
Chapter 5

Nilpotent Lie algebras

5.1 Definition

Definition 5.1.1 A Lie algebra is called nilpotent if there exists a decreasing finite sequence (gi)i∈[0,k]

of ideals such that g0 = g, gk = 0 and [g, gi] ⊂ gi+1 for all i ∈ [0, k − 1].

Proposition 5.1.2 Let g be a Lie algebra, the following conditions are equivalent:

(ı) the Lie algebra g is nilpotent;

(ıı) we have C
kg = 0 for k large enough;

(ııı) we have Ckg = g for k large enough;

(ıv) there exists an integer k such that ad x1 ◦ · · · ◦ ad xk = 0 for any sequence (xi)i∈[1,k] of elements
in g;

(v) there exists a decreasing sequence of ideals (gi)i∈[0,n] with g0 = g, gn = 0 and such that [g, gi] ⊂
gi+1 and dim gi/gi+1 = 1 for all i ∈ [0, n − 1].

Proof. We start with the equivalence of the first three conditions. If (ıı) or (ııı) holds, then the
sequence (Cig)i∈[1,k] or (Ck−ig)i∈[1,k] satisfy the conditions of the definition and g is nilpotent.

Conversely, if the exists a sequence of ideals (gi)i∈[0,k] as in the definition, we prove by induction that
C

ig ⊂ gi and Cig ⊃ gk−i. This is true for i = 0. Assume that C
ig ⊂ gi and Cig ⊃ gk−i, then we have the

inclusions C
i+1g = [g,Cig] ⊂ [g, gi] ⊂ gi+1 and [g/Ci, (gk−(i+1) +Cig)/Cig] ⊂ (gk−i +Cig)/Cig = 0. The

last inclusion implies that (gk−(i+1) +Cig)/Cig is in the center of g/Cig and therefore gk−(i+1) ⊂ Ci+1g.

We get C
kg = 0 and Ckg = g.

Now (ıı) and (ıv) are equivalent. Indeed, the ideal C
kg is composed of the linear combinations of

elements of the form [x1, [x2, [· · · [xk, y] · · · ]]] = ad x1 ◦ · · · ◦ ad xk(y) with xi ∈ g for all i and y ∈ g.
Finally (ı) and (v) are equivalent. Indeed the last condition imply the first. Conversely, assume that

(gi)i∈[0,k] is a sequence of ideals as in the definition of a nilpotent Lie algebra. Then let us complete the
sequence (gi)i∈[0,k] to a sequence (g′i)i∈[0,n] with n = dim g, dim g′i = n−i, gi+1 ⊂ gi and g′n−dimgj

= gj.

We only need to prove that [g, g′i] ⊂ g′i+1. But, for i ∈ [0, n], we define is = max{j / g′i ⊂ gj}. We
have gis+1 ⊂ g′i+1 ⊂ g′i ⊂ gis . Therefore [g, g′i] ⊂ [g, gis ] ⊂ gis+1 ⊂ g′i+1. �

Corollary 5.1.3 The center of a non trivial nilpotent Lie algebra is non trivial.

Proof. Indeed, we must have C1g 6= 0 otherwise there is no k with Ckg = g. �
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Corollary 5.1.4 The Killing form κg vanishes for g nilpotent.

Proof. For any (x, y) ∈ g2, the element ad x ◦ ad y is nilpotent thus κg(x, y) = Tr(ad x ◦ ad y) = 0. �

Proposition 5.1.5 Any subalgebra, any quotient algebra, any central extension a Lie subalgebra is
again a Lie subalgebra. A finite product of nilpotent Lie algebras is again a nilpotent Lie algebra.

Proof. Let g be a nilpotent Lie algebra.

Let h be a subalgebra of g, then C
kh ⊂ C

kg and the result follows for h.

Let a be an ideal in g and let π : g → g/a be the projection. We proved in Proposition 2.5.6 that
π(Ckg) = C

k(g/a) and the result follows for g/a.

Let 0 → a → g′
p
→ g → 0 be a central extension, then p(Ckg′) = C

kg. Therefore if C
kg = 0, then

C
kg′ ⊂ a and C

k+1g′ = 0 because a ⊂ z(g′).

The last assertion follows from the condition (ıv) in the previous proposition. �

5.2 Engel’s Theorem

Theorem 5.2.1 Let V be a vector space and g be a finite dimensional Lie subalgebra of gl(V ), such
that for all x is nilpotent for all x ∈ g, then there is a v ∈ V with x(v) = 0 for all x ∈ g.

Proof. We proceed by induction on n = dim g. For n = 0, this is clear. We shall need a

Lemma 5.2.2 Let V be a vector space and x ∈ gl(V ) nilpotent, then element f of gl(gl(V )) defined
by y 7→ [x, y] is nilpotent.

Proof. Indeed, we can compute that fm(y) is a linear combinaison of terms of the form xiyxm−i and
the result follows. �

Now let h be a strict subalgebra of g. We define a map σ : h → gl(g/h) sending x ∈ h to the map
σ(x) defined by y 7→ [x, y] where y is the class of y ∈ g in the quotient g/h. By the previous lemma,
the map x 7→ [x, y] is nilpotent so σ(x) is nilpotent. Therefore σ(h) satisfies the conditions of the
Theorem and dimσ(h) < n. By induction, there exists y a non trivial vector in g/h with σ(x)(y) = 0
for all x ∈ h. Therefore, there is a y not in h with [x, y] ∈ h for all x ∈ h. This imples that h is an
ideal in the subalgebra h ⊕ ky of g.

