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Abstract 

In this thesis we study plane-wave limits and M-theory vacua. We consider several 

hereditary properties of the plane-wave limit but focus on that of homogeneity. 

We show that a sufficient condition for a plane-wave limit along a particular geo-

desic of any spacetime to be homogeneous is that the geodesic be homogeneous. 

On reductive homogeneous spacetimes we reduce the calculation to a set of alge-

braic formulae by two different methods; the first uses the covariant description 

of the plane-wave limit [Blau,O'Loughlin, Papadopoulos.  JHEP,01 :047,2002] and 

the second employs a non-adapted coordinate description of the plane-wave limit. 

We study how the homogeneous structure on a reductive homogeneous spacetime 

behaves under the plane-wave limit and apply our formulae to many relevant 

examples. 
We then consider supersymmetric M-theory vacua and the Lie supersymme-

try superalgebra on these backgrounds. We show that those backgrounds which 

preserve more than 24 of the supersymmetries are necessarily homogeneous and 

provide some evidence that this boundary is sharp. The symmetric square of the 

spinor bundle of an 11-dimensional spacetime is isomorphic to a particular bun-

dle of differential forms, this can be used to interpret Killing spinors as differen-

tial forms satisfying a system of first order equations [Gauntlett,Gutowski,Pakis. 

JHEP,12:049,2003]. We use this technique to investigate both the geometric and 

algebraic nature of the 24+ supergravity solutions, in particular those which are 

plane-waves. Finally we consider some more general homogeneous supergravity 

solutions, including homogeneous 5-dimensional supergravity. 
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Chapter 1 

Introduction 

The principal objects of study of this thesis are M-theory backgrounds with (su-

per)symmetries, and in particular homogeneous backgrounds. In this introduction 

we shall endeavor to explain the numerous reasons for studying such backgrounds, 

and also place them in context of M-theory in general. 

1.1 Supergravity and supersymmetry 

Since the mid-nineties, evidence has been accumulating for the existence of an 

11-dimensional quantum theory, called M-theory, which underlies all the known 

10-dimensional string theories. The low energy limit of M-theory, when energy 

levels are way below the string scale of 1019  GeV, is a classical theory called 

11-dimensional supergravity. In this sense, we can identify M-theory back-

grounds with 11-dimensional supergravity solutions. Discovered [1, 2] in 1976, 

11-dimensional supergravity is fundamentally Einstein's theory of gravity together 

with a non-linear generalisation of Maxwell's theory of electromagnetism in an 

11-dimensional spacetime, and incorporates both the Kaluza-Klein idea of grav -

ity theories in dimensions higher than 4 and supersymmetry. The data for an 

11-dimensional supergravity bosonic background is a triple (M, g, F) where M 

is an 11-dimensional lorentzian spin manifold with metric g and F is a 4-form 

subject to the following field equations: 

I 
Maxwell's equations: 	

dF 	=0
d * F = F A F 	

(1.1.1) 

Einstein's equations: Ric 23  = 	+(s - F2)gjj  

where 	=FjpqrFf a nd 1F12 = FijklFu3Idt . Here Ric and s are the Ricci and 

scalar curvatures respectively and we are using the Einstein summation conven-

tion. Notice that if we take the trace of equation (1.1.2) we find 

s=FI2 



It follows that if F = 0, so that the background is purely gravitational, then it 

must be Ricci flat. 

Writing F = dA (locally) for some 3-form A, the action of such a theory is 

given by 

svol_FA*F+FAFAdF IM ( 	 ) 
where vol is the signed volume form: 

Vol =\Jdx 0 Ad x 1 A...Ad x 1 O .  

There are many supergravity theories in dimensions lower than 11. The well 

known type hA supergravity, which is a dimensional reduction of 11-dimensional 

supergravity, and IIB supergravity theories. Also, various other theories in di-

mensions 4 to 9, such as the 5 and 6 dimensional supergravity theories (see for 

example [3] and [4].) 

The full 11-dimensional supergravity theory has a bosonic sector which com-

prises of the dynamical fields g Sand A where F = dA, and a fermionic sector 

which contains the gravitino 'I': a section of the tensor product of the spinor 

and cotangent bundles S ® T*M .  Infinitesimal supersymmetry variation of 

the gravitino with respect to a spinor E defines a super covariant derivative 

D: F(S) - F(T*M (9S), 

cäE J!x  = 

which we may expand in terms df the Levi-Cività connection and F, 

DX  = Vx + tF + 	A F.  
6 	12 

For a bosonic background we set the fermionic sector to zero and require that this 

is preserved by a supersymmetry transformation. Thus the geometric realization 

of supersymmetry on (M, g, F) is the existence of Killing spinors, that is, the 

existence of at least one spinof e which is parallel with respect to D. Each 

Killing spinor is completely determined by its value at a point p, for then parallel 

transport determines its value everywhere else. 

An important invariant of the theory is the amount of supersymmetry, or to be 

more precise, the number of linearly independent Killing spinors. This number is 

usually recorded as a fraction v of the maximal number of Killing spinors, which 

is 32 for an 11-dimensional theory'. It offers two complementary refinements: the 

holonomy representation of the super covariant derivative 1 on the one hand, and 

the supersymmetry superalgebra on the other. The fraction v can be recovered 

'However, we reserve the right to give the amount of supersymmetry in either form; as a 
fraction v or as the integer number of linearly independent Killing spinors 
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as the dimension of the invariant subspace in the holonomy representation, or the 

dimension of the odd subspace of the superalgebra. 

The table below summarizes some of the known supergravity backgrounds 

with v > 1  2 .  

ii 	I 	
M-theory background 

generic M-wave [5], M-branes [6, 7], 
Kaluza-Klein monopole [8, 9, 101 

T6 	4 to 2  discrete cyclic quotients of AdS 4  x S7 [111, 

Gödel type backgrounds [3, 12], 	 11 4 
plane-waves both symmetric [13, 14, 15, 161 

and time dependent [17] 

symmetric plane-wave [18] 
16 

fiat, AdS 4  x S7  and AdS 7  x S4 [191, 

Kowalski-Glikman wave [20, 211 

As the table shows, other than the maximal ones, there are not many solutions 

known with v > , and no known solutions in the region < v < . At the
32 32 

time of writing it is not known whether all the possible fractions 0, i,... , , 132 

can occur. 
Supersymmetry is a strong constraint on the geometry of a background, which 

is a considerable help when solving the field equations. Indeed, the known su-

pergravity classification results make use of extra symmetries imposed on the 

backgrounds, such as supersymmetries or isometries. For example, the classifica-

tion given in [22] of the maximally supersymmetric solutions: 

Theorem 1.1.1. ([22]) Let (M, g, F) be a maximally supersymmetric solution of 

11-dimensional supergravity. Then it is locally isometric to one of the following: 

AdS 7 (-7s) x S4  (8s) 

with F = \/ Vol(S 4 ) where s > 0 is the scalar curvature of M, 

AdS 4 (8s) x S7 (-7s) 

with F = 	vol(AdS 4 ) where s <0 is the scalar curvature of M, 

CW11 (H) 

with H = —'diag (4,4,4, 1, 1, 1, 1, 1, 1) and F = u dx A dx 1  A dx 2  A dx 3 . 

36 



Above, AdS(s) and S'(s) denote the n-dimensional anti de-Sitter space and 

sphere of constant scalar curvature s respectively, and CW11  (H) is the Cahen-

Wallach ([23]) symmetric plane-wave with metric 

 n-2 
2dxdx + ( 
	

H xixi) (dx) 2  + 	(dxi)2,  
i-i 

where H = (H3 ) is a constant symmetric bilinear form. 

Other classifications include the  11-dimensional Freund-Rubin solutions where 

the 4-dimensional factor is anti de-Sitter space and the 7-dimensional factor is 

homogeneous [24, 25] and, in dimensions 5 and 6, the recent classifications of 

supersymmetric solutions in [3] and [4] respectively. 

1.2 Plane-waves 

Much of our understanding of closed string theory is based on a few particular 

examples of exactly solvable models. Solvability in this context means that it 

is possible to find solutions to the classical string equations explicitly, perform 

a canonical quantization, determine the spectrum of the- Hamiltonian operator 

and possibly compute some of the simplest scattering amplitudes. Many of these 

models are found by specifying a closed string theory on a background geometry 

together with p-form field strengths and a dilaton. In superstring theory, these 

backgrounds usually define a solution to some supergravity theory carrying a large 

fraction of supersymmetry. Broadly speaking, there are three classes of examples 

of exactly solvable models: 

• Strings on fiat space and its various orbifolds, as well as models related to 

fiat space by T-duality transformations. 

Strings on WZW models and their orbifolds. 

• Strings on plane-wave backgrounds. 

The large fraction supersymmetry carried by such models is reflected in the num- 

ber of 11-dimensional supergravity plane-wave backgrounds listed in table (1.1.4). 

Plane-wave metrics are a special subclass of the pp-wave metrics which carry 

a parallel null vector field. The generic plane-wave metric is of the form 

dxdx + A(x)(x,x)(dx) 2  + IdxI 2 , 	 (1.2.1) 

where A(x+)  is a symmetric bilinear form, but there are refinements to special 

subclasses including homogeneous and symmetric plane-waves. 
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In [26] Penrose introduced a method for taking a continuous limit of any 

spacetime to a plane wave. The method effectively involves "zooming in" on a 

null geodesic in such a way that the metric stays nondegenerate. In [27] Güven 

extended the method to that of supergravity theories where it is a useful tool for 

generating new solutions to the supergravity equations from known ones. Since 

then several papers have investigated the properties of these plane-wave limits, 

[28, 29, 30, 17, 311. 

Plane-wave limits have been used as evidence for the celebrated AdS/ CFT 

correspondence. The plane-wave limits of the AdS 5  x S5  type JIB superstring 

background were calculated in [30], one of which was shown to be the BFHP 

maximally sup ersymmetric plane wave background [29]. String theory in this 

background is exactly solvable [32, 33] giving rise to an explicit form of the AdS/ 

CFT correspondence [34] in which both the gauge theory and the gravity sides 

are weakly coupled, allowing many perturbative checks albeit for a restricted class 

of observables. 
It has been shown [30] that the fraction of supersymmetry preserved by a 

solution never decreases under the plane-wave limit. In particular, the plane-wave 

limit of a maximally supersymmetric solution is a maximally supersymmetric 

plane-wave. The plane-wave limits of the maximally supersymmetric Freund-

Rubin type solutions AdS 4  x 57  and AdS 7  x S4  have also been calculated in [30], 

and are found to be either flat Minkowski spacetime or the Kowalski-Glikman 

solution KG, depending on the null geodesic chosen. These limits fit into a 

commutative diagram: 

AdS 4  x 	KG 	AdS 7  x 54 

"~~ I , Z 	(1.2.2) 

Flat 

which displays all of the maximally supersymmetric solutions to 11-dimensional 

supergravity. 
Similarly, the dimension of the isometry algebra never decreases under the 

plane-wave limit. Given this, one may postulate that the plane-wave limit of a 

homogeneous background is always a homogeneous plane-wave. Indeed, plane-

wave limits onto homogeneous plane waves have been investigated, such as the 

plane-wave limits of the Gödel-like spacetimes [17]. However, in [31] it was shown 

that the riemannian product of the homogeneous Kaigorodov spacetime with 

the sphere has a plane-wave limit which is not itself homogeneous. We shall 

show that a sufficient condition for a plane-wave limit to be homogeneous is 

that the geodesic along which the limit is taken is a homogeneous geodesic, 
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that is the orbit of a one-parameter subgroup of isometries. On a reductive 

homogeneous space, we shall give algebraic formulae for the plane-wave limit 

along a homogeneous geodesic and give a necessary condition for the plane-wave 

limit to be homogeneous. 

1.3 Homogeneous backgrounds 

On a (reductive) homogeneous sjace, the geometry can be completely described 

by the value of the metric at a point. This allows one to reduce difficult to solve 

systems of differential equations, such the Einstein condition, to more tractable 

algebraic equations. This has clear benefits for the business of solving the super-

gravity equations of motion such as (1.1.1) and (1.1.2), so it is natural to consider 

homogeneous supergravity solutions; those solutions where knowledge of both 

the metric and field strength F t a point is enough to specify the background 

completely. 

All of the ii > solutions listed in table (1.1.4) are homogeneous. Of course, 

the existence of Killing spinors is not unrelated to the existence of Killing vectors; 

the spinor inner product induces a map 

(1.3.1) 

which maps Killing spinors to Killing vectors. This map can be extended to an 

isomorphism between the symmetric square of the spinor bundle and a bundle 

of differential forms. This allows one to write the Killing spinor equation as an 

equation on forms, something which has clear advantages. In particular, on a 

homogeneous space these equations become algebraic. 

Therefore, it is natural to ask how much supersymmetry must be preserved 

to guarantee that the background is homogeneous. It is known [17] that plane-

wave backgrounds with v > 1  are necessarily homogenous. This and the lack 

of non-homogeneous solutions in (1.1.4) with < ii < make it tempting to 2 	 16 

conjecture that a background with more than half of the supersymmetries will be 

homogeneous. However, we shall show that in fact we need ii > 2  to guarantee 

homogeneity and give evidence to suggest that there are backgrounds with ii = 
which are not homogeneous. 

Similarly, all of the solutions in table (1.1.4) with ii > are symmetric. We 

will use the formulation of the Killing spinor equation in terms of differential forms 

together with symplectic linear algebra to show that plane-wave backgrounds with 

v greater than 2  are symmetric. 

Since v > plane-waves are homogeneous, preservation of supersymmetries 
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under the plane-wave limit means that the plane-wave limit of a ii > back- 2 

ground is necessarily homogeneous. In particular this is of interest for the i > 

backgrounds because, as mentioned above, homogeneity is not necessarily inher-

ited by the plane-wave limit. This provides a potential method for studying the 

v> 1  backgrounds. 

1.4 Thesis outline 

In chapter 2 we give the background needed on homogeneous spaces, homogeneous 

structures and Killing vectors. We consider homogeneous geodesics, lorentzian 

g.o. spaces and review a lorentzian version of Kaplan's 6-dimensional g.o. space. 

We also examine Komrakov's classification of 4-dimensional pseudo-riemannian 

homogeneous spaces, in particular those that are lorentzian which we list in ap-

pendix B. 
In chapter 3 we give some background on plane-wave metrics and plane-wave 

limits. Then we consider some hereditary properties of plane-wave limits including 

Gflven's extension to supergravity and some submanifold geometry. The chapter 

is finished with some examples, including the Hamilton-Jacobi method for taking 

the plane-wave limit. 
In chapter 4 we consider plane-wave limits onto homogeneous plane-waves 

and, in particular, along homogeneous geodesics. We give two derivations of alge-

braic formulae for calculating such plane-wave limits, the first uses the covariant 

description of the plane-wave limit [28]  and the second employs a non-adapted 

coordinate system description of the plane-wave limit. We also examine the type 

of homogeneity inherited by the limiting metric under special circumstances. We 

conclude the chapter by applying these formulae to several examples, including 

the Kaigorodov space, Gödel like universes and Kaplan's g.o. space. 

In chapter 5 we start by constructing the supersymmetry superalgebra and 

illustrate with some examples. We then examine the isomorphism induced by 

squaring spinors to construct differential forms, and use it to write down a curva-

ture formula. We end the chapter by calculating the amount of supersymmetry 

required to guarantee homogeneity and provide some evidence that the bound we 

discover is sharp. 
Chapter 6 contains a discussion of homogeneous supergravity, in particular 

invariant forms. We take a closer look at homogeneous plane-wave backgrounds 

and supersymmetries on them, and calculate how much supersymmetry guaran-

tees that the plane-wave is symmetric. Then we look at homogeneous five and 

six dimensional supergravity theories who.se Maxwell forms are constructed from 
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homogeneous structures. 

In appendix A we discuss geometric Killing spinors and repeat some of the 

constructions of chapter 5 for them. Appendix B contains the aforementioned 

table of 4-dimensional lorentzian homogeneous spaces from Komrakov's classifi-

cation. 

1.5 Notation 

Most of the notation used in this thesis will be explained at point of use, with 

earlier explanations either referred to or repeated if notation is used in different 

sections/chapters. However, there is some notation and conventions that we will 

use consistently which we shall make clear now. 

• A' T*M :  the bundle of differential k-forms, sometimes shortened to A'. 

• V: the Levi-Cività connection. 

• £: the Lie derivative. 

• We will sometimes abbreviate vector fields -- to '9. 8u 

• We shall use the Einstein summation convention unless stated otherwise; 

for example 	= > 

• Unless stated otherwise, all manifolds have dimension n. 

• We will denote sets of coordinates or vectors such as (Yl,... , y) by y. 

• We call an orthogonal basis e 1 ,... , en  with 1e212 = 1 for i = 1,... ,p and 

e212 = — 1 for i = p + 1,. .. , n a pseudo-orthonormal basis. 

• We call a basis e±, e_, e1 ,. . . e 2  with e 1 ,. . . e 2  orthonormal and orthogonal 

to e+, e_, and with e+, e_ null and (e+,  e_) = 1 a lightcone-orthonormal 
basis. 
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Chapter 2 

Homogeneous spaces 

In this chapter we will give the definitions and results we need in relation to 

homogeneous spaces: Killing vector fields, homogeneous structures, homogeneous 

geodesics and g.o. spaces. When dealing with supergravity, most of the time we 

are happy to restrict ourselves to studying local solutions; that is data (U, g, F) 

where U is an open neighborhood and we can ignore global topological issues. For 

this reason, after a comparison of the global and local versions of homogeneity, 

we shall focus on results of particular relevance to local homogeneity. But first 

we shall take a brief look at Killing vectors and the Killing transport. 

2.1 Killing vectors and Killing transport 

Let X be a vector field on a connected pseudo-riemannian manifold (M, g). Define 

A:TM —+TMby 

Ax(Y) = —V y X.  

Then X is a Killing vector if A x  is skew-symmetric with respect to g. As is 

well-known, a vector field X is Killing if and only if Lxg = 0, which shows that 

Killing vectors are infinitesimal generators of isometries. Each Killing vector 

satisfies Killing's identity: 

VA = R(X,e) 	 (2.1.2) 

where 

R(X,Y)Z = V[X,y]Z - VxVyZ + V y V x Z. 

Proof. Using the identity 

(VxA)Y = VAY - AVY 

= -vxvYt + vvxY, 
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we have the following equality 

(VxA)Y - (V y A)X = —VVy + Vvy + VyVx - 

= —VxV y  + Vy V y  + 

= R(X,Y) 

= R(X,)Y - 

where we have used the algebraic Bianchi identity 

R(X, Y)Z + R(Y, Z)X + R(Z, X)Y =0. 	 (2.1.3) 

This shows that 

(VxA)(Y) - R(X,e)Y 

is symmetric in X 4- Y. On the other hand 

g((VxA)(Y) - R(X, e)Y, Z) = —g((V x A)(Z) - R(X, t) Z, Y) 

whence (VA)(Y) - R(X,)Y = 0. 	 El 

Consider the bundle 

ETM5o(TM), 

where 5o(TM) is the bundle of skew-symmetric endomorphisms (relative to g) of 

the tangent bundle. If we define a covariant derivative D on E by 

Dx(e,A) : = (Vxe+A(X),V x A+R(X,)), 

then the parallel sections of E with respect to D are precisely the Killing vectors 

of g. Thus a Killing vector is completely determined by its value at an initial 

point and also the value of its first derivative: 

(((p),A(p)) 

with the full Killing vector given by parallel transport by the covariant deriv-

ative D. We call parallel transport with respect to D Killing transport and 

shall see in the next section that this has a natural generalisation on reductive 

homogeneous spaces. 

Let t denote the space of parallel sections of E with respect to D. Then the 

Lie bracket on t inherited from the Lie bracket of Killing vectors is 

[(c, A), (i', B)] = (Aij - B, [A, B] + R(, ii)) . 	(2.1.4) 
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Proof. By definition we have 

= ([,7]],—V[,i7]) 

Using the torsion free property of V and the definitions of A and B we have 

Similarly 

—V[,7j] = — V(Aii - B) 

= —(VxA)ii - AVxii + (VxB) + BVx 

= —R(, X)ii + ABX + R(i, X) - BAX 

= [A,B]X+R(,i1)X, 

where we have used Killing's identity (2.1.2) and the algebraic Bianchi identity 

(2.1.3). 	 0 

Now the bundle C has a natural Lie bracket given by 

[(c, A), (ij, B)1E = ([c, 7]], [A, B]) . 	 (2.1.5) 

Thus the curvature R(, r) measures the failure of [-, -] p to. agree with the Lie 

bracket on t. The bracket on t extends to arbitrary sections of C, but the Jacobi 

identity will fail precisely because of the curvature term. 

2.2 Reductive homogeneous spaces 

Let Iso(M, g) be the group of isometries of the pseudo-riemannian space (M, g). 

Definition 2.2.1. A connected lorentzian space (M, g) is homogeneous if its 

group of isometries acts transitively on M. That is, for every pair of points 

p, q E M there exists an isometry h E Iso(M, g) such that q = h p. 

If C C Iso(M, g) is a subgroup which acts transitively on M, then the map 

00 :G—M, 	 (2.2.1) 

which sends an isometry g E C to the point g o E M, for some fixed point 

o E M, is a surjection. The subgroup H C C which fixes the point o is called the 

isotropy subgroup of o. The map q induces a diffeomorphism M G/H. 

The local version of this is 
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Definition 2.2.2. A lorentzian space (M, g) is locally homogeneous if for every 

pair of points p, q E M, there exist neighborhoods U, V of p and q respectively 

and a local isometry h: U - V such that q = h p. 

As mentioned above, in sup&rgravity we usually work with local metrics. In 

this context, the relevant concept is that of local transitivity rather than ho-

mogeneity. We say (M, g) is locally transitive if every point p E M has a neigh-

borhood U such that for all q E U there exists a local isometry h with q = h p. 

That is to say that the neighborhood U is locally homogeneous. Folklore argu-

ments (see for example page 237 in [35]) show that this implies the existence, 

at any point p, of a set of n Killing vectors {X} such that the vectors {X 2 (p)} 

form a basis for TM. For the converse, given a finite set of Killing vectors on 

an open neighborhood U of p we may exponentiate at the point p to obtain the 

action of a Lie group G. The orbit of p under G is locally of the same dimen-

sion as M, and thus contains a subneighborhood U' of p. Therefore, since M is 

connected, C must act transitively on U. Local transitivity is clearly implied by 

local homogeneity, and is in fact equivalent to it: 

Proof. Since M is connected there exists a continuous path y: I -p M from any 

point p to any point q. Any point 'y(t) has a neighborhood U(t) such that for any 

point r E U(t) there is a local isometry taking 'y(t) to r. The sets U(t) fl-y(I) form 

an open cover of 'y(I)  and thus, by pulling back to the interval via 'y,  we have an 

open cover of I, namely V(t) = -y - '(U(t) fl 'y(I)). The interval is compact, so we 

can obtain a finite subcover V = V(t) where {O = t0  <t1  < < tN = 11 is some 

partition of the interval I such that 1'flV2+1  $ 0. Choose r e 
By definition there exist local isometries fi  and hi  such that r1 = hi . y(t) and 

ri = ft . 7(t 2 ). The desired local isometry is given by 

f 1 ohN_l ... of 1 ohlofj 1 oho. 

Finally let V be an open neighborhood of q so that U = b'(V) is defined. The 

open set U is a neighborhood of p and clearly : U -* V. 	 El 

The crucial difference between local transitivity and global homogeneity is 

that locally transitive metrics need not be complete. For example, the sphere S 2  
is a homogeneous space; however, if we remove the north pole p then S2  \P is only 

locally homogeneous. The isometries which are defined on the whole of S2 \p are 

those of the sphere which fix p and have orbits given by parallels to the equator. 

Differentiating the map q we obtain a linear map 

dçbo  : g - T0M , 	 ( 2.2.2) 
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where g is the Lie algebra of G. The kernel of this map is the Lie algebra j and 

thus forms part of an exact sequence 

______ ______ 	dçl o 	______ 
0 	13 	 T0M 	0. 	 (2.2.3) 

This is an exact sequence of H-modules where H acts on 13 and g via the adjoint 

representation and on T0M via the linear isotropy representation: 

Definition 2.2.3. Let o denote the coset of H in M and fixa frame u0  : 	-p 
T0M of the frame bundle F. Define the linear isotropy representation p 

H—GL(n,IR)by 

	

p(h) := u' o h. o u0  , 	 ( 2.2.4) 

where h E H, h : T0 M —* T 0M denotes the differential of h at o. 

The metric g defines an inner product (-, -) on TOM. Invariance of g un-

der G is equivalent to invariance of (-, -) under H, whence the linear isotropy 

representation is a Lie algebra homomorphism p: H — so (n, R). 

We can give an explicit formulation of the isotropy representation by taking 

a complement m to 13 in g, so that g = [) e m and m is isomorphic to T0M. Then 

the isotropy representation is given by 

p(h)X = ( Ad (h)X)m 	for X E m, 	 (2.2.5) 

where the subscript m means projection to the subspace m and where the identi-

fication m T0M ll is implicit. 

Definition 2.2.4. A pair (g, rj) of a Lie algebra and subalgebra is reductive' 

when there exists a subspace m TM C g such that 

g=[jEBm, 

[F),mJCm. 

This is equivalent to m being stable under the isotropy representation (and 

also to the splitting of the exact sequence (2.2.3) in the homological sense.) 

We will often say that a space is "reductive", but this is an abuse of notation 

as reductivity is not a geometric property of (M, g) but of the linear isotropy 

representation and hence of the description of M as a coset space G/H. A space 

(M, g) may admit different coset descriptions G 1 1H1  and G2 1H2 , one of which 

1  Strictly speaking this means that C/H is weakly reductive, with reductive reserved for 

those splits g = m ED l such that m is stable under the action of Ad (H) rather than ad (b). 
However if H is connected, which we shall assume for the remainder of this thesis, then they 
are the same thing. 
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is reductive and the other is not. For example, the Kaigorodov space which we 

will consider in section 4.4.2. For this space the coset presentation C/H given 

by taking C = Iso(M, g) is not reductive, but it does admit a subgroup C' such 

that G'/H' is reductive. Nevertheless, we will say that a homogeneous pseudo-

riemannian space (M, g) is reductive if there exists a transitively acting subgroup 

of isometries C, with isotropy H for which the pair (g, 1)) is reductive. 

It was shown in [36] that a necessary and sufficient condition for a coset pre-

sentation C/H of a pseudo-riemannian homogeneous space (M, g) to be reductive 

is that the restriction to Ij of the Cartan-Killing form K for g is non-degenerate. 

If (es ) is an orthonormal frame for TM, then we can write K as 

K(X, Y) = - 	g(A x  0 A y (e), 	 (2.2.6) 

where Ax is defined in equation (2.1.1). It is not difficult to see that this defines 

an Ad (H)-invariant inner product. So if we let m = 1j-- be the perpendicular 

complement of 1) then Ad (H)-invariance and non-degeneracy imply that this de-

fines a reductive split. If g is rieniannian then K is positive definite and therefore 

automatically non-degenerate when restricted to 1i, whence all coset presentations 

C/H for riemannian homogeneous spaces are reductive. However, if g has indef-

inite signature then reductivity is not an empty condition as illustrated by the 

Kaigorodov space. 

A pair (g, 1)) is symmetric if it is reductive and also satisfies 

[m,m]clj. 	 (2.2.7) 

This is equivalent to the existence of the usual symmetric space symmetry; that 

is an isometry f : M -p M which satisfies f(x) = x and d(f) = 'TM for 

some x E M. 

The above definitions of reductive and symmetric spaces have generalisations 

to the locally transitive case. A locally transitive space is reductive if for all 

p E M, there exists a coset dscription of the associated open neighborhood 

U(p) = C/H which is reductive. Similarly, a locally homogeneous space is locally 

symmetric if there exists a coset description of each open neighborhood which is 

symmetric. This is equivalent to 

VR = 0 , 	 (2.2.8) 

where R is the Riemann curvature tensor of g. 

We can study the coset descriptions C/H of a space (M, g) by studying the 

C-invariant connections on M. For example, the Levi-Cività connection of g is 
invariant under the full isometry group Iso(M, g) of g. The following theorem 

gives a description of the space of C-invariant connections. 
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Theorem 2.2.5. Let T be the frame bundle of M = G/H a reductive homo-

geneous space of dimension n with decomposition g = m. Then there is a 

one-to-one correspondence between the set of G-invariant connections on T and 

the set of linear maps A m : m -* g((n, O) such that 

A m (ad h(X)) = ad (p(h))(Am(X)) , 	 (2.2.9) 

for X E m and h e H. 

The correspondence is given by 

{  
w0 	

p(X) 	if X E I) 
() = 	

( 2.2.10) 
A m (X) if X E m  

where w is the connection one-form, X is the natural lift of X E g to Y and p is 

not only as above H -* GL(n, ) but also the induced Lie algebra homomorphism 

-+ gI(n,IR). 

Proof. See chapter X, Theorem 2.1 in [37]. 

Definition 2.2.6. The connection obtained by taking Am = 0 is called the 

canonical connection. 

The canonical connection can also be described in the following way. Let 0 be 

the left-invariant Maurer-Cartan form of G 

09 (X) := (L9-1)(X) , 	 (2.2.11) 

where L g_i denotes left multiplication by g-1  and * denotes differentiation. Let 

a: U -p C be a local coset representative. Then the pull back of 0 by a splits as 

= Oi, + Om , (2.2.12) 

where 0 13 (X) E [j and Om (X) E m for all X E TM. The one-form defines the 

connection one-form for the canonical connection. 

The geodesics of the canonical connection are curves 'y(t) of the form 

exp(tX), t e LR,X e g . (2.2.13) 

For a globally homogeneous space this shows that the canonical connection is 

always geodesically complete, since the exponential is defined for all t. 

