
Roger Penrose

On the Nature of Quantum Geometry

As a way of honoring Professor Wheeler on his sixtieth birthday, I propose
to take this opportunity to elaborate upon certain somewhat speculative ideas
which I have tried to hint at on occasion, concerning the possible nature of
a quantized space-time. The reader will not need to be too discerning to
recognize some substantial differences between the ideas I am proposing here
and those which Professor Wheeler has on many occasions so eloquently and
forcefully put forward. Nonetheless, there is little doubt in my own mind as
to the very great inspirational influence that Professor Wheeler’s own views
have had in the development of several of the thoughts which I am expressing
here.

To begin with, let me make clear that I do not necessarily mean by “quan-
tized space-time” something which could be obtained by applying standard
(or even non-standard) techniques of quantization to Einstein’s general the-
ory of relativity. What I wish to say has its roots in something which is
really more primitive than either quantum theory or relativity as such. This
is the question of the fundamental role played by the mathematical concept
of continuum in virtually the whole of accepted present-day physical theory.
Not only does the continuum occupy a basic position in our mathematical
models of space and time (with the concomitant implication of a continuous
nature for many related physical concepts such as velocity, energy, momen-
tum, temperature, etc.), but so also does present-day quantum theory rest
crucially on a continuum concept, namely on the two-dimensional complex
continuum of probability amplitudes, this being the continuum which also
occurs in the superposition law.

Let me say at the outset that I am not happy with this state of affairs in
physical theory. The mathematical continuum has always seemed to me to
contain many features which are really very foreign to physics. This point
has been argued forcefully, particularly by Schrödinger [1] and also by a
number of other physicists and philosophers [2]. If one is to accept the
physical reality of the continuum, then one must accept that there are as

0This paper originally appeared in Magic Without Magic, edited by J. Klauder, Free-
man, San Francisco, 1972, pp. 333–354.
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many points in a volume of diameter 10−13 cm or 10−33 cm or 10−1000 cm
as there are in the entire universe. Indeed, one must accept the existence
of more points than there are rational numbers between any two points in
space no matter how close together they may be. (And we have seen that
quantum theory cannot really eliminate this problem, since it brings in its
own complex continuum.) It seems clear that such “points” have actually
very little to do with physical reality. Nevertheless, their postulated existence
is virtually essential to contemporary physical theory. The concepts of open
and closed sets, for example, depend vitally on this continuum of points and
are essentially meaningless in strictly physical terms, but such concepts can
be used to great effect when mathematical theory is applied to physics (For
example, in proving global “singularity” theorems about space-times, etc.
[3, 4, 5]).

I think it must be the case that the all-pervading use of the continuum
in physics stems from its mathematical utility rather than from any essential
physical reality that it may possess. However, it is not even quite clear that
such use of the continuum is not, to some extent a historical accident. For al-
though the essential mathematical ideas can be traced back to Eudoxus (4th
century B.C.), it was not until sometime after Newton and Leibniz invented
the calculus that it was felt to be necessary to formalize and make com-
pletely rigorous the mathematical continuum concept. But there are other
“nonstandard” continua [6, 7] different from the one that has now become
conventional, which could equally well have been adopted in order to make
the calculus rigorous. In these nonstandard continua, “infinitesimal” and
“infinite” elements are introduced and are treated as being just as “real” as
the “real numbers” of conventional analysis. In fact, it has occasionally been
argued that nonstandard analysis might really have been a more natural de-
velopment of the ideas of Newton, Leibniz, and Euler than the actual analysis
which Cauchy, Weierstrass, and others finally formalized. (In addition, non-
standard analysis allows one to define such concepts as Dirac delta-functions
so that they become effectively “ordinary’ functions [8].) If the history of
mathematics had developed differently, then we might, by now, have formed
a very different view from the one now prevalent of the nature of space and
time, and of many other physical concepts.

I do not want to imply here that non-standard analysis ought to be em-
ployed in physical theory. I wish merely to point out the lack of firm founda-
tion for assigning any physical reality to the conventional continuum concept.
My own view is that ultimately physical laws should find their most natural
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expression in terms of essentially combinatorial principles, that is to say, in
terms of finite processes such as counting or other basically simple manipula-
tive procedures. Thus, in accordance with such a view, should emerge some
form of discrete or combinatorial space-time. I do not mean that necessarily
we should arrive at a space-time containing a discrete set of points, such as
the lattice space-time of Schild [9], or some discrete causal space [10] or, for
example, some structure based on Ahmavaara’s large finite field [11]. I would
expect, rather, that the concept of a space-time composed of points should
cease to be an appropriate one—except in some kind of limiting sense. But if
points are not to be the basic elements of the discrete space-time, then how
are we to decide what these basic elements should in fact be?

It is my view that an essential insight into the nature of the appropri-
ate combinatorial structure should actually emerge once the interrelations
between quantum physics with the present-day view of space-time are fully
appreciated.1 But was I not arguing that quantum theory is of no value for
eliminating the continuum, since it entails the use of the complex continuum
right at the outset? This is certainly true as it stands. However, I think it
is important to make the distinction here between quantum theory (which
requires a complex continuum concept) and quantum physics (according to
which certain physical quantities are recognized as being actually discrete,
while having previously been taken to be continuous). My idea is to try to
“reformulate” physical laws so that they may be expressed entirely in terms
of quantities which are discrete according to quantum physics. These “re-
formulated” laws would, hopefully, be expressible entirely in combinatorial
terms, even though they would be essentially re-expressing the content of
conventional quantum theory, of space-time theory and, perhaps, of other
aspects of physics as well. Thus, the quantum theory and space-time theory
would be expected to arise together, out of some more primitive combinato-
rial theory.

