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Abstract

We give a systematic treatment of distributivity for a monad and a comonad as

arises in incorporating category theoretic accounts of operational and denotational

semantics, and in giving an intensional denotational semantics. We do this ax-

iomatically, in terms of a monad and a comonad in a 2-category, giving accounts

of the Eilenberg-Moore and Kleisli constructions. We analyse the eight possible

relationships, deducing that two pairs are isomorphic, but that the other pairs are

all distinct. We develop those 2-categorical de�nitions necessary to support this

analysis.

1 Introduction

In recent years, there has been an ongoing attempt to incorporate operational

semantics into a category theoretic treatment of denotational semantics. The

denotational semantics is given by starting with a signature � for a language

without variable binding, and considering the category �-Alg of �-algebras [4].

The programs of the language form the initial �-algebra. For operational

semantics, one starts with a behaviour functor B and considers the category

B-Coalg of B-coalgebras [5,7]. By combining these two, one can consider the

combination of denotational and operational semantics [10,12]. Under size
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conditions, the functor � gives rise to a free monad T on it, the functor B gives

rise to a cofree comonad D on it, and the fundamental structure one needs

to consider is a distributive law of T over D, i.e., a natural transformation

� : TD ) DT subject to four axioms; and one builds the category �-Bialg

from it, a �-bialgebra being an object X of the base category together with a

T -structure and a D-structure on X, subject to one evident coherence axiom.

This phenomenon was the subject of Turi and Plotkin's [12], with leading

example given by an idealised parallel language, with operational semantics

given by labelled transition systems. In fact the work of this paper sprang from

discussions between one of the authors and Plotkin, whom we acknowledge

gratefully.

As a separate piece of work, Brookes and Geva [2] have also proposed

the study of a monad and a comonad in combination. For them, the Kleisli

category for the comonad gives an intensional semantics, with maps to be

regarded as algorithms. They add a monad in the spirit of Moggi to model

what has been called a notion of computation [9]. They then propose to study

the category for which an arrow is a map of the form DX �! TY in the

base category, where T is the monad and D is the comonad. In order for this

to form a category, one needs a distributive law of D over T , i.e., a natural

transformation � : DT ) TD subject to four coherence axioms. Observe

that this distributive law allowing one to make a two-sided version of a Kleisli

construction is in the opposite direction to that required to build a category

of bialgebras.

Motivated by these two examples, in particular the former, we seek an ac-

count of distributive laws between a monad and a comonad, with a treatment

of Eilenberg-Moore and Kleisli constructions. That is the topic of this paper.

The answer is not trivial. It is not just a matter of considering the situation

for a distributive law between two monads and taking a dual of one of them,

as there are fundamental di�erences. For instance, to give a pair of monads

T and T

0

and a distributive law of T over T

0

is equivalent to giving a monad

structure on T

0

T [1] with appropriate coherence, but nothing like that is the

case for a distributive law of a monad T over a comonad D. To give a dis-

tributive laws of T over T

0

is also equivalent to giving a lifting of the monad

T to T

0

-Alg, but not a lifting of T

0

to T -Alg. However, to give a distributive

law of a monad T over a comonad D is equivalent to lifting T to D-Coalg and

also to lifting D to T -Alg. Dual remarks, with the Kleisli construction replac-

ing the Eilenberg-Moore construction, apply to distributive laws of comonads

over monads. So we need an analysis speci�cally of distributive laws between

a monad and a comonad, and that does not amount to a mild variant of the

situation for two monads.

In principle, when one includes an analysis of maps between distribu-

tive laws, one has eight choices here: given (T;D; �) on a category C and

(T

0

; D

0

; �

0

) on C

0

and a functor J : C �! C

0

, one could consider natural

transformations t : T

0

J ) JT and d : JD ) D

0

J , or the other three alterna-
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tives given by dualisation; and one could dualise by reversing the directions of

� and �

0

. But not all of these possibilities have equal status. Two of them each

arise in two di�erent ways, reecting the fact that a category (T;D)-Bialg of

bialgebras for a monad T and a comonad D may be seen as both the category

of algebras for a monad on D-Coalg and as a category of coalgebras for a

comonad on T -Alg. And two of the eight possibilities do not correspond to

applying an Eilenberg-Moore or Kleisli construction to an Eilenberg-Moore or

Kleisli construction at all. We investigate the possibilities in Section 4.