The importance of the canonical connection can be seen from the following 

theorem whose original form is due to Ambrose-Singer. 
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Theorem 2.2.7 ([38, 39, 36]). Let (M, g) be a pseudo-riemannian manifold with 

Levi-Cività connection V. Then (M, g) is locally reductive homogeneous if and 
only if there exists a (2, 1) tensor S defining a metric connection V := V - S 
with curvature R such that VS = '.71 = 0. 

Proof. Write M = C/H, with decomposition g = 	m and canonical connection 

V and let S = V - V. As C acts by isometries we have V is also C-invariant, 

whence S and R are both C-invariant. Therefore, see [37], they are both parallel 

with respect to V. For the converse see [37]. 	 D 

(The first version of this theorem for riemannian signature appeared in [38]. 

This was re-interpreted in terms of the canonical connection in [39] and extended 

to the pseudo-riemannian case in [36].) 

By adding the hypothesis that M be connected and simply connected to the-

orem 2.2.7 we may replace locally homogeneous with globally homogeneous. 

As the proof shows, the metric connection V in the theorem is the canonical 

connection defined above. The tensor S, which is called a homogeneous struc-
ture, is not necessarily the torsion of V (and not necessarily skew-symmetric in 

its lower indices.) Indeed, the torsion T is given by the skew-symmetrization of 

S: 

f(X,Y) = .7xY— 7X - [X, Y] 

= VxY - SXY - VX + SYX - [X, Y] 	(2.2.14) 

= —SxY+SYx, 

since the Levi-Cività connection is torsion free. However, the theorem can be re-

written (due to Kostant [39]) in terms of the torsion of the canonical connection 

in the following way: 

Theorem 2.2.8. Let (M, g) be a pseudo-riemannian manifold. Then (M, g) is 

locally reductive homogeneous if çind only if there exists a complete affine metric 

connection V with torsion r and curvature R such that Vr = VR = 0. 

It is not difficult to write down the curvature of the canonical connection in 

terms of the curvature of Levi-Cività connection R and the homogeneous struc-

ture: 

R(X, Y)Z = R(X, Y)Z + [S x , Sy]Z - Ss y _s ,, x Z, 	(2.2.15) 

for X, Y, Z E TM. This shows that we can in fact replace R in both theorems 
2.2.7 and 2.2.8 with R. 

The Ambrose-Singer theorem is a generalisation of the locally symmetric con-

dition (2.2.8), and also the promised generalisation of the Killing transport dis-

cussed in section 2.1. Like the Killing transport, the Ambrose-Singer theorem 



describes Killing vectors X by parallel transport along the geodesic curves of 

the canonical connection (2.2.13). It will play a pivotal role in our discussion of 

plane-wave limits and homogeneous supergravity. 

2.3 Reductive homogeneous structures 

Since both the canonical and Levi-Cività connections preserve the metric we have 

g(Sx YZ) = —g(Y,SxZ) , 	 (2.3.1) 

whence S : TM -p so(TM). Each such tensor is a section of the vector bundle 

T*M®o(TM) associated to the orthonormal frame bundle. By using the metric, 

this can equivalently be thought of as the ubbundle T = TM ®A2T*M  C ®3TM 

and S as the trilinear map 

S(X, Y, Z) = g(S x Y, Z). 

The bundle T splits up into the Whitney sum of three bundles 

each one corresponding to an irreducible representation of the orthogonal group. 

In terms of Young tableaux, this decomposition is given by 

T*®A 2T* = 71ET37273 

More explicitly, the bundles 7j  can be described as follows 2 : 

1. 71  = IS E 'I I S(X, Y, Z) = g(X,Y)(Z) - g(X, Z)cb(Y),cb E TM} 

2.72 ={S e71 S(X,Y,Z)±S(Y,Z,X)+S(Z,X,')=O and C 12 (S)= O} 

where C12 : 03T*M TM is defined by C12(S)(X) = > S(e, e, Z) 

where (e) is a pseudo-orthonormal frame. 

3. 73  = IS E 7 1 S(X, Y, Z) + S(Y, X, Z) = O}. 

It is possible to write down the explicit expressions for each of the components 

of S. We will write 	S(ea, eb, e) relative to a pseudo-orthonormal frame. 

Then 
Sabc  = 'bc + £S jC  + Sb C  

2  V abuse notation slightly and identify the bundles Tj  with their sheaves of sections, whence 

S E Tj  means that S is a section of J, etc 
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where 

'59abc = abec - 9acb 

abc = 31  (Saic + 5bca + Scab) 

= Sabc - SDabc - 
'abc 

where 
gab 

= 1 ig Sabc 

with n = dim M. 

Following Tricerri and Vanhecke [40] we can use these three bundles to distin-

guish 8 types of homogeneous structures. Since S is parallel with respect to V, 

its type under the orthogonal group does not change under parallel transport by 

V. Thus it is enough know the type of S at the origin coset o E M. 

S = 0: the locally symmetric spaces; 

5 e T: there is a vector such that 

S(X, Y) = g(X, Y) - g(X, Oy. 

In riemannian signature, Tricerri and Vanhecke proved that (M, g) is locally 

isometric to hyperbolic space. In lorentzian signature there are two cases to 

distinguish: the norm of 6 is zero or non-zero. In the latter case Gadea and 

Oubiñia [41] proved that (M, g) is locally isometric to anti de-Sitter space, 

whereas if 6 is null, then Montesinos Amilibia [42] showed that (M, g) is a 

singular homogeneous plane-wave 

g = 2dxdx + ()2Ho(xx)(dx+)2  + Idx 2 , 

with H0  a constant bilinear form; 

SET2 ; 

S E 73 : homogeneous spaces which admit a homogeneous structure of this 

type are called naturally reductive. We shall say more about naturally 

reductive spaces in the next section 2.4; 

5 eTT 2 : we have S(X, Y, Z) + S(Y, Z, X) + S(Z, X, Y) = 0; 

5 E T1  T3 : there is a vector such that 

S(X, Y) + S(Y, X) = 2g(X, Y) - g(X, )Y - g(Y )X. 
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It is shown in [43] that if has non-zero norm, then the underlying geometry 

is again that of a symmetric space. Whereas, if is null, then it is a generic 

singular homogeneous plane-wave [44]: 

j2  
g = 2dx+dx _ + H0(e_hb02x, e_h log +x) (dx

(x+)2 + dxI 2  

with H0  a constant bilinear form and f a skew symmetric matrix; 

S E 72 	we have C12(S) = 0, and finally; 

S E 71  e 72  ED 73 : no conditions. 

It must be stressed that a given homogeneous space can admit more than one 

homogeneous structure. We can understand this as follows. There is a one-to- 

one correspondence between homogeneous structures S and reductive splits g = 

m. In principle, different choices of j and m give rise to different homogeneous 

structures. Indeed, given g = m, the homogeneous structure S at the identity 

coset 0 is given by 

S(X,Y,Z) = g(VyX 0 ,Z) , 	 (2.3.2) 

where X, Y, Z are Killing vectors in m. 

Now suppose that g = 1j m is a reductive split, and let g' ç g be a subalgebra 

such that the restriction of the map g -f To  to g' is still surjective. Let )' = g'fllj 

and let m' = g' fl m, then surjectivity implies that m' = m, whence g' ED m 

is still a reductive split. Suppose we can pick a subspace m' C g' such that 

= I)' m' is still a reductive split. This means that m' is the graph of an 

'-equivariant linear map : m - rj' ;  that is, 

m'={cc(X)+XIXEm}. 

The larger I' is, the more linear maps m -+ 1j' there are. But simultaneously the 

j'-equivariance condition becomes stronger. It is therefore not inconceivable that 

this method of restricting to subalgebras should exhibit nontrivial W's. Moreover, 

if we can find a maximal g, then this method will allow us to calculate all the 

homogeneous structures on a homogeneous space M. Of course, the largest pos-

sible g is the full isometry algebra io(M, g), however this may not be reductive. 

Any subalgebra of iso(M, g) may not contain all other subalgebras, but there will 

be a finite collection of maximal reductive subalgebras (g e ) such that any smaller 

subalgebra is contained in some gi.  Observe that conjugate subalgebras yield 

isomorphic homogeneous structures. 

For a concrete example of a homogeneous space admitting many different 

coset presentations M = G/H, consider the 7-sphere. It can be written as 
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S 7  = SO(8)/SO(7) = Spin(7)/G2  = Sp(2)/Sp(1), with each presentation cor-

responding to a different reductive split and a different homogeneous structure. 

The characterisation of the non-degenerate 7 1  class gives another example. We 

will see more examples of this in section 4.4. 

Conversely, given a homogeneous structure S we can reconstruct the Lie 

bracket restricted to the subspace m by the following formula 

[X, Y] = SY - SyX + R(X, Y), 	 (2.3.3) 

where X, Y e m and S and R are evaluated at the point o. This defines the 

subspace m [m, m], from which we may define the full reductive split m F) to 

be the algebraic closure of this subspace under the Lie bracket (2.3.3) together 

with 

[A, X] A(X) and [A, B] = AB - BA, 	 (2.3.4) 

where X E m and A, B E End(m). Notice that not all elements of Fj need appear 

in R, in fact the holonomy algebra hol(V) must be an ideal of Ij. 

2.4 Calculating on reductive spaces 

Let X, Y, Z be Killing vectors on M = C/H. Then one sees that 

g(Vx Y, Z)=g([X,  Y], Z) + g([X, Z], Y) + g(X, [Y, Z}). 	(2.4.1) 

At the point o E M we deduce 

VY = A m (Y)(X) = 	[x, Y]", + u(x, Y), 	(2.4.2) 

where A m  is as in theorem 2.2.5 and U is the symmetric bilinear mapping of m  m 

into m defined by3  

2(U(X, Y), Z) = (X, [Z, Y] m) + ([Z, X] M) Y) , 	(2.4.3) 

where X, Y, Z e m. It should be remarked that (2.4.2) is only valid at o E M 
as otherwise V/xY is not necessarily a Killing vector. However, since V is C-

invariant, one can determine the (VxY)I at any other point p e M by acting by 

an isometry which takes o to p. 

The formula (2.3.2) for the corresponding homogeneous structure (at o) can 
now be written explicitly: 

S(x,z) 	([X,Y]m,Z) + ([Z,X]m,Y)  + ([Z,Y]m)X) , 	(2.4.4) 

3The apparent difference in sign between equation (2.4.1) and equations (2.4.2) and (2.4.3) 
stems from the fact that Killing vectors on C/H generate left translations on C, whence they 
are right-invariant. Thus the map g - Killing vectors is an anti-homomorphism. 
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for X,Y,Z Em. 

The U tensor is not generally invariant under the linear isotropy representa-

tion. Indeed, if Z E [j and X, Y E m we have 

(Z. U)(X, Y) = [[Z, X], Y] m  + [[Z, Y]b, X}rn; 	 (2.4.5) 

although it clearly does when C/H is reductive. 

Recall that a homogeneous space (M, g) is called naturally reductive if it 

admits a homogeneous structure S of type 73 . This is equivalent to admitting 

a homogeneous structure S with U = 0. While reductivity is a property of 

the isotropy representation, natural reductivity is also a property of the metric. 

The canonical connection of a naturally reductive coset description C/H has 

the same geodesic structure as that of the Levi-Cività connection: S is totally 

skew-symmetric so 

vX = xx + S(X, X) = VxX, 	 (2.4.6) 

for any vector field X and therefore the geodesic equations for the two connections 

are the same. 
The Riemann curvature of the Levi-Cività connection is given by 

R(X, Y Z, W) = g(—Vx VyZ + VyVx Z + V[x,y]Z, W). (2.4.7) 

It is G-invariant and can be calculated at o using equation (2.4.2). Let X, Y, W, Z 

be Killing vectors, then 

R(X, Y, Z, W) (U (X, W), U(Y, Z) - (U (X, Z), U(Y, W)) 

+[X,[Y,Z]]m,W) - 
12 	 i 

- ([X,[Z,W]Im,Y) 
-12 

+ 	[X, W]Im,  Z) 
1 

12 	
+ ([Y1 [Z,W1 1 m ,X) 

- P, [X 1 
	- 	[Z,[X,W]]m,Y) 	(2.4.8)12 

+ 	[z, [ W}]m,.X) 
1 

12 	
+ 6 UW, {X,Y1] m , Z) 

+([W,{X,Z]]m,Y) 	
1 

[W - 	,{ZIJm,X) 
12 

- ([X,Y]ni,[Z,W]m) - ([X,Z] m ,[Y,W]m) 

+ ([X,W] m  ,[Y,Z] m). 

Let (E3 ) be an orthonormal basis for m and let Z = E j  U(E, Es ). Then, by 
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taking trace of the formula above, we recover a formula for the Ricci curvature: 

r(X, Y) = 	([x, EjJm, [Y,  EA.) — 	([x, [1", Ej}m]m, E3) 

— >([Y, [x, EjIn.ijm,Ej) — 	([x, [Y, Ej]]m,  E3) 

— 	([Y, [x, Ei ] b]rn, E) + 	([E8, Ej]m,  X) ([Et, Ej]m,  Y) (E,,, E) 

— ([Z,X]m,Y) — ([Z,Y] m  ,x) 
(2.4.9) 

and, by taking the trace of this, for the Scalar curvature: 

S 	 I[Ek E3]m 
2_ 	

([Ek,[Ek,Ej]mItn,Ej) 
j,k 	 j,k 

— 	([Ek, [Ek,  Ej]]m,  E) — 1Z12 	 (2.4.10) 
j,k 

+ 	([Es,Ej]m,Ek)([Et,Ej]m,Ek)(Es,Et) 
s,t,j,k 

One can also write down expressions for the curvature and torsion of the canonical 

connection: 

t(X,Y)Z = [[X,Y]i,,Z] m 	 (2.4.11) 

r(X,Y) = [X,Y] m , 

for X,Y,Z Em. 

Given the Lie algebra g Fj m and an invariant tensor F0(...... —) at the 

point o, such as the metric (—, —) or the curvature R(—, —, —, —), one can use 

the left invariant Maurer-Cartan form 0 to re-construct the full tensor: 

FF0 (0m , Om, ...,Om). 

To calculate the Maurer-Cartan form directly, one chooses a local coset rep-

resentative 

a: U -* 

then the pull back of 0 by a is of the form 

0'* (0) = a'da 

For example, one may choose 

a(xi,...,x) =exp(x 1 X')exp(x 2X 2 )...exp(xX) 
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where (XI) is a basis for m. Then 

c'da =exp(—xX)... exp(—x iX')dxiX 1  exp(x iX 1 ) . . . exp(xX) 

+ exp(—xXTh) . . . exp(—X2X 2 )dx2X 2  exp(x 2X2 )... exp(xX) + 

This can be evaluated by noticing 

exp(—xX)X exp(xX) = exp([xjX2, -]) X 

= X - x[X,X] + 	[x,x]] - 

where means the action of the matrix exponential. Calculation of this matrix 

exponential can be difficult and one may have to make use of the following formula 

[45]: 	
1 

de  = f ( exHdHe(_)dx. 	 (2.4.12) 

One can also reconstruct the Killing vectors. Let g E C, x E M and define 

h:GxM — Gby 
• a(x) = cr(g . x) h(g,x). 	 (2.4.13) 

Now take g = etX with t e IR, X E g and differentiate the above equation with 

respect to t at t = 0. This gives x,  the Killing vector in the X direction. 

2.5 Homogeneous geodesics 

For our study of plane-wave limits of homogeneous spaces we will find that it 

is important to consider the null homogeneous geodesics of the background 

spacetime. These are null geodesics 'y that are the orbit of a 1-parameter subgroup 

of isometries. A curve given by 'y(t) = exp(tX), for some X e tho(Mg) and 

p e M, is a homogeneous geodesic if it satisfies the self parallel equation Vy' 

c-y'. For if it solves the self parallel equation we may reparameterise the geodesic 

H-+ h7' and solve the equation 

= hdh('y')y' + ch 2 y' = 0, 

for h to obtain the usual geodesic equation. When this is the case we call X e 

iso(M, g) a geodetic vector. On a homogeneous space C/H we may use an 

isometry to take p = o above. It may not be the case that X e g, for example we 

will see in 2.5.2 that this is the case for the Kaplan space if we take g = m. If the 

homogeneous space is reductive then we may apply the Koszul formula (2.4. 1) 

and find that X E g is geodetic if and only if 

(Xm,[Z,X]m) = (Xm,Zrn) 	 (2.5.1) 
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for all Z E 9  and some c e R . If X in equation (2.5.1) belongs to m, then we say 

that the geodesic is canonically homogeneous since then 'y is also a geodesic 

of the canonical connection. 

If we input Z = X into equation (2.5.1) then we find two cases to consider: if 
the norm of X is non-zero then c. = 0, or if the norm of X is zero then c may not 

be zero. If c = 0 then we say that the geodesic is absolutely homogeneous. 

Another equivalent formulation of the above definition of a homogeneous geo-

desic, which is relevant for non-homogeneous spaces, is that a geodesic 'y is homo-

geneous if there exists a Killing vector field which is aligned with the geodetic 

vector field -y' along the geodesic; that is k = h'y' for some function h. In terms 

of the Killing transport, this is equivalent to the existence of a solution ('y, A) to 

the Killing transport equations with A(-y') = 0. 

The exist ,ence of homogeneous geodesics in the riemannian setting is guaran-

teed by a theorem of Kowalski and Szenthe [46, 47]. It states that every homo-

geneous riemannian manifold admits at least one homogeneous geodesic through 

every point. The same result is also true for reductive lorentzian manifolds; how-

ever, it gives no guarantee about the existence of null homogeneous geodesics. 

In fact all lorentzian homogeneous examples known to the author (and this 

includes all 4-dimensional homogeneous spaces appearing on Komrakov's classi-

fication [48],) contain at least one null homogeneous geodesic. However we shall 

consider an example below 2.5.1 of an algebra K1.1 2 .1 taken from Komrakov's 

classification which demonstrates that not all homogeneous spaces contain an 

absolutely homogeneous null geodesic. 

To the author's knowledge there are no known results about the existence of 

homogeneous geodesics in the nonreductive case. 

At the other extreme, homogeneous spaces in which all geodesics are homo-

geneous are known as geodesic orbit spaces or, as they are often abbreviated 

to, g.o. spaces. Once upon a time, all g.o. spaces were thought to be natu-

rally reductive. In fact, this is only true for g.o spaces in which all geodesics are 

canonically homogeneous. Kaplan [49] constructed a 6-dimensional riemannian 

g.o. space which is not naturally reductive and we shall review the lorentzian 

version of this space below 2.5.2. The following theorem gives some useful tools 

for working with g.o. spaces. 

Theorem 2.5.1. (/50, 51]) Let M = C/H be a pseudo- riemannian g.o. space 

and g = m 	a reductive split. Then 

1. There exists at least one canonical ad (H)-equivariant map 0 : m - j (a 
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geodesic graph) such that, for any X E m/{0}, the curve 

expt(X + OW) (0) 

is a geodesic. 

2. A geodesic graph is either linear (which is equivalent to natural reductivity 

with respect to some reductive split g = ,) or it is non-differentiable 

at the origin of m. 

Conversely, property 1. implies that G/H is a g.o. space. The geodesic graph is 

uniquely determined by fixing an ad (H) -invariant inner product on Ij. 

In [52], Kowalski and Vanhecke have proved that up to dimension 5, every 

riemannian g.o. space is, or can be made, naturally reductive. Further, in dimen-

sion 6 they classified all riemannian g.o. spaces which are in no way naturally 

reductive. 
Before considering the two examples mentioned, we shall first investigate what 

the eight different distinguished types of homogeneous structures can tell us about 

the existence of homogeneous geodesics, and in particular those that are null. 

For example suppose that S is a section of 7 73, then for a null geodesic 'y 

of the V connection we have 

0 = 	= V"-Y' - g(-Y" 'y') + ("y', j'y' = V'y' + g('y', )'Y 

Now if we reparameterise y(u) to 7(s), such that 'y' = 9u  = h(s)93  = h(s)7, we 

find that 

0= 	 y' 

So that a solution to 

maps a null geodesic of V to a null geodesic of V. Conversely, given a null geodesic 

for V we can perform the inverse transformation and obtain a null geodesic for V. 

Thus, every null geodesic in a spacetime which admits a homogeneous structure 

of type 7 T3  is canonically homogeneous with respect to this structure. This 

also follows from the characterisation of lorentzian homogeneous spaces admitting 

a homogeneous structure of type 7i  73 given in [43]. 

The other classes of homogeneous structures listed in 2.3 (other than 0, 71,  73 

and 7i ® 7,) say little about the existence of homogeneous geodesics. For exam-

ple, in section 3.6.3 we shall consider a homogeneous space K1.4 6  which admits 

a homogeneous structure of type 71 2 which contains non-homogeneous geo-

desics. However, we shall see that the Kaplan space 2.5.2, which is g.o. and 
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hence every geodesic is homogeneous, also admits a homogeneous structure of 

type 7 ®2. 

2.5.1 An example from Komrakov's classification 

The algebra K1.1 2 .1 has a parameter A, we shall only consider A = 0 so that 

the resulting homogeneous space admits a lorentzian metric. If A is non-zero the 

metric is either riemannian or hyperbolic. The isometry algebra is the semi-direct 

product 2 = 1) x m with [j a one dimensional Lie algebra spanned by e1 and m is 

a four dimensional algebra spanned by (ui, U2, U3, u4). The algebra is given by 

[,] e1 U2 u3 u4 

e1 0 U3 0 U1 0 
U1 —U3 0 0 — U2 U1 

U2  0 0 0 0 2u2 

U3 U1 U2 0 0 u3 

U4 0 —u1 —21t2 U3 0 

Up to homothety (and Lie algebra homomorphism) there is a two-parameter 

family of 1)-invariant lorentzian inner products given by 

( 1 0 0 o 
o c 0 
o o 1 0 I 	 (2.5.2) 

o o 0 i3) 

with a/9 < 0. 

This algebra is reductive with split o = m T 1),  and the homogeneous struc-

ture corresponding to this split is given by equation (2.4.4) and has (nonzero) 

components S 3 k = S(U, U, Uk) given by 

	

8123 = 8213 = 8312 =a 	8224 = —2cr 	8114 = 8334  —1 

which is of generic type TjED2 

It is possible to deform this homogeneous structure by choosing a different 

reductive split o 	1) m' with m' the graph of an 4-equivariant linear map 

m —+ 1). We find that there is a 2-parameter family of such maps, and hence a 

2-parameter family of such splits. Indeed, let m' denote the span of the following 

vectors 

U1 , 	U2 + c2e1 , 	U3 , 	and 	114 + c4e1 

with resulting homogeneous structure 

1 	 1 
S123  = 8312 = 	5213 = C2 + 	8224 = —2a. 

	

8114=8334=—i 	S413C4. 



For generic values of c2 , c4  this is again of type 71  72 e 73, but there is a point, 

C2= la and c4  = 0, for which the 73  component is absent. 

Up to the action of the isotropy, a mill vector (at the identity coset) can be 

written as 

U'u1  + U2 
U2+  U

4 
 U4 

where (U')2  + a(U2)2 + ,3(U4)2 = 0. We must distinguish between two cases: 

a < 0, 3> 0 and a> 0, 0 < 0. In either case, the timelike component can be set 

to 1 (for future-pointing null rays) without loss of generality. 

a<0,/3>0.  
In this case, the null vector is u2  + pu4  + qu,, with q = sf—a - /3p2 . We 

find that the geodetic equation (2.5.1) has a unique solution, with geodetic 

vector 

U2 + pu4 	with p2  = —a/@ and c = —2 p. 

This geodesic is canonically but not absolutely homogeneous. 

a>0,/3<O. 	 ______ 

In this case, the null vector is U4 + pu2  + qui , with q = /— I3 - ap2 . Here 

we find two homogeneous geodesics: 

U4 + PU2 	with p2 = —0/a and c = —2, 

U4 ± qui 	with q2  = —/3 and c 

This geodesic is also canonically but not absolutely homogeneous. 

Therefore, the homogeneous space derived from the K1.1 2  algebra has no 

null absolutely homogeneous geodesics. (This is in fact effectively the only 4-

dimensional lorentzian homogeneous space without any null absolutely homoge-

neous geodesics.) 

2.5.2 Kaplan's lorentzian g.o. space 

The lorentzian version of Kaplan's g.o. space (see for example [51]) is a 2-step 

nilpotent Lie group with a left-invariant metric. The Lie algebra m is spanned by 

(Xi) for i = 1,... , 6 subject to the nonzero Lie brackets: 

[X,,X3]—X5 . {X1 ,X4]=X6 

[X2 ,X4]=—X5 	[X2 ,X3]=X6 	 (2.5.3) 
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and the left invariant metric is induced from the inner product for which (X 2 ) is 
a pseudo-orthonormal frame with X 6  timelike. Notice that this inner product is 

not ad-invariant 

1 = ([X1 ,X3],X5) (X1 , [X3, X51) = 0 

If we choose the local coset representative to be 

o- (x 1 ,...,x6 ) = exp(x iX1 ) ... exp(x6X6 ) 

then the Maurer-Cartan form is given by 

= X 1 dx 1  + X2 dx 2  + X3 dx 3  + X4 dx 4  

• X s (dx s  + x3dx 1  - x 4dx 2 ) 

• X 6 (dx 6  + x3dx 2  + x4 dx i ) 

Whence, the metric is given by 

dx + (dx5  + x 3 dx 1  - x 4 dx 2 ) 2  - (dx 5  + x 3 dx 2  + x4 dx i ) 2  , 	( 2.5.4) 

which exhibits M as an 2-bundle over flat [R , or as a real line bundle over the 

five-dimensional Gödel metric of [3]: 

dx _(dx6 + x3dx2 + x4 dx1 ) 2 . 	 ( 2.5.5) 

We shall consider this Gödel metric in more detail in section .4.4.1. 

The Lie algebra of isometries is a semi-direct product g = 	m, where [j 

consists of those (outer) derivations of m which are skew-symmetric with respect 

to the inner, product (-, -). (In the riemannian case this can be seen as a 

consequence of a theorem of Gordon [531.) Let 8 be an outer derivation, then it 

preserves the center c, which is the span of X 5  and X6 . As 6 is skew-symmetric, 

it also preserves the orthogonal complement a of the center, which is the span of 

the (X2 ) with i = 1,.. . , 4. The Lie bracket on m = c ED a defines a map 

Aa - 

which is equivariant under the action of J. It is not hard to show that 8 must 
act trivially on both parts of m. Hence Ij = so(a)_ C 50(a) comprises of anti-self 

dual rotations in a and therefore Fj sp(1). Let Y, a = 1, 2, 3, denote a basis 
for [j. Then the non-zero Lie brackets are given by (2.5.3) together with 

M, X11 =X3  
[Y1, X21 = X 4  

[Y1, X31 = —X1  
[Y1, X41 = —X2  
[Y1 , Y2 ] = —2Y3  

[Y,X 1 ] =X4  
[Y2, X21 = —X3  

[Y2, X31 =x2  
[Y2, X41 = —X1  
[Y2, Y3] = —2Y 1  
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[Y3, X1 = X 2  
[Y3, X21 =  —X 1  
[Y3, X31 = —X 4  
[Y3, X41 = X 3  

[Y3 , Y1 1 = —2Y2 . 

(2.5.6) 



To calculate the Killing vector fields explicitly, we can use the method (2.4.13). 

Using the coset representative chosen above, the Killing vectors are given by 

= Oi  for i = 1,2,5,6. 

x 3  =193 - X155 - 

94  + x2195 - x 186  

= - x31 - x 402  + X183 + x204 -
1 
 (X 2 _ - x + x)5 - (x 1 x2  - x3x4 )a6  

= - x401  + x382  - x 283  + x 1 04  - (x 1 x2  + x3x4 )8s  + 	x2  + X2 3 - x4 )96 

y3 =—X291+X1c92+X4193X3194 

The geodesic orbit structure of this space is easy to calculate. Remember that 

this requires finding a map 0 : m -p [ such that for all 0 X e m we have 

X + q(X) is geodetic. If X = Ej  viXi , then one finds that (X) = > 

where 

. V6 
& =(v - v + v3 2 - v4 2

) V5 
- 2(v i v2  + V3V4) 

I v-i-  I 	 IV , 12 

= - 2(v i v 2  - v3v4)1 V5 
2 - 

(v - v - v32  + v42 )1 V6  12 	(2.5.7) 

03 =2(vi v2  + v3v4) V5 
2 

+ 2(v i v2  - v3v4)1 
V5 

 12 
I Vj 

where vu 2  = 	lvI2. Notice that this function is non-linear and hence M is 

not naturally reductive. 

Starting with the reductive split g = mET3Ij with 8  the full isometry algebra, the 

homogeneous structure -calculated using equation (2.4.4) is given in components 

Sijk = S(X, Xi , X,) by 

8135 = 8326 = 8416 = 8425 = 8524 = S614 = 8623 = 

8146 = 8236 = 8245 = 8315 = S513 = - 

This can be seen to be of type 72 @73. 

As explained at the end of section (2.4), we can search for other homogeneous 

structures by restricting to subalgebras g' c g and looking for reductive splits 

= 	m', where j' = g' fl Ij and m' is the graph of an I3'-equivariant linear map 

M -f 

Let us decompose Ij and in into irreducible [j-modules: I) is three-dimensional 

and simple, whence irreducible, whereas in breaks up into two one-dimensional 

trivial submodules and an irreducible four-dimensional submodule. It follows 

that there are no nontrivial 4-equivariant linear maps m -* 1j, since such a map 
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would restrict to an isomorphism on irreducible submodules, but the decomposi-

tion above shows they have no isotypical submodules in common. Therefore we 

must consider proper subalgebras g' ç g in order to obtain other homogeneous 

structures. Conjugate subalgebras lead to isomorphic homogeneous structures, it 

follows that there is only one possibility: any one-dimensional subalgebra ' C I. 