In order to be more explicit as to the sort of “reformulation” that I
have in mind, I should describe a certain model which I have referred to
elsewhere [13, 14] which may be thought of as a prototype for this type of
theory. The basic idea of the model is to take the concept of total angular

1I should remark here on the interesting program by D. Finkelstein [12] according to
which quantum theory is to be built into the mathematical description of space-time even
at basic level of set theory. To be in accordance with the view point I am expressing here,
however, such a “quantization of set theory” would have to be accompanied by a suitable
“combinatorialization of quantum theory.”
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FIGURE 1.
An example of a spin-network. The numerals denote total spin values in
units of 1

2
~.

momentum and to regard this as the primary physical quantity; then the
quantum mechanical rules for combining (nonrelativistic) total angular mo-
menta can be re-expressed in purely combinatorial terms; finally, the concept
of space direction is to be extracted and shown to agree, in the limit of large
angular momenta, with the ordinary geometry of directions in a Euclidean
three-dimensional space. The reason for fastening attention on the concept
of total angular momentum in the first instance is that it seems to be more
or less uniquely singled out by a number of criteria. For we have to choose
something, which according to quantum physics, is discrete, preferably tak-
ing numerical values which are integer multiples of some basic unit (in this
case 1

2
~). Since we are interested in reconstructing a form of space out of this

discrete physical quantity, we need something which is intimately related to
spatial and directional properties. This suggests that we should use angular
momentum, rather than other possible quantum numbers. Finally, since we
wish to construct space rather than depend upon any assumption of pre-
existing spatial directions, we must use total angular momentum (j-values)
rather than the angular momentum in some preassigned direction (m-values).
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FIGURE 2.
The a- and the b-units come together to form an x-unit. With spin-networks
labelled as above, the probability of the value x is given by Equation (1).

The model operates with structures I call spin-networks. An example is
illustrated in Figure 1. The line segments are called units and are to be
loosely interpreted as “world lines” of particles, or of simple systems which
may be regarded as momentarily isolated from the rest of the universe. Each
of these particles or simple systems has to be stationary (not really moving
relative to the others, in this model) and possess a well-defined total angular
momentum. The integer labelling each unit is its spin-number. This measures
the total angular momentum of the unit, as a multiple of 1

2
~. Exactly three

units must come together at each (internal) vertex. Depending upon which
way we choose to regard time as progressing in the diagram (but normally we
choose upward), we may interpret the meanings of the vertices in different
ways. We may think of a vertex as representing the combining of two units
together to make a third, or as the splitting of a single unit into two separate
units. A unit which is not terminated at both ends by a vertex is called an
end-unit.

Given a spin-network, we may calculate, using purely combinatorial means,
a certain nonnegative integer, called the norm of the spin network. I have
described this calculational procedure elsewhere [14], and I do not propose
to go into the details here. Suffice it to say that this combinatorially defined
norm may be used to obtain the probability that the spin number x is the
result, when two end-units of a given spin-network α, come together to form
a new unit. With spin-networks labelled as in Figure 2, the formula turns
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out to be:

probability of x =
normβ normδ

normα normγ
(1)

=
(x+ 1) {1

2
(a + b+ x) + 1}! normβ

{1
2
(a+ b− x)}! { 1

2
(b+ x− a)}! { 1

2
(x + a− b)}! normα

which is a rational number. This result is obtained from conventional non-
relativistic quantum mechanics, but things have to be reformulated consid-
erably for use to be able to state the result in a reasonably simple purely
combinatorial form. I should mention also that a spin-network represents a
physical process which is forbidden (that is, zero probability) by the rules of
nonrelativistic quantum mechanics if and only if its norm vanishes.

The proposal now is to extract a concept of space from this scheme—
or, rather, the simpler concept of directions in space from this particular
model. The basic idea stems from the quantum mechanical fact that a system
with zero total angular momentum must be spherically symmetrical, and so
cannot be used to define a direction in space; a system of total spin 1

2
~ is not

much better, since it “sees” but two alternative “directions” available to it as
regards its state of spin; for spin ~ there are but three alternative “directions,”
and so on. Only for a system involving a comparatively large total spin value,
can we expect that it could define a direction in any well-defined way. And
once we have a large spin, we can envisage a fairly well-defined rotation axis
as a convenient means of defining us a direction in space.

Next, angles between rotation axes can be defined in terms of certain
simple “experiments.” A spin 1

2
~ unit is detached from some unit of large

spin (called a large unit) and then reattached to another large unit. Let us
suppose that the spin of the first large unit is reduced by 1

2
~. Then the spin

of the second large may increased by 1
2
~—with probability p, say—or it may

be reduced by 1
2
~—with probability 1− p. If there is a well-defined angle θ

between the spin axes of the two units, then in accordance with standard
quantum mechanics, we have (in the limit of large spin)

p = cos2 1

2
θ (2)

We can use (2) as the definition of the angle between two large units, provided
that the two units have, in some appropriate sense, a well-defined angle
between them. (Without such a proviso this definition would not lead to a
reasonable geometry.)
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FIGURE 3.
An angle measuring experiment, repeated in order to eliminate the “igno-
rance factor.”

