
A HoTT Quantum Equational Theory

Jennifer Paykin
Galois, Inc

jpaykin@galois.com

MURI Project Review
University of Maryland

March 8, 2019

With Steve Zdancewic at the University of Pennsylvania.

Quantum data, classical control

...via embedded languages

I Quipper [Green et al., 2013]
I Embedded in Haskell, a functional lazy language.
I Uses Haskell types, functions, data structures, type classes,

template haskell... to construct quantum circuits.
I Access to Haskell REPL and debugging tools.

I LiQUiD, Q language, Project Q, QISKit, pyQuill...
I Qwire [Paykin et al., 2017, Rand et al., 2017]

I A formal theory of embedded quantum circuits.
I Implemented as an embedded language in Coq, a theorem

prover with dependent types.
I Uses Coq theorem proving capabilities to prove correctness of

quantum circuits.

Quantum data, classical control

...via embedded languages
I Quipper [Green et al., 2013]

I Embedded in Haskell, a functional lazy language.
I Uses Haskell types, functions, data structures, type classes,

template haskell... to construct quantum circuits.
I Access to Haskell REPL and debugging tools.

I LiQUiD, Q language, Project Q, QISKit, pyQuill...
I Qwire [Paykin et al., 2017, Rand et al., 2017]

I A formal theory of embedded quantum circuits.
I Implemented as an embedded language in Coq, a theorem

prover with dependent types.
I Uses Coq theorem proving capabilities to prove correctness of

quantum circuits.

Quantum data, classical control

...via embedded languages
I Quipper [Green et al., 2013]

I Embedded in Haskell, a functional lazy language.
I Uses Haskell types, functions, data structures, type classes,

template haskell... to construct quantum circuits.
I Access to Haskell REPL and debugging tools.

I LiQUiD, Q language, Project Q, QISKit, pyQuill...

I Qwire [Paykin et al., 2017, Rand et al., 2017]
I A formal theory of embedded quantum circuits.
I Implemented as an embedded language in Coq, a theorem

prover with dependent types.
I Uses Coq theorem proving capabilities to prove correctness of

quantum circuits.

Quantum data, classical control

...via embedded languages
I Quipper [Green et al., 2013]

I Embedded in Haskell, a functional lazy language.
I Uses Haskell types, functions, data structures, type classes,

template haskell... to construct quantum circuits.
I Access to Haskell REPL and debugging tools.

I LiQUiD, Q language, Project Q, QISKit, pyQuill...
I Qwire [Paykin et al., 2017, Rand et al., 2017]

I A formal theory of embedded quantum circuits.
I Implemented as an embedded language in Coq, a theorem

prover with dependent types.
I Uses Coq theorem proving capabilities to prove correctness of

quantum circuits.

Quantum/non-quantum calculus

quantum
EDSL

classical
host language

a
(Lower

I Based on Linear/Non-Linear
(LNL) logic [Benton, 1995]

I Linear types, pairs (⊗), etc

a : α

put a : QExp · (Lower α)

e : QExp ∆ (Lower α) f : α→ QExp ∆′ τ

e >! f : QExp (∆,∆′) τ

Quantum/non-quantum calculus

quantum
EDSL

classical
host language

a
(Lower

I Based on Linear/Non-Linear
(LNL) logic [Benton, 1995]

I Linear types, pairs (⊗), etc

a : α

put a : QExp · (Lower α)

e : QExp ∆ (Lower α) f : α→ QExp ∆′ τ

e >! f : QExp (∆,∆′) τ

Quantum/non-quantum calculus

quantum
EDSL

classical
host language

a
(Lower

I Based on Linear/Non-Linear
(LNL) logic [Benton, 1995]

I Linear types, pairs (⊗), etc

a : α

put a : QExp · (Lower α)

e : QExp ∆ (Lower α) f : α→ QExp ∆′ τ

e >! f : QExp (∆,∆′) τ

Quantum/non-quantum calculus

quantum
EDSL

classical
host language

a
(Lower

I Derived quantum operations:

Qubit = Lower(Bool)

|b〉 = put b

let b := meas e in e ′ = e >! λb.e ′

I Unitaries (not derived):

