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Chapter 1

Introduction to Chu Spaces

Chapter 1 introduces the basic notions, gives examples of use of Chu spaces,
points out some interference properties, and proves that functions between Chu
spaces are continuous if and only if they are homomorphisms. Chapter 2 realizes
a variety of mathematical objects as Chu spaces, including posets, topological
spaces, semilattices, distributive lattices, and vector spaces. Chapter 3 gives
several senses in which Chu spaces are universal objects of mathematics. Chap-
ter 4 interprets operations of linear logic and process algebra over Chu spaces.
Chapter 5 studies linear logic from an axiomatic viewpoint, with emphasis on
the multiplicative fragment. Chapter 6 develops several notions of naturality
as a semantic criterion for canonical transformations. Chapter 7 proves full
completeness of the multiplicative linear logic of Chu spaces

For hands-on experience with Chu spaces, particularly in conjunction with
Chapter 4, visit the Chu space calculator available on the World Wide Web at
http://boole.stanford.edu/live/.

1.1 Definitions

A Chu space is simply a matrix over a set 3, that is, a rectangular array whose
entries are drawn from X. We formalize this as follows.

Definition 1. A Chu space A = (A, r, X) over a set X, called the alphabet,
consists of a set A of points constituting the carrier, a set X of states consti-
tuting the cocarrier, and a function r : A x X — ¥ constituting the matriz.

O

The alphabet can be empty or a singleton, but starting with ¥ = {0,1} it
becomes possible to represent a rich variety of structured objects as Chu spaces.
Only the underlying set of the alphabet participates in the actual definition of
Chu space, and any structure on the alphabet, such as the order 0 < 1 or the
operations A, V, — of the two-element Boolean algebra, is purely in the eye of
the beholder.
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It is convenient to view Chu spaces as organized either by rows or by columns.
For the former, we define # : A — (X — %) as #(a)(x) = r(a,z), and refer to
the function 7(a) : X — ¥ as row a of A. Dually we define 7 : X — (A — X)
as 7(z)(a) = r(a,x) and call #(z) : A — 3 column z of A.

When 7 is injective, i.e. all rows distinct, we call A separable. Similarly
when 7 is injective, we call A extensional. When A is both separable and
extensional we call it biextensional.

We define the biextensional collapse of A = (A, r, X) tobe (#(A),r,7(X))
where r'(7(a), 7(z)) = r(a,z). Intuitively the biextensional collapse simply iden-
tifies equal rows and equal columns. Its points however are no longer elements
of A but functions from X to X, and its states are functions from A to X.

Matrices enjoy a similar duality principle to that of lattices (but not semi-
lattices). Just as the order dual of a lattice is another lattice, the transpose of
a matrix is another matrix. We denote the transpose or perp of A = (A,r, X)
as At = (X,r", A) where r*(z,a) = 7(a, ).

One popular application for lattices is logic, where there is a strong sense of
“which way is up,” with ¢rue at the top and false on the bottom. Our appli-
cation for Chu spaces comes with a similar strong sense of orientation. Rows
serve to represent individuals or events, which we think of as coexisting entities
inhabiting a conjunctive space. Similarly columns represent predicates or states,
which are to be understood as alternative qualities located in a disjunctive space.

Ezample 1. Taking ¥ = 2 = {0, 1}, the set A = {a,b, ¢} may be represented
01010101

as the Chu space bpoi1oo11l The characteristic feature of a set is that its states
c|00001111

permit each point independently to take on any value from X: all of the ¥4 (in
this case 22 = 8) possible states are permitted. Sets are the deserts of mathe-
matics, not only barren of structure but having elements with the independent
behavior of grains of dry sand.

Any 8-element set X could serve to index the columns of this example.
However for extensional spaces like this one it is often convenient to treat the
columns as self-identifying: each column is a function from A to ¥, i.e. X C 34,
We call Chu spaces organized in this way normal, and abbreviate (A,r, X) to
(A, X) with r understood as application, i.e. r(a,x) is taken to be x(a), each
x € X now being a function z : A — X. For ¥ = 2 this is equivalent to viewing
columns as subsets of A, more precisely as the characteristic functions of those
subsets, with the 1’s in the column indicating the members of the subset and
the 0’s the nonmembers.

Example 2. Delete three columns from Example 1 to yield S@. If we define

c|00011
a < b to hold just when it holds in every column (taking 0 < 1 as usual), then we

now have b < a and ¢ < a, still three distinct elements but now equipped with
a nontrivial order relation. This Chu space represents not an unstructured set
but rather a poset (partially ordered set) (A, <), one with a reflexive transitive
antisymmetric binary relation, meaning one satisfying a < a; a < b and b < ¢
implies a < ¢; and a < b < qa implies a = b for all a,b,c € A. This last,
antisymmetry, is the poset counterpart of separability for Chu spaces.

The columns of examples 1 and 2 are in each case closed under union and
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intersection (bitwise join and meet). This is not true (for either operation) for
their rows.
Ezample 3. Delete one more column to yield {:. The first row is now

c|0011
the join (bitwise disjunction) of the other two, which was not the case with the

previous Chu space. This Chu space represents a semilattice (4, V), a semigroup
(set with an associative binary operation) that is commutative and idempotent
(aVa=a).

