ is a pair of expressions.

$$
\begin{aligned}
& \operatorname{init}_{X} e \equiv e \\
& \operatorname{init}_{\text {Qubit }(b: \text { Bool })} \equiv|b\rangle \\
& \operatorname{init}_{\sigma \otimes \tau}(a, b) \equiv\left(\text { init }_{\sigma} a, \text { init }_{\tau} b\right)
\end{aligned}
$$

## Axiom

Let $f$ be a structural equivalence. Then

$$
\widehat{f} \# \operatorname{init}(b) \approx \operatorname{init}(f(b))
$$

## Partial measurement axiom

Partial measurement or partial observation:

$$
\begin{aligned}
\operatorname{match}_{X} e \text { with } f= & \text { let } x:=e \text { in } f x \\
\text { match }_{Q u b i t} e \text { with } f= & e>!f \\
\text { match }_{\sigma \otimes \tau} e \text { with } f= & \text { let }(x, y):=e \text { in } \\
& \text { match }_{\sigma} x \text { with }\left(\operatorname{match}_{\tau} y \text { with } f(x, y)\right)
\end{aligned}
$$

## Partial measurement axiom

Partial measurement or partial observation:

$$
\begin{aligned}
\operatorname{match}_{X} e \text { with } f= & \text { let } x:=e \text { in } f x \\
\text { match }_{Q u b i t} e \text { with } f= & e>!f \\
\text { match }_{\sigma \otimes \tau} e \text { with } f= & \text { let }(x, y):=e \text { in } \\
& \text { match }_{\sigma} x \text { with }\left(\operatorname{match}_{\tau} y \text { with } f(x, y)\right)
\end{aligned}
$$

Axiom
Let $f$ be a structural equivalence. Then:

$$
\text { match } \widehat{f} \# e \text { with } g \approx \text { match } e \text { with } g \circ f
$$

## Results

- Two axioms:
- structural unitaries + initialization
- structural unitaries + measurement


## Results

- Two axioms:
- structural unitaries + initialization
- structural unitaries + measurement
- Quantum programming language embedded in HoTT
- (Finite) classical data, tuples, and sums


## Results

- Two axioms:
- structural unitaries + initialization
- structural unitaries + measurement
- Quantum programming language embedded in HoTT
- (Finite) classical data, tuples, and sums
- Complete with respect to Staton's equational theory


## Results

- Two axioms:
- structural unitaries + initialization
- structural unitaries + measurement
- Quantum programming language embedded in HoTT
- (Finite) classical data, tuples, and sums
- Complete with respect to Staton's equational theory
- Sound with respect to density matrices


## Results

- Pros: theorems for free with path induction
- Cons:
- theorems not actually free
- no normalization
- steep learning curve


## Results

- Pros: theorems for free with path induction
- Cons:
- theorems not actually free
- no normalization
- steep learning curve
- Takeaway: Equations stem (mostly) from quantum data/classical control, not artificial axioms


## Results

- Pros: theorems for free with path induction
- Cons:
- theorems not actually free
- no normalization
- steep learning curve
- Takeaway: Equations stem (mostly) from quantum data/classical control, not artificial axioms


## Thanks!

# A HoTT Quantum Equational Theory 

Jennifer Paykin<br>Galois, Inc<br>jpaykin@galois.com<br>MURI Project Review<br>University of Maryland

March 8, 2019

## Questions?

Supported by FA9550-16-1-0082
Semantics and Structures for Higher-level Quantum Programming
Languages

## References I

M. Backens. Completeness and the ZX -calculus. PhD thesis, University of Oxford, 022015.
N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic, volume 933 of Lecture Notes in Computer Science, pages 121-135. Springer Berlin Heidelberg, 1995. doi: 10.1007/BFb0022251.
A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron. Quipper: A scalable quantum programming language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI '13, pages 333-342, New York, NY, USA, 2013. ACM. doi: $10.1145 / 2491956.2462177$.

## References II

J. Paykin, R. Rand, and S. Zdancewic. QWIRE: A core language for quantum circuits. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, pages 846-858, New York, NY, USA, 2017. ACM. doi: 10.1145/3009837.3009894.
R. Rand, J. Paykin, and S. Zdancewic. QWIRE practice: Formal verification of quantum circuits in Coq. In Proceedings 14th International Conference on Quantum Physics and Logic, QPL 2017, Nijmegen, The Netherlands, 3-7 July 2017., pages 119-132, 2017. doi: 10.4204/EPTCS.266.8.
S. Staton. Algebraic effects, linearity, and quantum programming languages. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '15, pages 395-406, New York, NY, USA, 2015. ACM. doi: $10.1145 / 2676726.2676999$.