U : UMatrix(σ, τ) e : QExp ∆ σ

U # e : QExp ∆ τ

Quantum/non-quantum calculus

quantum
EDSL

classical
host language

a
(Lower

I Derived quantum operations:

Qubit = Lower(Bool)

|b〉 = put b

let b := meas e in e ′ = e >! λb.e ′

I Unitaries (not derived):

U : UMatrix(σ, τ) e : QExp ∆ σ

U # e : QExp ∆ τ

Reasoning about quantum data

I Denotational semantics
I Spaces are exponential in size of program

I Program logics
I Best suited to imperative quantum languages

I Equational theory
I Syntactic rules that characterize when programs are equivalent.
I May or may not be directed; difficult to normalize.
I Validated with respect to denotational semantics.

Reasoning about quantum data

I Denotational semantics
I Spaces are exponential in size of program

I Program logics
I Best suited to imperative quantum languages

I Equational theory
I Syntactic rules that characterize when programs are equivalent.
I May or may not be directed; difficult to normalize.
I Validated with respect to denotational semantics.

Reasoning about quantum data

I Denotational semantics
I Spaces are exponential in size of program

I Program logics
I Best suited to imperative quantum languages

I Equational theory
I Syntactic rules that characterize when programs are equivalent.
I May or may not be directed; difficult to normalize.
I Validated with respect to denotational semantics.

Goal

Equational theory for embedded quantum circuit language.

I Interaction between quantum data and host language control

I NOT equational theory for classes of unitaries

Goal

Equational theory for embedded quantum circuit language.

I Interaction between quantum data and host language control

I NOT equational theory for classes of unitaries

Prior work – Staton [2015]

I Equational theory for algebra with unitaries and classical
control.

I Complete with respect to C ∗-algebras.
I Procedural axioms based on diagrams

I symmetric monoidal structure

Prior work – Staton [2015]

I Equational theory for algebra with unitaries and classical
control.

I Complete with respect to C ∗-algebras.

I Procedural axioms based on diagrams
I symmetric monoidal structure

Prior work – Staton [2015]

I Equational theory for algebra with unitaries and classical
control.

I Complete with respect to C ∗-algebras.
I Procedural axioms based on diagrams

I symmetric monoidal structure

Goal

Equational theory for embedded quantum circuit language.

I Specialized to an embedded programming language
I not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

I Fewer “procedural” axioms, focus on interesting axioms.

I Completeness of axioms by comparing with Staton’s theory.

Goal

Equational theory for embedded quantum circuit language.

I Specialized to an embedded programming language
I not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

I Fewer “procedural” axioms, focus on interesting axioms.

I Completeness of axioms by comparing with Staton’s theory.

Goal

Equational theory for embedded quantum circuit language.

I Specialized to an embedded programming language
I not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

I Fewer “procedural” axioms, focus on interesting axioms.

I Completeness of axioms by comparing with Staton’s theory.

Goal

Equational theory for embedded quantum circuit language.

I Specialized to an embedded programming language
I not algebra or diagrams (e.g. ZX calculus [Backens, 2015])

I Fewer “procedural” axioms, focus on interesting axioms.

I Completeness of axioms by comparing with Staton’s theory.

Homotopy type theory (HoTT): a type theory of equality

I Equality of two terms a = b is a type

I Constructor: 1a : a = a

I Terms of equality type p : a = b called paths

I Path induction:

H : ∀(a, b : A). a = b → Type ∀(a : A). H(1a)

path indH : ∀(a, b : A). ∀(p : a = b). H(p)

I Equivalence class of an element a : A with respect to a
relation R: [a]R = [b]R if (a, b) ∈ R.

Homotopy type theory (HoTT): a type theory of equality

I Equality of two terms a = b is a type

I Constructor: 1a : a = a

I Terms of equality type p : a = b called paths

I Path induction:

H : ∀(a, b : A). a = b → Type ∀(a : A). H(1a)

path indH : ∀(a, b : A). ∀(p : a = b). H(p)

I Equivalence class of an element a : A with respect to a
relation R: [a]R = [b]R if (a, b) ∈ R.