We will consider the one spanned by Y1 , any other choice is related by conjugation. 

Decomposing m and 1)' into irreducible representations of [j' we find 

	

M = [RO e ooEDIR 	R2 

	

1 	1 	and 	Ij' = 

where the subscripts indicate the highest weight of the representation. The trivial 

representations in m are spanned by X 5  and X6 , respectively, whereas the two-

dimensional representations are spanned by (X 1 , X3 ) and (X2 , X4 ), respectively. 

We therefore have a two-parameter family of b'-equivariant linear maps ço: m -* 

given by 

ço(vX) = (ov 5  + 13v 6 )Yi  

The graph of is then the subspace m' C g' = 	m spanned by 

X1 , X2 , X3 , X4 , X5  + aY1 , and X6  + ,3Y, . 

This means that the [-, ]m' brackets are different from those for m, the differ-

ences given by 

[X5 +Yi ,X1 1 m' =OX3  

[X5  + aY1, X2]m' = cX 4  

[X5  + Ceyl, X3].' = 
[X5  + aY1, X4].' = 

[X6+13Y1,Xilm' =OX3 

[X6 +/3Y1 ,X 2 ] ni' = /3X4  

[X6 +/3Y1 ,X3 ] m' 	/3X1 

[X6+,@Y1,X4] m'=13X2. 

We can now compute the corresponding homogeneous structure using formula 

(2.4.4) and we obtain a two-parameter family of 72 ED 73  structures: 

8326 = S416  = 5614 = 8623 = 

8316 = S42 6  = 8613 = 8624 

8315 = S513  = —(1 + c) 

5425 = 5524 = 	- 

5146 = 5246 = 

8136 = 8246 = 

8135 = ( 1 + a) 

8245 = —( 1 

Naturally, when a = /3 = 0 we recover the homogeneous structure of the maximal 

reductive split. 
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2.6 Komrakov's classification 

B. Komrakov Jnr has compiled a complete classification of 4-dimensional pseudo-

riemannian homogeneous spaces [48], which is a useful source of examples on 

which to test conjectures. He considers the isotropy representation p : - 

of a homogeneous space C/H and classifies first all the complex forms 

and then the real forms of the subalgebra (p([))C  C o(4, C). He then uses this 

to classify all pairs (g, Ej) up to isomorphism and list them as algebras. 

The algebras have been labelled in the form K a.bc.d where a is the dimension 

of the isotropy subalgebra, b and c label the different isotropy representations for 

each dimension and d labels the different algebras for each isotropy representation. 

For each pair, we can calculate which inner products (-, -) on m are 

invariant, in the sense that the isotropy representation is skew-symmetric with 

respect to (-, -). Then we can use the Maurer-Cartan form 9 to recover the full 

metric from (-, -). We have calculated all the inner products for all of the alge-

bras in the classification and computed the metrics for all those with lorentzian 

signature. Then we have used the GRTensor package for Maple to calculate the 

Ricci tensor and decide which are Einstein, Ricci fiat or fiat, and have compiled 

the data in a large table in appendix B. We have only done these calculations for 

dim Ij > 1, and not included the 15 non-isomorphic Lie algebras because there are 

no restrictions given by the isotropy representation on which inner products they 

admit. So the family of metrics on each Lie algebra is isomorphic to the whole of 

SO(4), which is too large to reasonably include in the table in the appendix. We 

have made no attempt to weed out any redundancy in the list in terms that there 

may be isometries between some entries; for example, the many fiat metrics listed. 

In [54] Komrakov classified all 4-dimensional lorentzian homogeneous (M, g) and 

invariant F solutions to the four-dimensional Einstein-Maxwell equations 

dF—d*F--0 	 (2.6.1) 

Ric23  + FikFj' = kg23  , 	 ( 2.6.2) 

where k E O. He did this by studying the equations algebraically using equations 

(2.4.9) and (2.4.10). Obviously the results of this classification coincide with those 

given in the appendix B, but we think that the list of fully expanded forms of the 

metrics (which are not given in [48] or [54]) is a useful list to have. 

Below are some statistics to give an idea of the size and makeup of the clas-

sification: 

. Number of isotropy representations admitting riemannian metrics: 6 

33 



. Number of isotropy representations admitting lorentzian metrics: 14 

• Number of isotropy representations admitting metrics of (2, 2) signature: 

30 

(There is some overlap in these cases where a representation admits metrics 

of different signatures.) 

• The number of symmetric/reductive algebras admitting a riemannian met-

ric: 21/29 

• The number of symmetric/reductive/nonreductive algebras admitting a 

lorentzian metric: 35/64/6 

• The number of symmetric/reductive/non-reductive algebras admitting a 

metric of (2,2) signature: 57/123/9 

As already mentioned, a look at the 6 lorentzian non-reductive algebras reveals 

that they all have reductive subalgebras. 
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Chapter 3 

Plane-wave limits 

The purpose of this chapter is to introduce the plane-wave limit of a supergravity 

background and the notion of a hereditary property. We 'begin by describing the 

plane-wave metrics and the geometric aspect of the plane-wave limit. Then we 

consider various hereditary properties including Güven's extension to supergrav -

ity. We finish the chapter with a look at some examples illustrating some of the 

known methods for taking the plane-wave limit. 

3.1 pp-waves and plane-waves 

It is first convenient to introduce the widely known class of plane-fronted grav-

itational waves with parallel rays, or as they are more commonly referred to 

pp-waves. These lorentzian metrics are characterised by the existence of a par-

allel null vector field. A coordinate system (x, x+,  x) can always be found so 

that the metric takes the form 

2dxdx + H(x, x)(dx) 2  + 2K(x, x, dx)dx + IdxI2 , 	(3.1.1) 

where K(x+,  x, -) is a linear map. Clearly the parallel null vector field is 5_. 

The plane-waves are those pp-waves whose components are the same at every 

point of the wave surface, in this sense they are said to have 'plane symmetry'. 

The metric of a plane-wave in Brinkmann coordinates is given by 

2dxdx + H(x, x,x)(dxT) 2  + Idxl2 , 	 (3.1.2) 

where H(x+, -, -) is a symmetric bilinear form dependent only on x+.  A plane-

wave can also be given in a Rosen coordinate system: 

2dudv+C(u,dy,dy) ' 	 (3.1.3) 

where C(u, -' -) is a non-degenerate symmetric bilinear form dependent only on 

U. 
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To change coordinates from Rosen to Brinkmann we set up so called harmonic 

coordinates (x, x, x) defined by 

u = x v x + iC.(U)Qia(U)Q2b(U)yayb Xi = Qi aya . 	( 3.1.4) 4 23 

Here the prime / represents differentiation with respect to u. The matrix Qa  is 

such that 

CjjQQ3 
	Jab and Cij((Q') aQ2b - Qa(Q')3b) = 0 	(3.1.5) 

Defining the bilinear form H(u, -, -) by the matrix 

Hab(U) = (C:j (Q') a  + Cij(Q") a)Q3 b 

the metric takes the form of equation (3.1.2). There is a similar formulation of 

inverse coordinate change from Brinkmann to Rosen [44]. 

One situation that occurs in our calculations with plane-wave metrics is the 

following. Suppose we have a natural pp-wave coordinate system (3.1.1) in which 
H(x+, -, -) is a symmetric bilinear form as it is for a plane-wave, but K = 
K(x, dx) is a bilinear form independent of x . Although at first it appears that 

this metric is not a plane-wave, in fact several simple coordinate changes show 

that it is. We can split K into its symmetric and skew-symmetric parts and 

consider them separately. If K is symmetric, then it can be absorbed into the 

rest of the metric by a change in the x+  coordinate: 

-* 	- K(x, x) 

If K is skew-symmetric it can also be absorbed by a coordinate change to x: 

x'— e 	K x. 	 (3.1.6) 

Under this transformation, 

H(x+,x,x)F_H(x+ — x K ,e 	x,e —x K  x) 

K(x,dx) K(x,dx)+K 2 (x,x)dx 

IdxI 2 i-p  IdxI 2  - 2K(x,dx)dx - K 2 (x,x)(dx) 2  

where K 2  is the bilinear form associated to the square of the matrix for K. 
So we see this allows us to cancel the non-plane-wave like 2K(x, d x )dx ± term 

in exchange for gaining an extra K2 (x, x)(dxj 2  term. A similar coordinate 

transformation can be used to deal with such linear terms in Rosen coordinates. 



Within the class of plane-waves there are two important refinements: the 

homogeneous plane-waves' and the symmetric plane-waves. Every plane-

wave is of cohomogeneity one; that is the orbit of any point p e M under the 

isometry group is a hypersurface in M. This can easily be seen from the Rosen 

coordinate description (3.1.3), since it is clear that the ri — 1 vector fields 8, 8 

are Killing vectors. Thus for a plane-wave to be homogeneous it is sufficient that 

there is one more Killing vector in the c9,or 9+ direction. 

In [44], Blau and O'Loughlin have classified all homogeneous plane-waves into 

two classes. The first class consists of complete metrics and the second class 

incomplete metrics: 

Theorem 3.1.1 ([44]). There are two classes of homogeneous plane-waves: 

Regular waves: 

g = 2dxdx + Ho (e_x x , e_X x)(dx) 2  + IdxI 2  

Singular waves: 

g = 2dx +dx_ + 0(_f10x+, e_fb0+X) (dx)2 
 (x+)2 + IdxI2  

where f is a skew-symmetric matrix and H 0  is a symmetric bilinear form. 

The isometry algebra of the generic homogeneous plane-wave is given by: 

[e,] = Jij 	lei, X] = — i';, 

[Y,Y] = 2f 3 Z, 	[X, Z] = CZ 
	

(3.1.7) 

[X,] = (c5 + 2f 3 )Y ± (c(Ho ) 3  - cf 3  — fkfk3)e3 

The isotropy subalgebra has basis (es ). From this it is clear that homogeneous 

plane-waves are reductive. The c is as in equation (2.5.1) for the geodetic vector 

X. Each metric in the first class of regular plane-waves has an isometry alge-

bra with c = 0, and is naturally reductive as is evidenced by the 73 structure 

associated to the above algebra: 

S = 	A dxt A 	dxi. 	 (3.1.8) 

When [f, H0] = 0, the f drops out of the metric and the plane-wave is symmetric. 

These symmetric plane-waves are often called the Cahen-Wallach spaces (see 

[23] for the original paper or [201.) 

'These are sometime called the Hpp-waves in the literature. 
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Each metric in the second class of singular plane-waves has an isometry algebra 

with c = 1. The homogeneous structure associated to this algebra is of type T1e73 

and given by 

S._ = 	, Sj = 	fij , Si+, 	- 123) , 	(3.1.9) 

When [f, H0 ] = 0, the singular plane-wave admits a homogeneous structure of 

type 71. In. fact, as was mentioned in 2.3, the singular homogeneous plane-

waves with f = 0 are the only spacetimes admitting a degenerate Ti structure. 

By solving the Ambrose-Singer equations it can be shown that these singular 

homogeneous plane-waves do not admit a homogeneous structure of type T. 

Performing the coordinate transformation 

+ 	x+ 
X i—+ e 

changes the form of the singular plane-wave to 

2edxdx + Ho(ex, e -x+  /x)(dx) 2  + dx 12 

Hence, the bilinear form H(x+, —, -) which determines the plane-wave is of the 

same form as that of the non-singular plane-waves. Note that we can write the 

matrix associated to H(x+, —, -) as, 

= exp(x+[f, -]) . H0 , 

	 (3.1.10) 

where . denotes the action of the exponential on matrices. Written this way, it is 

apparent that H(x, -, -) is the solution to the differential equation 

dH(x) 
dx 	

= [f,H(x)],  

with initial condition H(0) = H0 . 

3.2 The plane-wave limit 

Let (M, g) be a lorentzian manifold of dimension n and let 'y  be a null geodesic of 

(M, g). Then given a point x E -y there exists a coordinate neighborhood (U, 

p.: U —+ O, of x defining adapted coordinates p(y) = (zz(y), v(y), y(y)), where 
u is a coordinate along 'y, such that in U the metric may be written as 

g = 2dudv + adv2  + 0(dy)dv + C(dy, dy) . 	(3.2.1) 

Here c,/3 and C are smooth functions, 3(—) is linear and C(—, -) is a positive 

definite bilinear form. 
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To choose such coordinates one chooses a one-parameter family of hypersur-

faces parameterized by v and foliated by null geodesics. The coordinate along the 

prescribed geodesics is given by 'a and 'y is given by (u, 0, 0). In other words, one 

chooses a local embedding of the null geodesic y into a twist-free null geodesic 

congruence with tangent vector field 8;  that is a null geodetic vector field such 

that 

dtag = 0. 

Then one chooses (n - 2)-submanifolds 'on which the restricted metric is ne-

mannian and allows v to be the parameter labelling these submanifolds. 

Let 1 e (0, oo) and consider the linear map 

tR -+ IR' 
(3.2.2) 

(u,v,y) i-* (u,Q2v,Qy) 

This map induces the following change of coordinates: 

= 	0 	0 i: U -* U. 	 (3.2.3) 

(If necessary, to make this well defined, we may need to shrink U so that it does 

not contain any "holes".) By patching together such coordinate neighborhoods 

along 'y we may think of On  as a diffeomorphism from a tubular neighborhood 

of y to a tubular subneighborhood. If we apply this change of coordinates to 

g, rescale the result by ci 2  and then take the limit as Q -+ 0 we obtain a well 

defined plane-wave metric: 

gpi = limQ2* g 	
(3.2.4) Q-0 	Q

= dudv + C(u, 0, 0)(dy, dy) 

We call 9p1  together with the tubular neighborhood of 'y  the plane-wave limit 

of (M, g) along 'y,  and call On the plane-wave limit map. The existence of 

adapted coordinates and the plane-wave limit was first noticed by Penrose in 

[26]. Notice that at 1 = 0, On is no longer a diffeomorphism. 

It is not difficult to see that this plane-wave limit is well defined, in the sense 

that its definition is independent of the choice of adapted coordinates (3.2.1). 

Indeed, let (r, s, x) be a different choice of coordinates such that 

g = drds + pds2  + i,b(dx)ds + e(dx, dx) , 	 (3.2.5) 

where p, , e are functions of (r, s, x). As both u and r are parameters along the 

geodesic 'y we may as well choose them equal u = r. An easy check shows that 
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when restricted to the geodesic -y the change of coordinates matrix must be of 

the form 

(

dr) /1 0 o\ du
ds =10 1  O  (dv 
dx \o c' e) \dyk 

and that under this 

eij ei  

	

kel =  Ckj . 	 ( 3.2.6) 

In fact c must also be zero because the second row in the matrix equation above 

shows that s = v + K, K a constant, and the change of basis matrix for the dual 

basis to the one-forms above is the inverse transpose: 

	

(

a")
/100\ 

("r)

8 	= ( 0 1 
_ci(e_1) 	8 	 (3.2.7) 

	

8yi 	\ o 0 	(e_1)i ) 0xk 

As e is nondegenerate we must have c = 0. Putting this into the plane-wave 

limit metric (3.2.4) we find 

drds + E) (r, 0, 0)(dx, dx) = dudv + E) (r, 0, 0)(edy, edy) 	
(3.2 .8) 

= dudv + C (u, 0, 0) (dy, dy) 

which shows that the plane-wave limit derived from the two different adapted 

coordinate systems is the same. Notice that this is really a statement about the 

choice of twist-free null geodesic congruence. 

A sufficient condition for telling when two plane-wave limits will be isometric 

is the following (the statement of this theorem appeared in [30] although the proof 

did not). 

Theorem 32.1 (Covariance of the plane-wave limit). Let (M, g), (MI, g') both 

be lorentzian manifolds. Let 'y  and  -y'  be two null geodesics inside M and M' 

respectively. Let f: M. -+ MY , be an isometry of tubular neighborhoods of 'y  and 

-y' which maps -y onto '. Then the plane-wave limits of (M, g) and (M', g') along 

'y and y' respectively are isometric. 

Proof. Let (U, ji = (u, v, y)) be a coordinate neighborhood of a point x on -y 
such that the metric g takes the form (3.2.1). Define a coordinate neighborhood 

(f (U), = (u',v',y')) about f(x) by 

	

= 4x) , 	 ( 3.2.9) 

so that u' = u o f is a coordinate along -y'. As g = f*gI, then g' also takes the 

form of (3.2.1) in this neighborhood. 
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Now consider f o 	: U - U'. We have 

fog=fo1 ' o 'ç'co/i 

= f o  (' 0  f)-1 0 	0 (ii'  0 f) 	
(3.2.10) 

= II' 0 	0 ji'  0 f 

= cbg' o f. 

Therefore 

9p1 = lim l_2 (q )* g  

= urn c_2(cbg)*f*gF 

= urn 1 -2 (f 0 
/)*gI 	

(3.2.11) 0-0 

= urn c 2(' 0 
f)*gI 

0-0 

= urn _2f* 
0 

(q5gF)*g 
0-0 

= f * g1  

. 

Notice that the plane-wave limit of the plane-wave metric 

dudv + C(u, 0, 0)(dy, dy) , 	 (3.2.12) 

along the geodesic (9u  does not change the metric, whereas along a, it leads to 

flat space. This shows that the covariance condition certainly isn't necessary for 

plane-wave limits to be isometric. For example, consider the plane-wave limit of 

any lorentzian space not isometric to a plane-wave, and compare it to the trivial 

plane-wave limit of a plane-wave along i9. 

3.3 The space of lorentzian metrics 

The proofs of some of the hereditary properties we give below make use of con-

tinuity arguments. To make such arguments concrete we shall briefly consider 

the topology of the space of metrics, in order to specify the sense in which the 

plane-wave limit is a continuous limit. 

We can consider the space of lorentzian metrics MN on the tubular neighbor-

hood N of 'y  as a smooth infinite-dimensional manifold. MN is modelled on the 

set 
COO  (GL (TN , T*N)) 	 (3.3.1) 

of sections of invertible linear maps from the tangent space of N to the cotangent 

space together with a topology induced from the Whitney-C°° topology (see [55].) 
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Then 
IQ-2(o  1)*g  I 	 [0, 1]} 	 (3.3.2) 

is a continuous path in MN with one end point g and the other gpi  and so 

ijmc_2* g 	 (3.3.3) 

certainly converges to gpi  in this topology. 

It is interesting to consider MN as a pseudo-riemannian manifold. The tangent 

bundle to MN is modelled on 

TMN C(GL(TN,T*N)) X Coo(L c (TN,T*N)), 	(3.3.4) 

where C (L C (TN, T*N))  is the set of compactly supported sections of linear maps 

from TN to T*N.  Let C be the following pseudo-riemannian metric on MN: 

Gb(g,h) := fN tr (b 1 gb 1 h)vol(b), (3.3.5) 

where g, h e C°°(LC(TN, T*N)) ,  b e C°°(GL(TN, T*N))  and vol(b) is the volume 

form associated to b. 

We can use this metric to calculate the length of the path from g to gpi.  If we 

let g(t) := e2t0_ t  g so that Il = e_t in (3.2.4) and g takes the form (3.2.1), then 

n-2 r 	 n-2 
__ 	 3t 	- '' ,-2t . 

	

ag(t) - 	
-e t/3(t) - 2e v_ä(t) 	' t)] dydv 

at - 
i=1 [ 	 j=1

ayi 

n-2 rn2 
• 	_e- t 	 -2t 

i,j=1 Lk=1 	

(t)] dyd (t)-2e v- 

(3.3.6) +[ 	 n-2 
3t _2e_2ta(t) - 	y 	(t) - 2e_4tv(t)] dv2

ay i i=1 

n-2 	n-2 

	

= 	[A] 2 dydv + E [B],dydy + [C]dv2  
i=1 	 i,j=1 

In order to calculate G9 (gt , gt),  where  gt := 	we need to find tr (g'gtg'gt). 

If we let 

: 
(Cii(t) 	- tf33Cui(t)_) 
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and apply (3.3.6) we find 

g'gtg'gt (j;i) = 

U 	
n-2 

g1gtg'gt 	
) = 	

[A] (cii(t)[A]_ + 
ik=1 

n-2

) I 

g'gtg'gt (;) = 	[B]. (cik (t)[A]kP_ + Cjk 
ay  

23 	au 
i,j,k,1=1 

and therefore 

	

tr (g'gtg'gt) = 	[B]jj [B]kj Cik(t)Cit(t). 	(3.3.7) 
i,j,k,1=1 

So if F is the path from g to gpj  in MN,  then with respect to the metric (3.3.5) 

the length of F is 

L(F) = f(G g (s)(gt (s),gt (s)))ds 
r 

	

n-2 	 (3.3.8) 

= X IN 
> [B]jj[B]kjCik(s)CU(s)vol(g(s)). 

i,j,k,1=1 

Equation (3.3.6) shows us that [B] - 0 as t -* 00 and therefore the length of F 

(unsurprisingly) tends to zero. It also shows that if C is independent of v and y 

then F is null. 

3.4 Hereditary properties 

We say that a property of the metric g is hereditary if the plane-wave limit 9j 

has the same property. For example, 

Proposition 3.4.1. Suppose (M, g) is locally symmetric/conformally fiat. Then 

(M.,, gpj) is locally symmetric/conformally flat. If (M, g) is Einstein then 

gpz) is Ricci flat, in particular it is Einstein. 

	

Proof. Let Vç1, Rn denote the connection and curvature of go 	g respec- 

tively. As On  is a diffeomorphism, if VR = 0 then V1Rç = 0 for Q > 0. By 

continuity, we see that V1R 21 = 0. Similarly if the Weyl tensor W of g vanishes 

then Wc = 0 for 1> 0, and continuity ensures that W 1  = 0. 

If Ric(g) = Ag then 

Ric(gc) = Ric(r2  g) = Ric( 	g) = A g. 	(3.4.1) 
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This gives 

Ric(go) = 	, 	 (3.4.2) 

and by continuity we see that Ri(g i ) = 0. 

These hereditary properties can be used to easily compute the plane-wave lim-

its of anti de-Sitter space AdS. Anti de-Sitter space is Einstein and conformally 

flat, hence any plane-wave limit is Ricci flat and conformally flat and thus flat. 

The heritability of these curvature properties, such as the Einstein condi-

tion, may lead one to suspect that more complicated gravity equations could be 

preserved too. This is indeed the case; Güven [27] has shown how to extend the 

plane-wave limit to supergravity in such a way that solutions are mapped to plane-

wave solutions. We shall describe this extension now. Let (M, g, A 1 , . . . , A) be 

a local solution to a supergravity theory, that is a lorentzian manifold (M, g) to-

gether with a collection of differential form fluxes Ak which define field strengths 

Fk = dAk  and together satisfy some equations of motion. For example, an 11-

dimensional supergravity theory (M, g, F) which locally satisfies F = dA and 

the Einstein-Maxwell type equations (1.1.1) and (1.1.2). We think of the field 

strengths Fk as being the fundamental quantities, consequently the fluxes are 

only defined up to a gauge transformation Ak '-* A + dA k , which fixes F. Using 

these gauge transformations it is possible to manipulate a flux A such that 

taA = 0 , 	 ( 3.4.3) 

where 49,, is the null geodesic vector field for the adapted coordinates (3.2.1). 

Specifically let A = f du A toA, which exists locally. 

Now, we pull back the form Ak using the plane-wave limit map Oo  and rescale: 

çk* Ak. 

Letting 0 tend to zero, the choice of gauge ensures that the limit is well defined 

(A k ) 1  := urn ç-k* Ak 

This also defines (Fk)j := d(Ak)j. Since the limiting process is continuous any 

system of differential equations will be preserved, so the resulting plane-wave limit 

supergravity data 

(M 1 , 
9p1, 

 (A 1 ) 1 ,... , (A n )pi ) 

will still solve the equations of motion. 

More generally, an argument of Geroch [56] shows that the plane-wave limit 

preserves parallel sections of any connection. In particular, it was shown in [30] 
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that neither the dimension of the isometry algebra nor the number of linearly 

independent Killing spinors ever decreases under the limit. 

Although the plane-wave limit is fundamentally local in nature, we may con-

sider the heritability of global properties such as completeness. Indeed, if (M, g) 

is a geodesically complete lorentzian manifold, then the plane-wave limit along 

any null geodesic is also geodesically complete: 

Proof. Let 'y(t) be a geodesic with respect to V,j for t E [a, b]. Without loss 

we may assume that -y is contained in a normal coordinate neighborhood of some 

point on 'y, so that there is a unique geodesic from y(a) to 'y(b) with respect to V1 

for Q E [0, 11 (which is possible because Vp varies continuously with respect to 

and [0, 1] is compact.) Let -yo  be the unique geodesic with respect to V1 between 

'y(a) and 'y(b). Then 7p(t) may be extended to (—oo, oo) as V 1  is geodesically 

complete and OQ is a diffeomorphism. Continuity implies that the sequence of 

geodesics 'y(Z) for 0 = I converges to 'y in the following sense. Any neighborhood 

of any point on 'y intersects all but a finite number of geodesics of the sequence. 

Therefore, by continuity of the geodesic equation with respect to Q, we have that 

'y may be extended beyond (a, b). 0 

In the next section we shall consider heritability of some submanifold proper-

ties and in the next chapter we consider homogeneity. But before finishing this 

section we prove one last heritability result that will be useful later: 

Proposition 3.4.2. Let (M, g) be a lorentzian manifold and let 'y be a null geo-

desic. Then at any point x E M there exists an orthonormal basis {e(cl)} 1  for 

TM with respect to gç, varying continuously with respect to Q, such that 

	

{lime(Z)}t. 1 	 (3.4.4) 

is a well-defined orthonorrnal basis for TM with respect to gpi. 

Proof. Let (U, j = (u, v, y)) be a coordinate neighborhood of a point x such that 

g takes the form (3.2.1). Take the set {}1 and apply the Gramm-Schmidt Oy  
process with respect to gç  to obtain an oithonormal set {ek}J. Note that this 

set will be independent of Q as this is a basis for TM and x is the zero point in 

the choice of coordinate (see (3.2.1).) Apply Gramm-Schmidt to the additional 

vectors -.2-a - a - -2-a + a - to obtain  au 	&u'Ou 	av 

e() = (
2— 	- n-1 Q2(i)2) 

( 	- 	

+ c 	
' 

jie ) 

e() = (
2+ ()) ( 	

+ 	+ 	e) - 	7jej + 2(i7i)2e)) 

(3.4.5) 
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where ij := g(&,ei) and f'(1) is some function of (1,u,v,y) such that IeI2 = 1 
and which tends to zero as 11 - 0. Letting Q -* 0, we obtain an orthonormal 

basis with respect to gpj: 

{e i ... , en-l! e = 	- - 
	

, e = 	
+ 	) . 
	(3.4.6) 

07 

It is worth noting that given an arbitrary orthonormal basis {e} 1  for TIM, 

the limit of 	 as Q 	0 is not necessarily a well-defined basis. For 

	

example, start with a basis containing the element 	In the limit this element a 49V 

will blow up: 

3.5 Plane-wave limits and submànifold geome-
try 

Let X be a vector field on M and expand it in the adapted coordinates (3.2.1): 

On 	Dv 	ay  
If we apply the derivative of the plane-wave limit map OQ to X we obtain a vector 

field X. But if we take the Q -* U limit of X Q  it may blow up. However, we can 

rescale X 1  by some power of Q before taking the limit so that the limit is well 

defined. If p(X) is the least such power, then 

lim 	/X = X 1  . 	 ( 3.5.1) 

We call X 1  the plane-wave limit of X along 'y.  It is easy to check that this is 

well-defined using the coordinate transformations in the discussion of the metric 

(3.2.5). 

Consider a distribution D containing vector fields X and Y. Let D 1  be the 

distribution made up of the plane-wave limit of the vector fields in D. The plane-

wave limit of vector fields induces a map on the Lie bracket: 

	

[X,Y] i-* [X1,'c1] , 	 ( 3.5.2) 

which is an Inönfl-Wigner contraction [57]. It follows that if D is involutive then 
so is D 1 . We can use this to define the plane-wave limit N 1  of a submanifold N 

by taking its involutive distribution of tangent vector fields. This is consistent 

with the notion of the plane-wave limit of the whole ambient space (M, g) along 

a null geodesic since the plane-wave limit of M, by the above definition, is equal 
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to M. Notice that the dimension of N is not necessarily equal to the dimension 

of N1. 
Three natural types of submanifold to consider are the totally geodesic, the 

minimal and the calibrated submanifolds. We will consider how these types of 

submanifold behave under the plane-wave limit, however first we need to consider 

immersions. Suppose that h: N -* M is an immersion of a submanifold N into 

a lorentzian space (M, g), then the induced metric h*g  on N is non-degenerate. 

A problem when considering the plane-wave limit of immersed submanifolds N is 

that N1 is not necessarily immersed. For example, the two-dimensional subman-

ifold with tangent bundle spanned by (t9,, 5) may well have a non-degenerate 

induced metric, however its plane-wave limit, which is given by the same distrib-

ution, is a degenerate submanifold of the - plane-wave limit of the ambient space. 

There are in fact three classes of immersed submanifold to consider: 

• Transversal submanifolds N for which the tangent bundle is spanned by 

vectors of the form X& + X 1 9U, but does not contain 8. If N is immersed 

then so is N1. 

• Lorentzian submanifolds N which.contain the null geodesic generated by 

,9u  and a complementary null vector field such that the induced metric is 

non-degenerate. If N is immersed then so is N 1 . 

• Degenerative submanifolds N for which the tangent bundle includes vec-

tors of the form ô  + X',9 + X'5,,, but does not contain ô. N1 is not 

immersed even if N is immersed. 

The first two classes will be important in the following. 