The rows of this space are now closed under binary union, the defining
characteristic of a semilattice. But the very step we took to ensure this broke
closure of the columns under intersection. This is no coincidence but an instance
of a systematic phenomenon that we now examine briefly.

1.2 Interference

Events (rows) are made of the same bits as states (columns), so it stands to
reason the two would interfere with other.

A simple case of interference is given by a Chu space having a constant row.
If it also contains a constant column, then the two constants must be the same.
Thus if A has a row of all 1’s it cannot also have a column of all 0’s. And if it
has two or more different constant rows then it can have no constant columns
at all.

This phenomenon formalizes a well-known paradox. Viewing points as ob-
jects, states as forces, and r(a, z) as 1 just when object a can resist force x, an
immovable object is a row of all 1’s while an irresistible force is a column of all
0’s.

This interference is the zeroary case of a more general phenomenon whose
binary case is as follows. We say that the meet a A b or the join a V b is proper
just when the result is not one of the two arguments.

Proposition 1.2. A proper meet in A precludes some proper join in A-.

Proof. Let aVVb be proper. Then there must exist states x, y such that r(a,z) =
r(b,y) =1 and r(a,y) = r(b,x) = 0. Hence r(aVb,z) =1 and r(a V b,y) = 1.
Now suppose z A y exists. Then from the above, r(a V b,z Ay) = 1. But
we also have r(a,x Ay) = r(b,x Ay) = 0, and hence r(aVb,x Ay) =0, a
contradiction. O

Corollary 1.3. If A has all meets then AL has no proper joins.
Proof. For if A+ had a proper join it would preclude some proper meet of A. [J

Corollary 1.4. If A has all binary joins and A+ has all binary meets then A
and X are both linearly ordered.

The irrestible-force-immovable-object scenario may be generalized to the
binary case as follows. Treat points and states as players on two teams A and X,
and treat matrix entries as expected outcomes of singles matches between two
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players on opposite teams, with a 1 or 0 indicating a win or loss respectively for
the player from team A. Say that player a combines players b and ¢ when the
players defeated by a are exactly those defeated by either b or ¢, and likewise for
players from team X. Now suppose that every pair of players has a single player
combining them in this sense, on both teams. Then the preceding corollary says
that both teams can be completely ranked by ability, namely by inclusion on
the set of players that each player defeats.

Open problems. (i) Study this interference for infinite joins and meets of
various cardinalities. (ii) Extend to larger ¥ than 2. (iii) For ¥ the complex
numbers obtain the Heisenberg uncertainty principle, aka Parseval’s theorem in
signal processing, as an instance of Chu interference.

1.3 Properties of Chu spaces

Why not represent both the poset and the semilattice more economically as
ool by deleting the two constant columns? The answer reveals a fundamental
cl01

feature of Chu spaces differentiating them from conventional algebraic objects.
The matrix serves not only to identify the points and states but also to furnish

the Chu space with properties. The space S contains a constant, namely a,
c|o1

and a complementary pair b and c. Posets and semilattices contain neither
constants nor complementary pairs. And semilattices differentiate themselves
from posets by the solvability of a V b = ¢ in ¢ for all for all pairs a, b, whereas
for posets this equation is solvable, at least by our rules, if and only if a < b or
b<a.

We define the general notion of property of a normal Chu space as follows.

Definition 5. A property of a normal Chu space (A, X) is a superset of its
columns, i.e. a set Y satisfying X CY C ¥4, O

The properties of (A, X) are in bijection with the power set of ¥4 — X. Each
subset Z C ¥4 — X corresponds to the property Y = X UZ. The properties are
therefore closed under arbitrary intersection, which we interpret as conjunction
of properties. And we interpret inclusion between properties as implication: if
Y C Y’ we say that property Y implies property Y'. In particular property X,
as the conjunction of all properties of (A4, X), implies all those properties. In
effect (A, X) is its own strongest or defining property.

Returning to our original 8-state example, since X = 24 there is only one
property, which we can think of as the vacuous property true. Now define the
property b < a to consist of all states = in which z(b) < z(a). The Chu space

. . . . . al0l0111 . . al010111
having this as its defining property is bloooio1l For ¢ < a we have similarly vloo11o1].
c|001011 c|000011

The conjunction of these two properties is obtained as the intersection of the
al01111 .

two sets of columns, namely bjoio1|. This was our second example, the poset
c|00011

defined by b < a and ¢ < a, which can be rolled into one formula as bV ¢ < a.
Now consider a < bV ¢, which by itself eliminates only one state to yield
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al0010101 . . . .
the Chu space bpiioon|. In combination with example 2 however we obtain our

c|0001111
previous example 3, corresponding to the property a = bV ¢, the only fact about

V that we need to know to define this particular semilattice (4, V).

What is going on here is that the columns are acting as primitive models.
In fact if we view the points of a Chu space over 2 as propositional variables
then the columns are precisely those assignments of truth values to variables
that satisfy the defining property of the space. In this way we can identify the
n-point normal Chu spaces over 2 with the 22" n-ary Boolean operations. For
general ¥ this number becomes 2/*I".