We make our investigations in terms of an arbitrary 2-category K. The

reason is that although the study of operational and denotational semantics

in [12] was done in terms of ordinary categories, i.e., modulo size, in the 2-

category Cat, it was done without a direct analysis of recursion, for which

one would pass to the 2-category of O-categories, i.e., categories for which

the homsets are equipped with !-cpo structure, with maps respecting such

structure. More generally, that work should and probably soon will be in-

corporated into axiomatic domain theory, requiring study of the 2-category

V -Cat for a symmetric monoidal closed V subject to some domain-theoretic

conditions [3]. Moreover, our de�nitions and analysis naturally live at the level

of 2-categories, so that level of generality makes the choices clearest and the

proofs simplest. Mathematically, this puts our analysis exactly at the level of

generality of the study of monads by Street in [11], but see also Johnstone's [6]

for an analysis of adjoint lifting that extends to this setting.

Formally, we recall the de�nition of 2-category in Section 2, de�ne the

notion of a monad in a 2-category, and characterise the Eilenberg-Moore con-

struction in those terms. We also explain a dual, yielding the Kleisli construc-

tion. This is all essentially in Street's paper [11]. In Section 3, we give another

dual, yielding accounts of the Eilenberg-Moore and Kleisli constructions for

comonads. Then, in Section 4 lies the heart of the paper, in which we consider

the eight possible combinations of monads and comonads, characterise two of

them, explain how they arise in two di�erent ways, and show that there are

precisely six distinct possible combinations. We also give universal properties

for a category of bialgebras and a Kleisli category, and explain why, from the

former universal property, it follows that there is precisely one natural way to

induce a functor between categories of bialgebras.

2 Monads in 2-categories

In this section, we de�ne the notion of 2-category and supplementary notions.

We then de�ne the notion of a monad in a 2-category, and characterise the

Eilenberg-Moore and Kleisli constructions in terms of the existence of adjoints

to diagonal 2-functors [11].

De�nition 2.1 A 2-category K consists of

�

a set of 0-cells or objects
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�

for each pair of 0-cells X and Y , a category K(X;Y ) called the homcategory

from X to Y

�

for each triple of 0-cells X, Y and Z, a composition functor

� : K(Y;Z)�K(X;Y ) �! K(X;Z)

�

for each 0-cell X, an object id

X

of K(X;X), or equivalently, a functor

id

X

: 1 �! K(X;X), called the identity on X

such that the following diagrams of functors commute

K(Z;W )�K(Y;Z)�K(X;Y )

� �K(X;Y )

-

K(Y;W )�K(X;Y )

K(Z;W )�K(X;Z)

K(Z;W )� �

?

�

-

K(X;W )

�

?

K(X;Y )�K(X;X)

�

K(X;Y )� id

X

K(X;Y )

id

Y

�K(X; Y )

-

K(Y; Y )�K(X;Y )

@

@

@

@

@

�

R 	�

�

�

�

�

�

K(X;Y )

=

?

In the de�nition of a 2-category, the objects of each K(X;Y ) are often

called 1-cells and the arrows of each K(X; Y ) are often called 2-cells. We

typically abbreviate the composition functors by juxtaposition and use � to

represent composition within a homcategory.

Obviously, the de�nition of 2-category is reminiscent of the de�nition of

category: if one takes the de�nition of category and replaces homsets by hom-

categories, composition functions by composition functors, and the axioms by

essentially the same axioms but asserting that pairs of functors are equal, then

one has exactly the de�nition of a 2-category.