Homotopy type theory (HoTT): a type theory of equality

I Equality of two terms a = b is a type

I Constructor: 1a : a = a

I Terms of equality type p : a = b called paths

I Path induction:

H : ∀(a, b : A). a = b → Type ∀(a : A). H(1a)

path indH : ∀(a, b : A). ∀(p : a = b). H(p)

I Equivalence class of an element a : A with respect to a
relation R: [a]R = [b]R if (a, b) ∈ R.

Homotopy type theory (HoTT): a type theory of equality

I Equality of two terms a = b is a type

I Constructor: 1a : a = a

I Terms of equality type p : a = b called paths

I Path induction:

H : ∀(a, b : A). a = b → Type ∀(a : A). H(1a)

path indH : ∀(a, b : A). ∀(p : a = b). H(p)

I Equivalence class of an element a : A with respect to a
relation R: [a]R = [b]R if (a, b) ∈ R.

Homotopy type theory (HoTT): a type theory of equality

I Equality of two terms a = b is a type

I Constructor: 1a : a = a

I Terms of equality type p : a = b called paths

I Path induction:

H : ∀(a, b : A). a = b → Type ∀(a : A). H(1a)

path indH : ∀(a, b : A). ∀(p : a = b). H(p)

I Equivalence class of an element a : A with respect to a
relation R: [a]R = [b]R if (a, b) ∈ R.

Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A→ A→ Prop is a type
A/R with data constructor:

a : A

[a]R : A/R

...

and path constructor:

a, b : A p : R(a, b)

[p] : [a]R = [b]R

Note
If p, q : R(a, b) and p 6= q, then [p] 6= [q].

Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A→ A→ Prop is a type
A/R with data constructor:

a : A

[a]R : A/R

... and path constructor:

a, b : A p : R(a, b)

[p] : [a]R = [b]R

Note
If p, q : R(a, b) and p 6= q, then [p] 6= [q].

Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A→ A→ Prop is a type
A/R with data constructor:

a : A

[a]R : A/R

... and path constructor:

a, b : A p : R(a, b)

[p] : [a]R = [b]R

Note
If p, q : R(a, b) and p 6= q, then [p] 6= [q].

So what?

I HITs use paths to represent equivalence relations or groupoids.

I Path induction still holds of HITs:
I Prove theorems about groupoids by showing property holds of

1a : a = a.

I Unitary transformations form a groupoid.

So what?

I HITs use paths to represent equivalence relations or groupoids.
I Path induction still holds of HITs:

I Prove theorems about groupoids by showing property holds of
1a : a = a.

I Unitary transformations form a groupoid.

So what?

I HITs use paths to represent equivalence relations or groupoids.
I Path induction still holds of HITs:

I Prove theorems about groupoids by showing property holds of
1a : a = a.

I Unitary transformations form a groupoid.

Idea: Represent Unitaries as paths

I UMatrix(α, β) is the type of unitary matrices of dimension
|α| × |β|.
I α, β : FinType

I Quantum types: QType = FinType/UMatrix.
I Qubit = [Bool]UMatrix

I Unitaries are paths:

U : UMatrix(α, β)

[U] : [α] = [β]

I [H] : Qubit = Qubit

Idea: Represent Unitaries as paths

I UMatrix(α, β) is the type of unitary matrices of dimension
|α| × |β|.
I α, β : FinType

I Quantum types: QType = FinType/UMatrix.
I Qubit = [Bool]UMatrix

I Unitaries are paths:

U : UMatrix(α, β)

[U] : [α] = [β]

I [H] : Qubit = Qubit

Idea: Represent Unitaries as paths

I UMatrix(α, β) is the type of unitary matrices of dimension
|α| × |β|.
I α, β : FinType

I Quantum types: QType = FinType/UMatrix.
I Qubit = [Bool]UMatrix

I Unitaries are paths:

U : UMatrix(α, β)

[U] : [α] = [β]

I [H] : Qubit = Qubit

Idea: Represent Unitaries as paths

I UMatrix(α, β) is the type of unitary matrices of dimension
|α| × |β|.
I α, β : FinType