Let (M, g) be a lorentzian manifold, N a totally geodesic submanifold and 'y 

be a null geodesic of M not necessarily contained in N. N is totally geodesic in 

M if and only if it is an immersed submanifold and the second fundamental form 

II(X, Y) : (VyX)' vanishes on N where I is the projection to the orthogonal 

complement of TN. Let (u, v, y) be adapted coordinates (3.2. 1) for M with 

respect to y  which define the map On (3.2.3). 

Since On is a diffeomorphism we have that 

= 0. 	 (3.5.3) 

If we multiply by çp(X)+p(Y) and take the limit as Q -+ 0 we find it is well-defined 

and continuity ensures it is zero: 

[(V1)x,]1 = 	[1P(X)+P(Y)( )V) ()x ()* Y]Jl = 0 , 	(3.5.4) 
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Therefore the submanifold N 1  is a totally geodesic submanifold of (M, g,j) if it 

is immersed. The discussion above shows that this is the case if N is either 

transversal or lorentzian. 

We can see how this works algebraically in symmetric spaces. Totally geodesic 

submanifolds in symmetric spaces are characterised by Lie triple systems. A 

Lie triple system is a subspace s C g of the isometry algebra such that X, Y, Z E s 

implies [X, EY, Z]] e S. Given a symmetric space M with reductive split g = 

there is a one to one correspondence between Lie triple systems z C m and 

totally geodesic submanifolds N of M, with N = exp(s). The plane-wave limit 

is therefore given by N 1  = exp(z 1 ) with the Lie bracket on s the contraction 

(3.5.2). As it is a contraction, sp, is also a Lie triple system subspace of B,t  and 

hence N 1  is totally geodesic in (M, g1). 

Now suppose that N is a minimal submanifold. N is minimal in M if and only 

if it is immersed and the mean curvature vector J-C vanishes. The mean curvature 

vector is given by 3C = tr 'Tx  = Ii[Veei]', where lei  I is an orthonormal basis 

for TIN. We, will consider the transversal and lorentzian immersed submanifolds 

separately. 

First suppose N is transversal and let (e l , ... , em ) be an orthonormal basis 

for N. Then to obtain (e) i  we must scale (On),,ei  by Q before taking the 0 -* 0 

limit. This precisely compensates for the Q2 scaling of the metric when taking 

the plane-wave limit, and so ((e i ) j,... , (e) i ) is an orthonormal basis for TN 1 . 

Since Of2 is a diffeomorphism 

o = 	= 	 ' 

(3.5.5) 

and continuity ensures that (J-C 1 ) = 0. Therefore the plane-wave limit of N is 

minimal. 

Now suppose that the submanifold N is lorentzian and choose adapted coor-

dinates (u, v, y 1 ,.. . , ,,m )' for N with respect to the null geodesic and extend the 

transversal part to adapted coordinates (u, v, y1,... , yfl) for the whole of M. As 

Op is a diffeomorphism we have JCç = 0 for Q non-zero. Now we can use the 

orthonormal basis {e(1)} for TM constructed in proposition 3.4.2 to take the 

limit of 

0 = XQ= 	[(1*V)ei()ei()]1 	p1, 	 (3.5.6) 

as Q -* 0 and continuity ensures that J-C1 = 0. Therefore the plane-wave limit of 
N is minimal. 

Finally, let N be a calibrated submanifold with calibrating form e. A p-form 



0 is a calibration on a lorentzian space M if it is closed and 

	

0(() ~! vol(() 	 (3.5.7) 

for all tangent p-planes . (See for example [58] for more details.) In local 

coordinates the volume form can be given by 

	

Vol,, = \/det(gX )dx A 	 . .. A dxtm . 	 (3.5.8) 

Choose adapted coordinates (u, v, y', .., y 2 ) for M which define the map 

then we may use the restriction of this map to pull back the volume form of a 

submanifold N. When taking the plane-wave limit one also scales the metric by 

0-2 , this will also scale the induced metric on N and hence the volume form: 

det(_2 g)(dx 1  A• A dxtm) = 	P \/d cb*gc(dxl A ... A dxtm) 

= l'q5vo1. 

For the calibrating form we may do the same trick as for Güven's extension and 

consider 0 locally as d€. Then by changing gauge € i-+ € + d3 we may manipulate 

€ so that t€ = 0. This guarantees that the limit of 

	

- €pt 	 (3.5.9) 

as Q -* 0 i§ well defined, and defines the closed form 

	

Opt = d€1 . 	 (3.5.10) 

Continuity also ensures that equation (3.5.7) holds in the limit, so 0 defines a 

calibrating form. 

An immersed submanifold N C M is calibrated by 0 if OIN = voiN (see [58] 

for more details.) Therefore, the plane-wave limit N 1  of either a transverse or 

lorentzian submanifold is calibrated by Op, if N is calibrated by 0. 

3.6 Examples 

Something hidden by the definition of the plane-wave limit given in 3.2 is that 

calculating it by finding an adapted twist-free coordinate system can be quite 

difficult. This is principally because not every null geodesic vector field defines 

a twist-free geodesic congruence. However the Hamilton-Jacobi method from 

symplectic geometry provides a method for picking out a geodesic vector field 

which defines a twist-free congruence. We shall describe this method and illustrate 

with an example below, but first we will review some examples of plane-wave 

limits from the literature. 
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3.6.1 Anti dc-Sitter space 

As already mentioned, all plane-wave limits of the anti de-Sitter space AdS 

are flat space. In [30] the plane-wave limits of the AdS x stm supergravity 

backgrounds are also considered. Using the covariance property 3.2.1, we only 

need to consider the isometry classes of null geodesics. There are two such classes: 

the set of geodesics which are contained completely in the AdS factor and the 

set which are not. In both cases it is not too difficult to write down an adapted 

coordinate system and we find that the plane-wave limit of a geodesic in the first 

class is flat and the plane-wave limit of a geodesic in the second is a Cahen-Wallach 

space. 

In particular, as mentioned in the introduction, the 11-dimensional Minkowski 

space occurs as a plane-wave limit of the Kowalski- Glikman maximally supersym-

metric plane-wave [21] and the BFHP maximally supersymmetric plane-wave [59] 

occurs as a plane-wave limit of the AdS 5  x 55  solution of JIB-string theory. 

In [60] the plane-wave limit of the AdS 3  x 53  is exhibited as an Inönü-Wigner 

group contraction [57]. The space AdS 3  x S3 is isometric to the Lie group 

SU(1, 1) x SU(2) with a bi-invariant metric. The geodesics of the bi-invariant 

metric are 1-parameter subgroups, that is to say that they are all homogeneous 

geodesics. This is used to describe the plane-wave limit as a group contraction. 

Such special cases of plane-wave limits were also considered in [61]. In the next 

chapter we shall show that this is a special case of a more general phenomenon, 

when taking plane-wave limits along homogeneous geodesics. 

3.6.2 Branes 

The paper [30] also considered plane-wave limits of the many different supergrav-

ity brane solutions. The typical metric and field strength F for an n-dimensional 

sup ergravity brane solution is 

g=A2 (r)i,+B2 (r)5 and F +2 =vol(E( " ) )AdC(r) , 	( 3.6.1) 

where 77 is the Minkowski metric on R 1,P and 5 is the euclidean metric on RI-P-1 .  

The isometry group of this generic brane metric C = ISO (1, p) x SO (n - p) acts 
with cohomogeneity one. The generic orbit is diffeomorphic to 1R p+1  x Sn_P_i 

There are three isometry classes of null geodesics: 

tangential geodesics that are tangent to the brane world volume, 

radial geodesics which have no component tangent to the sphere part of 

the orbit structure, 

50 



3. generic geodesics which are neither of the above. 

Plane-wave limits of tangential geodesics are flat, and those of the radial geodesics 

lead to a variety of plane-waves depending on the type of brane. For example, 

the plane-wave limit of the D3 brane is Ricci flat, plane-wave limits of the D3, 

NS5, M2 and M5 branes are flat in the near horizon limit and the plane-wave 

limit of the fundamental string is homogeneous in the near horizon limit. The 

plane-wave limits of the generic geodesics are more complicated. The paper [30] 

also considers intersecting branes among other things. 

3.6.3 Hamilton-Jacobi 

In this section we shall review how the Hamilton-Jacobi method can be used to 

compute adapted coordinates and calculate an example. For further references 

see either M. Blau's lecture notes [62] or [63] for more on the Hamilton-Jacobi 

equation in symplectic geometry. 
That the Hamilton-Jacobi formalism can be used to find adapted coordinates 

first appeared in [31], although no formal proof appeared there. The following 

description appeared in [62]. One starts with an energy action defined by the 

lagrangian L: TM - given by 

L(x,x') = lx1I2 . 	 ( 3.6.2) 

The geodesic equations for a null curve are given by the Euler-Lagrange equations 

together with the constraint that L vanishes. Let 

H: T*M 	D, (x, q) I- ((x,q),x') - L(x,x') 

be the associated hamiltonian, where the bracket (-, -) is the obvious pairing. 

The associated hamiltonian vector field XH defines a Jacobi field when restricted 

to a geodesic 'y. Let v: M - IR be a solution to the Hamilton-Jacobi equation 

	

Hodv=0 , 	 ( 3.6.3) 

then a null geodesic satisfies 

	

IdvI 2 = 0. 	 (3.6.4) 

Now consider a neighborhood of a null geodesic which contains no conjugate 

points. Suppose we embed the geodesic y into a twist-free congruence of null 

geodesics. Let 'y(p) denote the unique null geodesic of this congruence passing 

through the point p and v the Hamilton-Jacobi solution (3.6.3) for the geodesic 

congruence -y (p) Consider the coordinate (u, v, y) where u is an affine parameter 



along 'y(p) and y are some transverse coordinates. The definition of v gives 
g(dv, -) = 8,. Using this we have 

uu = 0 
9 V = Idv!2 = 0 

guy = g(du,dv)=du(8)=1 

gV = g(dy,dv) = dy 2 (5) = 0. 

The calculation of g 2  from g 1  involves the determinant of the (n - 1) x (n - 1) 

minor where the uthrow  and the i1h  column have been removed from The 
vth column of this minor is zero, hence g, j  = 0. It then follows that gu, = 1 
and therefore, putting all of the above together, we find that (u, v, y) defines an 

adapted coordinate system. 

As an example of an application of the Hamilton-Jacobi method, we will 

calculate the plane-wave limits of a homogeneous space taken from Komrakov's 

classification 2.6. Consider the algebra (Komrakov number 1 . 46 ) 

[,j 	e 1 	U1 	u2 	u3 	u4  
e 1 	0 	0 	u1 	u2 	0 
U1 	0 	0 	0 	0 	u1  
U2 	U1 	0 	0 	0 	u2  
U3 — U2 0 	0 	0 
U4 0 —u 1  —u 2  —u 1  - u3 	0 

This isometry algebra is the semi-direct product g = [j v  of a one dimensional 

Lie algebra 1 spanned by e1 and a four dimensional Lie algebra m spanned by 

1 U1, u2, u3, ui}.  Up to homothety (and Lie algebra automorphism) there is a 

unique Fj-invariant inner product, given by 

00-10 
0100 
—1 0 0 0 
0001 

There is a two-parameter family of 1j-equivariant linear maps m -+ Ej which 
we will label with c and 3. The graph m' of a map in this family is the subspace 

of 9 spanned by 

U1 + ae 1  , 	u2  , 	U3 , 	and 	u4  +)3e, 

The subspace m' is no longer a Lie subalgebra, but projecting the brackets to m' 
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we obtain 

{ui + ae1, U4 + /3ei]m' = u1 + ae1 
	[u2 , u4  + 3ei} m' = u2  - /3(u i  + aei) 

[ui  + ae1 , u3bfl' = au2 
	 [u3 , u4  + /3ei ] m' = Ui + U3 - /3u2  

[ui  + ae1, U21m' = a(ui  + aei ) 

The resulting homogeneous structure has components Sijk = S(uj ,u3 ,uk) given 

by 

S1 34 = S314 = 8334 = 1 	S123 = —a 	S423 = —9 	S224 = —1 

which is generically of type Ji 	'Ta , but of type 7 72  when a = = 0. 

Taking the local coset representative to be 

a = exp(uui) exp(yiU2) exp(vu3) exp(y2u4) : M -* C 

the Maurer-Cartan form o 1 da is given by 

(e 2 du + y2e2dv)ui + eY 2 dy 1 u2  + e 2 dvu 3  + dy2u4  

Thus the induced metric is 

ds2  = ((a 1 da)m, ('d),,,) = e2Y 2 (_2dudv - 2y 2dv 2  + (dy 1 ) 2 ) + (dy2 ) 2  

Using 2.4.13 to reconstruct the Killing vectors we find 

0 

0 
U25 

0 

8 	0 	0 8 
(U4 

= 

	

8y 	OV 8Y2 
0 	0 

= 

To determine the plane-wave limits, we first determine the null directions up 

to the action of isometries. Let U = Ej  Uiui  E m be a null vector. Then 

2U1 U3 = (U2 ) 2  + (U4)2 . 	 (3.6.5) 

The action of the isotropy is obtained by exponentiating the adjoint action of 

e1 E 

(UlU2
\1t 	0 fu1 	U1  + tU2  +

1 	10 1 t 0 1U21 	I 	U2+tU3 

	

IUII0 0 0 0 IUlI 	U3  

\U) 	\o 0 0 0 \U4J 	\ 	U4  

We must distinguish between two cases: 
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If U3  = 0 then so are U2  and U4  by (3.6.5), whereas U' 0 0. Therefore the 

null vector can be chosen to be u1 . 

If U3  0 then we can use the isotropy action to put U2  = 1 and rescale 

the null vector to make U3  = 1, so that the null vector is then u3  + cu4  + 
(1 + a2)ui + u2  for some -a E 

We shall consider only the second case here, leaving the first to the end of 

chapter 4 when we have more machinery. Suppose that S(u, v, Yi, y2) is a solution 

to the Hamilton-Jacobi equation (3.6.3), such that g(dS, dS) = 0. Introducing 

momenta Pu, Pv, m we find 

S(u,v,x,y) = PuU+PvV+ply, +, 

where 

(Y2,Pu)Pv,P1) = f V2pupv  - 2PY2 - peY2dy2 = f f'(y)dy 

Now changing coordinates such that 

ds = pdn + pdv + p1 dy 1  + f'(y2 )dy2  
dy2  

dr 
= f' (y2) 

dv_ 
dz1 	

= 

e 	
dy2 

Pu f' ( y2) 
dy1 - dz2 	= 	
-;;- 

dy2  
f'(y2) 

we can rewrite this metric in the following adapted form: 

2dsdr+2e 212 dsdz i  +(2pupv e_2I2  - 2py2 e_22 )dz -2e 2 I2pdzi dz2 	 dz22  

where Y2  is a function of r defined above. This is the adapted form with r the 

coordinate along the geodesic. Taking the plane-wave limit of this metric we 

obtain 

2dsdr + (2pupve_2112 - 2py2 e_2Y 2 )dz - 2e22pdzidz2 + e22pdz 

The discussion in case 2 above means we only need to consider Pu = 1, Pv = 
(1 + a2 ),p i  = 1. We make the change to Brinkmann co-ordinates (3.1.4) with 

Q Ak(r) ( 
- 	,/_2y2+a2 

0 ) 
e2 e Y2  

V_2y2+G 2  
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and obtain 

2dxdx + (_ 2e2 l2 (xl)2  + e2 I2 (x2 ) 2 ) (dx) 2  + ldxI2 . 	(3.6.6) 

where Y2 is a function of x+ which solves the equation: 

Y2'  - (16) 2  = - exp(2y2) . 	 (3.6.7) 

Now, if this metric is homogeneous then it must be of the form of the plane-wave 

in theorem 3.1.1. But the solution to equation (3.6.7) is non-polynomial, whereas 

for a homogeneous plane-wave equation (3.1.10) shows that H(x +) is polynomial 

in x+. Therefore this plane-wave limit is not homogeneous. 

We will return to this homogeneous metric at the end of the next chapter, after 

we have constructed some tools for dealing with plane-wave limits of homogeneous 

spaces. 
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Chapter 4 

Plane—wave limits of 
homogeneous spaces 

In this chapter we will consider the heritability of homogeneity. As already noted 

in the introduction, the plane-wave limit preserves the amount of symmetry of 

a background in the sense that neither the dimension of the isometry algebra 

[56, 301 nor the number of linearly independent Killing spinors [30] ever decrease 

in the plane-wave limit. The plane-wave limits of the Kaigorodov space, com-

puted in [31] using the Hamilton-Jacobi method, show this does not necessarily 

imply that homogeneity is hereditary. So a natural question to ask is: "given an 

arbitrary spacetime (M, g), along which null geodesics 'y is the plane-wave limit 

homogeneous?". In the first section of this chapter we will show that a sufficient 

condition for the plane-wave limit to be homogeneous is that the geodesic be 

homogeneous. Then, using the algebraic machinery for calculating on reductive 

spaces, we give two different derivations of formulae for the plane-wave limit of 

a reductive homogeneous space along a homogeneous geodesic. We conclude the 

chapter with several examples including another look at the Kaigorodov space in 

the light of our new formulae. 
The results in section 4.1 have been reported in [64]. Most of the results and 

calculations in sections 4.2, 4.3 and 4.4 are the fruits of the collaboration with 

J. M. Figueroa-O'Farrill and P. Meessen and were reported in [65]. 

4.1 Plane-wave limits along homogeneous geo-
desics 

We have already seen that the generic plane-wave is of cohomogeneity one and gpz 

is locally homogeneous if and only if it has a Killing vector which agrees with -y' at 

any point p E 'y. So if the twist-free geodesic congruence é3 which 'y  is a member 

of defines a Killing vector field then the plane-wave limit will be homogeneous. 
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Indeed, let (u, v, y) be adapted coordinates, and suppose that the null geodetic 
vector field 8u  is a Killing vector field. Then we have 

0= Lag =d(ig)+iadg 8u 	au 

+ d(dv) + —dv 2 	-(dy)dv + 	(dy, dy). =  
8u 	au 

Therefore C is independent of u and hence gpi  is flat. 

Of course, requiring 8u  to be a Killing vector is a very strong condition. A 

reasonable weakening of this is to suppose the geodesic 'y is homogeneous, which 

means that there exists a Killing vector such that , = h84 for some h e 
C°°(M). Then is generated by Killing transport of ((p), A(p)) along 'y. Now 
by definition, 

(Ahy') k = (As) , = 0, 

where by k we mean restriction to -y E M, not restriction of the tangent bundle. 
Therefore, if we write A C  in components: 

A =(Adx®—, 

we see that 

(At k = (A 	=0. 

Also, as is a Killing vector, we have 

(A~ 	g = —g _A—) L 0.
ayi 

Therefore, 

(A) 	= 0 

Now consider the pull-back of the Killing transport covariant derivative under 

the plane-wave limit map ç; 

(_. l)*D(x) = (-l)*v(X) 
- (_1)*4(x)I 

The components of AI7 scale under the plane-wave limit map in the following 
way: 

(A' h*1  (A 

(A 	I, i_*I-2 (A 

(A) k —c -' (A t). 1. 



and other components which either stay constant or tend to zero as Q - 0. 

Taking the limit as Q -* o, we see from above that the three components of A 

that could blow up are in fact zero. Therefore 

(D 1 )(X)(u, v, y) := lim [D(X)(u, 0, 0)] 

is well-defined and along with 

(D 1 )(A) := (V1)A— R(e, X) 

defines a Killing transport covariant derivative on along -y  with respect to gpi. 

Therefore parallel translation by D1 along -y generates the remaining Killing 

vector needed, and gpi  is homogeneous. 

We can immediately see a couple of things from the above. First, if -y is an (ab-

solutely) homogeneous geodesic of g, then it is also an (absolutely) homogeneous 

geodesic of the plane-wave limit of g along 'y.  Consequently, the classification of 

homogeneous plane-waves 3. 1.1 tells us that the plane-wave limit along an ab-

solutely homogeneous geodesic (c = 0) is a regular homogeneous plane-wave, and 

along a non-absolutely homogeneous geodesic (c $ 0) is a singular homogeneous 

plane-wave. 

Second, if g is geodesically complete then we saw in the last chapter that the 

plane-wave limit is complete, so 3.1.1 tells us that the plane-wave limit must be 

a regular homogeneous plane-wave. 

The above gives a sufficient condition on a null geodesic, in a generic space-

time, for the plane-wave limit along it to be homogeneous. It is however not a 

necessary condition as the following example shows. Consider the metric 

2dudv + udv2  + 'i(dx) 2 . 

This is an incomplete and nonhomogeneous metric, with no Killing vector in the 

O, direction. Therefore the null geodesic given by 9 u  is not homogeneous. The 

plane-wave limit along this geodesic, 

2dudv+vi(dx) 2  

is however a singular homogeneous plane wave [66]. 

We will also see in section 4.4 examples of reductive spaces which have plane-

wave limits along non-homogeneous geodesics onto homogeneous plane-waves. 

However, we will give a necessary and sufficient criteria for the case of reductive 

spaces in section 4.2.1. 
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4.2 Plane-wave limits of reductive spaces 

As we saw in the last chapter, calculating plane-wave limits and in particular 

finding adapted coordinates, can often be difficult. Sometimes one can use the 

Hamilton-Jacobi method, but more often than not there is no known method for 

finding a twist-free geodetic vector field. 

We have already seen that the usual machinery of differential geometry and 

supergravity can be described algebraically on a reductive space. We need only 

knowledge of the metric at the point o E M and the Lie algebra to reconstruct the 

whole metric. Thus, one might suspect that an operation such as the plane-wave 

limit of a homogeneous geodesic in a reductive space should have a completely 

algebraic description. In light of the difficulties one often encounters when calcu-

lating plane-wave limits, such an algebraic formulation would be a useful device. 

4.2.1 The covariant method 

Let g be a lorentzian metric and y a null geodesic of g. Consider g to be written 

in an adapted coordinate system (3.2. 1) and let (D v , '9,  8) denote the dual frame 

to (du,dv,dy). 

In [28], the following covariant formulation of the plane-wave limit is given. 

We say that a local frame (E+, E_, Ea) is adapted to a null geodesic 'y, if the 

following conditions are satisfied: 

E is a geodesic vector field such that E+l is proportional to 8-; 

VE_ = Vu Ea  = 0 along 'y;  and 

the metric takes the form 

g = 2E+e_ + 

where the e's are the dual coframe. 

Let (E+, E_, Ea ) be such an adapted frame. We can write Ea  in the form 

7;, - r'8• + EaU  + E:9  -'--' 	 . a - -1-'a 

By taking its inner product with E and with Eb we see that restricted to the 

geodesic 'y  we have 

Eav  

and 

EaiE = 	= Jab 



Calculating the covariant derivative of Ea  we have 

(E' )' + E3 F2  = 0 a ju 

and the dual equation 

EaF u  j = 0 

Thus 

(Eai)'E = Eaj(E)' = 	 Ebj 	= EEbjF = E' . (Ebj)' . 	(4.2.1) 

Now consider the plane-wave limit g of the metric g. A. frame EM satisfy-

ing equation (4.2.1) defines a change of coordinates from the Rosen coordinate 

description of gpj  to a Brinkmann coordinate description 

2dxdx + H(x+)x1x3(dx+)2 + 

where 

H(X+)=_R(E+, Ea ,E±,Eb )I y _R(E+,0i,E+,0j)IY l' Ei E3b 1 r 	aiY 

This covariant description of the plane-wave limit illustrates that the limit is really 

an invariant of the null geodesic and not just a remnant of a special coordinate 

system. However, it is not much easier to apply than the usual plane-wave limit 

as finding a parallel frame can be difficult. On the other hand, on reductive spaces 

it is a fruitful approach. 

Indeed, suppose that (M, g) is a locally reductive homogeneous space with a 

homogeneous structure S. Let M be locally isomorphic to the quotient G/H and 

let 9 = m [ be the reductive split of the Lie algebra of C associated to S. Let 

U E g be the geodetic vector that determines y  as homogeneous. Let V E m be 

the dual null vector and complete to a basis with orthonormal elements Y E M. 

The classification of homogeneous plane waves [44] states that the plane-wave 

limit in Brinkmann coordinates will be of the form: 

H(x +) = e 1Hoe_a 	or H(xj,= 

where H0  is a nondegenerate symmetric bilinear form, f is a skew-symmetric 

bilinear form and c 0 is the constant in (2.5.1). The first case corresponds to 

the regular plane-waves and the second to the singular waves. We shall take the 

origin o for the regular waves to be the point (0,0,0), while for the singular waves 

we take (1/c,0,0). 
We will now use the above covariant description and the algebraic description 

of the curvature tensor on such a background to write down an algebraic formula 

for both H0  and f. 
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Let EM be an adapted frame to the geodesic 'y  which when restricted to o 

corresponds to the basis (U, V, Y). For a regular homogeneous plane-wave limit 

gpz we have 

exp(x[f, -]) 	= Hab(X) = —R(E+ , Ea , E, Eb)17 . 	(4.2.2) 

Thus, evaluating at o, 

(H0)ab = R(E+ , Ea , E, Eb)Io 	
(4 2 3) 

R(Urn,Ya,Urn,Yb), 

where Urn is the projection to m of U E g and Ya  = Ea (0) E M. Similarly, we find 

that (4.2.3) holds for the singular plane-waves. 

Now, if we differentiate the left hand side of equation (4.2.2) and evaluate at 

o we obtain 
8 

(Ha(X)) L = —2cH0  + [f, H0]. 

Differentiating the right hand side yields, 

(Ha ()) 	R(E+,Ea,E+,Eb) 
49x+ a 	 lo -,' x 

= VU(R(E+ ,Ea,E+ ,Eb )Ly ) 
= - ( VuR(E, Ea , E, Eb)) I y  
= - 

 
(Vu  R)(E+ , Ea , E, Eb)I.y 

where we have used the fact that U is a vector field tangent to y and that the 

frame EM is parallel to U. 

The object VR is tensorial, that is 

(VR)( ...... hX,...,.) = h(VR)( ...... X,...,.), 

for any h e C°°(M). Whence, by passing the restriction to 0 through the curva-

ture, we have 

(Ha ()) = - (V m R) (Urn , Ya Urn, Yb). 

As Urn is a Killing vector [67] 

(V m S m •)R=J1 mR=0. 

Hence we can replace the differential action of the covariant derivative with the 

algebraic action of the linear map 8Um 

(Hab(X)) I o = - (Sum  R) (Urn, Ya , Urn, Yb), 

= Su. R(Urn,Ya,Urn,Yb)+R(SUm Urn,Ya,Urn,Yb) 

• R(Urn , Su., Y., Urn, Yb) + R(Urn, Ya , Su. U., Yb) 

• R(Urn, Ya , Urn, Su,Yb) 
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where we have used that the action of SUm  annihilates functions. Therefore we 

obtain the formula 

2C(H0) ab + [1 HO]ab = R(S m  Urn, Ya , Urn, Yb) + R(Urn, Su. Y., Urn, Yb) 
(4.2.4) 

+R(Um ,Ya , Su. Um ,Yb)+R(Urn,Ya,Urn , Su. 1'b) 

Similarly, differentiating a second time and evaluating at zero, we find that 

(6c2 Ho  - 3c[f, Hol + [f, [f, H0]])a, is given by 

R(SU m  Su. Urn ,Ya ,Urn ,Yb)+R(U rnj  Su. SU m Ya,Um ,Yb) 

+R(Urn ,Ya , Su. Su. Um ,Yb)+R(U rn ,1'a ,Urn , Su. 5Um Yb) 

• 2R(S m Um , Su. Y., Urn, Yb) + 2R(S m  Urn, Ya, Su 	Yb) 

+ 2R(SU m  Urn, Ya , Urn, Su., Yb) + 2R(Um, Su. Y a, Su. Urn, Yb) 	(4.2.5) 

+ 2R(Urn, Su,,, Y., Urn, Su. Yb) + 2R(Urn , Ya , 8Um Urn, SUmYb) 

• R(S u m Urn, Ya, Urn, Yb) + R(Urn , SSumUmYa,  Urn, Yb) 

• R(Um, Ya,SS um UmUrn Yb)+R(Um, Ya,Um,SSu m  Urn Yb) 

Similar expressions can be obtained for higher order brackets between f and 

H0 . By calculating enough terms of the form [f,... , [f, Ho]], one can solve for the 

skew-symmetric matrix f, but in fact, it 'is not difficult to write down a general 

solution. 

First we note that since U is geodetic, we have 

sum  Urn + SU, Urn = SUUm = — C Urn 

where we are extending' the definition (2.4.4) of S to the whole of g by Sy X = 

VY. Together with invariance of the curvature, this allows one to manipulate 

(4.2.4) 

[f, H]aj, = R(Um, (Su. + S u, )Y., Urn, Yb) + R(U rn , Ya, Urn, (Su. + 5U1, 
)Yb) (4 2 6) 

= (R(Urn,Yb)Urn,SUYa) + (R(U rn,Ya)Urn,SUYb). 

Recall that (H0) ab = R(Urn , Ya , Urn, Yb), therefore, we can take f to be 

lab = (SU(Ya),Yb) = S(U,Yb,Ya) 

where we have used that 

(SuYa , Urn) = _C(Y-1 Urn) = 0 

'This is clearly consistent with its definition on m, as the canonical connection vanishes 
there. In this way it denotes the skew-symmetric endomorphism —A X  of TM associated to a 
Killing vector, as described in chapter 2. Notice, .though, that strictly speaking this is an abuse 
of notation since S is tensorial, so that S() should vanish at o but here it clearly does not. 
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and thus 

(SuYa , U.) (V, R(U rn , Yb)U m) = (SYa , V) (U., R(U rn , Yb)U m) = 0. 	(4.2.7) 

In summary, the plane-wave limit is given by 

9p1 = dx + (2e -2—+  dx -  + Ho ( e_x+fx,e  I x)dx) + Idx I 2  

where 

-S(U,U,V) 

lab = S(U,Ya ,Yb) 	 (4.2.8) 

(HO) ab = R(Urn ,Ya,Urn ,Yb), 

with the curvature given by (2.4.8) and the extension of S to g given by 

s(x, Y , Z) = ([x, Y]m, Z rn) + ([z, X] rn , Yrn) + ([Z, Y]m, X m ) 

so that the cumbersome enterprise of taking a plane-wave limit along a homo-

geneous geodesic is reduced to some algebraic and straightforward calculations. 