Example 2.2 The leading example of a 2-category is Cat, in which the 0-

cells are small categories and Cat(C;D) is de�ned to be the functor category

[C;D]. More generally, for any symmetric monoidal closed category V , one

has a 2-category V -Cat, whose objects are small V -categories, and with hom-

categories given by V -functors and V -natural transformations. In particular,

there is a 2-category LocOrd of small locally ordered categories, locally ordered

functors, and natural transformations. As another instance of V -Cat, there is

a 2-category of small O-categories, O-functors, and natural transformations,

where O is the cartesian closed category of !-cpo's.

Each 2-category K has an underlying ordinary category K

0

given by the

0-cells and 1-cells of K. A 2-functor between 2-categoriesK and L is a functor
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from K

0

to L

0

that respects the 2-cell structure. A 2-natural transformation

between 2-functors is an ordinary natural transformation that respects the

2-cell structure. Given a 2-functor U : K �! L, these de�nitions give rise

to the notion of a left 2-adjoint, which is a left adjoint that respects the 2-

cells. More details and equivalent versions of these de�nitions appear and are

analysed in [8].

Now we have the de�nition of 2-category, we can de�ne the notion of a

monad in any 2-category K, generalising the de�nition of monad on a small

category, which amounts to the case of K = Cat.

De�nition 2.3 A monad in a 2-category K consists of a 0-cell C, a 1-cell

T : C �! C, and 2-cells � : T

2

) T and � : Id) T subject to commutativity

of the following diagrams in the homcategory K(C;C)

T

3

T�

-

T

2

T

2

�

T�

T

�T

-

T

2

@

@

@

@

@

�

R 	�

�

�

�

�

�

T

2

�T

?

�

-

T

�

?

T

=

?

For example, if one lets K = Cat, then a monad in K as we have just

de�ned it amounts exactly to a small category with a monad on it. More

generally, if K = V -Cat, then a monad in K amounts exactly to a small V -

category together with a V -monad on it. So, for instance, a monad in O-Cat

amounts to a small O-category together with a monad on it, such that the

monad respects the !-cpo structure of the homs.

For any 2-category K, one can construct a 2-category of monads in K.

Proposition 2.4 For any 2-categoryK, the following data forms a 2-category

Mnd(K):

�

0-cells are monads in K.

�

A 1-cell in Mnd(K) from (C; T; �; �) to (C

0

; T

0

; �

0

; �

0

) is a 1-cell J : C �!

C

0

in K, together with a 2-cell j : T

0

J ) JT in K, subject to commutativity

in K(C;C

0

) of

T

02

J

T

0

j

-

T

0

JT

jT

-

JT

2

J

�

0

J

-

T

0

J

@

@

@

@

@

�

0

J

R

and

	�

�

�

�

�

j

T

0

J

j

-

JT

J�

?

JT

J�

?
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�

A 2-cell in Mnd(K) from (J; j) to (H;h) is a 2-cell in K from J to H

subject to the evident axiom expressing coherence with respect to j and h.

There is a forgetful 2-functor U : Mnd(K) �! K sending a monad

(C; T; �; �) in K to the underlying object C. This 2-functor has a right 2-

adjoint given by the 2-functor Inc : K �! Mnd(K) sending an object X of

K to (X; id; id; id), i.e., to X together with the identity monad on it. The

de�nition of Mnd(K) and analysis of it are the central topics of study of [11],

a summary of which appears in [8].

De�nition 2.5 A 2-category K admits Eilenberg-Moore constructions for

monads if the 2-functor Inc : K �!Mnd(K) has a right 2-adjoint.

Example 2.6 Cat admits Eilenberg-Moore constructions, and the right 2-

adjoint gives exactly the usual Eilenberg-Moore construction for any monad

on any small category. Note here what the universal property says: it says

that for any small category D and any small category C with a monad T on

it, there is a natural isomorphism of categories between [D;T -Alg] and the

category for which an object is a functor J : D �! C together with a natu-

ral transformation TJ ) J subject to two coherence conditions generalising

those in the de�nition of T -algebra. This is a stronger condition than the as-

sertion that every adjunction gives rise to a unique functor into the category

of algebras of the induced monad.