Before considering the question as to when the angle between the spins
of two large units can be considered as “well defined,” I should first be
a little more precise as to the interpretations of the probabilities arising
here. These probabilities are always calculated starting from a given spin-
network α (refer to Figure 2), which is supposed to represent some known
portion of the universe. The spin-network α may occur again at various other
places in the universe. At some places it may be part of a more extended
spin-network β; at other places it may be part of β ′ (which is to differ from β
only in that one of the spin-numbers is different: see x in Figure 2); at other
places it may be part of other spin-networks. The calculated probability is
then supposed to give us the relative frequency of β to β ′ (given α) in the
universe.2 Now, it may be that α contains two large end-units, M and N ,

2This point of view serves to make the probability concept tolerably precise, for pur-
poses of the model. It may possibly leave something to be desired for a physically more
realistic model. For example, whether or not the units labelled a and b in Figure 2 could
actually come together to form another unit might depend on whether or not a suitable
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but without much connecting network between them. This is the situation
where we “know” rather little about the relationship between M and N , so
the probability p that we calculate in the above experiment cannot really be
thought of as defining an “angle” according to (2), but is, rather, partly a
measure of our ignorance of the relation between M and N . For the angle
between M and N to be well defined, we should require this ignorance factor
to be very small.

But how are we to decide whether a probability arises partly from ig-
norance or entirely from angle? Consider the above experiment repeated in
the way depicted in Figure 3. The second experiment gives a probability p′,
which could be affected by the result of the first experiment. If p′ is not
significantly affected by the result of the first experiment (and p′ + p) then
we can say that the ignorance factor is small and the angle between M and
N is well defined. (If the angle between M and N is not well defined in
this sense, then we can generally make the angle better defined by carrying
out a fairly large number of similar experiments in succession. The probabil-
ity normally settles down to some fixed value.) Now, the following theorem
can be proved: if a spin-network has a number of large end units such that
the angle between any two of them is well defined in the above sense, then
these angles can be consistently interpreted as angles between directions in a
Euclidean three-dimensional space.

This result is very satisfactory, but in a way it is perhaps too satisfactory!
It involves a peculiar feature which I want to emphasize particularly in this
article. Suppose we had set up the normal quantum mechanical formalism
for the description of the situation; that is, by giving states in terms of wave
functions involving, say, coordinates r, θ, and φ, these being ordinary spheri-
cal polar coordinates for a preassigned background Euclidean space. Can we
identify the directions (of spin-axes) that we end up with as the directions
in this background Euclidean space? No, we certainly cannot! The condi-
tion, given above, that angles between spin-axes of units be well defined, by
no means ensures that the spin-axes themselves correspond to well-defined
directions. (For example, a state with m = 0 does not define a good back-
ground direction for its spin-axis, no matter how large j is.) I propose to
take the attitude, however, that in this model it is the geometry of “spin-
axes” of the large units which is the real geometry. The background space,

“particle” with spin-number x really existed. This would influence the probabilities in a
way not taken into consideration here.

8



with its spherical polar r, θ, and φ, has no actual physical meaning and is
introduced merely as a convenience for calculations (that is, if one chooses to
use the conventional wave-function description, rather than a combinatorial
procedure). Thus, the system itself defines the geometry and the background
space is really an irrelevance.

It appears that we may think of the relation between the background
space and the real space as being given by a unitary transformation in Hilbert
space. Thus, states which give well-defined directions in one space might cor-
respond to linear superpositions of states having well-defined directions in the
other. This idea is very close to a suggestion by Aharonov [15], according
to which one can pass from one concept of geometry to another by applying
a Hilbert space unitary transformation. In this view, an electron moving
through two slits, for example, does not “feel itself to be split” since the
geometry “felt” by the electron is not quite the same as that of the slits.
According to the electron’s geometry (which would be related to the back-
ground geometry by a unitary transformation) the electron would remain
intact while the background space would be “split” in a certain sense.

Also it is not actually necessary that the “real” geometry should fit to-
gether globally to give a space of the same kind as the background space.
Let me illustrate what I have in mind by reference to the model. Consider a
spin-network α which consists of two portions, λ and µ, each of which has a
number of large end-units with a well-defined angle between them (Figure 4).
Thus, each of λ and µ defines its own Euclidean geometry of directions in
a well-defined way. Now suppose that the connections between λ and µ in
α are not sufficient (or not of the right type) to ensure that the geometry
defined by λ and that defined by µ are consistent with one another (that is,
the angle between a large unit of λ and a large unit of µ need not be well
defined). Then the large units of λ need not correspond to states of spin with
well-defined rotation axes according to the µ geometry, and vice versa. Thus,
we may expect that the relation between the λ-geometry and the µ-geometry
should occur via something like a unitary transformation in Hilbert space.

The circumstance whereby each part of a structure can define its own
local Euclidean geometry, but where these local geometries need not quite
patch together to make a global Euclidean geometry, is reminiscent of the
situation occurring with Riemannian geometry, as used in general relativity.
In fact, it is one of my main contentions in this article that the curvature of
space-time may indeed have its origins in an effect of the kind just described.
But how are we to relate, in any meaningful way, the effects of space-time
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FIGURE 4.
The spin-networks λ and µ each define their own geometry, but owing to in-
adequate connections between λ and µ, the two geometries are not consistent
with one another.

curvature to the effects of a unitary Hilbert space transformation? On a
classical level, we would expect such unitary transformations to show up
as canonical transformations in suitable classical variables. Thus, it must
be possible to relate space-time curvature to canonical transformations in a
suitable manner. I shall show how this can be done, first, in a way which
is closely related to (but not quite the same as) the way which I believe to
have the most significance. I shall describe the way I prefer afterward.

Let M be a space-time manifold3 and let C be its cotangent bundle [16,
17]. Thus, each point of C represents a point x of M together with some
covariant vector pa (referred to as a momentum vector) at the point x. The
eight-dimensional manifold C has a natural symplectic (or “Hamiltonian”)
structure defined by the two-form [17, 18]

ω = dpa ∧ dxa . (3)

Of interest also is the naturally defined one-form

ϕ = pa dx
a (4)

of which ω is the exterior derivative: ω = dϕ. The inverse of the tensor (on

3A four-dimensional, pseudo-Riemannian (+−−−), time-oriented Hausdorff manifold
with a C2-metric.
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FIGURE 5.
The space GK of k-geodesics in M inherits a symplectic structure from that
of the cotangent bundle C.