By induction starting with h = 0, we get a codimension 1 ideal h in g. The result is true for h

therefore, the subspace W of all v ∈ V such that x(v) = 0 for all x ∈ h is non trivial. Let y ∈ g with
y 6∈ h, then y stabilises W . Indeed, for v ∈ W , we have x(y(v)) = y(x(v))+ [x, y](v) = 0 because [x, y]
and x are in h. Now y is nilpotent on W therefore there exists v non trivial in W with y(v) = 0. The
vector v does the job. �

Corollary 5.2.3 A Lie algebra g is nilpotent if and only if ad x is nilpotent for all x ∈ g.

Proof. By Proposition 5.1.2, if g is nilpotent then ad x is nilpotent for all x ∈ g. Conversely, if ad x
is nilpotent for all x, then the image of the adjoint representation in gl(g) satisfies the conditions of
Engel’s Theorem. Therefore, there is a non trivial x ∈ g such that [x, y] = ad x(y) = 0 for all y ∈ g.
Therefore the center of g is non trivial. Now the Lie algebra g/z(g) satisfies the same hypothesis and
we conclude by induction that Ckg = g for k large enough. �
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Corollary 5.2.4 Let g be a Lie algebra and a an ideal of g. Assume that g/a is nilpotent and that
for all x ∈ g, the restriction ad x|a is nilpotent, then g is nilpotent.

Proof. Let x ∈ g, we prove that ad x is nilpotent. Indeed, it is nilpotent on a and on g/a (there are k
and k′ such that ad kx(g) ⊂ a and ad k′

x(a) = 0 therefore ad k+k′

x(g) = 0). �

Corollary 5.2.5 Let V be a vector space and g a Lie subalgebra of gl(V ) such that all the elements
x ∈ g are nilpotent endomorphisms of V , then g is nilpotent.

Proof. Indeed by Lemma 5.2.2, for any x ∈ g, the element adx is nilpotent. We conclude by applying
Corollary 5.2.3 �

Example 5.2.6 For V a vector space and V• a complete flag, the Lie algebra n(V•) is nilpotent.

5.3 Maximal nilpotent ideal

Definition 5.3.1 An ideal a in g is called nilpotent if it is nilpotent as a Lie algebra.

Lemma 5.3.2 An ideal a of g is nilpotent if and only if for all x ∈ a, we have that adgx is nilpotent.

Proof. The condition is sufficent (we only need that adax is nilpotent). Conversely, if a is nilpotent,
then adax is nilpotent and adgx(g) ⊂ a and the result follows. �

We shall need the following general result on representations.

Lemma 5.3.3 Let V be a finite dimensional representation of the Lie algebra g, then there exists an
increasing sequence 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V of subrepresentations of V such that Vi/Vi−1 is
simple for all i ∈ [1, n].

Proof. By induction on the dimension of V , we only need to prove that there exists a subrepresentation
W of V such that V/W is simple. We also prove this by induction on dimV . Indeed, if V is simple, we
are done. Otherwise, there exists a non trivial subrepresentation V ′ of V and we apply our induction
hypothesis on V/V ′. We get W/V ′ a subrepresentation of V/V ′ (image of the subspace W in V ) such
that (V/V ′)/(W/V ′) is simple. But W is a subrepresentation of V and V/W ≃ (V/V ′)/(W/V ′) is
simple. �

Lemma 5.3.4 Let V be a simple representation of g and a an ideal such that for all x ∈ a, the element
xV is nilpotent. Then for all x ∈ a, we have xV = 0.

Proof. By Proposition 4.4.6, the subspace V a = {v ∈ V / xV ·v = 0 for all x ∈ a} is a subrepresentation
of V . Furthermore, by Engel’s Theorem (Theorem 5.2.1), this space is non trivial. Because V is simple
we have V = V a. �

Lemma 5.3.5 The sum of any two nilpotent ideals is again a nilpotent ideal.
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Proof. Let a and b be two nilpotent ideals and x ∈ a and y ∈ b. We need to prove that if adg(x + y)
is nilpotent. For this consider the sequence of subrepresentations g0 = 0 ⊂ · · · ⊂ gn = g of the adjoint
representation given by Lemma 5.3.3. Because adgx and adgy are nilpotent, for any x ∈ a and y ∈ b,
we have that xgi/gi−1

and ygi/gi−1
are nilpotent for all i ∈ [1, n]. By Lemma 5.3.4 and because gi/gi−1

is simple, we have the equalities that xgi/gi−1
= 0 and ygi/gi−1

= 0 for all x ∈ a and y ∈ b and for
all i ∈ [1, n]. In particular (x + y)gi/gi−1

= 0 for all x ∈ a and y ∈ b and for all i ∈ [1, n]. We have
adg(x + y)(gi) ⊂ gi−1 for all i ∈ [1, n] and adg(x + y) is nilpotent. �

Corollary 5.3.6 There exists a maximal nilpotent ideal ng in any finite dimensional Lie algebra g.

Remark 5.3.7 The quotient g/ng may have nilpotent ideals.


