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1. Generalities

1.1 SC and DC functions on Euclidean spaces. A function f : R
n → R is

called semiconcave (SC) if it is locally representable as the difference of a concave function
and a smooth function. Clearly SC is closed w.r.t. addition, multiplication by positive
numbers and taking minimum. Notice also that if F : R

` → R
m and G : R

m → R
n have

SC components and the components of G are increasing in each argument, then G ◦F has
SC components.

We say that f ∈ DC if it is locally representable as the difference of two SC functions
or, equivalently, as the difference of two concave functions. It is easy to see that DC is an
algebra, and f/g ∈ DC whenever f, g ∈ DC and g does not vanish anywhere. Morever, if
maps F : R

` → R
m and G : R

m → R
n have DC components then so does G ◦ F . (Indeed,

we can (locally) decompose F = F2 ◦ F1, where F1 : R
` → R

2m has concave components,
and F2(x1, . . . , xm, y1, . . . , ym) = (x1− y1, . . . , xm− ym). Now G ◦F2 has DC components,
and we can write (locally) G ◦F2 = G1−G2, where G1 and G2 have concave components,
increasing in each argument. It follows that G1◦F1 and G2◦F1 have concave components.)
A homeomorphism F : R

n → R
n can be called a DC isomorphism when f is DC if and

only if f ◦F is DC. It follows from the previous remark that F is a DC isomorphism iff F

and F−1 have DC components.

1.2 SC and DC functions on Alexandrov spaces. Let Mn be a (compact when
necessary) Alexandrov space with empty boundary. A Lipschitz function f : M → R is SC
if for each x ∈M there is a neighborhood Ux 3 x and λx ∈ R such that for every geodesic
γ in Ux the function f ◦ γ(t) + λxt

2 is concave in t. The basic example of an SC function
is dist2

x for some x ∈ M . Any continuous function f can be uniformly approximated by
SC functions fj(x) = infy∈M (f(y) + j · |xy|2). If f is SC in some domain U ⊂ M and
K ⊂ U is compact then there is a function f̄ which coincides with f on K and is SC on
the whole M . (Indeed, take f̄ = min(f, adist2

∂U − b) on U and f̄ = adist2
∂U − b on M\U

for appropriate large a, b.)

We say that f is DC on M if it is locally representable as the difference of two SC
functions. Our previous remark shows that the word ”locally” can be dropped. On the
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other hand, every DC function can be locally represented as the difference of two concave
ones — this follows from the existence of very concave functions in small neighborhoods
of every point, see [P].

2. Background from [P] and an extension for general SC functions

2.1 Scalar product. Every SC function has a differential at each point; the differential
dxf is a concave homogeneous function on the tangent cone Cx, and its restriction f ′(x) to
the space of directions Σx ⊂ Cx is spherically concave. In particular, if f = disty, y 6= x,
then f ′(x) = − cos disty′ =: χy′ , where y′ is the set of directions of all shortest geodesics
from x to y.

In general, if Σ is a compact Alexandrov space with curvature≥ 1, with empty boundary,
then a lipschitz function f : Σ → R is called spherically concave if f(y)|xz| ≥ f(x)|yz| +
f(z)|xy| whenever y lies on a shortest geodesic between x and z. It is also convenient
to consider 0-dimensional Σ, consisting of two points x, y at the distance π, and say that
f : Σ→ R is spherically concave if f(x) + f(y) ≤ 0.

Using induction on dimension, we can define a scalar product of two spherically concave
functions f, g by

〈f, g〉 = sup
x∈Σ

(f(x)g(x) + 〈f ′(x), g
′
(x)〉) ,

where the term with derivatives is dropped when dim Σ = 0. Obviously, 〈f, g〉 = 〈g, f〉,
〈λf, g〉 = λ〈f, g〉 if λ ≥ 0, 〈f, f〉 ≥ 0 for any f . It is easy to check by induction that

〈min(f, g), h〉 ≤ max(〈f, h〉, 〈g, h〉)

〈f + g, h〉 ≤ 〈f, h〉+ 〈g, h〉

〈f, g〉2 ≤ 〈f, f〉〈g, g〉

〈χA, h〉 = −min
a∈A

h(a) for any compact A ⊂ Σ; in particular, 〈χA, χB〉 = cos |A,B|

〈−f(a)χa, g〉 = f(a)g(a) ≤ 〈f, g〉 if f attains its minimal value at a .