C) defining ω is the bivector which defines the Poisson bracket :

{ , } =
∂

∂pi
⊗ ∂

∂xi
− ∂

∂xi
⊗ ∂

∂pi
. (5)

Any smooth transformation of C to itself which preserves the symplectic
structure ω—or equivalently, which preserves the Poisson bracket (5)—will be
a canonical transformation. However, these are not quite the transformations
that concern us here. We must first construct a reduced phase space by a
standard procedure [19]. Let CK be the seven-dimensional submanifold of C
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for which the squared “Hamiltonian ”

H ≡ gab pa pb (6)

takes the constant value H = K. The Poisson bracket now defines a vector
field χ (or “flow”) on CK by

χ(f) = {H, f} (7)

(f being an arbitrary smooth function on C). The integral curves of χ are the
“lifts” of geodesics [19, 20] in the space-time M (see Figure 5), the tangent
vector to the geodesics being pa = gab pb. Now, the space CK, being odd-
dimensional, does not possess a symplectic structure. (The form ω induces
a degenerate two-form called a pre-symplectic structure on CK). However,
we can (locally, at least) factor out CK by the integral curves of χ to obtain
a symplectic six-dimensional manifold GK . Each point of GK represents a
geodesic γ in M whose (parallelly propagated) tangent vector pa has squared
length pa pa = K. Call such a geodesic a K-geodesic.4 The sympletic struc-
ture on GK is that induced by the two-form ω.

It is worthwhile to examine the geometric meaning [19, 20, 21] of this
symplectic structure on GK , and also the meaning of ϕ in relation to GK. In
fact, both ϕ and ω represent integrals of the Jacobi equation for geodesics.
That is to say, they represent properties of neighboring geodesics which can
be calculated at any one point but which are actually constant along the
geodesics. Let us consider ϕ, first, as given by (4). We may think of pa as
the tangent vector to some K-geodesic γ and dxa as a “connecting vector”
which connects a points x on γ to a corresponding neighboring5 point x′ on
a neighboring K-geodesic γ ′ to γ (see Figure 6). The fact pa dx

a is constant6

along γ is a well-known property of Lie derivatives [16]. Now consider the

4We can, of course, restrict attention to the three values K = 1, 0,−1 if desired, since
all other cases are related to these by scalings.

5For the purposes of such geometrical descriptions it is convenient to adopt an “old-
fashioned” attitude to “dxa” and to talk about “neighboring” points and curves. There
is actually no real conflict between the “old-fashioned” and “contemporary” viewpoints
here. An equation such as Qa dx

a = 0 can be interpreted either as “the infinitesimal vector
dxa connecting two neighboring points x and x′ is orthogonal to Qa,” or as “the one-form
Qa dx

a maps to zero the vector at x with which we are concerned.”
6If K = 0 this does not require x and x′ to occur at corresponding parameter values

on γ and γ′. Thus, the one-form ϕ carries over to GK if K = 0.
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FIGURE 6.
The quantity ϕ = pa dx

a is constant along γ (where if K 6= 0, x′ has the
same parameter value on γ ′ as x has on γ).

interpretation of ω. In “old-fashioned” notation we write

ω =
1

2
(dpa δx

a − δpa dxa) (8)

where dxa is as before (but where parameter values need not now correspond)
and where δxa is viewed as a “connecting vector” which connects the point
x on γ to any neighboring point x′′ on a third neighboring geodesic γ ′′. The
tangent vectors to γ ′ and γ′′ are to be, respectively, pa+dpa and pa+δpa (see
Figure 7). The fact that (8) is constant along γ is sometimes referred to as
the Lagrange identity [16]. It is a consequence of the interchange symmetry
of the Riemann tensor: Rabcd = Rcdab. We may think of ω as defining a
measure of the rotation of three neighboring geodesics about one another.

Let us return to the question of the relation between space-time curvature
and canonical transformations. The canonical transformations are actually to
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FIGURE 7.
The geometric meaning of the symplectic structure of GK: the rotation mea-
sure 1

2
ω = (dpa δx

a − δpa dxa) is constant along γ (Lagrange identity).

be applied to the space of K-geodesics GK (for some fixed K), rather than to
the space-time M . (Thus, we must expect that if a space is to be constructed
out of some combinatorial principles in acordance with the general idea of the
model described earlier, then this space should, in the first instance, be more
like GK than directly like M .) We can imagine that it should be possible
to reconstruct the geometry of M once sufficient structure of the space G, is
known, for we may associate each point x of M with the system GK(x) of
K-geodesics through x. Each GK(x) may be viewed as a three-dimensional
submanifold of GK , these submanifolds forming a four-dimensional family
within GK. If we know this family of submanifolds, then we should be able
to reconstruct the space-time M from GK .

Let us consider how this can be done in the special case when M is
Minkowski space-time. The flat geometry of M assigns considerably more
structure to GK than just the symplectic geometry of GK. I do not want
to go into much detail here, but the essential point is that the shear of a
congruence of geodesics in M can, owing to the flatness of M , be defined in a
way which refers to the geodesics in their entirety and does not depend on a
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choice of a particular point on the geodesic. It follows that the shear concept
can be interpreted in terms of some local structure on GK; in fact, in terms
of some tensor field σ on GK . One way of achieving this is by means of a
covariant tensor on GK, of valence four, which, using a notation similar to
that of (8) can be expressed as:

σ = dxa dpa δp
b δpb − δxa δpa dpb dpb . (9)

In order to fix ideas, let us suppose that σ is, in fact, defined by equation (9),
even though this is not completely satisfactory for later purposes. The form
ω already (satisfactorily) achieves a corresponding interpretation with regard
to the rotation of a congruence of geodesics (but, in this case, independent
of the flatness).

