Chapter 5

Nilpotent Lie algebras

5.1 Definition

Definition 5.1.1 A Lie algebra is called nilpotent if there exists a decreasing finite sequence (gi)ic(o,k]
of ideals such that go = @, gr = 0 and [g,9;] C giy1 for all i € [0,k — 1].

Proposition 5.1.2 Let g be a Lie algebra, the following conditions are equivalent:
(1) the Lie algebra g is nilpotent;
(1) we have Ckg =0 for k large enough;

(1) we have Crg = g for k large enough;

(w) there exists an integer k such that adzq o---oadxy = 0 for any sequence (xi)ie[l,k} of elements
mng;

(v) there exists a decreasing sequence of ideals (8;)ic(o,n] with go = @, 8n = 0 and such that [g, g;] C
git+1 and dim g;/gi+1 = 1 for all i € [0,n — 1].

Proof. We start with the equivalence of the first three conditions. If (22) or (u2) holds, then the
sequence (Gig)ie[l,k] or (Cr—i@)ic[1,x) satisfy the conditions of the definition and g is nilpotent.

Conversely, if the exists a sequence of ideals (g;);c[o,x) as in the definition, we prove by induction that
C'g C g; and C;g D gg—;- This is true for ¢ = 0. Assume that C'g C g; and C;g D gr_;, then we have the
inclusions €"*'g = [g, C'g] C [g,8:] C giy1 and [g/C;, (g (i+1) + Cig)/Cig] C (gr—i +Cig)/Cig = 0. The
last inclusion implies that (gj_(i41) + Cig)/Cig is in the center of g/C;g and therefore g;_(;11) C Cit1g.
We get CFg =0 and C,g = g.

Now (u2) and (wv) are equivalent. Indeed, the ideal C*g is composed of the linear combinations of
elements of the form [z1, [x2, [ - [zk,y] - ]]] = adz10--- ocad zk(y) with x; € g for all i and y € g.

Finally (:) and (v) are equivalent. Indeed the last condition imply the first. Conversely, assume that
(8i)ie[o,k) is a sequence of ideals as in the definition of a nilpotent Lie algebra. Then let us complete the
sequence (g;)ic[o,k] t0 a sequence (Qé)z’e[om} with n = dim g, dimg;, = n—i, gi+1 C g; and g;l_dimgj =g;.
We only need to prove that [g,g;] C g;,,. But, for i € [0,n], we define iy = max{j / g; C g;}. We
have g;,+1 C g, C g; C gi,. Therefore [g,g!] C [g,9i,] C gi,11 C g}, O

Corollary 5.1.3 The center of a non trivial nilpotent Lie algebra is non trivial.

Proof. Indeed, we must have C1g # 0 otherwise there is no k with Crg = g. O
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Corollary 5.1.4 The Killing form kg vanishes for g nilpotent.

Proof. For any (z,y) € g%, the element ad z o ad y is nilpotent thus rg4(z,y) = Tr(adz o ady) = 0. O

Proposition 5.1.5 Any subalgebra, any quotient algebra, any central extension a Lie subalgebra is
again a Lie subalgebra. A finite product of nilpotent Lie algebras is again a nilpotent Lie algebra.

Proof. Let g be a nilpotent Lie algebra.

Let b be a subalgebra of g, then C*h € C*g and the result follows for b.

Let a be an ideal in g and let 7 : g — g/a be the projection. We proved in Proposition 2.5.6 that
7(C*g) = ¥(g/a) and the result follows for g/a.

Let 0 — a — g % g — 0 be a central extension, then p(€Fg’) = CFg. Therefore if C*g = 0, then
Ckg' C a and CFlg’ = 0 because a C 3(g’).

The last assertion follows from the condition (2v) in the previous proposition. O

5.2 Engel’s Theorem

Theorem 5.2.1 Let V' be a vector space and g be a finite dimensional Lie subalgebra of gl(V'), such
that for all x is nilpotent for all x € g, then there is a v € V with xz(v) =0 for all x € g.

Proof. We proceed by induction on n = dimg. For n = 0, this is clear. We shall need a

Lemma 5.2.2 Let V' be a vector space and x € gl(V') nilpotent, then element f of gl(gl(V)) defined
by y — [x,y] is nilpotent.

Proof. Indeed, we can compute that f™(y) is a linear combinaison of terms of the form z’yx™~% and
the result follows. U

Now let h be a strict subalgebra of g. We define a map o : h — gl(g/h) sending = € b to the map
o(z) defined by 7 +— [z,y] where 7 is the class of y € g in the quotient g/h. By the previous lemma,
the map = +— [z,y] is nilpotent so o(z) is nilpotent. Therefore o(h) satisfies the conditions of the
Theorem and dim o () < n. By induction, there exists § a non trivial vector in g/h with o(z)(y) =0
for all € h. Therefore, there is a y not in h with [z,y] € b for all € h. This imples that b is an
ideal in the subalgebra b & ky of g.