The result is a regular plane-wave if c = 0 and a singular plane-wave if c 0. 

We can also apply some of the above discussion to a non-homogeneous geodesic 

with initial direction Urn . For then, the relation 

(H0) ab = R(Um, Ya , Urn, Yb) 	 (4.2.9) 

still holds. As done above, we can take the derivative of the curvature tensor 

and if there exists a solution f to equation (4.2.4) then the plane-wave limit is 

homogeneous. However, since there is no U such that Urn + U is geodetic we 
need to deal with Sum  Urn  = cUrn  + c''V + cY where not all the G, C' vanish. From 

the definition of S above we can easily see that c'' = 0. Evaluating the righthand 

side of (4.2.6) with hab = (SUm (Ya),Yb ) we find 

[f, H1 ] ab = [h, H0 ] ab + CaR(Um, Yb, Urn, V) + c'R(Urn, Ya , Urn, V) 
(4.2.10) 

+ R(c2 Y, Y a , Urn , Yb) + R(c 2 Y, Yb, U rn , Ya), 

and thus the plane-wave limit is homogeneous if and only if we can solve this 

equation for f. 
When M is 4-dimensional, so that H0  is a 2 x 2-matrix, it is not difficult to 

see that there exists a solution f to P = [f, H0 ] if and only if P is of the form 

/ 	2f12 (H0 ) 12 	f12 ((H0 ) 22  - (H0 ) 11 ) 

f12 ((H0) - (H0 ) 11 ) 	-2f12(H0)12 	) . 
	( 4.2.11) 
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In other dimensions, one way to formulate a necessary and sufficient condition 

for the existence of such a solution is to suppose that H0  is diagonal: 

fA, 

	

H0 = 	 I 	(4.2.12) 

Afl_2) 

We can always arrange this by choosing, a basis of eigenvectors Yj of H0  with 

eigenvalues Aj . Then there exists a solution f to P = [f, Ho ] if and only if A, = A,, 

implies that P, = 0. 

This gives a method for deciding when the plane-wave limit is homogeneous, 

however a given solution to equation (4.2.10) may not lead you to the correct 

plane-wave limit since such solutions are not necessarily unique. In order to 

specify the unique f for the plane-wave limit one may need to consider higher 

derivatives of the curvature tensor such as (4.2.5). 

4.2.2 The nearly-adapted method 

One thing the covariant approach to plane-wave limits teaches us is that the limit 

does not care about such details as the embedding of the null geodesic [28]. In 

particular, this means that one should be able to use a not necessarily twist-

free coordinate system, which in many cases is the natural starting point, since 

generically a geodesic vector will not generate a twistfree congruence. 

Let 'y  be a null homogeneous geodesic generated by a geodetic vector U E g 

so that equation (2.5.1) holds. Let V E m be the complimentary null vector to 

Urn and complete with (Y) E m to a lightcone-orthonormal frame. 

Let our local coset representative a be 

	

a 	 . 	 (4.2.13) 

Then the Maurer-Cartan form U can be expanded as 

a*U = OUU + UVV  + OiY.  + Oaea  

where Creek indices are reserved for the isotropy and (ed ) is a basis for l. The 

metric can then be expanded as 

g = 29U'' + 	(9)2 . 	 (4.2.14) 

Calculating the Maurer-Cartan form using a gives 

a*(U) = a'da = 	 (ea V i yi 

) 

eVVeUU + e_uUVdveuU  + Udu. 
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where we can calculate the first term using formula (2.4.12). A few things are 

clear; first du can only appear in 9" and thus 8,, is null. This also tells us that the 

isomorphism from the set of left invariant vector fields to the Lie algebra g that 

is determined by 0 maps 9u  to U. We will denote the inverse of this isomorphism 

as g 3 X i-4 X' in the following. Secondly, 

9uOV = 8u (0rn, Urn) = U*g (b ,  U) = g(Vu.O, U) + g(0, VuU), 

where 0 = 	+ OVV* + 9ty.* Now applying the identity (2.4.1) we have, 

g({U* ' 0rnj rn/*1 U*s) = ([U,Orn]m,Um) = -C(Om, Urn) = _ C9 

where we have used that U is geodetic. This shows that the only dependence on 

u in 9V  is a multiplicative factor, of In particular, since the dv part of 0 is 

only dependent on u, the dudv part of the metric is of the form eu.  This can 

be absorbed into the rest of the metric by a coordinate change: 

1 
'u i—  -- logu 

C 

however, this is not necessary since u is not rescaled in the plane-wave limit. 

Also, it is important to note that this coordinate system is not necessarily a 

twist-free adapted coordinate system of the form (3.2.1). We will see that this is 

not important and one can still take a plane-wave limit. 

We can expand out the Maurer-Cartan form further and then take the plane-

wave limit. 

O U  = du + (e _tLUV e,  V)dv + Ody 

where OV is a function of u, v and (y).  Applying the plane-wave limit rescaling 

(u, v, yZ) i—* (u, 22v, 11y) to 9U  and taking the limit Q —* 0 we see that 9" - du. 

= e_cu(dv + (e'euu1 d (ei') e 	)dy)VV , Urn  

= e(dv+ ((y[,].+ . . . ,U)dy) 

where ... are terms involving v and higher order terms in y.  If we rescale by 

ft 2 , apply the plane-wave limit rescaling and take the limit Q — p 0 we find that 

all the terms in ... go to zero and we are left with, 

= e(dv — yi([Y, ]rn, Urn)dy 2 ) 

Similarly for 0' we have 

	

9t = 	 (eEiy'yi ) e'',Y)dy 

	

= 	e uU' 
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where ... are terms which involve v and higher order terms in y. Re-scaling by 

0-1  and taking the plane-wave limit we are left with 

uU' = ((etJYe )m,Yz)dY3 

Therefore the plane-wave limit of the metric in this coordinate system is well 

defined: 

gpz = 28du ± 

Expanding this we find that the metric is nearly a plane wave in Rosen coordinates 

(as one would expect if this was the standard plane-wave limit) but it has an 

additional dudy t term with a coefficient which is linear in y: 

9p1 = 2edu(dv - y ([Y,Y]m,Um)dy t ) + 

Note that we have had to use that U is geodetic in the calculation of the last term. 

We can make the change to a Brinkmann type coordinate system irrespective of 

this extra term. If we let 

Q(u) = ((e'Yae)m, ") 

then under the coordinate change defined by (3.1.4), we find the metric is 

gpi =2e_2 dx _dx+ + (([U, Ya]m, Yb) - ([U, Yb]m,  Ya) - ([Y a , YbJm, Um))Xbdxadx+ 

+ (([U, Ya]m, [U, Yb]m) - ([Y a , [U, Yb]], U)) X aX b(dX +)2  + 

Notice that 

([Ya , [U, YbI]m, U) 

is symmetric in a and b because of the Jacobi identity and the geodetic vector 

property (2.5.1). In light of the above, we also define 

lab = ([U,YaIm,Yb) - ([U,Yb]m,Ya) - ([Ya,Yb]m,Um) . 	(4.2.15) 

To show this is a plane wave and bring it to the proper Brinkmann form we 

make the change of coordinates (3.1.6) 

Ya ' e 1° Yb 

This leaves the metric in the form 

2e_2 dx _dx+ + (e  Hoe_)abxax b (dx +) 2  + 	(dx') 2  , 	 (4.2.16) 
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where 

(HO) ab = ([U, Y.].,  [U,  Yb]m) - ([ Ya, [U,  Yb]]m,  U)  + fb 	 (4.2.17) 

An easy check shows that these formulae do indeed coincide with those derived 

by the covariant method. 

However, since we have not worked with an adapted coordinate system, at no 

stage in the above have we proved that the formula we have obtained is actually 

for the usual plane-wave limit of the geodesic 'y. At least, not a proof which 

is independent of the covariant method. We will provide one now. Consider a 

metric of the form 

2dudv + adv2  + /3dydv + K 3 ydy 3 du + Cdydy3  

such that 8 is a null geodesic and K13  is skew-symmetric. Up to a coordinate 

transformation in u this is the form of the metric in equation (4.2.14). An easy 

calculation shows that the Rujuj  component of the curvature of this metric: 

R(ô, ôi) 8u = —Vôu V j 0u  + V9i V9u 5u + V1a,oDu 

is independent of K13 . If we apply the plane-wave limit rescaling, multiply by 

—2 and take the limit as Q - O we get 

2dudv + K1 y 1 dy3 du + C3 (u)dydy 

This metric is a plane-wave, as we can change to Brinkmann coordinates and 

then absorb the linear term into the rest of the metric (as we did above). Since a 

plane-wave is completely determined by the R 3  part of its curvature, the metric 

(4.2.16) must be isometric to the usual plane-wave limit of the geodesic O,. 

We can relate this nearly-adapted method for taking the plane-wave limit to 

the Hamilton-Jacobi method described in 3.6.3. The local coset representative 

(4.2.13) at y = 0: 

a(u,v,0) = 

defines a geodesic variation of 'y(u) and hence defines the geodesic congruence 

in which ')' is embedded. The Jacobi-field associated to this variation is the 

restriction of the Killing vector v  associated to V E m to the geodesic 'y [68], 

this coincides with the left-invariant vector field V*  associated to V restricted to 

'y. The metric dual of V*,  which is the V component of the Maurer-Cartan form 
0V,  is therefore a solution to the Hamilton-Jacobi type equation 

HoO"=O. 	 (4.2.18) 

The usual Hamilton-Jacobi equation (3.6.3) defines a twist-free geodesic congru-

ence whereas the congruence considered here is not necessarily twist-free because 
1T  is not necessarily exact. 
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4.3 Homogeneous structures under the plane-
wave limit 

More than just being able to say that the plane-wave limit is homogeneous, in 

some circumstances we can say something about the type of homogeneous struc-

ture inherited by the plane-wave limit along a homogeneous geodesic. It is clear 

from (4.2.8) that the homogeneous structure of the plane-wave limit along a ho-

mogeneous geodesic is inherited from the original metric g in some sense, since 

the whole plane-wave limit metric is defined in terms of algebraic data. In fact, 

(4.2.8) for f can be interpreted as the Ambrose-Singer formula V 1 R 1  = S1 

on the plane-wave limit. However, this inheritance is not in a continuous fashion, 

so it is difficult to make conclusions about the type of homogeneous structure 

inherited under the plane-wave limit. To study this situation we may consider a 

stronger form of inheritance of the homogeneous structure that is continuous. 

Let (M, g) be a reductive homogeneous space with a null homogeneous geo-

desic 'y.  The Ambrose-Singer theorem gives us a connection V such that VS = 

'7R = 0. Let M be a tubular neighborhood of 'y  and consider Q (M). Now On 

is a diffeomorphism for Q.  0 SO is reductive homogeneous for Q > 0. 

This defines the metric connection 

Vç := (_l)*V = (_l)*V - (_1)*5 	 (4.3.1) 

We may choose adapted coordinates (3.2:1) for g with respect to -y  and expand 

S in these coordinates 

S=V—V=Sdaf®dx 3 ®/. 	 (4.3.2) 
i,j,k=1 

The components of S scale in the following way under the plane-wave limit map 

Oil 

S.UY 	 S 

and other terms which either remain the same or tend to zero in the limit Q -* 0. 

If -y  is canonically homogeneous then there is a Killing vector such that 

= h'y' = h8I7  and 61., is generated by parallel transport of (p) along -y by 

the canonical connection. Now by definition, 

(Va 9)I. = 0 and 	= 0 

where by k we mean restriction to 'y  e M not restriction of the tangent bundle. 

Thus 

0 = (Vhqu 	= ( Vhau 	- S(h8, h0U )I.)  = hdh(5)ôI 7  - h2 S(c9, a)1 7 
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and therefore, 
Qyt I _ qvI 

- uuI1 

In fact it is clear that 'y is canonically homogeneous if and only if these components 

vanish. Using metric compatibility of V as in (2.3. 1) and the adapted coordinates 

(3.2. 1) we also see S. J y  = 0. The Levi-Cività connection V1 of the plane-wave 
limit along 'y is equal to 

lim(_l)*V 	 (4.3.3) 

and the above shows that the limit 	:= limc +o ( l )* SI is well defined on 'y. 

Thus, by (4.3.1), the limit t 1P1 ily := limç0  Vç ky  is well defined. Now 

IQ e [0, 1]} 

is a continuous path in the space of tensors of type (3, 0) on y, whence continuity 

shows V1L,g1I.-1 = 0. Similarly we have 

= 	= V1IR1I = 0 . 	 (4.3.4) 

Let us define .7 i (u , v , y ) := 'piI(u, 0 , 0 ). Since gp,  is independent of v, y ' , it 
follows that 

Vpjgpi = Vp,Spi = V pi Rpi  = 0 . 	 (4.3.5) 

Therefore theorem 2.2.7 implies that the plane-wave limit is homogenous, and 

moreover the homogeneous structure has been inherited by g in a continuous 

manner. We shall call this inherited homogeneous structure Sp, the plane-wave 
limit of S. 

As a corollary of the above discussion, we see that a homogeneous structure 

S has a well-defined plane-wave limit along a null geodesic y(t) if and only if 'y(t) 

can be re-parameterized to a geodesic of the canonical connection with respect 

to S. Bearing in mind the discussion around equation (2.3.3), one must conclude 

that the plane-wave limit along a canonical geodesic is equivalent to an Inönfl-

Wigner contraction [57], where the extra isometries that can arise through the 

plane-wave limit will be elements of the isotropy subalgebra. 

Now let us consider the plane-wave limit along canonically homogeneous geo-

desics for each of the 8 different classes of homogeneous structures individually; 

If a metric g admits a vanishing homogeneous structure then its plane-wave 

limit is a ymmetric plane-wave. 

Suppose the metric g admits a homogeneous structure S of type 'li. Then 

either it is isometric to anti de-Sitter space and all plane-wave limits are 
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flat, or it is a singular homogeneous plane-wave. In this case, introducing 

a(Z) = g(, Z) as in equation (4.2.8), 

c = -S(U, U, V) = a(U). 

There are two scenarios to consider, i) a(U) = 0 and ii) a(U) 0 0. Com-

paring this with the classification of homogeneous plane-waves reviewed in 

Section 3. 1, we must conclude that in case i) the resulting spacetime admits 

a pure 73  structure and must be a regular homogeneous plane-wave, whereas 

in case ii) the resulting spacetime is a singular homogeneous plane-wave. 

Suppose the metric g admits a homogeneous structure S of type 7 2  and let 

e 1 ,... , e, be an orthonormal frame with respect to g. Then Q (00 1 ).ej  is an 

orthonormal frame with respect to Q-20* g for Q > 0. Thus 

o = c12 (S)((4c)Z) = 	S(e, e, (On). Z) 

== C12(S)(Z). 	
(4.3.6) 

Thus if the limit of C12(Scz) as Il -* 0 is well defined we must have 

C12 (S 1 )(Z) = 0. 

Now, using the basis from proposition 3.4.2 we find 

o = C12(S1)(0) = Sj(e, e, a) + Sj(e, e, ) + S i  (e, e, 

1 	 (4.3.7) 
= 

where we have used 	= (Si) 	= 0. Thus we find that the null 

homogeneous geodesic 0, is absolutely homogeneous on gpi  and hence the 

plane-wave limit is a regular homogeneous plane-wave. 

If a metric g admits a homogeneous structure S of type 7 3  then all plane-

wave limits are regular homogeneous plane-waves. 

If a metric g admits a homogeneous structure S of type 7 1 72  then all plane-

wave limits along canonical geodesics again admit a Ji  72  structure. Note 

that this tells us little about whether g pi  is a singular or regular homogeneous 

plane-wave since the inherited homogeneous structure S1 is not necessarily 

the same as those given after theorem 3.1.1. 

Suppose the metric g admits a homogeneous structure S of type 71  

then we can apply the same argument as in the 7 1  case above to consider 

two cases: i) a(U) = 0 and ii) a(U) 	0. In case i) the plane-wave limit 

71 



admits a pure 73  structure and must be a regular homogeneous plane wave, 

whereas in case ii) the resulting spacetime is a singular homogeneous plane-
wave. 

If a metric g admits a homogeneous structure S of type 72 ED73 then we can 

apply the same argument as given for the 72  case to see that any plane-wave 

limit along a canonical geodesic is a naturally reductive plane-wave. 

If a metric g admits a homogeneous structure of type 71 	 nothing 
more can be said. 

4.4 Examples 

Any reductive homogeneous space may be expressed in terms of the following 

data: a reductive Lie algebra of isometries g FJEBm with an [j-invariant lorentzian 

inner product (-, -) on m. We will use the following recipe to compute all the 

plane-wave limits along homogeneous geodesics of such spaces: 

First we determine the possible null directions up to isometry by decompos-

ing the projectivised light-cone of m under the orbits of the exponentiated 

action of Ij. We label each orbit by giving a null direction in the light-cone. 

Next we distinguish those null directions Urn E m for which the geodesic with 
initial direction Urn is homogeneous and those which are not. This amounts 

to determining whether there is some U E Ij for which U := Urn + Ub is 
geodetic; that is, whether U obeys (2.5.1) for some value of c. If it does, 
then the plane-wave limit along U will be homogeneous: regular if c = 0 
and singular otherwise. 

For the geodetic vectors U we choose a frame Urn, V Y a  for m such that 
(Urn, V) = 1 and (Ya , Yb) = Jab. Then we determine the explicit form of 

the plane-wave metric by computing the matrices f and H0  using formu-
lae (4.2.15) and (4.2.17), respectively. 

For the non-geodetic directions Urn we use the criterion set out at the end of 

section 4.2.1 to establish whether the plane-wave limit is homogeneous. If 

it is homogeneous, then we use equation (4.2.10) to calculate f and (4.2.8) 
to calculate H0 . 

The final calculations of f and H0  can be implemented using one's favorite com-
puter algebra software. 
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4.4.1 Higher dimensional Gödel universes 

The five-dimensional Gödel universe is a reductive homogeneous space and also 

a maximally supersymmetric solution of minimal five-dimensional supergravity, 

whose lift to M-theory in 11-dimensions preserves 20 supersymmetries [3]. The 

plane-wave limit of the five-dimensional Gödel universe is the five-dimensional 

maximally sup ersymmetric plane-wave [69]. The plane-wave limits of the M-

theory Gödel universe were investigated in [17] and shown to form a family of 

time-dependent plane-waves interpolating between two symmetric plane-waves, 

one of which corresponds to the lift to M-theory of the five-dimensional maximally 

supersymmetric plane-wave. In this subsection,  we will rederive these results 

using our Lie algebraic formalism. 

4.4.1.1 The five-dimensional Gödel universe 

We start with the five-dimensional Gödel universe, which is defined on a circle 

bundle over flat euclidean space: 

g = —( dt +A)' + 	(dx) 2 , 	 (4.4.1) 

where the connection one-form A is given by 

A = (x1dx2 - x2dx1) - (x3dx4 - x 4 dx 3). 	 (4.4.2) 

The two-form F which makes the Cödel universe a five dimensional supergravity 

solution is given simply by 

F = dA = dx' A dx 2  - dx 3  A dx4 , 	 (4.4.3) 

which is clearly an anti-selfdual two-form on P with respect to the natural ori-

entation. Clearly the form F = dA is left unchanged if a closed 1-form is added 

to A i- A + d1i. This allows one to promote any infinitesimal symmetry of F to 

an isometry by adding a compensating gauge transformation. The two-form F is 

invariant under both a subgroup U(2) v 1R 4  of the group of isometries of [4,  and 

by the U(1) group which acts by translation along the fibre and is generated infin-

itesimally by ô. The U(2) and the U(1) acting on the fibre still leave the metric 

invariant, but the ' translations do not because they do not leave A invariant. 

Nevertheless a gauge transformation can be added to make dt + A and hence the 

metric invariant. Doing so one finds the following Killing vectors leaving g and 
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F invariant: 

at 	- x20 	.92+  X  119 	83  + X8t 
	

84 - X 3 8t 

x 1 82  - x2 01 	x304 - x483 
	 (4.4.4) 

	

X1193 - x301  + x2 84  - x482 	X84 - x481  - x2 03  + x302  

Notice that at any point (t, x) of M, the five Killing vectors in the first line span 

the tangent space, so that M is indeed a homogeneous space. 

The isometry algebra g is isomorphic to the semidirect product 

g(su(2)xu(1))vIj(2) 

where (2) is the two-dimensional Heisenberg algebra 

[P2 ,13] = 

generated by P0 = o9t  and P = 	Ej  Qijxj,9t , where Qjj  is the symplectic form 
with nonzero entries Q12 = 1 = 	21 and Q34 = — 1 = l43. The su(2) x u(1) C 
so(4) in the expression for g acts on E)(2) by restricting the natural action of o(4) 
on the P.. The corresponding isometry group C is given by 

C U(2) x H(2) 

with U(2) C SO(4) acting on H(2) in the natural way. 

Let o E M be the origin coset with coordinates (t = 	= 0). The vectors 
P0 , P1 ,. .. , P4  form a pseudo-orthonormal frame for T0M, with P0  timelike. The 
isotropy subgroup H which fixes o is precisely the above U(2) subgroup of G, and 
therefore M C/U(2). A calculation of VR shows that M is not symmetric. 

The decomposition of the full isometry algebra g (2) is reductive. 

Using equation (2.4.4) we find that the components S 3 k = S(PZ , P, Pk) of the 
homogeneous structure at o are given by 

Soij = 	= - s 0  = 

which can be seen to be of type 72  73. 

We can deform this homogeneous structure by considering a reductive split g = 

m' where m' is the graph of an Ej-equivariant linear map m -p [j. Decomposing 
in and F into irreducibles we find that there is a one-parameter map of such linear 
maps oa(vPj) = ov°Y0 , where Y0  E Fj is the Killing vector Y0  = x102 - x 2 51  + 

x384 - x483 . Its graph in'  is spanned by 

P1 , P2, P3 , P4 , and P0 +aY0 . 
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This modifies the [—, ]m' brackets: 

[P2 , P2  ]m' = Q j.7  (P0  + aYo) and [P0  + aY0 , Pj]m' = aQij 

We can now compute the corresponding homogeneous structure using formula 

(2.4.4) and we obtain a one-parameter family of 72 ED73  structures: 

soij = ( + a)lij  and SiOj = —S o  = 
1 
 Qij . 	(4.4.5) 

Naturally, when a = 0 we recover the earlier homogeneous structure. For generic 

a this homogeneous structure is of type 72  ED 73 , but there are two special values 

of a: for a = —lit is of type 73  and for a = 1 it is of type 72.  This shows that 

the Gödel universe is naturally reductive, and in particular a g.o. space. 

One can obtain more homogeneous structures by considering smaller subalge-

bras, but we will not do so here. 

In order to determine all the plane-wave limits of the Gödel universe we will 

exploit the covariance property of the plane-wave limit 3.2.1. A null geodesic 'y 

in M is locally determined by an initial point -y(0) E M and an initial direction 

-y'(0), which is a point on the future-pointing, say, celestial sphere at -Y(0). Since 

M is homogeneous, we can let 'y(0) be any convenient point; we will choose 

the origin o and retain the freedom of using the isotropy subgroup of o. The 

(future) celestial sphere at o, which consists of those vectors v = v 1LP such that 

(v, v) = 0 and v0  = 1, is the unit three-sphere in [4 = (P0)'. The isotropy group 

U(2) acts on [4  by restricting the natural representation of S0(4), whence it acts 

transitively on the spheres. Therefore we see that the isometry group of (M, g, F) 

acts transitively on the space of null geodésics and hence all plane-wave limits are 

isometric. 

Let us choose our geodesic to have initial direction Po  + P1 . This vector is not 

geodetic, however we may modify it by adding a vector U4 E I in such a way that 

(2.5. 1) is satisfied. A quick calculation shows that P0  + P1  - Y0  is geodetic with 

c = 0, which means that the plane-wave limit is a regular homogeneous wave. 

Moreover, this geodesic is canonically homogeneous with resj3ect to the reductive 

split g = m' with m' spanned by Po  — Yo , P1 , P2 , P3  and P4 . 

In fact the limit is the symmetric plane wave discovered in [69]. To determine 

the limit we employ the formulae (4.2.15) and (4.2.17). We find that 

'-1 0 0" /0 0 o 

) 

— j 	and 

.H0* 

- 0, 

f=(\0 

0 
0 0 -) 0 1 	0 

in agreement with the results of [17]. 
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4.4.1.2 The Gödel universe in M-theory 

The five-dimensional Gödel universe can be lifted to a supersymmetric M-theory 

background (M, g, C) preserving 20 supersymmetries [3] simply by taking its 

riemannian product with a fiat six-dimensional space. If we think of this six-

dimensional space as C 3  with its standard Kähler structure w, then the M-theory 

four-form (1.1.1) is given by C = F A w. It follows that the symmetry group of 

this M-theory background is 

(U(2) v H(2)) x (u(3) v 6)  

which still acts transitively, making (M, g, C) into a homogeneous background. 

Let za  denote local coordinates on C 3  and let o be the origin with coordinates 

t = Xi 	= 0. The isotropy subgroup which fixes this point is U(2) x U(3), 

and this defines the reductive split (13(2) 	1). 

The isotropy subgroup H acts with cohomogeneity one on the (future) celestial 

sphere in T0M. Indeed, we can decompose a tangent vector into v = VG + V I , 

with VG the component tangent to the five-dimensional Gödel universe and v '  the 

component tangent to C 3 . The action of H preserves the norms I VG2  and Iv' 2  
separately. Let v be a future-pointing null vector. By further resealing, we can 

take the P0  component to be 1, whence VG = P0 +v1 where Ivjj2+ IV, 2 = 1. Fix 

an angle '0 e [0, El and let vjj cos'0 and IVI = sin V. The isotropy subgroup 

cannot change 79, but it acts transitively on these spheres, whence we can make v1 

and v '  point in any desired direction. Letting T1  denote the translation generators 

for the fl6  subgroup of the isometries of C 3 , we can write the null vector as 

P0  + cos i9P1 + sin t9T1  

This vector is not geodetic unless we add —Y0 , as in the five-dimensional Gödel 

universe. Doing so we see that 

P0  + cos 79P1  + sin 0T1  - YO  

does obey equation (2.5.1) with c = 0. This means that the plane-wave limits 

will again be regular. 

Indeed, using equation (4.2.15), we find that the only nonzero components of 

fare 

f14 = —sin'0 	and 	f23 = -. 

Similarly, using equation (4.2.17) the matrix H0  has nonzero components 

(H0 ) 11  = — 1 + 2  sin 2 '0 , ( H0 ) 22  = A33 - 	and 	(H0 ) 44  = - sin2 '0 
- 

Notice that since [H0 , f] =A 0 this is not a symmetric plane wave. 
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4.4.2 Kaigorodov space 

The Kaigorodov space K is an (n+3)-dimensional lorentzian manifold with metric 

[70] 
n+2 

_(e0)2 + 

where 

	

e 4 dt , Ei = e2dy 	6n+1 = edx + e(4+7tpdt 	n+2 = dp 

where, here and in the sequel, the indices i, j, ... run from 1 to n. This spacetime 

can be seen to have a pp-wave singularity and is not geodesically complete [71]. 

Up to homothety, we can (and will) set £ = 1 from now on. 

The Killing vector fields of this metric can be seen to be 

8 	 8 	 8 
xo  = , 	xn+i = , 	xiay 09X

a 	a 	a 	.5 
X +2  = - (n + 4)t + nt— 

-ay  i 

8 	.8 
- 	 i 8 	.5 

L• 	- 	Lu  
• - - - 

— 	8t' 	- 5yi 	ay  
These determine the full isometry Lie algebra as a semi-direct product 9 = x m 

where the isotropy subalgebra 1j = iso(n) is spanned by the Li 's and L3k's, and 

m is spanned by X o , X 1 , X 2  and the X 2 's. The algebra is given by 

[,] Lr  L uv  X 0 	 Xi X n i X2 

Lr  0 lSvrX u 	5ur Kv  0 Xr  (n + 2)L r  

L 8 t  ösrLt - 5trL s  L stuv  0 	6i.Xt - 6X 8  0 0 

Xo 0 0 0 	 0 0 (n+4)Xo 

Xi öriX0 - P 	 0 0 . 	2Xi 

Xi Xr  0 0 	 0 0 

XM2 —(n + 2)L r  0 	—(n + 4)Xo 	_2xi mX +1 0 

where L stuv  = JsuLtv - 6L 3  + äzLk - 5jL3k. 

The metric induces an inner product on m with non-zero terms given by 

(X, X,) = Jij , (X 1 , X +1) = 1 , (4.4.6) 

(X +2, X 2 ) = 1 , (X0 , X+1) = 1 

It is clear that g = m 1j is not a reductive split. However, m is a Lie algebra 

in its own right, and therefore exhibits the Kaigorodov space as a Lie group. 

The corresponding homogeneous structure S abc  = S(Xa , Xb, Xe ), from equation 

(2.4.4), is given by 

Sn+2,0,n+1 = —(2 + n) 	S+1,o,+2 = S0,+i,n+2 =-2 	
(4.4.7) 

Sn+1,n+1,n+2 	 . si,j,n+2 = oij 
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It is not hard to see that it has generic type 'T1 72  ED73. 