Example 2.7 If V has equalisers, then V -Cat admits the Eilenberg-Moore

construction for monads, and again, the construction is exactly as one expects.

This is a fundamental observation underlying [11].

Given an arbitrary 2-category K, we have constructed the 2-category

Mnd(K) of monads in K. Modulo size, this construction can itself be made

2-functorial, yielding a 2-functor Mnd : 2-Cat �! 2-Cat, taking a small 2-

category K to Mnd(K), with a 2-functor G : K �! L sent to a 2-functor

Mnd(G) : Mnd(K) �!Mnd(L) and similarly for a 2-natural transformation.

It follows that, given a 2-adjunction F a U : K �! L, one obtains another

2-adjunction Mnd(F ) a Mnd(U) : Mnd(K) �! Mnd(L). We shall use this

fact later.

Finally in this section, we mention a dual construction. For any 2-category

K, one may consider the opposite 2-category K

op

, which has the same 0-cells

as K butK

op

(X;Y ) = K(Y;X), with composition induced by that of K. This

allows us to make a di�erent construction of a 2-category of monads in K, as

we could say

De�nition 2.8 For a 2-category K, de�ne Mnd

�

(K) = Mnd(K

op

)

op

.

Analysing the de�nition, a 0-cell ofMnd

�

(K) is a monad inK; a 1-cell from

(C; T; �; �) to (C

0

; T

0

; �

0

; �

0

) is a 1-cell J : C �! C

0

in K, together with a 2-cell

j : JT ) T

0

J in K, subject to two coherence axioms, expressing coherence

between � and �

0

and between � and �

0

; and a 2-cell from (J; j) to (H;h) is
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a 2-cell in K from J to H subject to one axiom expressing coherence with

respect to j and h. The central di�erence between Mnd(K) and Mnd

�

(K) is

in the 1-cells, because j is in the opposite direction.

By putting L = K

op

, we can deduce results about Mnd

�

(K) from results

about Mnd(K). In particular, we have

Proposition 2.9 (i) The construction Mnd

�

(K) yields a 2-functor Mnd

�

:

2-Cat �! 2-Cat.

(ii) The forgetful 2-functor U :Mnd

�

(K) �! K has a left 2-adjoint given by

Inc : K �!Mnd

�

(K), sending an object X of K to the identity monad

on X.

Proposition 2.10 If K = Cat, then Inc : Cat �! Mnd

�

(Cat) has a left

2-adjoint given by Kleisli construction for a monad on small category.

Proof. Let (C; T; �; �) be a monad in Cat. We have a functor J : C �!

Kl(T ) as usual, and it is routine to verify that J is part of a monad morphism

(J; j) : (C; T; �; �) �! Inc(Kl(T )), where j : JT ) J has a-component given

by id : Ta �! Ta. We must show that (J; j) is the unit for a left 2-adjoint to

Inc : Cat �!Mnd

�

(Cat).

Given a category C

0

and given a map (H; h) : (C; T; �; �) �! Inc(C

0

) in

Mnd

�

(Cat), de�ne

�

H : Kl(T ) �! C

0

on objects by putting

�

Ha = Ha, and

on arrows by sending f : a �! Tb to the composite h

b

Hf . The coherence

axioms force

�

H to be a functor such that

�

HJ = H and

�

Hj = h.

For unicity, the unicity of objects is immediate, and for arrows, observe

that every arrow f : a �! b in Kl(T ) is a composite in Kl(T ) of the image

of the arrow

^

f : a �! Tb in C with the b-component of j. This fact together

with the coherence conditions yields the unicity.