I Quantum types: QType = FinType/UMatrix.
I Qubit = [Bool]UMatrix

I Unitaries are paths:

U : UMatrix(α, β)

[U] : [α] = [β]

I [H] : Qubit = Qubit

HoTT QNQ calculus

σ ∈ QType = FinType/UMatrix

Lower α ≡ [α]UMatrix

e := x | let x := e in e ′

| (e1, e2) | let (x1, x2) := e in e ′

| put a | e >! f | · · ·

I Derive |b〉 and meas e using Lower

I Derive unitaries...

HoTT QNQ calculus

σ ∈ QType = FinType/UMatrix

Lower α ≡ [α]UMatrix

e := x | let x := e in e ′

| (e1, e2) | let (x1, x2) := e in e ′

| put a | e >! f | · · ·

I Derive |b〉 and meas e using Lower

I Derive unitaries...

HoTT QNQ calculus

σ ∈ QType = FinType/UMatrix

Lower α ≡ [α]UMatrix

e := x | let x := e in e ′

| (e1, e2) | let (x1, x2) := e in e ′

| put a | e >! f | · · ·

I Derive |b〉 and meas e using Lower

I Derive unitaries...

Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : σ = τ .

(σ, τ : QType ≡ FinType/UMatrix)

If ∆ ` e : σ then there exists another expression ∆ ` U # e : τ .
(apply the unitary U to e)

Proof.
By path induction. The proposition is true for 1σ : σ = σ:

1σ # e ≡ e

Note
[H] # e 6= e because [H] 6= 1Qubit

Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : σ = τ .

(σ, τ : QType ≡ FinType/UMatrix)

If ∆ ` e : σ then there exists another expression ∆ ` U # e : τ .
(apply the unitary U to e)

Proof.
By path induction. The proposition is true for 1σ : σ = σ:

1σ # e ≡ e

Note
[H] # e 6= e because [H] 6= 1Qubit

Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : σ = τ .

(σ, τ : QType ≡ FinType/UMatrix)

If ∆ ` e : σ then there exists another expression ∆ ` U # e : τ .
(apply the unitary U to e)

Proof.
By path induction. The proposition is true for 1σ : σ = σ:

1σ # e ≡ e

Note
[H] # e 6= e because [H] 6= 1Qubit

Unitaries in the HoTT QNQ

Theorem
Let U : σ = τ and V : τ = ρ be unitary transformations. Then

V # (U # e) = (V ◦ U) # e.

Proof.
By path induction on V . If V ≡ 1τ then

LHS = 1τ # (U # e) = U # e

RHS = (1t ◦ U) # e = U # e

Unitaries in the HoTT QNQ

Theorem
Let U : σ = τ and V : τ = ρ be unitary transformations. Then

V # (U # e) = (V ◦ U) # e.

Proof.
By path induction on V . If V ≡ 1τ then

LHS = 1τ # (U # e) = U # e

RHS = (1t ◦ U) # e = U # e

We can prove a lot...

Theorem
U

†
(U # e) = e

Theorem
(U1 ⊗ U2) # (e1, e2) = (U1 # e1,U2 # e2)

Theorem
discard(meas(U # e)) = discard(meas(e))

Theorem
X # |0〉 = |1〉 meas(X # e) = ¬meas(e)

We can prove a lot...

Theorem
U

†
(U # e) = e

Theorem
(U1 ⊗ U2) # (e1, e2) = (U1 # e1,U2 # e2)

Theorem
discard(meas(U # e)) = discard(meas(e))

Theorem
X # |0〉 = |1〉 meas(X # e) = ¬meas(e)

We can prove a lot...

Theorem
U

†
(U # e) = e

Theorem
(U1 ⊗ U2) # (e1, e2) = (U1 # e1,U2 # e2)

Theorem
discard(meas(U # e)) = discard(meas(e))

Theorem
X # |0〉 = |1〉 meas(X # e) = ¬meas(e)

We can prove a lot...