The importance of being able to interpret both the shear and rotation
on GK is that σ and ω may now be used to locate the G(x) submanifolds
in GK and hence to reconstruct space-time points. For if x is a point in M
then the congruence of K-geodesics through x (now straight lines) has the
property that its shear and rotation both vanish. (I am now supposing that
K 6= 0, in order to keep the discussion simple.) Conversely, any congruence
with vanishing shear and rotation (and nonvanishing divergence) is a GK(x)
system and hence defines a unique point x in M .

But how does the effect of curvature in M show up in GK? Let us
first consider a very idealized situation. (This is not really essential, but
it serves to clarify matters.) Suppose that M contains two (geodesically
convex) regions F1, and F2, of flat space-time and suppose that some open
set E in GK , represents K-geodesics passing through the interiors of both
F1, and F2. The flat geometry of F1, assigns some “shear structure” σ1, to
E; similarly, the flat geometry of F2, assigns some ”shear structure” σ2 to
E. But, in general, we shall have σ1 6= σ2. This is because a congruence of
geodesics shear-free in F1, will normally begin to pickup shear as soon as it
leaves F1, and enters a region of curved space-time. Only in very exceptional
circumstances would all the shear exactly cancel out by the time the geodesics
finally enter the region F2.

Now the K-geodesics through x, where x is some point in the interior of
F1, will have the property that while within F1, they constitute a shear-free,
rotation-free congruence. This fact could be recognized in E, by reference to
σ1, and ω. But there will be many other shear-free, rotation-free congruences
of K-geodesic segments in F1. Some of these will appear to be converging
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FIGURE 8.
Points in F1 may be located in terms of shear-free rotation-free congruences
of geodesics, but on this basis, points outside F1 would appear to be “fuzzed
out.”

on points which lie just outside the F1 region (see Figure 8). As soon as the
geodesics enter the curved region they will begin to pick up shear, so they will
not normally converge cleanly on any actual point of M . Correspondingly,
a congruence of K-geodesics which actually does converge on a point y just
outside F1, will normally possess a certain amount of shear while in F1.

Thus, we see that the “shear structure” σ1 of E can be used to help locate
the points of F1, but that if we are not careful we will also “locate” things
which appear to be points outside F1, but which are actually not points of
M at all. Similarly, σ2 helps to locate the points of F2, but points which
are not in F2 are incorrectly “located” by this means. In particular, σ1,
locates points in F1, correctly and points in F2 incorrectly, while with σ2
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the situation is just the reverse. In a sense, the points of F2 appear to be
“fuzzed out” when viewed from F1 (that is, using σ1) and vice versa. This
“fuzzing out” may be validly thought of as being the result of a canonical
transformation of E. Such a canonical transformation would preserve ω (the
symplectic structure must be preserved by definition of “canonical”) and
could transform σ1 to σ2. To achieve such a transformation explicitly, we
can set up ordinary Minkowski coordinates in F1. We can then set up a
related canonical coordinate system in a standard way, for the relevant part
of the cotangent bundle C, and thence arrive at canonical coordinates for
E ⊂ GK . Similarly, ordinary Minkowski coordinates in F2 will give rise to
different canonical coordinates for E. These two coordinate systems for E
will be related by a canonical transformation, the components of σ1 with
respect to the first being the same as the components of σ2, with respect to
the second.

Let us pass, now, to the case of a general curved space-time M . for
simplicity, suppose that K ≥ 0 (so that the geodesics are all time-like or
all null) and also that M is globally hyperbolic [22, 23]. Then M admits
slicings by certain space-like hypersurfaces, with the property that any one
of them could be used globally as a Cauchy hypersurface for M [24]. Each
hypersurface S will then intersect each K-geodesic once and once only. Thus,
given S, we can examine the extent of shearing of a congruence ofK-geodesics
at the intersections of these geodesics with S. This gives us a definition of
“shear structure” σs, for GK , relative to the hypersurface S. If we wish to use
(9) for the definition of σ in flat space-time, then we can still use (9) in curved
space-time to define σs by choosing dxa and δxa to connect neighboring points
lying within the hypersurface S (so dxa and δxa are tangent to S).

The six-dimensional manifoldGK will now possess the following structure.
In the first place, it will have a permanent symplectic structure defined by
the two-form ω (and, if K = 0, the one-form Φ with ω = dΦ). In the
second place, it will have a shifting “shear structure” σs, which depends on
the location of the hypersurface S in M . If S is moved over a region of flat
space-time in M , then σs will not change. If S is moved over curved regions
in M , on the other hand, then σs will shift, its rate of change being actually
governed by the Riemann tensor in M at the points over which S moves. It is
σs (in relation to ω) which carries information specifying the actual geometry
of M . The form ω by itself conveys no information as to the metric structure
of the space-time. Given σs the points of S can be realized in GK as three-
dimensional submanifolds GK(x) whose tangent vectors annihilate σs and
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ω (the shear-free and rotation-free conditions). But the points of M which
lie off will, due to the curvature in M , generally appear to be “fuzzed out”
from the point of view of the σs structure, in the sense that the GK(x) cannot
now be recognized as shear-free, with respect to σs. The farther away the
points are from S, the greater, in general, will be this “fuzzing out.” Since
ω does not shift on GK , we can think of this “fuzzing out” as a canonical
transformation effect.