Further extending the connection with conventional logic, the set of prop-
erties of a Chu space can be understood as the theory of that space. A subset
of a theory can serve to axiomatize that theory, i.e. form a basis for it. We
therefore define an axiomatization of a Chu space to be a set of properties. The
conjunction (intersection) of that set then denotes (the state set of) the Chu
space so axiomatized.

One use of axiomatizations is to define a class of Chu spaces axiomatiz-
able by axioms of a particular form. For example posets are those Chu spaces
axiomatizable by atomic implications a — b, that is, a < b.

1.4 Chu transforms

The class of all Chu spaces is made a category by defining a suitable notion of
morphism. We can gain at least some insight into the properties of Chu spaces
from a knowledge of how they transform into each other.

Given two Chu spaces A = (A,r, X) and B = (B,s,Y), a Chu transform
from A to B is a pair (f,g) consisting of functions f: A > Bandg:Y — X
such that s(f(a),y) = r(a,g(y)) for all a in A and y in Y. This equation consti-
tutes a primitive form of adjointness, and we therefore call it the adjointness
condition.

Adjoint pairs (f,g) : A — B and (f’,¢') : B — C, where C = (C,t,72),
compose via (f',¢')(f,g9) = (f'f,g9g9"). This composite is itself an adjoint pair
because for all @ in A and z in Z we have t(f'f(a),2) = s(f(a),q'(z)) =
r(a,gg’(z)). The associativity of this composition is inherited from that of
composition in Set, while the pair (14,1x) of identity maps on respectively A
and X is an adjoint pair and is the identity Chu transform on .A.

The category whose objects are Chu spaces over ¥ and whose morphisms
are Chu transforms composing as above is denoted Chusy.

We cite without proof the following facts about this category. Its isomor-
phisms are those Chu transforms (f, g) for which f and ¢ are both bijections
(isomorphisms in the category Set of sets). Its monics are those (f, g) for which
f is an injection and g a surjection, and dually for its epis. Its initial objects are
all Chu spaces with empty carrier and singleton cocarrier, while its final objects
are those with singleton carrier and empty cocarrier.

We call two Chu spaces equivalent when their respective biextensional col-
lapses are isomorphic. This is the Chu counterpart of equivalent categories as
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those having isomorphic skeletons.
Biextensional collapse is an idempotent operation, up to isomorphism.

1.5 Continuous = Homomorphism

The previous two sections give two ostensibly quite different understandings
of the structure of Chu spaces, one in terms of properties of individual Chu
spaces, the other in terms of the transformability of one space into another. In
this section we completely reconcile these two understandings by giving a sense
in which they are equivalent.

Homomorphisms. To every function f : A — B we associate a function
Foomt o’ defined as f(Y) ={g: B - X | gf e Y} for Y C ¥4 A
homomorphism of Chu spaces A = (4,7, X), B = (B,s,Y) is a function
f: A — B such that f(#(X)) 2 3(Y). This is equivalent to requiring that f
send properties of A to properties of B, justifying the term “homomorphism.”
For normal Chu spaces, the above condition simplifies to f (X)CY.

Continuity. By the usual abuse of notation we permit a function f: A — B
between sets to be referred to as a function f : A — B between Chu spaces,
whence a function from Bt to AL means a function from Y to X. We call
f: A — B continuous when it has an adjoint from B+ to A*, i.e. when there
exists a function ¢g : Y — X making (f, g) a Chu transform.

Theorem 1.6. A function f : A — B is a homomorphism if and only if it is
continuous.

Proof. The function f : A — B is a homomorphism if and only if f(X) DY,
if and only if every ¢ : B — X in Y satisfies gf € X, if and only if f is
continuous. O

Corollary 1.7. Under the interpretation of a normal Chug space A as a Boolean
formula @ 4, with functions then understood as variable renamings, a function
f A — B is continuous if and only if the result of substituting variable f(a)
for each variable a in p 4 is a consequence of pg.

1.6 Historical Notes

The original Chu construction as described in Po-Hsiang (Peter) Chu’s master’s
thesis took a symmetric monoidal closed category V with pullbacks and an
object k of V and “completed” V to a self-dual category Chu(V, k). It appeared
in print as the appendix to his advisor M. Barr’s book introducing the notion
of *-autonomous category [Bar79).

The intimate connection between linear logic and *-autonomous categories
was first noticed by Seely [See89], furnishing Girard’s linear logic [Gir87] with
a natural constructive semantics. Barr then proposed the Chu construction as
a source of constructive models of linear logic [Bar91].
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The case V' = Set is important for its combination of simplicity and general-
ity. This case was first treated explicitly by Lafont and Streicher [LS91], where
they treated its connections with von Neumann-Morgenstern games and linear
logic, observing in passing that vector spaces, topological spaces, and coherent
spaces were realizable as games, giving a small early hint of their universality.

Our own interest in Chu spaces was a consequence of attempts to formalize
a suitable notion of partial distributive lattice as a generalization of Nielsen,
Plotkin and Winskel’s notion of event structure [NPW81] for modeling concur-
rent computation. After arriving at such a notion based on the dual interaction
of ordered Stone spaces and distributive lattices, we found that the resulting
category was equivalent to Chus.