Theorem
U

†
(U # e) = e

Theorem
(U1 ⊗ U2) # (e1, e2) = (U1 # e1,U2 # e2)

Theorem
discard(meas(U # e)) = discard(meas(e))

Theorem
X # |0〉 = |1〉 meas(X # e) = ¬meas(e)

...but not everything

Theorem
SWAP # (e1, e2) = (e2, e1)

Proof.
????

Theorem
let (x , y) := SWAP # e in e ′ = let (y , x) := e in e ′

Proof.
????

Similar results for behavior of other “structural” unitaries:

ASSOC : σ1 ⊗ (σ2 ⊗ σ3) = (σ1 ⊗ σ2)⊗ σ3
LUNIT : ()⊗ σ = σ

...

...but not everything

Theorem
SWAP # (e1, e2) = (e2, e1)

Proof.
????

Theorem
let (x , y) := SWAP # e in e ′ = let (y , x) := e in e ′

Proof.
????

Similar results for behavior of other “structural” unitaries:

ASSOC : σ1 ⊗ (σ2 ⊗ σ3) = (σ1 ⊗ σ2)⊗ σ3
LUNIT : ()⊗ σ = σ

...

...but not everything

Theorem
SWAP # (e1, e2) = (e2, e1)

Proof.
????

Theorem
let (x , y) := SWAP # e in e ′ = let (y , x) := e in e ′

Proof.
????

Similar results for behavior of other “structural” unitaries:

ASSOC : σ1 ⊗ (σ2 ⊗ σ3) = (σ1 ⊗ σ2)⊗ σ3
LUNIT : ()⊗ σ = σ

...

Partial initialization axiom
SWAP is a structural equivalence of type ∀X ,Y . X ⊗ Y → Y ⊗ X
defined by the function

swap(x , y) = (y , x)

Structural equivalences all correspond to unitaries

ŝwap : ∀σ, τ. σ ⊗ τ = τ ⊗ σ

The partial initialization a state X ⊗ Y is a pair of expressions.

initX e ≡ e

initQubit (b : Bool) ≡ |b〉
initσ⊗τ (a, b) ≡ (initσ a, initτ b)

Axiom
Let f be a structural equivalence. Then

f̂ # init(b) ≈ init(f (b))

Partial initialization axiom
SWAP is a structural equivalence of type ∀X ,Y . X ⊗ Y → Y ⊗ X
defined by the function

swap(x , y) = (y , x)

Structural equivalences all correspond to unitaries

ŝwap : ∀σ, τ. σ ⊗ τ = τ ⊗ σ

The partial initialization a state X ⊗ Y is a pair of expressions.

initX e ≡ e

initQubit (b : Bool) ≡ |b〉
initσ⊗τ (a, b) ≡ (initσ a, initτ b)

Axiom
Let f be a structural equivalence. Then

f̂ # init(b) ≈ init(f (b))

Partial initialization axiom
SWAP is a structural equivalence of type ∀X ,Y . X ⊗ Y → Y ⊗ X
defined by the function

swap(x , y) = (y , x)

Structural equivalences all correspond to unitaries

ŝwap : ∀σ, τ. σ ⊗ τ = τ ⊗ σ

The partial initialization a state X ⊗ Y is a pair of expressions.

initX e ≡ e

initQubit (b : Bool) ≡ |b〉
initσ⊗τ (a, b) ≡ (initσ a, initτ b)

Axiom
Let f be a structural equivalence. Then

f̂ # init(b) ≈ init(f (b))

Partial initialization axiom
SWAP is a structural equivalence of type ∀X ,Y . X ⊗ Y → Y ⊗ X
defined by the function

swap(x , y) = (y , x)

Structural equivalences all correspond to unitaries

ŝwap : ∀σ, τ. σ ⊗ τ = τ ⊗ σ

The partial initialization a state X ⊗ Y is a pair of expressions.

initX e ≡ e

initQubit (b : Bool) ≡ |b〉
initσ⊗τ (a, b) ≡ (initσ a, initτ b)

Axiom
Let f be a structural equivalence. Then

f̂ # init(b) ≈ init(f (b))