I want, now, to modify this picture somewhat, so as to bring it more into
line with some other features which I feel should be involved, in connection
with a quantized space-time. As a first step let me specialize to the case K =
0. I have several reasons for wishing to do this. One of these is that it turns
out that the “shear structure” of GK , can now be expressed in a particularly
significant form, namely as a complex analytic structure for a closely related
eight-dimensional manifold T (strictly speaking it is an “almost complex”
structure [25] in the most general case). The interplay between complex
analytic structure (that is, “analyticity”) and unitary structure (which, on
the classical level becomes canonical; that is, symplectic structure) seems to
play an important role in modern theory of particles [26, 27], so there could
be some significance in exhibiting such an interplay also at the level of a
space-time analysis.

A second reason for desiring the specialization to K = 0 is that null
geodesics are conformally invariant ; that is to say, they depend only on the
light cone structure of M and not on its metric. There are various reasons
for believing that conformal invariance may actually have some basic role to
play in physics, and that conformally invariant formalisms could have spe-
cial significance as “background formalisms” for physical theory. The notion
of “causality” inasmuch as this refers to the location of the light cones in
space-time (and, therefore, to conformal structure) would seem to have a
particular physical importance, more so than the actual space-time metric.
In addition, all zero rest-mass free fields are, or can be made, conformally
invariant [28, 29, 30, 31, 32, 33]. This applies, in particular, to gravitation, if
we interpret “free” to mean that we are considering linear theory, or at least
the propagation of curvature in empty space (Bianchi identities) [33] rather
than the nonlinear response of curvature (or other fields) to curvature (Ricci
identities). A number of interactions are also conformally invariant (for ex-
ample, electromagnetic interactions or the non-linear self-coupling in the “φ4

scalar theory”) but it is sometimes a little difficult to separate the confor-
mal invariance of the “pure” interaction from the conformally noninvariant
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effects of the presence of rest-mass. It is even conceivable that all conformal
invariance breaking is connected in some important way with the presence
of mass. It is rest-mass which (apparently) is responsible for defining the
scale of phenomena and hence the metric of space-time [5, 34]; it provides us
with the most obvious obstacle to a belief in a universal validity of conformal
invariance in nature. The other most obvious obstacle in which conformal
invariance is broken is in gravitational interactions: Again it is mass which
is involved in an essential (but now different) way. Indeed, it is tempting to
believe that there may be a common origin to these two aspects of confor-
mal invariance breaking. In any case, to think of basic physical processes in
terms of either conformal invariance, or the breaking of conformal invariance,
seems to be a fruitful point of view. To this end, it is very useful to employ
a formalism which makes this conformal invariance manifest wherever it is
present.

The particular choice of formalism that I have in mind, namely twistor
theory [21, 35, 36], is motivated partly by considerations of this kind. Twistors
are, in fact, the spinors [37, 38] for the fifteen parameter conformal group
[39], which is the space-time symmetry group for the zero rest-mass free-field
equations (including linearized gravitation). Any finite-dimensional repre-
sentation of the conformal group is equivalent to a twistor representation.
Also, infinite-dimensional representations can be conveniently described in
terms of functions of twistors. Thus, twistors play a role with regard to the
conformal group analogous to the role played by two-component spinors with
regard to the Lorentz group [40] or rotation group. Now, the combinatorial
model that I was diffussing earlier for the description of nonrelativistic an-
gular momentum was based on the representations of the rotation group. In
fact, the particular combinatorial rules that I had in mind for evaluating the
norm of a spin-network [14] were derived directly from the two-component
spinor algebra. In a corresponding way we might expect to be able to derive
a combinatorial calculus based on twistors, where the conformal group now
takes over the role previously enjoyed by the rotation group.

It was, in fact, the hope of generalizing the spin-network model to make
it more realistic which provided other parts of the motivation for the original
introduction of twistor theory. The two most obvious respects in which the
spin-network model is unrealistic are that it is a nonrelativistic scheme and
that there is no provision for the mixing of spin with orbital angular momen-
tum. These two inadequacies are related to one another; indeed, they are
both aspects of the fact that any relative velocity between the different units
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has been neglected. But it was always clear that the removal of these inad-
equacies in the model would involve considerably more than just the simple
substitution of one group by another. Once the scheme is made relativistic
then we must encounter some of the difficulties involved in passing from a
quantum theory to a quantum field theory; once orbital angular momentum
is brought in, then we have to contend not only with directions in space-time)
and angles, but also with locations and distances.

Accepting that there must be some essential new features arising, the
twistors do seem to provide the right kind of generalization of the nonrela-
tivistic, SU(2), two-component spinors which formed the basis for the spin-
network theory. Twistors are genuinely spinorial objects and so can still
handle half-odd spin values, they are completely relativistic (in the sense of
special relativity), and they adequately mix together the concepts of angular
and translational displacements (so that spin and orbital angular momenta
will combine together in the appropriate way). The use of the conformal
group—and hence the locally isomorphic “twistor group” SU(2, 2)—rather
than the Poincaré group, arises partly from technical mathematical reasons,
connected with the semi-simplicity of SU(2, 2), and partly from reasons men-
tioned above concerning physical importance of conformal invariance. (In
any case, Poincaré invariance is easily extracted from a framework designed
to handle conformal invariance.) The main essentially new feature which is
involved arises from the fact that the conformal group, and SU(2, 2), pos-
sess infinite-dimensional irreducible representations. Most particularly, the
zero rest-mass free fields provide such representations. This implies that the
twistor algebra must be employed more subtly than in the direct way in
which the two-component spinor algebra generated the spin-network theory.
Thus, it may prove to be difficult to reduce the resulting twistor calculations
(which at present involve contour integration) to a set of purely combinato-
rial rules. There seems to be nothing in principle against the possibility of
doing this, however.