We now determine the action of the isotropy group ISO(n) on the celestial 

sphere in T0K. Relative to the basis (X1,  Xo ), an element (A, b) of 

ISO(n) = SO(n) v Rn  has matrix 

(A Ab 00 

	

fO 	1 	00 
0 	10 

\_bt 	11b1 2  0 1 

which has been obtained as the product 

A \ 
(\ 	

) 
exp(b2L) 

Acting on a tangent vector v = (V,Vfl±l,V2,VO) E TX, we find 

	

(A, b) ( v \ 

	/ Av + vAb 

= 	
) 

	

Vhl+1J 	
( v0 	VO - btv 

- Ibl2v' 

Its not hard to check that this indeed preserves the inner product on T0K. Let v 

have zero norm, so that 

(v 1
) 2  + (vM.2)2 + 1v12 = _2VOVn+ 1  

Since v 	0, it follows that v°  =A 0. We must therefore distinguish two cases, 

according to whether vM1  does or does not vanish. 

• If v 1  = 0, then also V 2  = 0 and v = 0. We can then choose v0  = ± 1, 

whence v = ±Xo . 

• If v 1 34 0, then we can choose b = _V/V' to bring v to the form 

(- 1 ((v 1 ) 2  + (Vfl+2)2)) 

0 

where we have used that v is null. We can choose v 1  = ± 1, V 2  = L 50 

that finally 

= ± (x +1  + X +2  - ( 1 + a2)X) 

Choosing, for definiteness, future-pointing null geodesics, the action of the 

isotropy subgroup leaves two non-isometric null directions, one of them para-

metrised by a real number a: 

Xo 	and 	Xn+i ±aX +2  - ( 1 + a2)xo . 	(4.4.8) 
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It is not difficult to check that X 0  is a geodetic vector with c = 0, so that 

the corresponding plane-wave limit will be a regular homogeneous plane-wave. 

The null geodesic along X ,,+, + aX2 - (1 + a 2)Xo  is only homogeneous when 

a2  = 1, in which case X+1 + aX+2 - Xo  is geodetic with c = —a(4 + n) and 

the limit will be a singular homogeneous plane wave. 

It is not difficult to see that in both cases the skew-symmetric matrix f given 

by equation (4.2.15) vanishes. It is easy to show that when the geodetic vector 

is X0, the symmetric matrix H0  = 0, whence the plane-wave limit is flat. When 

the geodetic vector is X 1  + aX +2  - X, a calculation shows that the nonzero 

components of H0  are 

(H0 ) 3  = 4ö 3 	and 	(H0 ) +1, +1  = n2  . 	 (4.4.9) 

In [31] all the plane-wave limits of both the Kaigorodov space and the product 

space K +3  x SP have been calculated using the Hamilton-Jacobi method 3.6.3. It 

is shown that the plane-wave limits of K±3 x SP along the non-homogeneous null 

geodesics which have a non-zero component in the tangent space to the sphere 

are non-homogeneous plane-waves. We can check the non-homogeneous geodesics 

of the Kaigorodov space using the necessary and sufficient condition derived at 

the end of section 4.2.1. There are two cases to distinguish: 

a = 0: here Urn = X 1  - Xo and we can take V = Xo , Y = X 2  and 

Y+i = X, 2 . A simple calculation shows that 

R(Um ,Ya,Uin,V) = R(Yi ,Ya ,Um ,Yb) = 0 

for all a, b, i. Therefore, equation (4.2. 10) is solved by Jab = S(Um, Yb, Ya ) 

which makes the plane-wave limit homogeneous. We calculate both c and 

f to be zero and H0  to have non-zero components 

(H0 ) 2, = — 2(n + 2)ö, and (H0) +1, +1 = 2n(n + 2) . 	(4.4.10) 

Therefore the plane-wave limit is a symmetric plane-wave. Notice that we 

had to use formulae (4.2.8) for H0, since equation (4.2.17) holds only for 

geodetic U. 

a 0: here Urn = X1 + aX +2 - ( 1 + a2 )Xo  and we can take V = 

X41 - aX +2 - (1 + a2 )Xo , Y = X2  and Y1 = X,1 + ( a2  - 1)X0 . In 

this case it is not difficult to see that R(Urn, Ya , Urn, Yb) is diagonal but 

CT1R(Urn, Y+,, Urn, V) + R(CMY n+i , Ya , Urn, Yb) 

is non-zero. Therefore the criterion explained at the end of section 4.2.1 

shows that the plane-wave limit can not be homogeneous. 
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4.4.3 Kaplan's g.o. space 

We have considered the homogeneous structures of Kaplan's space in section 2.5.2. 
To calculate the plane-wave limits we first determine the null geodesics up to 

isometry. Homogeneity means we only need to consider geodesics passing through 

the origin o of M. A null vector at this point is given by Urn = > ii 	UtX 1  E 
with 5  Ej= j (U) 2  = ( U6 ) 2 . Without loss of generality we can choose U6  

depending on whether it is future- or past-pointing, respectively. The isotropy 

group SU(2) C SO(4) leaves X5  invariant and acts transitively on spheres in 

the four-dimensional space spanned by (X 1 , X2 , X3 , X4 ). This means that up 

to isometry, there is a (quarter-)circle family of past- and future-pointing null 

geodesics, with tangent vectors 

Urn = sin VX, + cost9X5  + X6  , 	 (4.4.11) 

for t9 e 10 I L21. 
Applying the geodetic vector equations (2.5.7) to Urn  we find 

ç51=U5= COS  t9 	ç 2 =—U6 =1 	q3=0. 

This restriction of the geodesic graph 0 : m\{0} -+ Ij to the null vectors is linear, 

whereas the graph as a whole is nonlinear (showing that M is not naturally 

reductive), so the space is in some sense like a natuia11y reductive space when 

restricted to (certain) null geodesics. These equations tell us the vector we need 

to add to Urn to make it geodetic: 

sin i9Xi+cot9X5 ±X6 + COS t9Yi+Y2. 

Using equation (4.2.15), we find that 

/ 0 	0 	- ±1cost9 

f= 	
0 	:i4 —  cosO 

	

:14 	0 	0 
Rcost9 	COS 19 0 	0 	J 

and, using (4.2.17), that 

'i( 

= 	::Fsin2 i9 	3—cos H0 	 (-2t9) 	0 	 0 
(_3_ COS 2t9) 	sin 2 i9 	0 	 0 

0 	 0 	 COS 219 	0 	J 
0 	 0 	 0 	(-3+2 COS 2'O)) 

It is easy to see that [H0 , f] = 0 if and only if i9 = 0, in which case the resulting 
spacetime is a conformally fiat symmetric plane wave. 

Mc 



4.4.4 Komrakov K1.4 6  

Recall that we used this metric to demonstrate the Hamilton-Jacobi method in 

section 3.6.3, where we have determined that up to the action of isometries the 

null directions Urn at the origin fall into two families: 

Urn = U1: a simple calculation shows that in this case u 1  satisfies equa-

tion (2.5.1) with c = 0 and thus the plane-wave limit along that geodesic 

will be a regular homogeneous plane-wave. Using equations (4.2.15) and 

(4.2.17), we find that the plane-wave limit along u1  is fiat. 

Urn = u3  + au4  + 1 (1 + a2 )ui  + u2  for some a E IR: in this case there is no 

value of a for which the corresponding geodesic is homogeneous. This was 

to be expected because our calculation of the plane-wave limit using the 

Hamilton-Jacobi method in section 3.6.3 showed that it is nonhomogeneous 

for all a. Indeed, it is not difficult to show that the 2 x . 2-matrix 

CLR(Urn,Yb,U m ,V) + E(CYi,Y a ,Urn,Yb)+ a b 

does not satisfy the criterion (4.2. 11) which shows that the plane-wave limit 

is not homogeneous. 

4.4.5 Komrakov K1.12 .1 

Recall that we examined this example in section .2.5.1, where we have already 

determined the null geodetic vectors for, this homogeneous space. For ease of 

exposition we will take jal = = 1 in the metric (2.5.2) from now on. We 

consider the two cases a = —1, /3 = 1 and a = 1,3 = —1 and their geodetic 

vectors described in 2.5.1: 

. For a= —1, )3=  1 we have U = u2  + pu4  + qui , q2  = 1 _p2; 

The 2 x 2-matrix 

CaR(Urn, Yb, Urn, V) + R(ctY, Y a , Urn, Yb) + a 	b 	(4.4.12) 

is of the form (4.2.11) only when p = ± 1,q = 0 or p = 0, q = +1 and in 

fact completely vanishes in both these cases. Whence the plane-wave limit 

is homogeneous if and only if either p = 0 or q = 0: 

- For q = 0,p = +1 we have the geodetic vector U = u2  + pu4  for 

which we find c = 2. The skew-symmetric matrix f has components 

f12 = -, whereas the symmetric matrix H0 is given by 

Ho=( 

+1" 
L 
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It is clear that [f, H0 ] 	0. Indeed, 

ezfHoe_zf ( 4  ± Sfl Z ± cos Z 

	

± Cos z 	+sinz) 

- For p = 0, q = ±1 we have U = u2  + qu1  with c = 0. This vector is not 

geodetic, however the plane-wave limit in its direction is homogeneous. 

The skew-symmetric matrix f vanishes and H0  is given by 

i+i i\ 
) 

H0=3 3 

Therefore the plane-wave limit is symmetric. 

• For a = 1, )3= —1 we have Urn = u4  +pu + qu1, q2  = — 1 +p2 ; 
For this case the matrix (4.4.12) is of the form (4.2. 11) if and only if 

p = 0, q = ±1 or p = ±1, q = 0, therefore these are the directions with 

homogeneous plane-wave limit: 

- For p = 0, q = ±1 we have U = u4  ± u2  is geodetic with c = —2; 

In this case, the skew-symmetric matrix f has components f12 = 

whereas the symmetric matrix H0  is given by 

31  
Ho 	

T,) 

It is clear that [f, H0 ] 	0. 

—Forp=±1,q=OwehaveU=u4 ±u 1  with c=1; 

Finally, in this case, the skew-symmetric matrix f has components 

f12 = ±, whereas the symmetric matrix H0  is given by 

Ho=( 	
7 ) 

Again [H0 , f] 0 and' indeed 

1-1  e''H0e' = 	
+ cos z - sin z ±(cos z + sin z) \ 

	

±(cosz-- sin z) 	- cosz+sinz) 



Chapter 5 

Supersymmetry and homogeneity 

In this chapter we study the relation between supersymmetry and homogeneity. 

The supersymmetry superalgebra is a natural invariant of a supergravity back-

ground whose even and odd subspaces are spanned by the Killing vectors and 

the Killing spinors respectively. The bracket on the odd subspace is a symmetric 

bilinear map from the spinor bundle to the tangent bundle which maps Killing 

spinors to Killing vectors. Under this map, the square of the spinor bundle can 

naturally be thought of as an extension of the Killing transport bundle & Given 

this bracket, it is natural to ask what fraction ii of supersymmetry is required for 

a background to be necessarily homogeneous? We shall see that if ii > then the 

background is indeed homogeneous, and shall provide some evidence that there 

are non-homogeneous backgrounds with ii = . But we shall start with some of 

the underlying Clifford algebra. 

The results of sections 5.2, 5.3, 5.5 and 5.6 are the products of the collaboration 

with J. M. Figueroa-O'Farrill and P. Meessen reported in [72]. 

5.1 Clifford algebras 

The Clifford algebra conventions we use mostly follow the books [73] and [74] but 

for completeness we shall review them here. 

Let F' 8  denote the real (r + s)-dimensional vector space together with an inner 

product (, ) defined by the following norm: 

Let 0 E','denote the tensor product algebra on E r,, with the inner product 

obtained by extending ( , ) in the usual way. The Clifford Algebra C1(r, s) is 

defined as the quotient 
O 

{x ®x = - 1x1 21 } 
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where {x ® x = - 1x1 21 } is the ideal generated by the relation. Clifford mul-

tiplication, denoted by , on Cl(r, s) is inherited from tensor product. The 

Clifford algebra Cl(r, s) is isomorphic as a vector space (not as an algebra) to the 

exterior algebra A tE. 

We are particularly interested in eleven dimensional lorentzian signature EU°. 

The Clifford algebra Cl(1, 10) is isomorphic to two copies of 32 x 32 real matrices 

M32  x M32 . Therefore up to isomorphism there are two real Pinor representations 

Cl(r, s) 'End(P) ® End(P-) , 	 (5.1.2) 

where the vector space P = 	P_ is called the space of pinors. These two 

representations are distinguished geometrically by the volume form vol of 11O 

The isomorphism to the exterior algebra allows elements of A E1 ' 1°  to act on P±. 

Now let (M, g) be an 11-dimensional lorentzian manifold with tangent bun-

dle TM and co-tangent bundle T*M.  A choice of co-frame for T*M  gives an 

isomorphism from each fiber to [1,10•  Thus we may construct a Clifford algebra 

Cl(1, 10) above each point x. e M. These algebras patch together smoothly to 

form a Clifford Bundle Cl(T*M).  The isomorphism of the Clifford algebra to 

the exterior algebra extends to a bundle isomorphism Cl(T*M) A T*M. 

Moreover, if (M, g) is spin, we can form the (not necessarily unique) bundles 

8±  associated to each of the irreducible representations P. of Cl(1, 10). Differen-

tial forms act naturally on sections of 8 via the isomorphism AT*M Cl(T*M) 

and the pointwise action of Cl(1, 10) on 

Given a pseudo-riemannian manifold (M, g), define the musical isomorphisms 

TM - T*M and  T*M  TM by 

X(Y) = g(X, Y) and g(, X) = ,u(X) 

where X, Y E TM and p e T*M.  If w E APT*M  then the Clifford product is 

given by 
X w _XbA w _ txw , 	 (5.1.3) 

and 
w XL = (-1)(X A w + tXW) . 	 ( 5.1.4) 

Iterating these identities we find for example, 

(Xb A Y) . = Xb A Y A w + tXtYW - Xb A tyw + Y A tXW, 	(5.1.5) 

and 

(5.1.6) 



If w is a p-form and *w its Hodge dual, then their Clifford actions are related 

by 

	

* w = (_ 1)P1)w vol 
	

(5.1.7) 

The bundles 8±  inherit from P±  a symplectic structure which is compatible 

with the action of the Clifford algebra; that is, 

(V), X,  .) = _(XI 	. 	 (5.1.8) 

This identity implies that the bilinear form 

(5.1.9) 

associated with the vector X is symmetric. 

More generally, if w is a p-form and w" denotes its adjoint with respect to this 

symplectic structure; that is 

	

= 	.). 	 (5.1.10) 

One finds that 

	

= (_l) 	12W  

whence 1-forms, 2-forms and 5-forms preserve the symplectic structure. Indeed, 

p(32, D) = A' A 	A5  under so(1, 10). 

As a principle for this chapter, indeed the whole thesis, we will try to work 

invariantly whenever possible. However, sometimes the physics notation of ex-

pressing Clifford products with indices can simplify calculations significantly. 

We will therefore sometimes use an explicit basis of gamma matrices (Fe) with 

i = 0,. . . , 10 for Cl(1, 10) which satisfy 

	

I'2 F + riri = _llij l, 	 (5.1.12) 

where ij is the symmetric constant bi-linear form with non-zero components q 00 = 

—1 and = 1 for i = 1,.. . , 10. With respect to this basis the symplectic 

structure is given by 

	

(I') = ''T F° . 	 (5.1.13) 

Of course calculations of Clifford products using gamma matrices can also be 

a messy business, often with indices "all over the place". To make some of these 

complicated expressions more succinct and easier to read we shall make use of the 

following invariant notation for the Clifford product. Let w and 11 be differential 

forms and let 
W *k V 



denote k-contractions between w and ii and wedge product the rest together, so 
that if w E A n T*M and v E Atm 

T*M then 

min(m,n) 

WV= 	W*IJ. 

For example, if w, ii e A2 T*M ,  then 

(.) *o ii =w A ii 

w *1 v =(wi4 - vw )dxi A dx c 

W *2 u _(wv u) 

This product satisfies 

I(, ,.. = (_l)(m_k)(n_k) *k W , 	 (5.1.14) 

and is not necessarily associative. Not only does this notation allow one to write 

down Clifford type equations succinctly, it is also a useful calculational tool as it 

helps to keep track of which degrees of differential forms vanish in a calculation. 

5.2 The Killing super algebra 

The Killing spinors and the F-preserving Killing vectors of a supergravity back-

ground (M, g, F) define a Lie superalgebra, which we call the Killing super-
algebra of the background. Special cases of this construction have appeared in 

[75, 76, 77, 78, 79, 80, 20, 59], but here we treat the general case. 

We write the Killing superalgebra as the sum g = 90 g where the even 

subspace go  is the algebra of F-preserving Killing vectors and the odd subspace 

g 1  is the of the algebra of Killing spinors. The grading means that we must 

distinguish three types of brackets. 

Firstly we have the bracket [-, -] : g0 ®g0 -p go. This corresponds to the Lie 

bracket of Killing vectors defined in (2.1.4). It clearly satisfies the Jacobi identity 

and thus 90  is a Lie algebra. 

Next we have the bracket [-, -] : g0®g1 -p g. This corresponds to the action 

of Killing vectors on Killing spiiors via the spinorial Lie derivative [81]. If 

p : o(TM) -p End(S) denotes the spin representation, then the spinorial Lie 

derivative .0 is given by 

[(,Ae),E] = VE+p(A)E , 	. 	( 5.2.1) 

where (, A) E t and 6 E g, - Note that £ is only defined when is a Killing 
vector. If (, A) E 2o,  then the right-hand side will again be in g'  since for all 
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vector fields X, we have 

[J,Dx] = T,x1 . 	 (5.2.2) 

The spinorial Lie derivative satisfies 

J.:)XJ:JYE - LYLX E = £J[X,y1E , 	 (5.2.3) 

which is equivalent to the (go, go, 91) Jacobi identity. 

Proof. Applying (5.2.1) we have 

[LX, ty]€ £x(VyE + p(Ay)f) - Jly( Vxc + p(Ax)E) 

= VxVyf + p(Ax) VyE + Vx(p(Ay)c) + p(A x Ay)E - (X Y) 

= VxVyE - VyVc + [p(Ax), p(Ay)]e + p( VxAy)E - p(V y A x )i. 
(5.2.4) 

We now use 

[Vx ,Vy]€ = V[x,yje - p(R(X,Y))€ 	 (5.2.5) 

and Killing's identity (2.1.2) repeatedly to arrive at 

[x L y le = V[x,Y]6 + p([Ax, Ay])E + p(R(X, Y))€ 

= V(x,y]f + p(A1x,y])E 	 (5.2.6) 

= 

The third bracket [-, -]: g1 ® g1 - 90 corresponds to the map 

S ® S -* TM , 	 (5.2.7) 

which takes two spinors and 0 and produces a vector field 	] such that for 

all vector fields Y we have 

. 	 (5.2.8) 

In fact, the compatibility condition (5.1.8) means we can reduce the domain of 

to the symmetric product of the spinor bundle : S 08 - TM. The vector field 

which we call the square of 0 , is necessarily causal: :~ 

0. The simplest argument for this causality condition makes use of a contradiction: 

suppose this were not the case and ] were spacelike. Then one should be able 

to choose a pseudo-orthonormal frame for TM so that the timelike component of 

'?I], which we will label °, vanishes. This can be written as 

0 = 	= (sb, F° 
. ') = T(F° ) 2 'i,b = 'çbT',b 0  0, 	(5.2.9) 

which is clearly a contradiction. 
The map (5.2.7) is defined on all spinors, but when restricted to Killing spinors 

the vector is a Killing vector which in addition preserves F [82]. 
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Proof 

g(Vx[, ], Y) = Xg(['', 01,  Y) - g(['i,b, 01,  VY) 

= (Vx , Yb ) + (, Yb 

Using that Do = 'Dq5 = 0 we have, 

g(V x b, 01,  Y) = (, 	Yb ) + (sb, Yb  clx  

where 

	

clx —X"AF —txF, and cZy=Xh1AF_txF,
12 	6 12 	6 

is its symplectic adjoint. Using equations (5.1.3) and (5.1.4) we arrive at, 

g(V x [, 01, Y) = 	ttyF ) + 	A Yb  A F ), 	(5.2.10) 

which is skew-symmetric in X and Y, thus 	01 is a Killing vector. 

Now define a 2-form B by 

	

B(X,Y) =(,,XAYb.ç) . 	 (5.2.11) 

We shall compute its covariant derivative: 

(VzB)(X, Y) = (Vz'b, Xb  A yb . ) + (0, X' A Y' Vz) 

= (clz b,X' AYb . )+ (0, X' A 	. cl) 	(5.2.12) 

= (, 

 

Q * - (Xb A  Yb) . ) + (, (Xb A Yb) . 

Using equations (5.1.5) and (5.1.6) we arrive at, 

(VzB)(X, Y) = g(Y, Z)(, Xb A F - ) - g(X, Z)(, Yb  A F 

+ (0, Y' A 	A txF ) + (V), X' A 	A LyF . ) 	( 5.2.13) 

- (XbAYbA tzF.)_ (,tx ty tzF) 

We now alternate this identity to obtain dB: 

dB (X, Y, Z) = ( VxB)(Y Z) + (V y B)(Z, X) + (VzB)(X, Y) 

= —('L', txLytzF . 

Noting that 

(sb, tx tytzF ) = F(e(b, ), X, Y, Z) 

we have that 

= dB . 	 ( 5.2.14) 
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Now 

= t1, 1,1dF + d(t1 1,j)F 

= t11dF + d(dB) 

which, since F is closed, implies that the vector field ['O, ] leaves F invariant. 0 

Recalling the bundle FS defined in section 2.1, we can extend the map to a 

map 

A: S 0 S 	, 	 (5.2.15) 

given explicitly by 

= (e[,],—V[iI',]) 

where 	] is given by equation (5.2.7). This map sends parallel sections (with 

respect to D) of S 0 5 to parallel sections (with respect to D) of E. If we also let 

A denote its restriction to these 'D parallel sections, then —V[iO, q5]  is given by 

(5.2.10). 

The fundamental property of A is its equivariance under the action of g0. In 

other words, 

[(X,A x ),A[b,cb]] = A[Lxb,] +A{'b,J x q5]. 	(5.2.16) 

Equivalently, for all vector fields Y (not necessarily Killing), 

g(L x b,q5],Y) = (Lxb,Yb . 0) + (0, Y ,  

Proof. We compute the left-hand side: 

= g(Vx[,0] - V,]X,Y) 

(Vx, yb ) + (, yb Vx(k) + (, VyXb 

Next, we compute the right-hand side: 

(Lxb, Yb ) + (, Yb -,C x O) = (Vxb, Yb ) + (Ax b, Yb . 

+ (V5, Y' . VxO)+ (0, Y' A . 0). 

The difference is therefore 

(,VyX0)+(,Ax .Yb .0)(,Yb A •0), 

which can easily be seen to vanish as a cdnsequence of the identity 

[Ax , Y] = A x  (Y) = —VyX. 	 (5.2.17) 
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Equation (5.2.16) is equivalent to the [go, 91, g i ]-Jacobi identity. It also implies 

that [91, 9'] C go  is an ideal, in other words, g'  generates an ideal [gi, 91] (Dg1 C g. 
The final Jacobi identity to consider is the [g 1, Oi, 91] identity. This is equiva-

lent to the vanishing of a g0-equivariant symmetric trilinear map J: Sgi -f 91, 

defined by 

J(, 0 , e) := £,1E + £ EJi,l' + 	. 	( 5.2.18) 

Polarization implies that the vanishing of J is equivalent to 

= 0 , 	 ( 5.2.19) 

for all Killing spinors e. In other words the Jacobi equation is equivalent to every 

Killing spinor being left invariantunder the Killing vector made by squaring itself. 

Equation (5.2.19) does not involve any derivatives. Indeed, it is equivalent to 

(2tF+AF+BA*F+CAF).E=0, 	(5.2.20) 

where , B and C are made by squaring the spinor E, respectively: 

(X) = (E,X.E) 

B(X,Y) = (,XAY) 

C(X,,...,X 5 ) = 

Equation (5.2.19) is clearly linear in F and cubic in 6 and it is equivariant un-

der the action of Spin(1, 10). As a consequence it only needs to be checked for one 

(F, e) in each of the (projectivised) Spin(1, 10)-orbits of the relevant representa-

tion space. Rather than working out the orbit decomposition of this large space, 

one can try to prove the statement for all F and one s in each of the Spin(1, 10) 

orbits in the spinor representation. There are two such orbits; when the Killing 

vector associated to E is null and when it is timelike. This was checked in [72] by 
both JMF using an explicit representation of Cl(1, 10) and the computer package 

Mathematica and by PM with the Maple package. 

5.3 Examples 

5.3.1 Gravitational backgrounds 

Consider those supergravity backgrounds where F = 0 and the fermionic sector 

is set to zero, so that the background is purely gravitational. Then the super 

covariant derivative (1.1.3) reduces to the Levi-Cività connection and Killing 

spinors are just parallel spinors. This means that the Killing vectors in [g', 9,] 



are also parallel, so their action on 91 is trivial, whence [91,-911 is Abelian and 

consists of translations. 
Examples of such backgrounds inclu& flat space, the M-wave [5], the Kaluza-

Klein monopole [8, 9, 101 as well as their generalizations [83]. For flat space, 

[gi, g1] is the translation ideal. For the M-wave, [gi, g1] is a 1-dimensional ideal 

spanned by the parallel null vector 19, of the pp-wave. Indeed, suppose that 8 

is a locally complementary null vector to 5, such that9 5 + = 1. The 

M-wave admits 16 linearly independent Killing spinors which are characterised 

by the condition 9 = 0. This means that 

'91 iv l.0 

Let ç  and 0 be Killing spinors. If X is perpendicular to O, then 

g(['b,çb],X) = (,X' 

=0. 

So [iI', ] is perpendicular to all X which are perpendicular to O x,, whence 

is collinear with ay . Now, and 0, are parallel, hence 	4] = 69, for some 

constant c. 

For the Kaluza-Klein monopole, [gi, gi] is the translations ideal in the flat 

factor. Indeed, the geometry is 1,iO-n  x X where X is an n-dimensional 

riemannian manifold admitting parallel spinors but with no parallel vectors. The 

list of possible holonomy groups of X has been compiled in [84] and are given by 

SU(5) for n = 10, any of Sp(1) x Sp(l) C Sp(2) C SU(4) C Spin(7) for n = 8, G2  

for n = 7, SU(3) for n = 6 and Sp(1) = SU(2) for n = 4. In all cases we obtain 

that [gi, g] is the translation ideal of 1,10-n 

5.3.2 Branes 

For the elementary half-supersymmetric M2- and M5-brane backgrounds one also 

finds that [gi, gi] is the translation ideal R 1,P on the brane. Both of these back-

grounds are geometrically a warped product 

g = Hall + H'5, 

where 77 is the Minkowski metric on DlP,  p = 2, 5; 8 is the euclidean metric on 

q = 8, 5, respectively; and H is a harmonic function on 0q  such that the metric 
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is asymptotically flat. The coefficients a and 3 are functions of p, but we do not 

need their explicit form. The Killing spinors are given by 

E = H'4e 

where 	is a parallel spinor in the asymptotically flat geometry which obeys the 

algebraic condition 

V11  

where v11  is the volume form of the Minkowski metric ij. Notice that the same 

identity is satisfied by e itself. 

For the M2-brane, the volume form ii,, is a 3-form and hence is self-adjoint 

relative to the symplectic structure on the spinor bundle. If X is perpendicular 

to the brane world-volume, then X = —v 11  . X, and hence if El and E2 are 

Killing spinors, 

(Ei,X 2) = (E 1 ,X 	E) 

=(Ei ,— v11 .X.6 2 ) 

= —(v11  

= —( 1 ,X . 

Therefore [Ei, E21 is tangent to the world-volume. 

A similar calculation shows the analogous result for the M5-brane. Here the 

volume form v11  is a 6-form, whence it is skew-adjoint with respect to the symplec-

tic structure. If X is perpendicular to the brane world-volume, now X•v 11  = 

but a calculation almost identical to the one above shows that [El,  E21 is again 

tangent to the brane world-volume. 

If X is tangent to the brane world-volume and E is a Killing spinor, a quick 

calculation shows that 

Vx F = a dlogH . X . E. 

Let Y = 	-- Y1  be the decomposition of any vector field Y into tangent and 

perpendicular components relative to the brane world-volume, and let 61, 62 be 



Killing spinors. Then 

(Vx[61,E2],Y) = (Vx[El,62],YT) 

= (6 [VX 6 1, 621, YT) + ([Ei,  Vx21, YT) 

= (Vxe1,YT €2) + (E1 )'YT Vx62) 

=(d log H.X. El,  YT .e2 )+a(El,YT.d1ogH'X'62) 

=a (d log H 61 ,X Y '62) + 
1 
 a (dlogH E1,YT X '62) 

= &(X,Y)(E i ,d log H'62) 

= a(X,Y)([e 1 ,e2],d1ogH) 

where we have used that d log H is perpendicular to the brane world-volume 

repeatedly. In other words, the Lorentz component of [E1,E2] vanishes, whence 

it is a translation. 

5.4 The square of the spinor bundle 

We have already introduced the differential forms 

= ('',X t'.), 

B['',](X 1 ,X 2 ) = 

C[0,0](Xi,X2,...,X5) =(5.4.1) 

Each of , B and C defines a map from the symmetric tensor-square of the spinor 

bundle 8 0 8 to the bundles of 1, 2 and 5-forms respectively. We may put these 

together to form one map 

808 - T*M A 2T*M ED  AST*M 	 (5.4.2) 

given by 

B(Oq5) = 

Then B extends linearly to a vector bundle isomorphism B : SOS A' A 2  ED A 5  

since S 0 S and A 1  A 2  e A 5  have the same fiber dimension: 322/2 = 528 = 

11 + 55 + 462. This allows us to identify the two bundles. 