The name “Chu space” was suggested to the author by Barr in 1993 as
a suitable name for the objects of Chuy reifying “Chu construction,” which
predated Lafont and Streicher’s “game.” (We had previously been considering
calling them hyperspaces by analogy with hypergraphs, which transform by
parallel rather than antiparallel functions.) An advantage of “Chu space” is
that it requires no disambiguating qualification to uniquely identify it, unlike
“game.” By analogy with categories enriched in V' [Kel82] one might refer to the
objects of the general Chu construction Chu(V, k) as V-enriched Chu spaces,
and indeed Chu(V, k) can be formulated as a V-category, one whose hom-objects
are objects of V.
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Chapter 2

Special Realizations

(This chapter is adapted from [Pra95].)

We confine our attention to Chus, which we abbreviate as Chu. We further
restrict attention to normal Chu spaces (A, X), with r(a,z), z(a), and a € x
used interchangeably according to whim.

The view of a normal Chu space as a set having properties gives one way
of seeing at a glance that extensional Chu spaces can realize a great variety of
ordered structures. Examples 1-3 at the beginning of the first chapter illustrated
the realization of respectively a set, a poset, and a semilattice. The set was
specified by giving no properties, the poset with properties of the form a < b,
and the semilattice with properties of the form aVb = ¢ for all a, b in the carrier.

Besides these, Chuy spaces can also realize preordered sets, Stone spaces,
ordered Stone spaces, topological spaces, locales, complete semilattices, dis-
tributive lattices (but not general lattices), algebraic lattices, frames, profinite
(Stone) distributive lattices, Boolean algebras, and complete atomic Boolean
algebras, to name some familiar “logical” structures.

Normally these structures “stick to their own kind” in that each forms its
own category, with morphisms staying inside individual categories. Chu spaces
bring all these objects into the one self-dual category Chu, permitting meaning-
ful morphisms between say semilattices and algebraic lattices, while revealing
various Stone dualities such as that between Boolean algebras and Stone spaces,
frames and locales, sets and complete atomic Boolean algebras, etc. to be all
fragments of one universal self-duality.

The notion of realization we intend here is the strong one defined by Pultr
and Trnkovd [PT80]. Informally, one structure represents another when they
transform in the same way, and realizes it when in addition they have the same
carrier. Formally, a functor F' : C — D is a representation of objects ¢ of C
by objects F(c) of D when F is a full embedding!. A representation F is a
realization when in addition UpF' = Ug, where U : C — Set, Up : D — Set

LAn embedding is a faithful functor F' : C4 — Cp, i.e. for distinct morphisms f # g
of Cu, F(f) # F(g), and is full when for all pairs a,b of objects of C4 and all morphisms
g: F(a) = F(b) of Cp, there exists f : a — b in C4 such that g = F(f).

11
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are the respective underlying-set functors. Pultr and Trnkové give hardly any
realizations in their book, concentrating on mere representations. In contrast
all the representations of this chapter and the next will be realizations.

The self-duality of Chu, and of its biextensional subcategory, means that
to every full subcategory C' we may associate its dual as the image of C' un-
der the self-duality. This associates sets to complete atomic Boolean algebras,
Boolean algebras to Stone spaces, distributive lattices to Stone-Priestley posets,
semilattices to algebraic lattices, complete semilattices to themselves, and so on
[Joh82].

We now illustrate the general idea with some examples.

Sets. We represent the set A as the normal Chu space with carrier A and
no axioms. The absence of axioms permits all states, making the Chu space so
represented (A, 24).

Every function between these Chu spaces is continuous because there are no
axioms to refute continuity. An equivalent way to see this is to observe that
every function must have an adjoint because every state is available in the source
to serve as the desired image of that adjoint. Hence this representation is full
and faithful, and obviously concrete, and hence a realization.

Pointed Sets. A pointed set (A,*) is a set with a distinguished element *.
A homomorphism h : (A,*) — (A’,%) is a function f : A — A’ satisfying
fx) =+

We represent (A, *) as the normal Chu space (4, X) axiomatized by x = 0.
The effect of this axiom is to eliminate all columns = for which r(x,z) # 0,
making row * constantly 0 (quite literally a constant!).

An equivalent description is the result of adjoining the row of all 0’s, rep-
resenting *, to the Chu space representing the set A — {x}. For example ;

bl0101
represents the pointed set {,a,b}. For finite A there are 2/41=1 states.

Since » = 0 is the only axiom, the only condition imposed on Chu transforms
is f(x) = 0, whose effect is f(x) = «’. Hence this representation is full and
faithful, and clearly concrete, and hence a realization.

Bipointed sets (A, x, %) are also possible, axiomatized as x = 0, * = 1. (For
general 3, up to |X| distinguished elements are possible.)

Preorders. A preorder is a normal Chu space axiomatized by “atomic impli-
cations,” namely propositions of the form a < b. When a < b and b < a their
rows must be equal, whence a separable preorder represents a partial order.
Example 2 of Chapter 1 illustrates this notion.

For f to preserve these axioms is to have f(a) < f(b) hold in the target for
every a < b holding in the source. But this is just the condition for f to be
monotonic, giving us a realization in Chu of the category of preordered sets, and
also of partially ordered sets as a full subcategory.

Proposition 2.1. A normal Chu space realizes a preorder if and only if the set
of its columns is closed under arbitrary pointwise joins and meets.