But how is twistor theory to be reconciled with general relativity? The
conformal group refers only to symmetries of conformally flat space-time.
Gravitation on the other hand implies the existence of conformal curvature.
My point of view with regard to this question is really the one that I have
been trying to stress throughout this article. Imagine that we have been
able to develop the twistor theory to the point at which calculation can be
expressed in terms of certain combinatorial rules. By analogy with the spin-
network theory, we might expect that these rules would enable us to calculate
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the probability of occurrence of certain types of (graphically defined) situa-
tions in the universe. From these probabilities we should be able to extract
geometrical concepts which would emerge as “well defined” under suitable
circumstances. This would then lead to a concept of local geometry which
would be of a Minkowskian character (assuming that conformal invariance
breaking has been adequately incorporated into the theory—otherwise we
should presumably only obtain a local conformal geometry). The Minkowski
geometries that we extract “locally” might not be consistent with one an-
other over the whole universe. The concept of space-time “point” that we
extract in one region would then appear to be “fuzzed out” from the point of
view of the geometry defined in some other region.7 This “fuzzing out” would
be of the nature of that obtainable by a unitary transformation in Hilbert
space. On the classical level, this would appear as the result of a canonical
transformation applied to a suitable space (namely twistor space—closely re-
lated to GK with K = 0). From this space we do the best we can to extract
a concept of space-time “point” which has some form of universal validity,
but we find that having done this, the space-time that we finally construct is
no longer conformally flat, the conformal curvature being directly relatable
to this “fuzzing out” of points as “viewed ” from distant regions.

To a considerable extent, the above program is speculation. Nevertheless,
the present state of twistor theory does have a number of points of contact
with it. To illustrate something of this, I should be more explicit about the
nature of twistors. Let us, in the first instance, choose M to be Minkowski
space-time. Choose an origin O and consider a classical special-relativistic
system whose total momentum Pa is null and future-pointing and whose
total angular momentum tensor Mab has the property that the spin vector
constructed from it (and Pa) is proportional to the momentum Pa:

P dM bc eabcd = 2 s Pa . (10)

this is a normal requirement [41] for the momentum and angular momentum
structure for a zero rest-mass particle (eabcd being the alternating tensor).
The quantity s is the spin-helicity; that is to say, |s| is the intrinsic spin, while
the sign of s measures the helicity. Translating into a two-spinor notation

7This is necessary because the local Minkowski geometries are not really tangent spaces.
They have to merge one into the other when our point of view changes as we move around
the universe. In a sense, they are all really the same “space.”
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for Pa and Mab we obtain

PAA′ = πA πA′ , (11)

for some πA′ , whence from 10

MAA′BB′ = i ω(A πB) εA
′B′ − i ω(A′ πB

′) εAB (12)

for some ωA (where the round brackets indicate symmetrization). The pair
of spinors (ωA, πA′) defines Pa and Mab uniquely, while Pa and Mab define
(ωA, πA′) up to the combined phase transformation

ωA → eiθ ωA, πA′ → eiθ πA′ (13)

(θ real). Relative to the origin O, this pair of spinors represents a twistor
[35, 36] Zα:

Zα ↔ (ωA, πA′) . (14)

If we pass to a new origin Õ whose position vector relative to O is ha,
then relative to Õ we must represent the twistor Zα by (ω̃A, π̃A′) where

ω̃A = ωA − i πA′ hAA
′
, π̃A′ = πA′ (15)

this being consistent with the transformation of momentum and angular
momentum:

P̃a = Pa, M̃ab = Mab − ha P b + P a hb . (16)

If we pass from the space-time metric gab to a conformally related metric ĝab,
according to the conformal rescaling [5]

ĝab = Ω2 gab, ε̂AB = Ω εAB ; (17)

then Zα must be represented by (ω̂A, π̂A′) where

ω̂A = ωA, π̂A′ = π̂A′ + i ωA Ω−1∇AA′ Ω . (18)

The two transformations (15) and (18), and also any homogeneous Lorentz
transformation, have the property that they are linear transformations (of
unit determinant) which leave the form

Zα Zα = ωA πA + πA′ ω
A′ (19)

= −2 s
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invariant; where the complex conjugate Zα, of the twistor Zα is represented
as

Zα ↔ (πA, ω
A′) (20)

relative to the origin O. Since the Hermitian form (19) has signature (+ +
−−), such transformations generate the group SU(2, 2), this being 4 − 1
isomorphic with the connected component of the conformal group.

Twistors for which Zα Zα = 0, are called null twistors. A null twistor
Zα defines the null straight line ζ in M , which is the locus of points whose
position vectors xa satisfy

i πA′ x
AA′ = ωA (21)

(see equation 15). We may think of ζ as the world line of zero rest-mass
particle of momentum Pa and zero intrinsic spin, this particle having angular
momentum Mab relative to O. The non-null twistors (that is, Zα Zα 6=
0) may be thought of as describing zero rest-mass particles with non-zero
intrinsic spin, but they cannot be uniquely localized in terms of a single
world-line in space-time.

Two null straight lines η and ζ will intersect ( possibly at conformal
infinity) if and only if their corresponding twistors Y α and Zα are orthogonal :

Y α Zα 6= 0 ; (22)

in which case the light cone whose vertex is the intersection q of η and ζ, is
generated by null lines ξ described by null twistors

Xα = λY α + µ Zα . (23)

Since any point q can be represented by its light cone, the linear set (23),
denoted by T (q), gives a twistor way of realizing the point q. If desired, we
can use a twistor

Qαβ = Y α Zβ − Zα Y β (24)

to represent T (q), and hence the point q. (Generally, twistors of higher
valence can be constructed from twistors like Zα or Zα, by means of the
usual tensor rules.)