These forms , B and C satisfy a number of algebraic relations. For example, 

for the square of a spinor we have 

= B[] A B[b,] 	 (5.4.3) 

B ['/), 1] = 0 
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and this may be polarised to obtain a relation for 0 0. There are many other 

relations, such as those listed in [82]. 

Consider a bispinor E j  0, 0 	8 0 S. Extending the definition of Killing 

in the natural way, we call Ej  0i  0 Oi  Killing if it is parallel with respect to D. 

This is equivalent to 

0 qj + Oi (D (Vx)) = 	(Oi 0 00 

(5.4.4) 

Let us consider the case where a Killing bispinor is simple, that is of the form 

0 0 . Results about decomposable bispinors will follow from linearity. If 0 and 

are linearly dependent, so that 0 = k, then it is clear that the bispinor is 

Killing if and only if the spinors b and 0 are. So let us suppose that 0 and 0 are 

linearly independent. We can expand the covariant derivatives of the spinors 

and 0 as 

	

= 	1(X)s 	 (5.4.5) 

	

Vxq = 	i4(X)s , 	 ( 5.4.6) 

where (se ) is a local frame for the spinor bundle S with s 1  = b and s2  

Substituting this into equation (5.4.4) and equating with the right hand side we 

find that 4b = 	= 0 for i > 3, also ,i4 = 	= 0 and 	= -p4. Therefore a 

decomposable bispinor 0 0 is Killing if and only if the spinors satisfy 

Vxb - . = 

Dxcb = Vx - x 	= — ji(X)çb, 	 (5.4.7) 

where we have dropped the upper indices on ji. 

This extra term in the Killing spinor equation does not obstruct the fun-

damental property of Killing spinors; that the vector field is a Killing vector 

field. Indeed the proof of this is almost identical to that given in 5.2 with the j 

contribution cancelling and leaving the same result (5.2.10). 

If i is closed then locally there exists a function f such that p = df. Then, 

by the re-scaling (2) ,0  = e'çb 0 e1 , we can gauge away p: 

Vx(e) = —edf(X)b + e(flx + p(X)) = efl x  . 

and similarly for 0. 
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The action of the curvature tensor of the supergravity connection V on 'b may 

be expressed as, 

RD(X, Y) = —DVyb + VD',b + V[x,yb 

= d,u(X, Y)ib - (X)V y b + ii(Y)Vx'cb. 

A Clifford contraction together with the first Bianchi identity gives 

trR(X)b=dp(X)b-1L(X)b+/1Vx'cb, 	( 5.4.8) 

for any X E TM. Similarly, for 0 we obtain 

tr Rv(X) = —d(X) . + ,a(X) ø 0 - / L V,, 

where is the Dirac operator of the supergravity connection D: 

= >ej Vej L', 

and (es ) is a pseudo-orthonormal frame for TM. The left hand side of these two 

equations is the sum of the equations of motion acting on the spinor [85], and 

thus vanishes on a supergravity solution. Indeed, if one were to expand out the 

gamma-trace of the curvature R as done in [86] one would find: 

tr 	. 	(Ric(X) - F2(X) - (s - F 2) g (X)) 

_(*(d*F_FAF).X-6tx*(d*F—FAF)Yb 	( 5.4.9) 

—(dFX—txdF)P. 

We will see in the next section that this Implies that a spacetime which admits 

more than 24 Killing spinors and a 4-form F which satisfies the Maxwell equations 

(1.1.1), automatically satisfies the Einstein equation (1.1.2). Substituting this fact 

and equation (5.4.7) into (5.4.8) we find the integrability condition 

O=d(X)b—i(X) ((e i)ei ) +(x 

= d(X) . 

for all X E TM. Taking the symplectic inner product with i, and also separately 

a Clifford contraction with dl.L we find 

(a) 	(,djt(X) . ) = 0 and (b) 	(dp)(dt) = 0 , 	( 5.4.10) 

where there is no sum over i. We have already seen that at a point p the vector 

b} is either timelike or null. First suppose that it is timelike and choose an 
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orthonormal frame (et)  so that e0  = , then (a) shows that (da) = 0. Applying 

(b) we find that (dp) 13  = 0, whence dii = 0. Now suppose that is null and choose 

a lightcone-orthonormal frame (e+,  e, e) with e+ and e its complementary 
null vector. Then (a) implies that (d,U)_ a  = 0 for any a, while (b) gives (dp) = 
(dl.L) ij  = 0 which is enough to show that dp = 0 for this case as well. 

It follows that dii = 0, in which case /1 can be gauged away. Therefore for 

supergravity backgrounds, a bispinor 0 0  0 is Killing if and only if both b and 

are Killing spinors. Linearity ensures that the same is true for a decomposable 

bispinor. 

Under the identification (5.4.2) the Killing bispinor equation D( (D ib) = 0 

becomes the three equations 

VxB[b 0 01 = B[lx (L' 0 )] 

VxC[ 0 01 = C[x ( 0 )]. 

We can calculate the righthand side of each of these equations in terms of , B 
and C to represent the Killing bispinor equation on the bundle of one, two and 

five-forms. In fact we have already calculated this for both and B in (5.2.10) 

and (5.2.13) respectively. 

For simplicity, let 

	

o(X) 	A F and 3(X) 	= — tF, 

and define two families of differential forms Hk and Gk by 

	

Hk(X,Yl,. . . ,Y7-k) = - 2a (X) *6_k (yb A 	AY'_k) 	(5.4.11) 

± 23(X) *5_k (4' A ... A _k) 

	

Gk(X, Y 1 ,. . . , Y7-k) = - 2a(X) *4_k (4' A 	A Y7W 	(5.4.12) 

	

+ 23(X) *3_k (4' A 	A VT_k), 

so that for each ordered set of tangent vectors (X, Y1 ,.. . , Y7-k) we have that 
Hk(X, Y 1 ,. . . , Y7-k) is a k-form, and similarly for Gk which is a k + 4-form. For 
example, the fully expanded H5 (X, Y, Z) form is 

which is precisely the right hand side of (5.2.13). A similar calculation to that of 

(5.2.13) for C yields 



Theorem 5.4.1. (, B, C) is a Killing bispinor if and only if 

(Vx')Y = - B(t x ty F) - C(tx ty  * F) 

(VB)(Y,Z) = - 	(tx ty tz F) + C(H(X,Y, Z)) 	
(5.4.13) 

(VxC)(Y1,. . . ,Y 5) = - e(txty1  . . . 	* F) - (H20 	,Y5 )) 

—C(*G(X,Y,,.:.,Y5)). 

These equations were originally calculated in [82] by squaring a single Killing 

spinor. One way to think of these equations is as a generalisation of the Killing 

transport equations. If we define a connection D on the bundle A' ED A A 5  by 

—B(t x F) - C(t * F) 

Dx ( B 	Vx ( B  ) + ( 	—(tF)+C(H(X)) 

\ C) 	\ C) \ - ( tX* FP) - B(H(X)) - C(*G(X))
6 	 12 

where we have suppressed some of the notation on the righthand side, then Killing 

bispinors are parallel sections of D. However, notice that the 2-form B is not equal 

to the 2-form A from the Killing transport. We could of course correct this by 

changing the definition of D, but then it would not be so natural from the view 

point of the isomorphism (5.4.2). 
The bundle S 0 S however does not naturally inherit a Lie bracket in the 

same way the bundle E does. For example, one may attempt to form a bracket by 

noting that the symplectic structure provides an isomorphism between the bundle 

8 0 5 and the bundle SEnd(S) of symmetric endomorphisms of S. Explicitly the 

isomorphism is given by 

F-4 	-) + (, -) V) - 	
(5.4.14) 

However the natural Lie bracket on End(S), given by [F, Q] = PQ - QP, is not 

closed on SEnd(S): 

[pQ]T = ( PQ - Qp)T = QP - PQ = —[P,Q] if P,Q E SEnd(S). (5.4.15) 

In fact, in relation to the grading End(S) = SEnd(S) so(S) of endomorphism 

bundle into symmetric and skew-symmetric parts, the Lie bracket satisfies 

[SEnd(S), SEnd(S)] C so(S) 

	

[so(S), SEnd(S)] C SEnd(S) 	 (5.4.16) 

[50(S),5o(S)] C So(S) 

The isomorphism (5.4.15) extends naturally to define an isomorphism between 

the full endomorphism bundle End(S) and the tensor product bundle S 05, and 
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this in turn is isomorphic to the bundle _0A of differential forms up to degree 

5 via the natural extension to the map (5.4.2) so that it includes 3 and 4-forms. 

Then the above grading and bracket on End(S) are equivalent to the grading 

= (A' A2  ® A5) ( IR ED A3  A 4  ) and wedge product of forms. 

Killing's identity (2.1.2) relates the curvature tensor to a second derivative of 

R(X,t)Y = (VxVe)Y . (5.4.17) 

We can use this to formulate the sectional curvature for a two-plane where one 

of the generators is [?I, ]. The easiest way to calculate the right hand side in 

this case is another spinor calculation as done for theorem 5.4.1. It is equivalent 

to the A 1  part of the double derivative of the bispinor O 0 

0 çb)Y] = 1[Vcl. (0 0 çb)Y] 	
(5.4.18) 

= [(V1I) . ( 0 )Y + ci 	( ® )]. 

We will take Y = e and evaluate this on X in order to get the sectional curvature 

R(, X, 6 , X). The second term in this last equality can be expanded as 

1x(b 0q5)](X) 	(1 X + X 	
(5.4.19) 

We have already calculated 	. X + X - 	in equation (5.2.10): 

X+X—txF+AXAF=2Aa+2i. 

After a similar calculation to that which lead to equation (5.2.10) we find that 

the right hand side of (5.4.19) is given by 

2(a + 	( A a + (2 A a + 2q,3) q,3) + 2( A a + trn). (—a + ) 

which may be expanded and separated into 1,5 and 9 form parts: 

K1(e,X) 	ttF— XbAF*55  AX AF 
9 	 36 

K5(e, X) t x F A ttx F - 	 A Xb  A F 
9 	 18 

+XAF*,ttxF— XbAF *3 AXAF 
18 	 36 

K9(e,X)tXFAAXAF+XAF* l AX b AF. 
9 	 18 

Similarly, for the first part of equation (5.4.18) with Y = and evaluated at 
X we have 

X + X 1l(VxF) 	
1

—ttVF + 	A X A VF. (5.4.20) 
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Consequently, the sectional curvature is given by 

R(, X, , X) —E(K) + A(*K) - C(K) + B(ttxVxF) + C(ttx * VxF). 
(5.4.21) 

If F A F = 0 then K9  vanishes, and if F is simple so that it may be written as 

Fdx' A dx 2  A dx 3  A dx 4  then both K5  and K9  vanish. 

5.5 Local homogeneity of 24+ backgrounds 

Let us fix a point p E M and denote the lorentzian inner product space induced by 

the metric restricted to TM as V with inner product (-, -) and with associated 

norm j - 1 2 . 

Let W C S denote the subspace of Killing spinors. The map (5.2.7) defines a 

symmetric bilinear map 
(5.5.1) 

The aim of this section is to show that if there is enough supersymmetry then the 

background must be homogeneous. Equivalently, we want to show that if dim W 

is large enough, then the restriction 

Iw: W 0 W -* V 	 (5.5.2) 

of to W is surjective. This means that TM will be spanned by Killing vectors. 

Since p is arbitrary, this will be the case for all p and thus the background will 

be locally homogeneous. 

If W = S then the representation theory of the spin group ensures that 6 is 

surjective. On the other hand there are examples with dim = 16 which are not 

locally homogeneous: for example the generic M-wave [5], the M-branes [6, 71 

and the Kaluza-Klein monopole [8, 9, 101. Therefore there has to be a minimal 

16 < N < 32 such that whenever dim W > N the map 61w is surjective. Using the 

symplectic linear algebra on W we will show that N = 25. The proof comprises of 

two parts: in this section we prove that  is at most 25, and in the next section 

we give an example with dim W = 24 where 6 is not surjective. This second part 

we call the 24+ conjecture, because the argument is purely linear algebra and 

does not take into account the supergravity equations of motion. 

Let us start by introducing some notation for symplectic linear algebra. The 

subspace symplectically perpendicular to .W is defined by 

W = JE  E S I (E, w) = Ofor all w  W} 

From the rank-nullity theorem we have that 

dim W 1  + dim W = dim S, 	 (5.5.3) 



even though W and W- may not be disjoint. For example, a 1-dimensional 

subspace is always contained in its perpendicular space. The relationship between 

W and W' can be used to define special types of subspaces. If W C W 1  then 
we call W isotropic. The dimension of an isotropic subspace is at most half the 

dimension of the ambient vector, space S. When the dimension is precisely half, 

so that W = W-'-, then W is called lagrangian. At the other extreme, if W and 
W 1  are disjoint then we call W symplectic. 

We can assume that dim W> 16 because of the known examples mentioned 

above. Now, elw will be surjective if and only if the perpendicular space to its 

image is trivial. That is, if v E V and 

(,v. 	= 0 , 	 (5.5.4) 

then we have v = 0. Suppose that v E V satisfies (5.5.4) and consider the Clifford 
endomorphism defined by v: 

Restricting this endomorphism to the subspace W, equation (5.5.4) is equivalent 
to (v.) mapping into the perpendicular space of W 

(v.)I w : W -+ W' . 	 (5.5.5) 

Under our assumptions we have that dim W > Idim 8 = 16. The rank-nullity 
theorem tells us that dim W > dim W -1- . Hence, on dimensional grounds, (v.) 
must have kernel. 

On the other hand, the Clifford relation gives v 2  = —1v1 2 1. Thus (v.) has 
kernel if and only if I V 1

2 = 0, in other words v must be null. A null subspace of 

any lorentzian vector space is at most 1-dimensional. Hence the perpendicular 

space to the image of is at most 1-dimensional and if it is 1-dimensional, then 

it is spanned by v. It follows that a supergravity background with greater than 

16 sup ersymmetries is of cohomogeneity-one. 

Now, from the relation v 2  = 0 we see that Im (v.) C ker(v.). To prove the 
other inclusion ker(v.) C Tm (v.) 1  let u be a complementary null vector to v such 
that 

uv+vu=1, 	 (5.5.6) 

and let 6 e ker(v.). Then applying (5.5.6) to 

E = UVE+VUE = V•U•E 

and thus e E Tm (v.). Therefore Tm (v.) = ker(v.). A similar argument shows 
that ker(u.) = Tm (u.). Using equation (5.1.8), we claim that keru and kerv• are 

complementary lagrangian subspaces, and therefore rank (v.) = dim Tm (v.) = 16. 
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Proof. (of claim) If E E ker(v.) fl ker(u.), then by applying equation (5.5.6) we 

have 
Eu.VE+VUEO. 

Hence ker(u.) and ker(v.) are complementary. 

To see they are lagrangian, first consider e = v 	e ker(v.) = Im (v.). Let 

q E ker(v), then 

() =(v.) =—(,v.q)=O. 

Hence E E (ker v.) 1  and thus ker v C (ker v.) 1 . A similar argument shows the 

same thing for u•. 

Next suppose that e E (kerv.)' = (Im v.) 1 . Then (E,) = 0 for all 0 = vb E 

Im (v.). Which gives 

—(v .e,) = (,v 	) = 0, 

for all 0 e 8. As (-, -) is non-degenerate, we see that E ker(v.) and thus 

(kerv.)' C ker(v.) . Again, a similar argument shows the same thing for ii.. LI 

Let U be a complementary subspace to W, that is W ED U = S. With respect 

to this split, the matrix of the linear friap 3 defined by 

is of the form 

) 	
(5.5.7) 

(At 
 

where A : U - W, At : W - U and B: U -p U. We know that this matrix 

has rank 16 since (-, -) is non-degenerate and v• has rank 16. We will now 

estimate the maximum possible rank of this matrix in terms of the dimension of 

the subspace W. 

The kernel of 3 consists of vectors (w, u) e W U such that Au = 0 and 

At w  + Bu = 0. Since dim W > 16, we have dim U < dim W. Which gives 

rank A= dimlm A < dim U as A: U —*W. 

Now, suppose the rank of A is maximal. Then if Au = 0 then u = 0. In which 

case the kernel of 3 is of the form (w, 0) E W U with w E ker At. The rank of 

At is equal to the rank of A, so At is surjective. Hence 

dim ker At = dim W - dim Im At 

=dimW —dimU. 

So the rank of 3 is at most 

rank At = 32— (dim kerAt ) 

= 32 - (dim W - dim U) 

= 2dimU, 
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since 32 = dim S = dim W + dim U. 

But we know that rank ,8 = 16. Hence, 16 < 2 dim U. That is dim  > 8 or 

equivalently dim W < 24. This means that if dim W > 24 no such v can exist 

and the map Iw  is surjective. 

As a corollary of the proof given above, it is not difficult to see that if a 

spacetime admits more than 24 supersymmetries and a four-form F which satisfies 

the Maxwell equations (1.1.1), then the Einstein equations come for free. Indeed, 

from (5.4.9) we have 

tr RD. 	(Ric(X) - p2(x) - 	- F2)g(X)) 	. 	( 5.5.8) 

For a pair of Killing spinors 0 and q we have ,u = 0 in equation (5.4.8), so equation 

(5.5.8) vanishes. Writing the Einstein expression on the righthand side of (5.5.8) 

as E(X) , we may take the symplectic inner product with q so that 

(, E(X) 	) = 0, 	 (5.5.9) 

for all 	E W and X E V. Therefore if dim  > 24 the vector E(X)' must 

vanish. 

5.6 24+ conjecture 

It is not clear that this result is sharp since we have not taken v 2  = 0 into account 

in the matrix for 3. We will show that it is by exhibiting a 24-dimensional 

subspace W C S such that Iw is not surjective. 

First we choose a basis for S adapted to the Clifford endomorphism v. Since 

V' = 0 and ker v = Im v we may write the matrix for v with respect to this basis 

as 

N=() 

where I is a 16 x 16 identity matrix. Relative to this split the symplectic inner 

product has matrix 
(A _Bt 

C 

where A and C are skew-symmetric. We can restrict this matrix Q further as v 
is skew-symmetric with respect to the symplectic form: 

N+Nt=0 == c=(. 	
) 

with B now symmetric. By choosing a complementary subspace to ker v appro- 

priately, say choose it to be ker u where u is a complementary null vector as above, 
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we can take C = 0. B must then be a non-degenerate symmetric matrix for the 

symplectic form to be non-degenerate. Relative to this basis the bilinear form 3 

has matrix 
(0 0 
k0B 

The symmetric matrix B defines an inner product on ker u. Take this inner 

product to have signature (8,8) so that, we can split ker u = K+ ED K_ as a 

direct sum of maximally isotropic (relative to B) subspaces. The 24-dimensional 

subspace W = ker v K +  is 0-isotropic, that is for every w 1 , w 2  E W we have 

/3 (w i , w 2 ) = (wi , v w 2 ) = 0. This proves that elw is not surjective and hence our 

result is sharp. 

In fact, by taking B to have signature (n, 16—n) for n = 1, 2,. . . , 8, and letting 

K be an n-dimensional isotropic subspace of ker u, we can arrive at W = ker vK 

of dimension 16 + n for which I  is not 'surjective. Hence this provides counter 

examples for 16 < dim W < 24. 

However, this only shows that the result is sharp on purely algebraic grounds. 

Geometrically the subspace W is characterised by more than its dimension. It 

is the subspace of invariants of the holonomy representation of the connection V 

on S at the point p, and it is not clear that every subspace W C S can appear. 

Indeed, as we mentioned in the introduction 1, all known backgrounds with i> 

are (locally) homogeneous. Nevertheless we believe that this is evidence in 

favor of the conjecture that v = and hence that non-homogeneous M-theory 

backgrounds with 24 supercharges should indeed exist. 
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Chapter 6 

Homogeneous supergravity 
backgrounds 

As mentioned in the introduction 1 there are many different supergravity theories 

in different dimensions from four to eleven. The data for a bosonic supergrav-

ity background is a lorentzian spacetime (M, g) together with a collection of 

differential forms F which satisfy some equations of motion such as those for 

11-dimensional supergravity (1.1.1) and (1.1.2). We have already seen that su-

persymmetries generate Killing vectors which not only leave g invariant but F as 

well. So it is natural to consider the subgroup Iso(M, g, F) of the isometries of g 

which also preserve the form F, i.e. 

h  Iso(M,g) such that h*F. = 

and call a supergravity theory (M, g, F2 ) homogeneous if there is a subgroup 

C of Iso(M, g, F2 ) which acts transitively on M. More specifically, we will focus 

on reductive homogeneous supergravity backgrounds (G/H, g, F2 ) with reductive 

split g = m e Ej and homogeneous structure S. In the remainder of this chapter 

we will drop the i index from F, but bear in mind that there may be more than 

one field strength F in a given supergravity background. 

6.1 Equations of motion 

Typically the field strengths F satisfy equations of the form 

dF=0 and dF=AFAF, 	 (6.1.1) 

where A can be taken to be either 0 or 1. Since F is invariant under the subgroup 

of isometries C, we can describe it as a constant multilinear form on m, which we 

will also denote F, which is 1)-invariant: 

F([Y,Xi] m ,X2,... ,X) + F(X i ,[Y,X2] m ,: . . , X) + F(X 1 ,X 2 ,. .. ,[Y,X i ] m ) = 0, 
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where Y E [j and X, Em for j = 1,... ,i. Then we obtain the full form of  by 

applying it to the projection to m of the Maurer-Cartan form 9: 

F=F(9m ,...,9m ) . 	 (6.1.2) 

The connection 1-form for the canonical connection is O, therefore 

It follows that a multilinear form F on m is h-invariant if and only if it is parallel 

with respect to the canonical connection. 

Now skew-symmetrization of V/F = 0 leads to, 

0 = dF - Alt(S(F)) = —Alt(S(F)) . 	 (6.1.3) 

Since the metric is invariant, the Hodge star of F must also be invariant, whence 

skew-symmetrization of the equation V * F = 0 leads to 

0 = d * F - Alt(S(*F)) = AF A F - Alt(S(*F)) . 	(6.1.4) 

If S = 0, so that the reductive split is symmetric and the canonical connection 

coincides with the Levi-Cività connection, then any invariant form is parallel and 

hence both closed and co-closed. So the equations (6.1.1) reduce to the algebraic 
condition 

)FAF=0. 	 (6.1.5) 

If S is of type 'Ij  then it is of the form 

S(X, Y) = g(X, Y) - g(X, Oy 

for some vector field . There are two cases to consider, when is null and when 

it is not null. 

When is not null, then Gadea and Oubiñia [41] showed that (M, g) must in 

fact be locally isometric to anti de-Sitter space (which is locally symmetric.) 

When is null, then Montesinos Amilibia [42] showed that (M, g) must be a 
singular plane wave. In this case 

Sx(F) = X' 0 tF - tF 0  e . 	 (6.1.6) 

Consequently Alt(S(F)) = - A F, and if we apply equation (6.1.3) we find F 
must be of the form 

F=EAw, 	 (6.1.7) 
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where w is a 3-form independent of . Taking the Hodge dual of this we have 

*F = e A ii where ii is a 6-form. This clerly satisfies the condition 

..\F A F - Alt(S(*F)) =0. 

If we write the plane-wave in Brinkmann coordinates 

g = 2dxdx + H(x, x, x)(dx) 2  + dxI2 , 	 ( 6.1.8) 

then w is of the form wjjk dxi AdxiAdx k  fori,j, k E (1,..., n-2), and F = dxAw. 

Of course, we have not checked when F is actually invariant. We will do this in 

the next section when we consider supergravity on all homogeneous plane-wave 

backgrounds, and not just those that admit a 7 1 -structure. 

The other classes of homogeneous structures don't immediately say much 

about the forms F. However, as already mentioned in section 2.3, a homogeneous 

structure of type 7 1  ED 73  is either isometric to AdS Th  and therefore symmetric, or 

a singular homogeneous plane-wave. 

On a reductive homogeneous background all of the objects in the Einstein 

equation are of course invariant, and the equation may be evaluated at a point o 

using equations (2.4.9) and (2.4.10). Again, these equations will simplify for some 

of the different types of homogeneous structures. For example, for a symmetric 

space the Ricci and scalar curvatures becpme 

Ric 3  = - 	([E, [Ei, Ek]]m  + [E3 , [E, Ek]j]m, Ek) 	(6.1.9) 

S = - 	([E, [Ek, Ej]ij]m,  E3) , 	 ( 6.1.10) 

ilk 

which may be put into an Einstein equation such as (1.1.2). 

We can use theorem 5.4.1 to solve for supersymmetries on a homogeneous 

11-dimensional supergravity background. We saw that every Killing bispinor on 

a supergravity background is generated by Killing spinors, so a solution to the 

equations (5.4.13) will determine a supersymmetry. Since a Killing bispinor is 

completely determined by its value at a point, we may restrict to the origin o of 

M and solve the equations (5.4.13) on m. We shall see an example of this in the 

next section when we consider plane-wave backgrounds. 

Some of the examples of reductive spaces that we considered at the end of 

chapter 4 are solutions to supergravity theories. The five dimensional Gödel 

universe is a supergravity background and its riemannian product with fiat space 

is an eleven-dimensional solution. The Kaigorodov space is a purely gravitational 

solution to Einstein's gravity with a cosmological constant and its riemannian 
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product with the sphere K+3  x 88-n  can be seen to be an eleven-dimensional 

supergravity solution [31]. However, there is no differential form F for which the 

Kaplan space is a supergravity solution in six-dimensions. 

6.2 Plane-wave backgrounds 

Using the algebra (3.1.7) it is simple to calculate the j-invariant multilinear forms 

F on m for a plane-wave. We find that these have the same form as derived above 

for the 71  case in equation (6.1.7), that is the wedge product between the dual of 

the parallel vector and a transversal 3-form. Using the Maurer-Cartan equations 

dO = C,~,Oi A 8k 

where C k  are the structure constants of the Lie algebra g, it is easy to check that 

F = A w is closed and co-closed. If we use the Maurer-Cartan one-form 8 to 

recover the full form of F then we find that Wjjk is constant for the regular-waves 

or a constant multiple of (x+)  for the singular waves. 

We will consider plane-waves in 11-dimensional supergravity with the Maxwell 

and Einstein type equations given by (1.1.1) and (1.1.2), although a suitable gen-

eralisation of the following discussion will hold for lower dimensional supergravity 

theories. Forthe plane-wave, the 4-form F is null so I F 2  and s are zero. The Ricci 

tensor of a homogeneous plane-wave (3.1.2) can easily be calculated as it was in 

[28], and we find that the Einstein equation has only one non-zero component: 

- tr H(x) = Ric = H 2 . 	 (6.2.1) 
12 

The left-hand side can be calculated for both the regular and singular homoge-

neous plane-waves: 

Regular: Ric++  = —tr H0  

Singular: Ric++ = _(x+)_2tr  H0  

Therefore it is clear that an appropriate choice of constant 3-form w on m will 

solve the Einstein equation for any given homogeneous plane-wave. 

It has been shown in [5] that every 11-dimensional plane-wave background has 

at least 16 linearly independent Killing spinors E characterised by the projection 

= 0. We may see this as a solution to the equations (5.4.13). We saw 

in section 5.3.1 that 9 . = . = 0 implies the Killing vector 
] 

is 

proportional to the parallel vector 0. A similar argument for B and C shows 
that 

B[, ] = dxAB dx and C[b, ] = dxACkl dxiAdxjAdxAdxL,  (6.2.2) 
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where B2  and C 3 kz are constant for the regular wave and constant multiples of 

(x+) for the singular wave. It is easy to check that these do indeed solve 

equations (5.4.13) on m for all plane-wave backgrounds and thus define a Killing 

bispinor. Counting the number of such solutions, there are 126 linearly inde-

pendent four-forms and 9 linearly independent one-forms in the nine transversal 

directions. Add in the 1 constant factor ] = k5_ and we have 136 Killing 

bispinors, which agrees with the symmetric square of 16 Killing spinors. 

Any extra Killing spinor further than these 16 must satisfy 5 0. As 

discussed in section 3. 1, any plane-wave is cohomogeneity one and is homogeneous 

if there is an extra Killing vector in the 9 direction. It was shown in [17] that any 

extra Killing spinor squares to a Killing vector with a component in this required 

direction. Indeed, the component of such a Killing vector in the 8 direction is 

ETF_F+E = 

The projection condition 0 - = 	0 ensures that this does not vanish. 

Notice that this result is different from our general result in section 5.5. Let 

and 0 each be one of these extra Killing spinors which in addition have a 

component of ]Q in the X direction. By calculating V(X + a' Y2  + 0Z) 

for X, Yi , Z E m satisfying the algebra (3.1.7) and using the algebraic identities 

(5.4.3), it is not difficult to show that if 

B[b,q5]j0(Z,Yk) = B  then fij = _Bkwjjk . 	(6.2.3) 

Now, suppose that an 11-dimensional supergravity plane-wave background has 

greater than 16 linearly independent Killing spinors. The algebraic formulae 

(4.2.8) for the plane-wave limit give the constant c in terms of the homogeneous 

structure —S(U, U, V), which can be calculated using the definition (2.3.2) and 

theorem 5.4.1: 
1 

tB+ t8_tO+F = 0. 

Therefore the plane-wave must be regular. 

It follows that F is of the form F = dx+ A w with w a constant transversal 

3-form. Obviously F A F = 0, and it is not difficult to see that V,F = 0. These 

two facts considerably simplify formula (5.4.21), which we may apply to find 

(H0 ) 2, = — R(X,Y 2 ,X,Y,) 

Aw,Y Aw) 
9 	 36 	
1 (6.2.4) 

- C[', 01 (Z' A ty) A tyj  

- Ckb,cb](Z b  A ((Yib Aw) *1 tyj  + Zb A ((Y Aw) *i ty. 
36 
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It follows, as was already noted in [83] by analyzing the holonomy representa-

tion, that a plane-wave background with greater than 16 supersymmetries and 
F = 0 must be flat. We can also see that if F is simple then a plane-wave back-

ground with greater than 16 suersymmetries must be symmetric. Indeed, we 

can suppose without loss of generality that the only non-zero component of F 
is dx A w 123 dx' A dx 2  A dx 3 . Then from equation (6.2.3) we see that the only 

non-zero components of fij  are 112, f13 and 123.  Equation (6.2.4) implies that H0  
has the form 

g 3x3 	

) , 
	 ( 6.2.5) 

\ 	. 	36 6x61 

which commutes with f and therefore the plane-wave is symmetric. 