It it routine to verify the 2-dimensional property that every coherent nat-

ural transformation � : (H; h) ) (K; k) extends uniquely to a natural trans-

formation �̂ :

^

H )

^

K: the components are already given, and the extended

naturality holds by the coherence. 2

Spelling out the action of the 2-functor Kl :Mnd

�

(Cat)! Cat on 1-cells

and 2-cells, a 1-cell (J; j) : (C; T; �; �) ! (C

0

; T

0

; �

0

; �

0

) is sent to the functor

Kl(J; j) : Kl(T )! Kl(T

0

), which sends an object a of Kl(T ) to the object Ja

of Kl(T

0

), and an arrow f : a! b of Kl(T ), i.e., an arrow

^

f : a! Tb of C, to

the arrow of Kl(T

0

) given by j

b

� J

^

f : Ja! T

0

Jb. A 2-cell � : (J; j)) (H;h)

is sent to the natural transformation Kl(�) : Kl(J; j) ) Kl(H;h) whose a

component is given by �

0

Ha

� �

a

: Ja! T

0

Ha.

The above construction and proof extend readily to the case ofK = V -Cat.

In light of these result, we say

De�nition 2.11 A 2-category K admits Kleisli constructions for monads if

the 2-functor Inc : K �!Mnd

�

(K) has a left 2-adjoint.
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3 Comonads in 2-categories

We now turn from monads to comonads. The results we seek about comonads

follow from those about monads by consideration of another duality applied to

an arbitrary 2-category. Given a 2-category K, one may consider two distinct

duals: K

op

as in the previous section and K

co

. The 2-category K

co

is de�ned

to have the same 0-cells as K but with K

co

(X;Y ) de�ned to be K(X;Y )

op

.

In K

op

, the 1-cells are reversed, but the 2-cells are not, whereas in K

co

,

the 2-cells are reversed but the 1-cells are not. One can of course reverse both

1-cells and 2-cells, yielding K

coop

, or isomorphically, K

opco

.

De�nition 3.1 A comonad in K is de�ned to be a monad in K

co

, i.e., a 0-cell

C, a 1-cell D : C �! C, and 2-cells � : D ) D

2

and � : D ) Id, subject to

the duals of the three coherence conditions in the de�nition of monad.

Taking K = Cat, a comonad in K as we have just de�ned it is exactly a

small category together with a comonad on it.

One requires a little care in de�ning Cmd(K), the 2-category of comonads

inK. If one tries to de�ne Cmd(K) to beMnd(K

co

), then there is no forgetful

2-functor from Cmd(K) to K. So we do something a little more subtle.

De�nition 3.2 For a 2-category K, de�ne Cmd(K) to be Mnd(K

co

)

co

.

Explicitly, a 0-cell in Cmd(K) is a comonad in K. A 1-cell in Cmd(K)

from (C;D; �; �) to (C

0

;D

0

; �

0

; �

0

) is a 1-cell J : C �! C

0

in K together with a

2-cell j : JD ) D

0

J subject to two coherence conditions, one relating � and

�

0

, the other relating � and �

0

. A 2-cell from (J; j) to (H; h) is a 2-cell in K

from J to H subject to one coherence condition relating j and h.

Note carefully the de�nition of a 1-cell in Cmd(K). It consists of a 1-cell

and a 2-cell in K; of those, the 1-cell goes in the same direction as that in the

de�nition of Mnd(K), but the 2-cell goes in the opposite direction.

Again, there is an underlying 2-functor U : Cmd(K) �! K, which has a

right 2-adjoint given by Inc : K �! Cmd(K), sending an object X to the

identity comonad on X; and again, one may say

De�nition 3.3 A 2-category K admits Eilenberg-Moore constructions for

comonads if Inc : K �! Cmd(K) has a right 2-adjoint.

Although not stated explicitly in [11], it follows routinely that the 2-

category Cat admits Eilenberg-Moore constructions for comonads, and they

are given by the usual Eilenberg-Moore construction. Again here, the con-

struction Cmd(K) yields a 2-functor Cmd : 2-Cat �! 2-Cat. Also, one may

de�ne Cmd

�

(K) = Cmd(K

op

)

op

. Since the operations ( )

op

and ( )

co

commute,

we have

Proposition 3.4 For any 2-category K, Cmd

�

(K) = Mnd

�

(K

co

)

co

.