Partial measurement axiom

Partial measurement or partial observation:

matchX e with f = let x := e in f x

matchQubit e with f = e >! f

matchσ⊗τ e with f = let (x , y) := e in

matchσ x with (matchτ y with f (x , y))

· · ·

Axiom
Let f be a structural equivalence. Then:

match f̂ # e with g ≈ match e with g ◦ f

Partial measurement axiom

Partial measurement or partial observation:

matchX e with f = let x := e in f x

matchQubit e with f = e >! f

matchσ⊗τ e with f = let (x , y) := e in

matchσ x with (matchτ y with f (x , y))

· · ·

Axiom
Let f be a structural equivalence. Then:

match f̂ # e with g ≈ match e with g ◦ f

Results

I Two axioms:
I structural unitaries + initialization
I structural unitaries + measurement

I Quantum programming language embedded in HoTT
I (Finite) classical data, tuples, and sums

I Complete with respect to Staton’s equational theory

I Sound with respect to density matrices

Results

I Two axioms:
I structural unitaries + initialization
I structural unitaries + measurement

I Quantum programming language embedded in HoTT
I (Finite) classical data, tuples, and sums

I Complete with respect to Staton’s equational theory

I Sound with respect to density matrices

Results

I Two axioms:
I structural unitaries + initialization
I structural unitaries + measurement

I Quantum programming language embedded in HoTT
I (Finite) classical data, tuples, and sums

I Complete with respect to Staton’s equational theory

I Sound with respect to density matrices

Results

I Two axioms:
I structural unitaries + initialization
I structural unitaries + measurement

I Quantum programming language embedded in HoTT
I (Finite) classical data, tuples, and sums

I Complete with respect to Staton’s equational theory

I Sound with respect to density matrices

Results

I Pros: theorems for free with path induction
I Cons:

I theorems not actually free
I no normalization
I steep learning curve

I Takeaway: Equations stem (mostly) from quantum
data/classical control, not artificial axioms

Thanks!

Results

I Pros: theorems for free with path induction
I Cons:

I theorems not actually free
I no normalization
I steep learning curve

I Takeaway: Equations stem (mostly) from quantum
data/classical control, not artificial axioms

Thanks!

Results

I Pros: theorems for free with path induction
I Cons:

I theorems not actually free
I no normalization
I steep learning curve

I Takeaway: Equations stem (mostly) from quantum
data/classical control, not artificial axioms

Thanks!

A HoTT Quantum Equational Theory

Jennifer Paykin
Galois, Inc

jpaykin@galois.com

MURI Project Review
University of Maryland

March 8, 2019

Questions?
Supported by FA9550-16-1-0082

Semantics and Structures for Higher-level Quantum Programming
Languages

References I

M. Backens. Completeness and the ZX-calculus. PhD thesis,
University of Oxford, 02 2015.

N. Benton. A mixed linear and non-linear logic: Proofs, terms and
models. In L. Pacholski and J. Tiuryn, editors, Computer
Science Logic, volume 933 of Lecture Notes in Computer
Science, pages 121–135. Springer Berlin Heidelberg, 1995. doi:
10.1007/BFb0022251.

A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and
B. Valiron. Quipper: A scalable quantum programming
language. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and
Implementation, PLDI ’13, pages 333–342, New York, NY, USA,
2013. ACM. doi: 10.1145/2491956.2462177.

References II

J. Paykin, R. Rand, and S. Zdancewic. QWIRE: A core language
for quantum circuits. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL
2017, pages 846–858, New York, NY, USA, 2017. ACM. doi:
10.1145/3009837.3009894.

R. Rand, J. Paykin, and S. Zdancewic. QWIRE practice: Formal
verification of quantum circuits in Coq. In Proceedings 14th
International Conference on Quantum Physics and Logic, QPL
2017, Nijmegen, The Netherlands, 3-7 July 2017., pages
119–132, 2017. doi: 10.4204/EPTCS.266.8.

S. Staton. Algebraic effects, linearity, and quantum programming
languages. In Proceedings of the 42Nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 395–406, New York, NY, USA,
2015. ACM. doi: 10.1145/2676726.2676999.

	References