(An arbitrary pointwise join of rows takes a set of rows and “ors” them
together, producing a 1 in a given column just when some row in that set has
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a 1 in that column, and likewise for meet, and for columns. It is convenient to
refer to pointwise join and meet as respectively union and intersection, via the
view of bit vectors as subsets.)

Proof. (Only if) Fix a set T' of atomic implications defining the given preorder.
Suppose that the intersection of some set Z of columns each satisfying all im-
plications of I fails to satisfy some a — b in I'. Then the intersection must
assign 1 to a and 0 to b. But in that case every column in Z must assign 1 to
a, whence every such column must also assign 1 to b, so the intersection cannot
have assigned 0 to b after all.

Dually, if the union of Z assigns 1 to a and 0 to b, it must assign 0 to b in
every column of Z and hence can assign 1 to a in no column of Z, whence the
union cannot have assigned 1 to a after all.

So the satisfying columns of any set of atomic implications is closed under
arbitrary union and disjunction.

(If) Assume the columns of A are closed under arbitrary union and inter-
section. It suffices to show that the set I' of atomic implications holding in A
axiomatizes A, i.e. that A contains all columns satisfying I'. So let x C A be a
column satisfying I". For each a € A form the intersection of all columns of A
containing a, itself a column of A containing a, call it y,. Now form the union
Usex Ya to yield a column z of A, itself a column of A which must be a superset
of column z.

Claim: z = z. For if not then there exists b € z — x. But then there exists
a € z such that b € y,, whence b is in every column of A containing a, whence
a — bisin I'. But x contains a and not b, contradicting the assumption that x
satisfies I'.

To complete the argument that this is a realization we need the Chu trans-
forms between posets realized in this way as Chu spaces to be exactly the
monotone functions. Now monotonicity is the condition that if a < b holds
in (is a property of) the source then f(a) < f(b) holds in the target. Since
the only axioms are atomic implications, monotonicity is equivalent to being
axiom-preserving, equivalently property-preserving. Hence monotonicity and
continuity coincide. O

The last paragraph of this argument is the same for any subcategory of Chu
whose objects are defined by properties, and can be omitted once the principle
is understood, as we will do in Proposition 2.2.

Topological spaces. A topological space is an extensional Chu space whose
columus are closed under arbitrary union and finite (including empty) intersec-
tion. The Chu transforms between topological spaces are exactly the continuous
functions. Lafont and Streicher [L.S91] mention in passing this realization along
with that of Girard’s coherent spaces [Gir87], also in Chus, and the realization
of vector spaces over the field & in Chuy,.

For Chu spaces representing topological spaces, separability is synonymous
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Semilattices. A semilattice (A, V) is a set A with an associative commutative
idempotent binary operation V. We may realize it as a separable normal Chu
space with carrier A and axiomatized by all equivalences a V b = ¢ holding
in (A,V), one such equivalence for each pair a,b in A. This is illustrated by
Example 3 of Chapter 1.

For f to preserve these axioms is to have f(a) V f(b) = f(c) hold in the
target. But this is just the condition for f to be a semilattice homomorphism,
giving us a realization in Chu of the category of semilattices.

Equivalently a semilattice is a separable normal Chu space whose rows are
closed under binary union and which is column-maximal subject to the other
conditions. Column-maximality merely ensures that all columns satisfying the
axioms are put in.

The dual of a semilattice is an algebraic lattice [Joh82, p.252].

Problem. Formulate this in terms of closure properties on rows and columns.

Complete semilattices. A complete semilattice (A,\/) is a set A together
with an operation \/ : 24 — A such that (i) the binary relation z < y satisfying
V{x,y} = y partially orders A, and (ii) for all subsets B C A, \/ B is the least
upper bound of B in (A4,<). A homomorphism of complete semilattices is a
function h : A — B such that h(\/ B) = \/ h(B) (where h(B) denotes as usual
the direct image {h(b)|b € B}).

We realize the complete semilattice (A,\/) as the Chu space axiomatized
by all equations holding in A of the form \/B = a for B C A and a € A.
Reasoning analogously to the previous examples, this is a realization of complete
semilattices as Chu spaces.

Proposition 2.2. A normal Chu space realizes a complete join semilattice if
and only if each of the set of its rows, and the set of its columns, is closed under
arbitrary union.

(This includes the empty union, mandating both a zero row and a zero
column.)

Proof. (Ounly if) We are given that the rows are closed under union so it suf-
fices to show the same for the columns. For any B C A, (VY)(\VB) =
Vaey Vaepr(a,z), while \/(VY)(B) = V,cp Vaiey 7(a,2). These are equal
since each expression is 0 just when the whole B x Y rectangle is zero, mak-
ing it clear that the sups commute. Hence \/ Y satisfies every axiom of .4 and
therefore belongs to X. So the columns are closed under union.

(If) Given A = (A, X)) with rows and columns closed under arbitrary union,
it suffices to show that A is axiomatized by those of its properties of the form
\/ B = afor all B C A. The rows determine a complete semilattice, so it suffices
to verify that every column satisfying the equations is included.