As before, we say
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De�nition 3.5 A 2-category K admits Kleisli constructions for comonads if

Inc : K �! Cmd

�

(K) has a left 2-adjoint.

4 Distributive laws

In previous sections, we have de�ned 2-functorsMnd,Mnd

�

, Cmd and Cmd

�

.

So in principle, one might guess that there are eight possible ways of combining

a monad and a comonad as there are three dualities: start with the monad

or start with the comonad; taking ( )

�

on the monad or not; and likewise

for the comonad. In fact, as we shall see, there are precisely six. First we

analyse the 2-functor CmdMnd. In order to do that, we give the de�nition

of a distributive law of a monad over a comonad in a 2-category.

De�nition 4.1 Given a monad (T; �; �) and a comonad (D; �; �) on an object

C of a 2-category K, a distributive law of T over D is a 2-cell � : TD )

DT such that the four elementary diagrams involving each of �, �, � and �

commutes.

Proposition 4.2 For any 2-category K, the 2-category CmdMnd(K) is iso-

morphic to the 2-category Dist(K) as follows:

�

A 0-cell consists of a 0-cell C of K, a monad T on it, a comonad D on it,

and a distributive law � : TD ) DT .

�

A 1-cell (J; j

t

; j

d

) : (C; T;D; �) �! (C

0

; T

0

; D

0

; �

0

) consists of a 1-cell J :

C �! C

0

in K together with a 2-cell j

t

: T

0

J ) JT subject to the monad

laws, together with a 2-cell in K of the form j

d

: JD ) D

0

J subject to the

comonad laws, all subject to one coherence condition given by a hexagon

JTD

J�

-

JDT

�

�

�

�

�

j

t

D

� @

@

@

@

@

j

d

T

R

T

0

JD D

0

JT

@

@

@

@

@

T

0

j

d

R �

�

�

�

�

D

0

j

t

�

T

0

D

0

J

�

0

J

-

D

0

T

0

J

�

A 2-cell from (J; j

t

; j

d

) to (H; h

t

; h

d

) consists of a 2-cell from J to H in K

subject to two conditions expressing coherence with respect to j

t

and h

t

and

coherence with respect to j

d

and h

d

.

Thus Proposition 4.2 gives as 0-cells exactly the data considered by Turi

and Plotkin [12]. Turi and Plotkin did not, in that paper, address the 1-cells of
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Proposition 4.2, but they propose to do so in future. The 0-cells provide them

with a combined operational and denotational semantics for a language; the

1-cells allow them to account for the interpretation of one language presented

in such a way into another language thus presented. In fact, it was in response

to Plotkin's speci�c proposal about how to do that that much of the work of

this paper was done. For a very simple example, one might have a monad and

comonad on the category Set, and embed it into the category of !-cpo's in

order to add an account of recursion.

Example 4.3 We give an example of a distributive law for a monad over a

comonad. Let (T; �; �) be the monad on Set sending a set X to the set X

�

of �nite lists, and let (D; �; �) be the comonad that sends a set X to the set

of streams X

!

. Consider the natural transformation � : TD ) DT whose X

component sends a �nite list of streams �a

1

�a

2

� � � �a

n

with �a

i

= a

i1

a

i2

a

i3

� � � ; (1 �

i � n) to the stream of �nite lists (a

11

a

21

� � � a

n1

)(a

12

a

22

� � � a

n2

)(a

13

a

23

� � � a

n3

) � � �.

This natural transformation satis�es the axioms for a distributive law of a

monad over a comonad. Hence these data give an example of a 0-cell of

CmdMnd(Cat) and Cmd

�

Mnd(Cat) and Mnd

�

Cmd(Cat).

Corollary 4.4 CmdMnd(K) is isomorphic to MndCmd(K).

Proof. Cmd(K) is de�ned to be Mnd(K

co

)

co

and Mnd(K) = Cmd(K

co

)

co

.