Using quasigeodesics it is also easy to show by induction that ‖f‖ := 〈f, f〉 12 = −minx∈Σ f(x).

Remark. In [P] we used a different scalar product which did not work for general
spherical concave functions.

2.2 Consecutive approximations. The scalar product, described in 2.1, can be
used to extend all the results of [P] by replacing the admissible functions and functions of
class DER with general SC and spherically concave functions respectively. In particular,
we have
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Lemma. (cf. [P, Lemma 1]) Let Σn−1 be a compact Alexandrov space with curvature ≥ 1,
with empty boundary, and let fi : Σ → R, i = 0, 1, . . . , k be spherically concave functions.
Assume that ε = min0≤i 6=j≤k(−〈fi, fj〉) > 0. Then

(1) k ≤ n, and
(2) for each i, 1 ≤ i ≤ k, there exists ξi ∈ Σ such that fj(ξi) = 0 for j 6= 0, i,

f0(ξi) ≥ ε, fi(ξi) ≤ −ε.

Now let f = (f1, . . . fk) be a map with SC components. A point x ∈M is called regular
for F if there exist εx > 0 and Ux 3 x such that for each y ∈ Ux we have 〈f ′i(y), f

′
j(y)〉 < −εp

for all 1 ≤ i 6= j ≤ k, and there exists ξ+ ∈ Σy with f ′i(y)(ξ
+) > εp for all 1 ≤ i ≤ k. (In

fact, the second condition needs to be checked only at y = x.) If F is regular at x, then
the statement (2) of the lemma allows us to use consecutive approximations to prove that
F is open near x. (Indeed, we can increase all the coordinates of F (y) by moving in the
direction ξ+, and we can decrease the i-th coordinate without changing others by moving
in the direction ξi guaranteed by the lemma.) In case k = n, F is in fact a bilipschitz
homeomorphism near x. (The proof of local one-to-one property of F is an easy argument
based on volume and angle comparison and the statement (1) of the lemma; in [P] it is
hidden in the first step of induction (from k = n + 1 to k = n) in the proof of the Main
Theorem.)

3. DC coordinate charts

Proposition. Let F = (f1, . . . , fn) have SC components and be regular in some neighbor-
hood of x ∈M . Then

(A) If f is SC near x and 〈f ′(y), f
′
i(y)〉 < −εx < 0, 1 ≤ i ≤ n, for all y near x,

then f ◦ F−1 is SC near F (x).
(B) If f̄ is SC and increasing in each argument near F (x) then f̄ ◦ F is SC near x.
(C) f is DC near x iff f ◦ F−1 is DC near F (x).

Proof. (A) Let γ̄(t) be a straight segment in the image of F , γ(t) = F−1 ◦ γ̄(t),
y = γ(0). From the fact that F is bilipschitz it is easy to see that γ has unique right
and left tangent vectors γ+(0), γ−(0) ∈ Cy. Furthermore, dyf(γ+(0)) + dyf(γ−(0)) ≤ 0.
Indeed, otherwise, using concavity of dyf and dyfi, we could find a vector v ∈ Cy, such
that dyf(v) > 0 and dyfi(v) ≥ 0, 1 ≤ i ≤ n, which leads to a contradiction with the
statement (1) of the lemma in 2.2. Now we’ll check that

(1) f ◦ γ(t) ≤ f(y) + f ′(y)(γ
+(0))t+ Ct2 when t > 0 is small, for some C independent

of t, y, γ; the corresponding statement for t < 0 and γ−(0) is checked similarly.
3



Consider a quasigeodesic σ starting at y in the direction γ+(0)/|γ+(0)|. Since f, fi are
SC we have

(2) fi ◦ σ(|γ+(0)|t) ≤ fi(y) + f ′i(y)(γ
+(0))t + Ct2, 1 ≤ i ≤ n, and a similar inequality

for f .