So let z be any column absent from A; we shall show that z violates some
property. Let Y = {z € X|z < z}. Y consists of those columns that are 0 in
every row where z is 0. Let y = \/ Y. Then y < z, and furthermore y meets the
condition for membership in Y.
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Since y € X and z ¢ X, there must exist b € A such that b € z — y, i.e.
a row where y = 0 (whence b is 0 in every column of V) and z = 1. Let
B = {a € Ala < b}. (So the whole B x Y rectangle is zero.) Let C =z = {a €
Alr(a,z) = 0}, whence C' C B. Now in the columns of Y, \/ B is 0. But in all
the remaining columns \/ C is 1 since any counterexample would have been put
inY. So\/ B =\/C is a property of A. But row b shows this property to be
false for z, justifying its omission. O

The symmetry of this second characterization of complete semilattices im-
mediately entails:

Corollary 2.3. The category of complete semilattices is self-dual.

Distributive Lattices. The idea for semilattices (A, V) is extended to distribu-
tive lattices (A, V, A) by adding to the semilattice equations for V all equations
a A'b = cholding in (4, V,A) for each a,b in A. Distributivity being a Boolean
tautology, it follows that all lattices so represented are distributive.

The converse, that every distributive lattice L is so represented, is a conse-
quence of Birkhoff’s theorem (assuming the Axiom of Choice) that every dis-
tributive lattice is representable as a “ring” of sets [Bir33, Thm 25.2], i.e. with
join and meet realized respectively as union and intersection. For we can turn
any such representation of L into a Chu realization by starting with A as the
lattice and X as the set from which the representing subsets are drawn, and
taking the matrix to be the membership relation. We then identify duplicate
columns, and adjoin any additional columns that satisfy all equations of the
form a Vb= c and a A b = ¢ that are true of L.

With the help of Proposition 2.1 we then deduce Birkhoff’s pairing of fi-
nite distributive lattices with posets, with the additional information that this
pairing is in fact a duality: the category of finite posets is the opposite of the
category of finite distributive lattices.

Boolean algebras. A Boolean algebra is a complemented distributive lattice,
hence as a Chu space it suffices to add to the specifications of a distributive
lattice the requirement that the set of rows be closed under complement. That
is, a Boolean algebra is a biextensional Chu space whose rows form a Boolean
algebra under pointwise Boolean combinations (complement and binary union
suffice) and is column-maximal in the sense of containing every column satisfying
the Boolean equations satisfied by the rows.

The dual of a Boolean algebra can be obtained as always by transposition.
What we get however need not have its set of columns closed under arbitrary
union, in which case this dual will not be a topological space. But M. Stone’s
theorem [Sto36] is that the dual of a Boolean algebra is a totally disconnected
compact Hausdorff space. We therefore have to explain how the dual of a
Boolean algebra may be taken to be either a topological space or an object
which does not obviously behave like a topological space.

There is a straightforward explanation, which at the same time yields a slick
proof of Stone’s theorem stated as a categorical duality.
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The transpose of a Boolean algebra may be made a topological space by
closing its columns under arbitrary union. The remarkable fact is that when
this adjustment is made to a pair of transposed Boolean algebras, the set of
Chu transforms between them does not change. (Actually their adjoints may
change, but since these spaces are extensional the adjoint is determined by the
function, which is therefore all that we care about; the functions themselves do
not change.)

We prove this fact by first closing the source, then the target, and observing
that neither adjustment changes the set of Chu transforms.

Closing the columns of the source under arbitrary union can only add to
the possible Chu transforms, since this makes it easier to find a counterpart
for a target column in the source. Let f : A — B be a function that was not
a Chu transform but became one after closing the source. Now the target is
still a transposed Boolean algebra so its columns are closed under complement,
whence so is the set of their compositions with f. But no new source column
has a complement in the new source, whence no new source column can be
responsible for making f a Chu transform, so f must have been a Chu transform
before closing the source.

Closing the columns of the target under arbitary union can only delete Chu
transforms, since we now have new target columns to find counterparts for. But
since the new target columns are arbitrary unions of old ones, and all Boolean
combinations of columns commute with composition with f (a simple way of
seeing that f~! is a CABA homomorphism), the necessary source columns will
also be arbitrary unions of old ones, which exist because we previously so closed
the source columns. Hence Chu transforms between transposed Boolean alge-
bras are the same thing as Chu transforms, and hence continuous functions,
between the topological spaces they generate.

We conclude that there exists a full subcategory of Top (topological spaces)
dual to the category of Boolean algebras. Stone’s theorem goes further than we
attempt here by characterizing this subcategory as consisting of precisely the
totally disconnected, compact, and Hausdorff spaces.

An interesting aspect of this proof of Stone’s theorem is that usually a du-
ality is defined as a contravariant equivalence. Here, all categorical equivalences
appearing in the argument that are not actual isomorphisms are covariant. The
one contravariant equivalence derives from the self-duality of Chu, which is an
isomorphism of Chu with Chu®P. Those equivalences on either side of this du-
ality that fail to be isomorphisms do so on account of variations in the choice
of carrier and cocarrier. We pass through the duality with the aid of two inde-
pendent sets A and X. But when defining Boolean algebras and Stone spaces,
in each case we take X to consist of subsets of A, and it is on account of those
conflicting representational details that we must settle for less than isomorphism
on at least one side of the duality.