So MndCmd(K) = (CmdMnd(K

co

))

co

. So we may apply Proposition 4.2 to

L = K

co

and apply ( )

co

to the result of that, then observe that the corollary

follows directly. 2

Theorem 4.5 Suppose K admits Eilenberg-Moore constructions for monads

and comonads. Then, Inc : K �! CmdMnd(K) has a right 2-adjoint.

Proof. Since K admits Eilenberg-Moore constructions for monads, Inc :

K �! Mnd(K) has a right 2-adjoint. Since Cmd : 2-Cat �! 2-Cat is a

2-functor, it sends adjunctions to adjunctions, so Cmd(Inc) : Cmd(K) �!

CmdMnd(K) has a right 2-adjoint. Since K admits Eilenberg-Moore con-

structions for comonads, Inc : K �! Cmd(K) has a right adjoint. Compos-

ing the right adjoints gives the result. 2

This result gives us a universal property for the construction of the category

of (T;D)-bialgebras, given a monad T , a comonad D, and a distributive law

of T over D. In this precise sense, one may see the construction of a category

of bialgebras as a generalised Eilenberg-Moore construction.

Using Proposition 4.2 and Corollary 4.4, we may characterise the right

2-adjoint in three ways, giving

Corollary 4.6 If K admits Eilenberg-Moore constructions for monads and

comonads, then given a distributive law of a monad (T; �; �) over a comonad

(D; �; �), the following are equivalent:

�

(T;D) � Bialg determined directly by the universal property of a right 2-

adjoint to the inclusion Inc : K �! Dist(K) sending X to the identity

10
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distributive law on X

�

the Eilenberg-Moore object for the lifting of T to D-Coalg

�

the Eilenberg-Moore object for the lifting of D to T -Alg

By the universal property, the right 2-adjoint ( )-Bialg inherits an action

on 1-cells and 2-cells. The behaviour of the right 2-adjoint on 0-cells gives

exactly the construction ( )-Bialg studied by Turi and Plotkin [12]. Its be-

haviour on 1-cells will be fundamental to their later development as outlined

above.

In the example K = Cat, the universal property means that the notion

of map of distributive laws is determined uniquely by Proposition 4.2 and

Corollary 4.4, and the universal property of a right 2-adjoint uniquely induces

a functor between the categories of bialgebras.

Turning to the other possibilities, one can deduce from Corollary 4.4

Corollary 4.7 Mnd

�

Cmd

�

(K) is isomorphic to Cmd

�

Mnd

�

(K).

Moreover, one can deduce an equivalent result to Proposition 4.2: this

yields that the isomorphic 2-categories of Corollary 4.7 amount to giving the

opposite distributive law to that given by Cmd and Mnd, and hence give an

account of Kleisli constructions lifting along Kleisli constructions. The left

2-adjoint to Inc : K �!Mnd

�

Cmd

�

(K) can again be characterised in three

ways:

Corollary 4.8 If K admits Kleisli constructions for monads and comonads,

then given a distributive law of comonad (D; �; �) over a monad (T; �; �), the

following are equivalent:

�

Kl(D;T ) determined directly by the universal property of the inclusion Inc :

K �! Dist

�

(K) sending X to the identity distributive law on X

�

the Kleisli object for the lifting of T to Kl(D)

�

the Kleisli object for the lifting of D to Kl(T )

This is the construction proposed by Brookes and Geva [2] for giving in-

tensional denotational semantics.

The fundamental step in the proof here lies in the use of the proof of

Theorem 4.5, and that proof relies upon the following: some mild conditions

on K hold of all our leading examples, allowing us to deduce that K admits

Eilenberg-Moore and Kleisli constructions for monads and comonads; and each

of the constructions Mnd, Mnd

�

, Cmd and Cmd

�

is 2-functorial on 2-Cat, so

preserves adjunctions.