Equation (6.2.3) makes it clear that if we can find a Killing bispinor b 0 
whose square at o has an X component and also has B" = 0 for all k, then 
fij  = 0 and the plane-wave must be symmetric. Let P be the subspace which is 

the direct sum of the one-dimensional space spanned by X and the subspace of 

2-forms of the form BkXL  A Y'. If there are "enough" of the extra Killing spinors 
so that under the map B: $0 S -* A' A 2  we can surjectively hit P, then 
we can guarantee that there is at least one Killing spinor e whose square contains 

an X component and B  = 0. We claim that "enough" is greater than 8 linearly 
independent extra Killing spinors above the 16 that every plane-wave background 

has, making a total of greater than 24. Our proof of this claim, which follows 

immediately, uses the same arguments that we exhibited in section 5.5 for the 

proof that greater than 24 supersymmetries implies local homogeneity. 

Let 8 be the 32-dimensional spinor bundle restricted to the point o. The space 
of Killing spinors at o which satisfy Z . 0 is the 16-dimensional subspace 
ker(Z.) C S. We saw in section 5.5 that ker(Z'.) = Im (Z.) and ker(X 1'.) = 

Tm (Xi'.) are complementary lagrangian subspaces which partition S. Let W 
denote the space of all Killing spinors and let V be a complement to ker(Zb.) 
so that W = ker(Z'.) V. Then V comprises of extra Killing spinors e: those 
Killing spinors that satisfy Z' e 0. We may assume that dim V > 4 so that 
dim W > 20, since there are known examples of non-symmetric plane-waves with 

20-supersymmetries (see section 1.1), but this will not actually be necessary. 

Recall that the map 	B: W 0 W - T 0M A 2  (TOM) is defined by 

and 	 (6.2.6) 

where v, w e T0M. The map 0 B is surjective onto P if and only if 

(, (kZb + A Z) . ) = (( + B)[b, ], kZ + v  A Z) = 0 	(6.2.7) 
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for all 'O,4 E W implies that kZE  +v'AZ' = 0, that is k =0 and vcx Z. The 

existence of kZLP + v b A ZLI  which satisfies (6.2.7) is equivalent to saying that as a 

Clifford endomorphism 

(kZ' + A Z r').': W -p W' . 	 (6.2.8) 

Since dim W > 16, the endomorphism kZL7  + v 5  A Z' must have kernel. Writing 

V = vY + vXX, it is not difficult to see that 

(kZb + v' A Zt1.)2 = _(vx) 2XI . Zb. . 	 (6.2.9) 

Let E E ker(kZL  + v b A Z'.) and decompose it E = Ez + Ev where Ez E ker(Z'.) 

and Ev E V. If ev 0 then applying equation (6.2.9) to E implies that v -' = 0, 

because Z' E C Im (Z'.) and ker(XL.)  is complementary to Im (Zb.).  On the 

other hand, if E = 0, then using equation (5.1.3) we find 

0__(kZ+ vbAZ). e = vtYZE+vxXZE+V X6V J E, (6.2.10) 

and therefore vX = 0 in this case too. Hence v must be transversal; that is, in 

the span of (}). 

The Clifford endomorphism (kZb  + v' A Zt).  satisfies IkZ + v b  A Z5I2 = 0, and 

kX + v 1' A X' is complementary in that it satisfies 

= 2(k2 +1v1 2 )1. 

(6.2.11) 

Therefore, we can conclude from section 5.5 that ker(kZ+ vLAZ) and ker(kX'+ 

V 5  A XLI.) are complementary 16-dimensional lagrangian subspaces. In fact, be-

cause v is spacelike, it is not difficult to see that ker(kZ' + v' A Z.) = ker(Z'.) 

and ker(kX' + v' A X 1') = ker(Xb.). 

Therefore the symmetric bilinear form 

c) = (, (kZ' + vb A ZL) . ,) 	 (6.2.12) 

has rank 16. Now we can follow the same argument given in section 5.5 to estimate 

the maximum possible rank of the matrix for I,  and conclude that the dimension 

of a complementary subspace to W must be at least 8 dimensional. Whence, if 

the dimension of W is greater than 24 then kZ + v' A Z 1' must be zero and the 

result follows. 
The only thing left to do is to exhibit a homogeneous plane-wave background 

that admits 24-supersymmetries and is not symmetric. Using a similar strategy 

to that used for the 24+ conjecture in section 5.6, we could exhibit a subspace of 

Killing spinors which under the map B would always have a BIcXAY k  component 

and therefore, if F were chosen wisely, would lead to a non-zero f. However, 

actually finding a supergravity plane-wave background which satisfies this is a 

non-trivial task which we have not been able to do. 
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6.3 Five and six dimensional supergravity 

In [87] Agricola considered naturally reductive homogeneous models of string 

theory in which the string theory 3-form occurs as the homogeneous structure. 

In 5 and in 6-dimensions, we will show below that the Maxwell type form F of 

a homogeneous supergravity theory can be constructed naturally from the skew-

symmetrization of any homogeneous structure and show what this means for the 

Einstein equation. First, we will look at 5-dimensional supergravity. 

A 5-dimensional supergravity bosonic background consists of a triple (M, g, F) 

where (M, g) is a 5-dimensional lorentzian spin manifold with metric g and F is a 

closed two form such that the Maxwell and Einstein type equations are satisfied: 

d*F=FAF, 

Ric3 = Fik Fjc + F2g 

where IF 2  = 	the * is the Hodge star and we are using the Einstein 

summation convention. 

Suppose that (M, g) is a reductive homogeneous solution to these equations 

with F = — *Alt (S) defined by the homogeneous structure S, where Alt(—) means 

the skew symmetric part. This 2-form is invariant since S and the Hodge star are 

both invariant, therefore F is parallel with respect to the canonical connection 

V. By taking the skew-symmetric part of VF = 0 we have the equation, 

d * F = Alt(S(*F)) = —Alt(Alt(S)(Alt(S))) . 	(6.3.1) 

Let a be a pseudo-orthonormal coframe for T*M  with 10,12 = — 1. For a 3-form 

T in 5-dimensions we have 

Alt(T(T)) = Alt((T1k(Timna A Ok ® atm A o) 

= Alt(T3'kTimn)U A A atm A 

= —Alt(T ijk Vmn )aj A ak  A atm A On  

= - * T A *T, 

where in the third equality we have used that i, j, k, m, n must be distinct for it 

to be non-zero. It follows that d * F = F A F. Similarly, 

dF = Alt(S(F.)) = —Alt (Alt (S)(*Alt(S))) 

and for any 3-form T we have 

Alt(T(*T)) = Alt(T1 k (Ttmu I a3  A aC ® a') 

= Alt(T; k Tmi Jc)ai A aC  A a' = 0. 
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Therefore F is closed. Now, for the Einstein equation we have 

FikFj = *Alt(S) ik * A1t(S) = 	 (6.3.2)  k 12 

where €ijklm  is the sign of the permutation ijklm and the 10, k 12 takes account of 

the sign when raising the k index. The two epsilon symbols are of opposite sign, 

combining this with the fact that ijklm are all the indices in 5-dimensions we 

find that equation (6.3.2) is equal to Alt(S)Alt(S)i mn . Therefore the Einstein 

condition becomes 

Ric 3  = Alt(S)imnAlt(S)r  + Alt(S) 2 g 3  . 	 (6.3.3) 

If we take the trace of equation (2.2.15) to obtain the Ricci tensor of the canonical 

connection, one finds the following expression: 

Ric, = Ric 	SimnSr . 	 (6.3.4) 

For a naturally reductive space we have S = Alt(S), thus the Einstein condition 

in this case may be rewritten as 

Ric, = S12g , 	 (6.3.5) 

which is the Einstein condition with vanishing field strength for the canonical 

connection. 
An example of a supergravity background of this type is the 5-dimensional 

Gödel universe considered in section 4.4.1.1. Recall that this has a one-parameter 

family of homogeneous structures Sa labelled by a generically of type ¶T2  

but of type 73  for a = —1 and of type Y2  for a = 1. The skew symmetric part 

of these homogeneous structures is the naturally reductive structure at a = —1, 

that is Alt(Sa) = S_ 1 . From the explicit form of S_ 1  given in equation (4.4.5) we 

find F to be 

F = - * Alt(S) = - * S- 1  = Qijdx l  A dx 2 , 	(6.3.6) 

which, up to a factor of two, agrees with F given in section 4.4.1.1. 

The homogeneous plane-waves also piovide examples of these backgrounds. 

For the regular waves we have 

F = - * S = - 	Eijkfij dx A dx k 

i,j,k 

and for the singular waves 

F = - * Alt(s) = 	Ejik dx A dx c 

i,j,k 
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Then the Einstein equation in both cases becomes 

tr H0  = 	tr f2 . 
	 (6.3.7) 

48 

If we pick H0  and f to satisfy this equation then the resultant plane-wave together 
with F is a supergravity background. 

The data for a 6-dimensional supergravity bosonic background is a lorentzian 

manifold (M, g) together with a closed and co-closed 3-form F such that 

Ric 3  = FiklFj 1  + IF2g23 . (6.3.8) 

Again, let us consider reductive homogeneous solutions to these equations where 

the form F is defined by the homogeneous structure: this time by F = Alt(S). 

The same calculation as in the 5-dimensional case shows that F is automatically 
co-closed, and is closed if and only if Alt(Alt(S)Alt(S)k mn ) = 0. 

The Einstein equation again reduces to (6.3.3), and in the naturally reductive 

case to (6.3.5). 

For 6-dimensional supergravity the homogeneous plane-waves again provide 

examples. Again the Einstein equation becomes (6.3.7) and we can choose H0  
and f to satisfy this. 
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Chapter 7 

Conclusions 

The work in this thesis can be broadly separated into two not unrelated threads: 

an investigation of some hereditary properties of plane-wave limits, in particular 

that of homogeneity, and a study of the relationship between supersymmetry and 

homogeneity for 11-dimensional supergravity backgrounds. 

For the first thread, we saw that the plane-wave limit preserves some nat-

ural geometric properties such as Einstein's equation, submanifold geometries, 

and the number of linearly independent Killing vectors and spinors. We showed 

that a sufficient condition for the plane-wave limit to be homogeneous is that the 

null geodesic is homogeneous and have given concrete algebraic formulae for the 

plane-wave limit of a reductive homogeneous space along a homogeneous geodesic. 

We have noted that this however is not a necessary condition, and have given a 

method for deciding when the plane-wave limit of a reductive space is homoge-

neous. This method allows one to calculate the limit when it is homogeneous. 

We have applied these methods to several interesting homogeneous examples. 

For the second thread, we showed how supersymmetries generate the Killing 

superalgebra of an 11-dimensional supergravity background. We have formulated 

the Killing bispinor equation on the bundle A 1  A A5  of differential forms, 

and have shown that the integrability condition implies that these must in fact 

correspond to symmetric products of Killing spinors. We have proven that if a 

background preserves strictly greater than 24 sup ersymmetries then the ideal of 

the Killing superalgebra generated by these supersymmetries acts locally transi-

tively on the background. In particular, these 24+ backgrounds are locally homo-

geneous. We have also provided evidence towards the conjecture that this bound 

is sharp, and there exists a non-homogeneous background which preserves 24 su-

persymmetries; although to prove this conjecture we would need to exhibit such 

a supergravity background. Finally, we also considered plane-wave backgrounds 

and showed that a plane-wave which preserves greater than 16 supersymmetries 

is necessarily naturally reductive. By a similar method to that used for the local 
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homogeneity of 24+ backgrounds, we showed that plane-waves which preserve 

greater than 24 supersymmetries are symmetric. 

These results do raise some interesting questions and potential for further 

study. First, although the task of finding a non-homogeneous supergravity back-

ground with 24 supersymmetries is a difficult one, the task of finding a non-

symmetric plane-wave background with 24 supersymmetries is more tractable. 

To specify a regular homogeneods wave background we need to specify two ma-

trices f and H0  and a constant 3-form w in the 9 transversal directions, giving 

165 degrees of freedom, modulo the relations given by the Einstein equation, 

[f, H0 ] 0 and that w is not simple. Of course, this is still a large number to 

systematically check, but it is at least approachable. 

In order to make further progress algebraically with the 24+ backgrounds we 

need them to be reductive. However, it is not clear whether they are necessarily 

reductive; that is whether the Killing sup eralgebra generated by the sup ersym-

metries necessarily defines a reductive transitive subalgebra. One attempt to 

understand under what circumstances they are reductive is to lift the reductiv-

ity condition to the symmetric square of the spinor bundle and hope to find a 

natural solution there. Indeed, one could use the formulae (5.4.13) to formulate 

the Cartan-Killing form K in terms of the Killing spinors, and perhaps derive a 

condition for reductivity based on non-degeneracy of the restriction of K to the 

isotropy subalgebra. However the lack of a natural Lie bracket on S 0 S makes 

this difficult. Given that in four dimensions all lorentzian homogeneous spaces 

admit a reductive transitive subalgebra, it may not be unreasonable to assume 

that the backgrounds are reductive. 

Preservation of supersymmetries under the plane-wave limit implies that the 

limit of an 11-dimensional supergravity background which preserves greater than 

16 supersymmetries must be a regular homogeneous wave, and thus all null homo-

geneous geodesics of such a background must be absolutely homogeneous. How-

ever, examples such as the Kaigorodov space show that not all the geodesics need 

be homogeneous. Similarly, a background which preserves greater than 24 super-

symmetries must have a symmetric plane-wave limit with f = 0, and thus if the 

background is reductive then S(U, Y, 1') = 0 for all null geodetic U. Unfortu-

nately we can not say any more, but this last condition must be quite strong. For 

example, on a naturally reductive space this implies that the only non-zero com-

ponent of the homogeneous structure is A further study of the implications 

for the 24+ solutions could be interesting. 

Finally, the reduction of the supergravity equations of motion to algebraic 

equations could in principle lead to a classification of homogeneous solutions. This 
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problem is certainly tractable for a restricted class of homogeneous spaces such 

as symmetric spaces, where all lorentzian symmetric spaces have been classified 

[23]. However one problem, which Komrakov's classification illustrates, is the 

scale; even in four dimensions there are 211 families of solutions to the Einstein-

Maxwell equations solved by Komrakov. 
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Appendix A 

Geometric Killing spinors 

It is interesting to repeat some of the same analysis of section 5.4 for geometric 

Killing spinors: spinors 'b E S which satisfy 

VxbAXb, 	 (A.O.1) 

for all X E TM, where ) E R is called the Killing constant. We can always 

take the Killing constant to be either ± or 0. Geometric Killing spinors' like 

supergravity Killing spinors have the fundamental property that if 1' and 0 are 

both Killing then ] is a Killing vector. We shall see that the some of the 

issues simplify significantly for the geometric Killing spinors, so they are a good 

toy model for the supergravity case. 

Naturally, we call a bispinor V500 Killing if it satisfies Vx(Gq5) = 

The argument given before equation (5.4.7) shows that 1' 0 0 is Killing if and 

only if 

= (AX + t(X)) . ,L' and Vxq = X —(X)) . c5, 	(A.0.2) 

and if the 1-form it is closed then we may change gauge to make both 'çb and q 

Killing. However, the integrability condition does not necessarily imply that p is 

closed unless we impose extra conditions such as the Einstein equation, and at 

the end of this section we shall exhibit a. space which admits a Killing bispinor 

which does not originate from Killing spinors. 

Again we consider the isomorphism (5.4.2) between the symmetric square of 

the spinor bundle 8 0 8 in 11-dimensions and the bundle A' A A 5 . Similar 

calculations to those for the supergravity case lead to the following result: 

Theorem A.0.1. A triple (, B, C) is a Killing bispinor if and only if 

A, C) = 2)(A(X), X' A e , tx(*C)) . 	(A.0.3) 

the rest of this chapter we shall refer to geometric Killing spinors simply as Killing 
spinors, making the distinction with supergravity Killing spinors when necessary. 
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If we apply Killings identity (2.1.2) to this equation we find 

R(, X)(Y, Z) = X' A F,'(Y, Z) = g(X, Y)g(, Z) - g(X, Z)g(, Y) 

from which it follows that the plane spanned by and X has sectional curvature 

equal to 1. Recall the result of section 5.5, that if the dimension of the bundle 

of Killing spinors is greater than 24 then the space is locally homogeneous. The 

proof of this result is purely linear algebra and the result still holds if we replace 

the supergravity with geometric Killing spinors. Thus an 11-dimensional spin 

manifold whose bundle of Killing spinors is greater than 24 dimensional must 

have constant sectional curvature, which can also be easily seen as a consequence 

of the classification of lorentzian .spaces admitting real Killing spinors in [88]. 

If (M, g) were riemannian, equation (A.0.3) would define a sasakian structure 

on M with sasakian vector field 6 . The existence of a sasakian structure is equiv-

alent to the existence of a Kähler form on the metric cone C(M) (see for example 

[89]), so that the holonomy of the cone over an n-dimensional M is contained in 

U(n + 1). The cone C(M) is Kähler if and only if there exists a Spin'-structure 

on C(M) and a parallel spinorC  [90], so here the existence of a Killing bispinor is 

equivalent to the existence of a parallel spinorc.  Of course, we are interested in 

the case where (M, g) is lorentzian and the notion of Kähler does not exist there. 

Nevertheless, we shall use Spin'-structures to construct lorentzian spaces which 

admit a Killing bispinor which does not originate from Killing spinors. 

The Spin'-bundle Sc  is locally the tensor product between the spinor bundle 

and a square root of the canonical line bundle 

S = S ® K. 	 (A.0.4) 

If M is spin, then a connection w on the U(1)-bundle associated to K together 

with the Levi-Cività connection induces a covariant derivative V.?" on the spinorc 

bundle SC.  If w is fiat then V and V' coincide. 

We say that a spinorc  is a real (geometric) Killing spinorc  if it satisfies the 

equation 

for all X E TM with .A E IR. In [90], it was proven that a simply connected 

riemannian Spinc  manifold M carries a parallel spinorc  if and only if it is isometric 

to the product M1  x M2  between a simply connected Kähler manifold and a simply 

connected spin manifold carrying a parallel spinor. It was also proved that a 

simply connected riemannian Spin'-manifold admitting a real Killing spinorc  then 

either the U(1) connection w is fiat and M admits a Killing spinor on the Spin-

bundle, or M is Sasakian; that is, M admits a Killing vector of unit length such 
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that the tensor A = —V satisfies 

(VxA)Y = g(X, Y) - 6(Y)X. 

The spinore  bundle  SC  inherits an inner product (-, -) from the usual spinor 

inner product on S and hermitian inner product 

(a,) = JM 
(assuming some form of local compactness for M.) The Spine  connection preserves 

this metric. This inner product gives each 11-dimensional Spin'-manifold a pair-

ing which is an extension of the isomorphism (5.4.2) to a map 'B : S' 0 SC _* Ec 

where EC  is the complexification of E, given by 

(A.O.5) 

where the forms , BC  and Cc are defined using the Spin' inner product in 

equation (5.4.2). 

Suppose that M is an 11-dimensional Spin'-manifold that also admits a Spin-

structure. Suppose also that it admits two real Killing spinorcs  0 and 0 both with 

Killing constant A. We may use the isothorphism (A.0.5) to square the spinores 

to obtain a complex bispinor (, B, C). In particular, 

= (,B,C) 

As the spinorc inner product is preserved by the S pine connection we have 

Vx(b,Y . ) = (V,Y çb) + ('b,Y. Vb) 

=2A(O,XAY.), 

where we have made use of (5.1.3) and (5.1.8). Therefore Vx 	2AB(X). 

Similarly VxB = 2AXb A and VxC = 2\tx(*C). Taking the real part of 

the complex forms, we find that (, B, C) defines (up to a rescaling) a Killing 

bispinor. 
This bispinor does not necessarily originate from Killing spinors since M 

may not admit Killing spinors. For example, consider the product space M = 

N 2 x [1,102k where (N, g,y) is a Kähler manifold of dimension 2k that is not 

Ricci flat (and hence does not admit a parallel spinor) and E' 10-2k  is the 11 - 2k-

dimensional Minkowski space. Minkowski space [1,102/c  has 210-2k linearly inde-

pendent parallel spinors q5, thus we can construct 2102c Spin'-parallel spinors on 

the Spin'-bundle of N x T: 

P=X0cb, 
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where x is the spinorc  on N. The associated real bispinor e('B((D)) is parallel 
but M does not admit parallel spinors. If one imposes the Einstein condition on 
M, then N must be Ricci flat and it follows that all parallel spinorcs  are in fact 
parallel spinors. 
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Appendix B 

Komrakov's lorentzian List 

In this appendix we give the list of all 4-dimensional lorentzian homogeneous 

metrics calculated from Komrakov 's classification [48], as promised in section 

2.6. For each metric we have used the GRTensor package for Maple to calculate 

whether the metric is Einstein, Ricci flat, flat or locally symmetric. We have made 

no attempt to take out isometric metrics; for example, the many flat metrics which 

appear. 

K g Properties 

det B = 1 
1 . 1 1 . 1 

2edudv + b22(vedu + &"dx) 2  .1. 
+2b24(vedu + edx)dy + b44dy 2  Einstein Symmetric 

b13 = 1 

1.1 1 .2 2eYdudv + b22e2'd2 
Einstein  p = 

p = 0, 	Symmetric 
+2b24edxdy + bdy2 

b13  = 1 

b22 = 1 
1.11.3 

2du(dv - v 2 du/2) + b22(vdu + dx) 2  .1. 
+2b24(vdu + dx)dy + b44dy2 Symmetric 

b13 = 1 
1.1 1 .4 

2dudv + b22 (vdu + dx) 2  
b22 = 0 

b13  = 1 
+2b24(vdu + dx)dy + b44dy 2  Symmetric 

1.1'.5 
= 0 2du(dv - v 2du/2) + b2e2'dx2 

Symmetric 
det B = —b 22  Einstein 

+2b24edxdy + b44dy 2 
b13  = 1 
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K g Properties 
1.1 1 .6 
A = 0 

2dudv + b22e2dx2 
b22  = 0 

b13  = 1 
+2b24 eYdxdy + bdy 2  

Flat 

1.1 1 .7 

A = 0 
2du(dv - v 2du/2) + b22 dx 2  Symmetric 

b13  = 1 
+2b24dxdy + b44dy2  

1.1 1 .10 
A = 0 

Flat Flat 

b13  = 1 

1.1 2 .1 e2 du2  + b22 e4Y(dx - vdu) 2  
A = 0 +e2 dv 2  + b44dy2 

det B = 4 Symmetric 

b11  = 1 +2bi3e 2 (dx - vdu)dy  

1.12 .2 
e2 du2  + b22e2''dx2 p = 1, b2  = 1 Einstein 

A = 0 
+e2 dv 2  + 2bi3edxdy + b44dy2 

p = 0, 1 Symmetric 
bil = 1  

1.12 .3 b22 (dx + sin(v)du)2 - b213 - b44 

 
Einstein 

b2  2 = = 1 A = 0 + cos2 (v)du 2  + dv 2  + b44dy2 
b11  = 1 +2b13 (dx + sin(v)du)dy 

b22  = 1 Symmetric 

1.12 .4 b22 (dx - sinh(v)du)2 
b 3  = b 	

} 
Einstein  

A = 0 + cosh 2 (v)du 2  + dv2 
b22 	—1 

bil = 1 +2b13 (dx - sinh(v)du)dy + bdy2 
b22  = —1 Symmetric 

1.12 .5 

A = 0 
du2  + b22 (dx + vdu) 2  b22  = 0 Symmetric 

bil = 1 
+dv2  + 2b13 (dx + vdu)dy + b44 dy 2  

1.12 .6 

A 	0 
Cos 2 (v)du 2  + b22e2dx2 

det B = —b 22  Einstein 

+dv2  + 2bi3edxdy + bdy2 
Symmetric 

bil = 1 

1.12 .7 
A = 0 

cosh 2 (v)du 2 + b22e2dx2 
det B = b22  Einstein 

+dv2  + 2b13edxdy + b44dy2 
Symmetric 

bil= 1 

1.12 .8 
du  + b22e2dx2 

b22  = 0 Flat 
A = 0 

b 11  = 1 +dv2  + 2bi3edxdy + bdy2 
Symmetric 
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K g Properties 

1 . 1 2 . 9 
Cos 2 (v)du 2  + b22dx 2  Symmetric 

A=0 
+dv2  + 2b13dxdy + bdy 2  

b11  = 1 

1. 12.  10 
= cosh 2 (v)du 2  + b22dx 2  Symmetric 

+dv2  + 2b13dxdy + bdy 2  
b11  = 1 

1.13 Flat Flat 

1.14 Flat Flat 

1 . 41 . 1 dx2 - 2exdudv + b44dy 2  
= 1 +b33 e_ 2Y(v 2 exdu/2 + vdx + dy) 2  - 

b44 > 0 +2b34 e_h1(v 2 exdu/2 + vdx + dv)dy  

1 •41  .2 e2'dx2 - 2e2Y(P_l) dudv 
Einstein 

b13 = 1 +b33e22dv2 
P= 

b44 > 0 +2b34e 2 dvdy + bdy 2  
= b44 

1 . 4 1 . 3 
- 1 

cosh2(v)e2hidx2 - 2e2 dudv Einstein 

b44  > 0 
+b33dv2  + 2b34dvdy + b44dy2  Symmetric 

b33 = —b44 

1.4'.4 
= 1 

cos2(v)e2hldx2 - 2e2 dudv  
,j. 

Einstein 

b44  > 0 
+b33dv2  ± 2b34dvdy + b44dy 2   Symmetric 

1 41  5 
2edudv + 2e2xv2du2 

+b33(_exv2du/2+vdx+dv)2 - 
1 +2b34 (_exv 2du/2 + vdx + dv)dy 

b44 > 0 
+dx2  + b44  dy2  

1.4'.6 
e2h/dx2 - 2e2 (du + ydv)dv - 

b13 = 1 
+b33e2 'dv2  + 2b34eYdvdy + b44dy 2  

b44  > 0 

1 . 41 . 7 
e2'dx2 - 2e 2y  (du - ydv)dv - 

b13 = 1 
+b33e2!1 dv 2  + 2b34edvdy + b44dy 2  

b44  > 0 

1.4'.8 
-3b33 = 

e2dx2 - 2e2hldudv 
b13 = 1 

+b33e2h1 dv 2  ± 2beVdvdy + b44dy 2  Einstein 
b44 > 0 
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K g Properties 

1.4'.9 
—2(du - x2rdv/2 - udv)dv 

T + b/2 
+ + P = 0 

b13  = 1 +(dx - xdv) 2  + b33dv2 
.1. 

b 	> 0 
+2b(edy - xdv)dv 
+b(dy - xdv) 2  

Ricci Flat 

1.4'. 10 —2(du—x 2 rdv/2 —udv)dv 
r+p+p 2 = 0 

= 1 +(dx - xdv) 2  + 2b34edvdy 
b44  > 0 +b33dv2  + be2dy2 

Ricci Flat 

r + b44 /2 
1.4 1 .11 —2(du - x 2rdv/2 - udv - ve'dy)dv +p + p2  = 0 
b13  = 1 +(dx - xdv) 2  + 2b34 (et'dy - xdv)dv .1. 
b44  > 0 +b33dv2  + b44 (e1-'dy - xdv) 2  Ricci Flat 

1.41 . i2 —2(du - x 2rdv/2 - udv - v&dy)dv 
T +p+p2  = 0 

= 1 +(dx - xdv) 2  + 2b34evdvdy  
Ricci Flat b44  > 0 +b33dv 2  + b44 e2'dy2  
r + b44 /2 

1.4 1 .13 —2(du - x 2rdv/2)dv +p2  = 0 
b13  = 1 +dx2  + 264(evdy - xdv)dv .j. 
b44  > 0 +b33dv2  + b44 (et'dy - xdv) 2  Ricci Flat 

1.41.14 
—2dudv - vevdy )dv  r 	—1 
+ cosh 2 (/v)dx 2  

b44  > 0 
+2b34 (dy + ydv)dv Ricci Flat 

+b33 dv 2_+_b44 (dy_+_ydv) 2  

1.41.15 2dv(du+(lcosh(v))dx+ydv) 
b44  = -2, 
not (1,3) 

= 1 2(v)dx2+b33dv2 + cosh 

b44  >0 
+2b34 (dy + sinh(v)dx)dv 

+b(dy_+_sinh(v)dx)2 
Ricci Flat 

1 . 4 1 .  16 
—2dudv + cos2 (v)dx 2  + b33 dv 2  b44  = 2 

b13 = 1 
-2dv((-1 + cos (v))dx + ydv) 

b44  > 0 
+2b34 (dy + sin(v)dx)dv Ricci Flat 

b44 	+ sin (v)dx) 2  

1.4 1 .17 —2(du—v2dx/2+ydv)dv b44 	0  

b13  = 1 +dx2  + 2b34 (dy + vdx)dv 
b44  > 0 +b33 dv 2  + b(dy + vdx)2 

Ricci Flat 

b44  = —2 
1.4 1 .18 —2dudv + cosh 2 (v)dx 2  not (1,3) 
b13  = 1 +2b34 (dy + sinh(v)dx)dv .j. 
b44  > 0 +b33dv 2  + b 4 (dy + sinh(v)dx) 2  Ricci Flat 
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