According to a theorem by Kerr [33], the condition that a congruence of
null straight lines be shear-free can be stated very elegantly in twistor terms
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as the fact that the congruence be representable as the null solutions of an
equation

Φ(Zα) = 0 (25)

(or by the limiting case of such a construction) where Φ is a complex analytic
(holomorphic) function of the components of the twistor Zα. Thus, the shear-
free condition is interpreted, in twistor terms, as essentially the Cauchy-
Riemann equations ∂φ/∂Zα = 0. In other words, the “shear-structure”
for the space T of twistors Zα, may be thought of as a complex (analytic)
structure on T . We can use this structure to locate the T (q) manifolds,
and hence the points of M (since light cones are the only nonshearing null
hypersurfaces in M , apart from null hyperplanes).

Let us turn to the case when M is a (globally hyperbolic) curved space-
time. The concept of a null twistor Z can be adapted without difficulty
from the Minkowski case: we simply interpret Z as a null geodesic ζ in
M at each of whose points is a spinor πA′ , parallelly propagated along ζ,
such that the “momentum vector” Pa, given by PAA′ = πA πA′ , is tangent to
ζ. On the other hand, there appears to be no way of uniquely associating
a non-null twistor with some well-defined structure on M . However, it is
useful to postulate the existence of a space of non-null twistors, into which
the space T0 of null twistors is to be embedded as a hypersurface. This gives
us an eight-dimensional manifold T , the space T0 being a seven-dimensional
submanifold.

The space T is supposed to possess a symplectic structure, namely a real
two-form, which I shall still denote by ω, this being the exterior derivative
ω = dϕ of a complex one-form ϕ on T . The imaginary part of ϕ is to be
the exterior derivative of a scalar field −s on T , the hypersurface T0 being
defined by s = 0. If a region of T0 refers to null geodesics which enter some
region of flat space in M , then we can use the representation of twistors
given in (14), etc., and be more explicit as to the definition of these forms.
We can set [21]

ω = i dZα ∧ dZα, ϕ = i Zα dZα and s = −1

2
Zα Zα (26)

(compare with equation 19). In the case when s = 0 (vanishing of intrinsic
spin) we can substitute Zα ↔ (i xAA

′
πA′ , πA′) (compare with equation 21)

into the right-hand sides and verify directly the formal equivalence with (3)
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and (4). If the null geodesics pass through two regions of flat space, then
the definitions (26) arising from each will agree with one another [21]. We
can also use (26) if the null geodesics do not enter any region of flat space,
provided we are concerned only with T0 and interpret the dZα’s suitably.

The space G0 (that is, GK with K = O) of null geodesics that we con-
sidered earlier, can be regarded as obtainable from T by a process analogous
to that by which G0 was previously obtained from the tangent bundle C.
The (squared) “Hamiltonian” is now the quantity s = − 1

2
Zα Zα. We are

concerned with the seven-dimensional submanifold T0 of T given by s = 0.
The vector field corresponding to χ is now

− i
2
Zα ∂

∂Zα
+
i

2
Zα

∂

∂Zα

, (27)

which generates the transformations Zα → eiθ Zα (see equation 13). We fac-
tor out by these phase transformations to pass from T0 to the six-dimensional
space G0 (see Figure 9). This process enables us to carry over the symplectic
structure ω, and also ϕ, from T , now, to the space G0. The result agrees
with the previous construction [20]. Thus, the symplectic structure of T can,
when restricted to T0, be given some real geometrical significance.

It is actually possible to go considerably farther than this in explicitly
exhibiting the form of canonical transformation on T , which is induced, for
example, by the presence of a gravitational wave in M . An interplay be-
tween analytic functions and the symplectic structure of T appears again in
a surprising way [36]. I do not want to go into all this here. The main point
I wanted to make is that conformal curvature shows up classically on the
space T in terms of canonical transformations

Zα → Z̃α (Zβ, Zγ),

the form ω being preserved [21]. Such a transformation shifts the complex
structure of T . It is the complex structure of T (being its “shear structure”)
which serves to “locate” the points in M . Such a shift causes “good” null
cones to be transformed into cones which do not focus cleanly at a proper
vertex. In this way it has the effect of “fuzzing out” points which had previ-
ously appeared to be “good” points and vice versa. Quantum mechanically,
we would expect this effect to result from a unitary transformation

Zα → Z̃α (Zβ, ∂/∂Zγ) .

25



FIGURE 9.
The symplectic structure of G0 arises from that of C or from that of T in a
similar way.

In my descriptions up to now I have essentially ignored the question of
the topology of M . I can, however, see no real objection to applying these
ideas to quite general space-time manifolds with complicated topology. The
restriction to a globally hyperbolic M allows one to avoid the more serious
problems which might arise. But it also precludes any possibility of having
a space-time with a changing topology, for example. (Global hyperbolicity
is equivalent [24] to the existence of a Cauchy hypersurface for M .) If global
hyperbolicity is dropped, then T0 and G0 could exhibit certain pathologies. If
M is assumed to be strongly causal [3, 4, 5] then the worst of these pathologies
can be avoided. But there still remains the possibility that T0 and G0 could
turn out to be non-Hausdorff manifolds under such circumstances.

Finally, I should say something about the status of the details of twistor
theory at the moment [36]. The theory allows computations to be carried out
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using contour integrals, which are intended to represent (cross sections for)
scattering processes involving electromagnetic and gravitational interactions,
etc. (It is such computations as these which one would hope to be able
ultimately to re-express in a purely combinatorial form.) At the time of
writing, there is some evidence that those computations which represent
the conformally invariant part of the theory (for example, electromagnetic
interactions without rest-mass) are substantially correct. On the other hand,
it has not yet been possible to find the correct way of handling the conformally
noninvariant parts of the theory (for example, rest-mass and gravitational
interactions). But there appears to be no insuperable obstacle eventually to
achieving this.
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