Proposition 4.9 When K = Cat, the Kleisli construction for monads and

comonads exists and is given as follows. Let (D; �; �) be a comonad and

(T; �; �) be a monad on C and � : DT ! TD be a distributive law on D

and T . Then the objects of Kl(D;T ) are the those of C. An arrow from x

to y in Kl(D;T ) is given by an arrow f : Dx ! Ty in C. For each object

11
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x, the identity is given by �

x

� �

x

. The composition of arrows f : x ! y and

g : y ! z in Kl(D; T ) seen as arrows

^

f : Dx! Ty and ĝ : Dy ! Tz in C is

given by the composite �

z

(T ĝ)�

y

(D

^

f )�

x

in C.

Proof. We need only write the image under the left 2-adjoint to Inc : Cat!

Cmd

�

Mnd

�

(Cat). This left adjoint is given by composing the two left 2-

adjoints as in Theorem 4.4, the Kleisli construction of T sent by Cmd

�

and

the Kleisli construction of D. 2

Applying those facts to the remaining four possible combinations of a

monad with a comonad, CmdMnd

�

(K) gives an account of the Kleisli con-

struction for a monad interacting with coalgebras for a comonad, and similarly

for the other examples. So how do CmdMnd

�

(K) and its duals compare?

CmdMnd

�

(K) and Mnd

�

Cmd(K) are di�erent because they have di�erent

0-cells: a 0-cell of the latter is a 0-cell of MndCmd(K) = CmdMnd(K), but

a 0-cell of the former is not. So dually, Cmd

�

Mnd(K) andMndCmd

�

(K) are

di�erent. Similarly, Cmd

�

Mnd(K) 6= CmdMnd

�

(K), and Mnd

�

Cmd(K) 6=

MndCmd

�

(K). Moreover, MndCmd

�

(K) 6= CmdMnd

�

(K) because they

have di�erent 1-cells although the same 0-cells. Mnd

�

Cmd(K) 6= Cmd

�

Mnd(K)

because although they have the same 0-cells, their 1-cells di�er. This may be

surprising as one might guess that CmdMnd

�

(K) might equalMnd

�

Cmd(K),

as one gives an account of a coalgebra construction for a comonad applied to

a Kleisli construction for a monad, while the latter does the same in the op-

posite order. The upshot of all this is that there are precisely six, not eight,

ways of combining monads and comonads.

We �nd this result surprising, because in considering the possible ways

of combining a pair of categories each with a monad and a comonad, there

appear to be three possible independent dualities:

�

TD ) DT or the dual

�

JT ) T

0

J or the dual

�

D

0

J ) JD or the dual.

This gives eight possibilities. There are two sorts of 0-cell: given by a

monad, a comonad, and one of two possible distributive laws. For each, there

are four possible sorts of 1-cell, but not all of these arise from the above

mixtures of Mnd, Cmd, and ( )

�

, because some of the eight possibilities there

agree, e.g., MndCmd = CmdMnd.

Of the eight possibilities, the two that do not arise are

TD ) DT JT ) T

0

J D

0

J ) JD

and the complete dual, dualising all three items,

DT ) TD T

0

J ) JT JD ) D

0

J:

A complete list appears in Table 1.

The six possibilities yield the six possibilities for liftings: along the Kleisli
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Table 1

Distributive laws

CmdMnd = MndCmd TD ) DT T

0

J ) JT JD ) D

0

J

Cmd

�

Mnd TD ) DT T

0

J ) JT D

0

J ) JD

Mnd

�

Cmd TD ) DT JT ) T

0

J JD ) D

0

J

CmdMnd

�

DT ) TD JT ) T

0

J JD ) D

0

J

MndCmd

�

DT ) TD T

0

J ) JT D

0

J ) JD

Cmd

�

Mnd

�

= Mnd

�

Cmd

�

DT ) TD JT ) T

0

J D

0

J ) JD

or the Eilenberg-Moore construction. You can see there that many possibil-

ities disagree as they do not have the same objects. For instance, applying

the Eilenberg-Moore construction to the Kleisli construction will always have

di�erent objects to doing so in the reverse order.
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