By induction starting with h = 0, we get a codimension 1 ideal h in g. The result is true for b
therefore, the subspace W of all v € V' such that z(v) = 0 for all € b is non trivial. Let y € g with
y € b, then y stabilises W. Indeed, for v € W, we have z(y(v)) = y(x(v)) + [z, y](v) = 0 because [z, y]
and z are in h. Now y is nilpotent on W therefore there exists v non trivial in W with y(v) = 0. The
vector v does the job. O

Corollary 5.2.3 A Lie algebra g is nilpotent if and only if ad x is nilpotent for all x € g.

Proof. By Proposition 5.1.2, if g is nilpotent then ad z is nilpotent for all € g. Conversely, if ad =
is nilpotent for all x, then the image of the adjoint representation in gl(g) satisfies the conditions of
Engel’s Theorem. Therefore, there is a non trivial € g such that [z,y] = ad z(y) = 0 for all y € g.
Therefore the center of g is non trivial. Now the Lie algebra g/3(g) satisfies the same hypothesis and
we conclude by induction that Crg = g for k large enough. O



5.3. MAXIMAL NILPOTENT IDEAL 35

Corollary 5.2.4 Let g be a Lie algebra and a an ideal of g. Assume that g/a is nilpotent and that
for all x € g, the restriction ad x|q is nilpotent, then g is nilpotent.

Proof. Let x € g, we prove that ad x is nilpotent. Indeed, it is nilpotent on a and on g/a (there are k
and K’ such that ad *z(g) C a and ad* z(a) = 0 therefore ad ***'z(g) = 0). O

Corollary 5.2.5 Let V' be a vector space and g a Lie subalgebra of gl(V') such that all the elements
x € g are nilpotent endomorphisms of V', then g is nilpotent.

Proof. Indeed by Lemma 5.2.2, for any = € g, the element ad x is nilpotent. We conclude by applying
Corollary 5.2.3 O

Example 5.2.6 For V' a vector space and V, a complete flag, the Lie algebra n(V4) is nilpotent.

5.3 Maximal nilpotent ideal

Definition 5.3.1 An ideal a in g is called nilpotent if it is nilpotent as a Lie algebra.
Lemma 5.3.2 An ideal a of g is nilpotent if and only if for all x € a, we have that adgx is nilpotent.

Proof. The condition is sufficent (we only need that ad,z is nilpotent). Conversely, if a is nilpotent,
then adqz is nilpotent and adgz(g) C a and the result follows. O

We shall need the following general result on representations.

Lemma 5.3.3 Let V be a finite dimensional representation of the Lie algebra g, then there exists an
increasing sequence 0 = Vo C Vi C -+ C V,, = V of subrepresentations of V such that V;/V;_1 is
simple for all i € [1,n].

Proof. By induction on the dimension of V', we only need to prove that there exists a subrepresentation
W of V such that V/W is simple. We also prove this by induction on dim V. Indeed, if V' is simple, we
are done. Otherwise, there exists a non trivial subrepresentation V' of V and we apply our induction
hypothesis on V/V’'. We get W/V' a subrepresentation of V/V’ (image of the subspace W in V') such
that (V/V')/(W/V') is simple. But W is a subrepresentation of V and V/W ~ (V/V')/(W/V') is
simple. O

Lemma 5.3.4 Let V be a simple representation of g and a an ideal such that for all x € a, the element
xy 1s nilpotent. Then for all x € a, we have xy = 0.

Proof. By Proposition 4.4.6, the subspace V¢ = {v € V / zy-v = 0 for all x € a} is a subrepresentation
of V. Furthermore, by Engel’s Theorem (Theorem 5.2.1), this space is non trivial. Because V' is simple
we have V = V4 O

Lemma 5.3.5 The sum of any two nilpotent ideals is again a nilpotent ideal.
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Proof. Let a and b be two nilpotent ideals and € a and y € b. We need to prove that if adg(z + y)
is nilpotent. For this consider the sequence of subrepresentations go =0 C --- C g, = g of the adjoint
representation given by Lemma 5.3.3. Because adgz and adgy are nilpotent, for any x € a and y € b,
we have that 2, /5., and yg, /., are nilpotent for all i € [1,n]. By Lemma 5.3.4 and because g;/gi—1
is simple, we have the equalities that zg, /g, , = 0 and yg,/q,_, = 0 for all z € a and y € b and for
all i € [1,n]. In particular (z + y)g,/q, , = 0 for all z € a and y € b and for all 7 € [1,n]. We have
adg(x +y)(g;) C gi—1 for all i € [1,n]| and adg(x + y) is nilpotent. O

Corollary 5.3.6 There exists a maximal nilpotent ideal ng in any finite dimensional Lie algebra g.

Remark 5.3.7 The quotient g/ng may have nilpotent ideals.



