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Quantum data, classical control

...via embedded languages

I Quipper [Green et al., 2013]
I Embedded in Haskell, a functional lazy language.
I Uses Haskell types, functions, data structures, type classes,

template haskell... to construct quantum circuits.
I Access to Haskell REPL and debugging tools.

I LiQUiD, Q language, Project Q, QISKit, pyQuill...
I Qwire [Paykin et al., 2017, Rand et al., 2017]

I A formal theory of embedded quantum circuits.
I Implemented as an embedded language in Coq, a theorem

prover with dependent types.
I Uses Coq theorem proving capabilities to prove correctness of

quantum circuits.
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Quantum/non-quantum calculus

quantum
EDSL

classical
host language

a
(Lower

I Based on Linear/Non-Linear
(LNL) logic [Benton, 1995]

I Linear types, pairs (⊗), etc

a : α

put a : QExp · (Lower α)

e : QExp ∆ (Lower α) f : α→ QExp ∆′ τ

e >! f : QExp (∆,∆′) τ
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I Derived quantum operations:

Qubit = Lower(Bool)

|b〉 = put b

let b := meas e in e ′ = e >! λb.e ′

I Unitaries (not derived):

U : UMatrix(σ, τ) e : QExp ∆ σ

U # e : QExp ∆ τ
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Reasoning about quantum data

I Denotational semantics
I Spaces are exponential in size of program

I Program logics
I Best suited to imperative quantum languages

I Equational theory
I Syntactic rules that characterize when programs are equivalent.
I May or may not be directed; difficult to normalize.
I Validated with respect to denotational semantics.
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Homotopy type theory (HoTT): a type theory of equality

I Equality of two terms a = b is a type

I Constructor: 1a : a = a

I Terms of equality type p : a = b called paths

I Path induction:

H : ∀(a, b : A). a = b → Type ∀(a : A). H(1a)

path indH : ∀(a, b : A). ∀(p : a = b). H(p)

I Equivalence class of an element a : A with respect to a
relation R: [a]R = [b]R if (a, b) ∈ R.
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Higher Inductive Type (HIT)

Definition
The quotient of a type A by a relation R : A→ A→ Prop is a type
A/R with data constructor:

a : A

[a]R : A/R

...

and path constructor:

a, b : A p : R(a, b)

[p] : [a]R = [b]R

Note
If p, q : R(a, b) and p 6= q, then [p] 6= [q].
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So what?

I HITs use paths to represent equivalence relations or groupoids.

I Path induction still holds of HITs:
I Prove theorems about groupoids by showing property holds of

1a : a = a.

I Unitary transformations form a groupoid.
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Unitaries in HoTT QNQ

Theorem
Let U be a unitary transformation U : σ = τ .

(σ, τ : QType ≡ FinType/UMatrix)

If ∆ ` e : σ then there exists another expression ∆ ` U # e : τ .
(apply the unitary U to e)

Proof.
By path induction. The proposition is true for 1σ : σ = σ:

1σ # e ≡ e

Note
[H] # e 6= e because [H] 6= 1Qubit
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...but not everything

Theorem
SWAP # (e1, e2) = (e2, e1)

Proof.
????
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let (x , y) := SWAP # e in e ′ = let (y , x) := e in e ′

Proof.
????

Similar results for behavior of other “structural” unitaries:

ASSOC : σ1 ⊗ (σ2 ⊗ σ3) = (σ1 ⊗ σ2)⊗ σ3
LUNIT : ()⊗ σ = σ
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Partial initialization axiom
SWAP is a structural equivalence of type ∀X ,Y . X ⊗ Y → Y ⊗ X
defined by the function

swap(x , y) = (y , x)

Structural equivalences all correspond to unitaries

ŝwap : ∀σ, τ. σ ⊗ τ = τ ⊗ σ

The partial initialization a state X ⊗ Y is a pair of expressions.

initX e ≡ e

initQubit (b : Bool) ≡ |b〉
initσ⊗τ (a, b) ≡ (initσ a, initτ b)

Axiom
Let f be a structural equivalence. Then

f̂ # init(b) ≈ init(f (b))
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Partial measurement axiom

Partial measurement or partial observation:

matchX e with f = let x := e in f x

matchQubit e with f = e >! f

matchσ⊗τ e with f = let (x , y) := e in

matchσ x with (matchτ y with f (x , y))

· · ·

Axiom
Let f be a structural equivalence. Then:

match f̂ # e with g ≈ match e with g ◦ f
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