Vector spaces over GF(2). An unexpected entry in this long list of full
concrete subcategories of Chu is that of vector spaces over GF'(2). These are re-
alizable as separable extensional Chu spaces whose rows are closed under binary
exclusive-or, and column-maximal subject to this condition. This representation
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is the case k = GF(2) of Lafont and Streicher’s observation that the category
of vector spaces over any field £ is realizable in Chug ).

Ezercise. In the finite case (both finite dimension and finite cardinality since
the field is finite), Proposition 2.2 for complete semilattices has its counterpart
for finite dimensional vector spaces, whose Chu realizations are exactly those
square Chu spaces whose rows and columns are closed under binary exclusive-or.

Self-duality of the category of finite dimensional vector spaces then follows
by the same reasoning as for complete semilattices.

Problem. Does Chus embed fully in Chuy? (Conjecture: Yes.) More gener-
ally, for which |3| > |£’| does Chuy embed fully in Chuy/? (We showed at the
beginning of the chapter that no such embedding could be concrete.)
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Chapter 3

General Realizations

3.1 Universality of Chus

The previous chapter embedded a number of more or less well-known categories
of mathematics fully and concretely in the category of Chu spaces over a suitable
alphabet. A converse question would be, which categories do not so embed in
some Chu category?

In fact we could ask a stronger question: which categories do not so embed
in Chuy, for any given %7

Theorem 3.1. Assuming the Generalized Continuum Hypothesis, Chuy is re-
alizable in Chusy if and only if |X| < |¥].

Proof. Tf |X| < |¥’| then there exists an injection h : 3 — ¥’. The Chuy space
(A, r, X) can then be realized in Chuyy as (4, s, X) where s(a,x) = h(r(a,x)).
For the converse, choose any singleton 1 of Set. In each of the two categories
consider those spaces (1, X) having just one endomorphism (to get just the ex-
tensional spaces). The isomorphism classes of these are in bijection with 2* and
2% respectively. Any realization of Chuy in Chuys must represent members of
distinct such isomorphism classes from Chuy with members of distinct isomor-
phism classes from Chuys. But if |¥| > |¥'|, then (assuming the generalized
continuum hypothesis) this is impossible, O]

(GCH asserts that if & < 8 then 2% < 3, which in combination with Cantor’s
theorem 3 < 29 gives 2% < 2°.)
Problem: Does Theorem 3.1 hold in the absence of GCH?

3.2 Relational Structures

In this section we show that n-ary relational structures are realizable as Chu
spaces over (an alphabet of size) 2.

19
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A relational structure of a given similarity type consists of an m-tuple of
nonempty sets A, Ag, ..., A, and an n-tuple of nonempty' relations Ry, ..., Ry,
such that each R, is a subset of a product of Ajs, with the choice of the i’s in
that product depending only on j. (That is, if say Rg C Ay x A1 X Ay in one
algebra then this is true in all algebras of the same similarity type.)

These are the models standardly used in first order logic, typically with
m = 1, the homogeneous case. A homomorphism between two structures
A, A" with the same signature is an m-tuple of functions f; : A; — Al such
that for each 1 < j < n and for each tuple (a1,...,aq) of A of the arity ¢
appropriate for R;, (f(a1),...,f(ag)) € R}. The class of relational structures
having a given signature together with the class of homomorphisms between
them form a category.

There is no loss of generality in restricting to homogeneous (single-sorted)
structures because the carriers of a heterogeneous structure may be combined
with disjoint union to form a single carrier. The original sorts can be kept
track of by adding a new unary predicate for each sort which is true just of
the members of that sort. This ensures that homomorphisms remain type-
respecting.

There is also no loss of generality in restricting to a single relation since
the structural effect of any family of nonempty relations can be realized by the
natural join of those relations, of arity the sum of the arities of the constituent
relations. A tuple of the composite relation can then be viewed as the concate-
nation of tuples of the constituent relations. The composite relation consists of
those tuples each subtuple of which is a tuple of the corresponding constituent
relation.

This reduces our representation problem for relational structures to that
of finding a Chu space to represent the structure (A, R) where R C A" for
some ordinal n. The class Str,, of all such n-ary relational structures (A, R) is
made a category by taking as its morphisms all homomorphisms between pairs
(A, R), (A", R") of such structures, defined as those functions f : A — A’ such
that for all (a1,...,a,) € R, (f(a1),..., f(as)) € R'.

Every category whose objects are (representable as) n-ary relational or alge-
braic structures and whose morphisms are all homomorphisms between them is
a full subcategory of Str,,. For example the category of groups and group ho-
momorphisms is a full subcategory of Strs, since groups are fully and faithfully
represented by the ternary relation ab = c.

We represent (A, R) as the Chu space (A,r, X) over 2™ (defined for our

purposes as subsets of n = {1,2,...,n}) where
(i) X C (2™ consists of those n-tuples (z1,...,z,) of subsets of A such
that every (ai,...,a,) € R is incident on (x1,...,x,) in the sense that there

exists 7, 1 < i < n, for which a; € z;; and
(ii) r(a,x) = {ila € z;}.