(See [PPet]; in fact, in this argument we only need the first step of the construction of
quasigeodesics, which is not technically complicated.) On the other hand,

(3) fi ◦ γ(t) = fi(y) + f ′i(y)(γ
+(0))t, 1 ≤ i ≤ n by the definition of γ.

Therefore, using the bilipschitz property of F , we can find a point z in the Ct2-neighborhood
of σ(|γ+(0)|t), such that

(4) fi ◦ γ(t) ≥ fi(z), 1 ≤ i ≤ n, and
(5) f(z) ≤ f(y) + f ′(y)(γ

+(0))t+ Ct2.

We claim that

(6) f(γ(t)) ≤ f(z)

Indeed, z can be obtained from γ(t) by consecutive approximations, as in 2.2, starting
from γ(t),and (4) guarantees that we only need to use the directions ξi in the process, thus
increasing the value of f . Now (1) follows from (5) and (6).

(B) This is almost immediate from the definitions.
(C) This follows easily from (A) and (B). For example, if f is SC near x then

f̃ = f +Ndist2
z satisfies 〈f̃ ′(y), f

′
i(y)〉 < −εx < 0 for all 1 ≤ i ≤ n and all y sufficiently close

to x, if z is obtained by moving x a little bit in the direction where all fi increase, and N
is large enough. �

Let S denote the set of singular points of M , and let M∗ ⊃M\S be the set of all points
x ∈M such that Σx contains n+ 1 directions making obtuse angles with each other. M∗

is open, convex, and dimH(M\M∗) ≤ n − 2. (Convexity follows from Petrunin’s work
[Pet] on parallel translation, the other properties follow from the results of [BGP].) For
each point x ∈M∗ we can find a map F : M → R

n with SC components, which is regular
near x. The collection of all such maps form an atlas on M∗ and the transition functions
are DC according to statement (C) of our Proposition. Following [OS] we can make the
transition functions continuously differentiable on M\S by taking the components of the
coordinate maps in the form

∫
y∈B distydHn.

4. Consequences

4.0 Analytical preliminaries. First we introduce some notation. Let F : U ⊂M∗ →
R
n be a DC coordinate chart. We denote by DC0 the class of DC functions on F (U) which
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are continuously differentiable on F (M\S), and by BV0 the class of bounded functions of
bounded variation, which are continuous on F (M\S). At the end of the previous section
we described a DC0 atlas on M∗, and we can say that a function f is DC0 (BV0) near
x ∈M∗ if f ◦ F−1 is DC0 (BV0) near F (x) for some (and hence for all) DC0 charts F .

It is well known that the first partial derivatives of the DC (DC0) function are in
BV (BV0), and the second partial derivatives are signed Radon measures, with ∂2f

∂xi∂xj
=

∂2f
∂xj∂xi

as measures. We will also use a classical theorem of Alexandrov, which implies that
DC functions have second differential a.e., and their first partial derivatives, considered
a.e., are differentiable a.e. It is also known (see [F, 4.5.9(29)]) that since Hn−1(S) = 0,
we have ‖Df‖(A) = 0 for every Hn−1 − σ-finite set A and f ∈ BV0, in particular we can
multiply any first partial derivative of f by a bounded function which is continuous off a
Hn−1 − σ-finite set, and still get a signed Radon measure.

The following assertions will be used in 4.2 and 4.3. (see [V] for more general results;
my thanks to L.C.Evans for this reference)

Lemma.

(1) If f, g are bounded and BV then fg is BV. Moreover, if g does not change sign and
is bounded away from zero, then f/g ∈ BV .

(2) If f, g ∈ BV0(U) then (fg)xi = fxi · g + f · gxi as measures.
(3) Let g ∈ BV0(U), U ⊂ R

n
x, and let F = (f1, . . . , fn) : U → F (U) ⊂ R

n
y be a DC0

isomorphism. Then

F#

(
∂g

∂xi
dx1 ∧ · · · ∧ dxn

)
= det(JF )−1

∑
j

∂fj
∂xi

∂(g ◦ F−1)
∂yj

 dy1 ∧ · · · ∧ dyn .

Proof. (1) Clear by approximation, using semicontinuity of variation measure.
(2) We need to check that

∫
U

(fg)hxi =
∫
U
fxi · gh +

∫
U
f · gxih holds for any smooth

function h with compact support. Of course this is true if both f, g are smooth, and it
is easy to check by approximation if at least one of them is smooth. In general consider
a sequence of mollified functions gj ; clearly gj converges to g at each point where g is
continuous, which is ‖Df‖–a.e. Thus

∫
(fgj)hxi →

∫
(fg)hxi and

∫
fxigjh →

∫
fxigh by

the dominated convergence theorem. To check the convergence of the remaining term, fix a
small δ > 0 and let K be a compact set where f has jumps of size ≥ δ. Since ‖Dg‖(K) = 0,
we can find an open neighborhood V ⊃ K such that ‖Dg‖(clos V ) < δ for large j. (Here
we use that ‖Dgj‖ weaky converges to ‖Dg‖.) Since f has no jumps of size > δ near U\V ,
we can find a continuous function f̄ which is uniformly 2δ-close to f on U\clos V . Now

|
∫
U

f · gxih−
∫
U\clos V

f̄ · gxih| ≤ Cδ ,
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the same is true for gj with large j, and∫
U\clos V

f̄(gj)xih→
∫
U\clos V

f̄gxih

because ‖Dgj‖ converges weakly to ‖Dg‖.
(3) Arguing similarly to the proof of (2) we can cut off a neighborhood of a compact set

where the first derivatives of the components of F have jumps ≥ δ, then cover the rest of
U by small balls where those derivatives are nearly constant, and check that the left- and
right-hand sides of our identity are nearly equal on each ball, using DC functions as test
functions. The details are left to the reader. �

4.1 DeRham complex. Differential forms on M can be defined as elements of the
vector space generated by monomials of the form f0df1 ∧ · · · ∧ dfm, where all fi ∈ DC,
and two forms can be considered equivalent if they have the same values a.e. The exterior
differentiation can be defined by d(f0df1 ∧ · · · ∧ dfm) = df0 ∧ · · · ∧ dfm. Correctness of this
definition follows from the identity

df0∧df1∧· · ·∧dfm(X1∧· · ·∧Xm) =
m∑
j=0

(−1)j
∂

∂xj
(f0df1∧· · ·∧dfm(X0∧· · ·∧X̂j∧· · ·∧Xm))

for coordinate vectors X0, . . . ,Xm of some DC coordinate system F , which holds at each
point where all fi ◦ F−1 are twice differentiable, which is a.e.

4.2 Metric tensor. Let F = (f1, . . . , fm) be a DC0 coordinate chart near x ∈ M∗.
Then, according to [OS], the metric of M near x can be expressed by a metric tensor,
defined and continuous at each nonsingular point. Now let f be a distance function,
f = disty, y 6= x. Then f ◦F−1 is DC near F (x), in particular, differentiable a.e., and we
have

(1)
∑
i,j

gij ∂(f ◦ F−1)/∂xi · ∂(f ◦ F−1)/∂xj = 1 a.e.

Now suppose x ∈ M δ for sufficiently small δ > 0, where M δ = {x ∈ M : Hn−1(Σx) >
(1−δ)Hn−1(Sn−1)} is an open, convex subset of M , containing M\S. Then we can choose
a DC0 coordinate chart F and a collection of distance functions fα, 1 ≤ α ≤ n(n+ 1)/2,
in such a way that the determinant of the system of linear equations (1) with fα in place
of f , with unknowns gij , is positive and bounded away from zero in a small neighborhood
of F (x). (Indeed, this is easy to arrange with some safety margin if M = R

n, and the
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condition x ∈ M δ guarantees that euclidean inequalities for ∂(fα◦F−1)
∂xi

continue to hold
in M up to a small error.) Thus the components of the metric tensor can be expressed
as rational functions of the first derivatives of fα ◦ F−1. In particular, since fα ◦ F−1

are DC near F (x), we conclude that the components of the metric tensor are in BV0 and
differentiable a.e.

Remark. This improves the earlier results of Otsu and Shioya [OS].

4.3 Metric connection. Let A,B,C be bounded vector fields on M δ, and assume in
addition that A and C are continuous off an Hn−1 − σ-finite set, and B ∈ BV0 (that is,
the coordinates of B in DC0 charts are BV0). Then there exists a signed Radon measure
〈∇AB,C〉 on M δ which becomes∑

i,j,k

AiCj
(
∂Bk

∂xi
gkj + 1

2B
k

(
∂gij
∂xk

+
∂gkj
∂xi

− ∂gik
∂xj

))
· det(gij)

1
2 dx1 ∧ · · · ∧ dxn

in each DC0 coordinate chart F : U ⊂ M δ → R
n
x . The correctness of the definition is

proved by a standard computation using the observations of 4.0.

4.4 The Hessian of SC functions.

Proposition. Let F be a DC0 chart near x and let f be a DC function near x. Assume
that Cx = R

n, f ◦ F−1 has first and second differentials at F (x), and the components of
the metric tensor w.r.t. F are differentiable at F (x). Then dxf is linear on Cx and there
exists a quadratic form Hxf on Cx such that

f(y) = f(x) + dxf(y′)|xy|+ 1
2Hxf(y′, y′)|xy|2 + o(|xy|2) ,

where y′ ∈ Σx denotes the direction of (any) shortest geodesic xy. Moreover, Hxf can be
calculated using standard formulas.

Proof. First of all, we can make a smooth change of coordinates in such a way that
in the new coordinate system G the metric tensor at G(x) becomes the identity matrix,
and its first derivatives vanish. (Indeed, consider a smooth metric with the same values of
the metric tensor and its first derivatives at F (x), find the coordinate transformation that
produces normal coordinates, and apply it to F .) Thus we have |gij(G(y))−δij | = o(|xy|),
and therefore

(1) | |yz| − |G(y)G(z)| | = o(r2) for y, z ∈ Bx(r). Moreover, we have
(2) |∠yxz − ∠G(y)G(x)G(z)| = o(|yz|) when all angles of the triangle G(y)G(x)G(z)

are bounded away from zero.
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Indeed, take a point p such that G(p) is in the plane G(y)G(x)G(z), G(x) is contained in
the triangle G(p)G(y)G(z) and all angles formed by these four points are bounded away
from zero. Then (1) implies that

∠̃yxz + ∠̃yxp+ ∠̃zxp ≥ ∠G(y)G(x)G(z) + ∠G(y)G(x)G(p) + ∠G(z)G(x)G(p) + o(|yz|)

= 2π + o(|yz|) .

On the other hand, ∠̃yxz ≤ ∠yxz, ∠̃yxp ≤ ∠yxp, ∠̃zxp ≤ ∠zxp, and ∠yxz + ∠yxp +
∠zxp ≤ 2π, whence |∠̃yxz − ∠yxz| = o(|yz|) and (2) follows from (1).

Now let y be close to x. We claim that the angle at G(x) between the directions
of the straight segment G(x)G(y) and the image of shortest geodesic G(xy) is o(|xy|)
— clearly this proves the proposition. To check the claim, find a point y1 such that
|xy1| = |xy|/2, the direction of G(xy) is between that of G(x)G(y) and of G(x)G(y1),and
the angle between the latter ones is π/2. Then (2) implies that ∠(G(xy1), G(x)G(y1)) >
∠(G(xy), G(x)G(y)) − o(|xy|). Thus if the estimate ∠(G(xy), G(x)G(y)) = o(|xy|) were
false, we could construct a sequence yi → x with angles ∠(G(xyi), G(x)G(yi)) bounded
away from zero, which is clearly impossible. �

Remark. In a recent work [O], Otsu proves a slightly weaker version of this proposition
for distance functions. His technique is completely different, and has the advantage of
expressing Hessian of a distance function in terms of derivatives of the norms of Jacobi
fields, which is a result of independent interest.
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