INonemptiness is only needed here when m > 1 or n > 1, so that we can reliably join
relations. If m = n = 1 to begin with, our main result here can cope with either A or R
empty.
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The bijection (24)™ 22 (27)4 puts X in bijection with a subset of ¥4 when
¥ is taken to be 2". Thus for Strs, ternary relations, ¥ = 22 = 8. We may
think of Chu spaces over 2™ as A x X X n matrices over 2.

This representation is concrete in the sense that the representing Chu space
has the same carrier as the structure it represents.

Theorem 3.2. A function f: A — B is a homomorphism between (A, R) and
(B, S) if and only if it is a continuous function between the respective represent-
ing Chu spaces (A,r,X) to (B,s,Y).

Proof. (—) For a contradiction let f : A — B be a homomorphism which
is not continuous. Then there must exist a state (yi,...,y,) of B for which
F~ Y1), ..., f~Y(yn)) is not a state of A. Hence there exists (ag,...,a,) € R
for which a; ¢ f~'(y;) for every i. But then f(a;) ¢ y; for every i, whence
(f(a1),..., f(ayn)) &€ S, impossible because f is a homomorphism.

(«) Suppose f is continuous. Given (ai,...,a,) € R we shall show that
(f(a1),..., f(an)) € S. For if not then ({f(a1)},...,{f(an)}) is a state of B.
Then by continuity, (f~1({f(a1)}),...,f1({f(as)})) is a state of A. Hence
for some i, a; € f~1({f(a;)}), i.e. f(a;) € {f(a;)}, which is impossible. O

As an example, groups as algebraic structures determined by a carrier and a
binary operation can also be understood as ternary relational structures. Hence
groups can be represented as Chu spaces over 8 (subsets of {0,1,2}) as above,
with the continuous functions between the representing Chu spaces being exactly
the group homomorphisms between the groups they represent.

The above theorem can be restated in categorical language as follows. Any
full subcategory C' of the category of n-ary relational structures and their ho-
momorphisms embeds fully and concretely in Chugn. That is, there exists a full
and faithful functor F' : C — Chusg» such that FU = U'F where U : C — Set
and U’ : Chugn are the respective forgetful functors.

In terms of properties, each tuple a = (ay,...,a,) of R eliminates those
states (21, ...,x,) for which a € [[, Z;, thereby defining a property ¢, C (2")4
associated to tuple a. The Chu space representing (A, R) can then be defined
as the space satisfying ¢, for all a in R.

3.3 Topological Relational Structures

A natural generalization of this representation is to topological relational struc-
tures (A4, R,0), where R C A™ and O C 24 ig a set of subsets of A constituting
the open sets of a topology on A. (R itself may or may not be continuous with
respect to O in some sense, but this is immaterial here.)

Such a structure has a straightforward representation as a Chu space over
27+1 " as follows. Take X = X’ x O where X’ C (24)" is the set of states on
A determined by R as in the previous section. Hence X C (24)"+1. With this
new representation the continuous functions will remain homomorphisms with
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respect to R, but in addition they will be continuous in the ordinary sense of
topology with respect to the topology O.

For example topological groups can be represented as Chu spaces over 16.

This is an instance of a more general technique for combining two structures
on a given set A. Let (A,r,X;) and (A, s, X3) be Chu spaces over ¥, X
respectively, having carrier A in common. Then (A, ¢, X; x X3) is a Chu space
over ¥y X Yo, where t(a, (x1,x2)) = (r(a, z1), s(a, x2)).

If now (A',t', X1 x X}) is formed from (A’,r', X7) over ¥; and (4', s, X})
over Yo, then f : A — A’ is a continuous function from (A,¢, X1 x X3) to
(A" ¢, X1 x X}) if and only if it is continuous from (A,r, X1) to (A, ', X])
and also from (A, s, X3) to (A’,s', X}). For if (f,g1) and (f, g2) are the latter
two Chu transforms, with g, : X{ — X; and g2 : X}, — X5, then the requisite
g : X{ x X, — X; x Xy making (f,g) an adjoint pair is simply g(z1,x2) =
(g1(x1), g2(x2)). The adjointness condition is then immediate.

3.4 Concretely Embedding Small Categories

The category of n-ary relational structures and their homomorphisms is a very
uniformly defined concrete category. It is reasonable to ask whether the objects
of less uniformly defined concrete categories can be represented as Chu spaces.
The surprising answer is that Chuy fully and concretely embeds every concrete
category C of cardinality (total number of elements of all objects, which are
assumed disjoint) at most that of ¥, no matter how arbitrary its construction,
save for one small requirement, that objects with empty underlying set be initial
in C.

We begin with a weaker embedding theorem not involving concreteness.
Readers familiar with the Yoneda embeddings of C' into SetcOp and of C°P into
Set® will see a strong similarity. An important difference is that whereas both

SetCOIO and Set® depend nontrivially on the structure of C, the target of our
embedding depends only on the cardinality |C], the number of arrows of C.

This theorem shows off to best effect the relationship between Chu structure
and category structure, being symmetric with respect to points and states. The
stronger concrete embedding that follows modifies this proof only slightly but
enough to break the appealing symmetry.

Theorem 3.3. Every small category C embeds fully in Chuc.

Proof. Define the functor F' : C' — Chuj¢| as F'(b) = (A,r, X) where A = {f :
a—blacob(C)}, X ={h:b—cl|ceob(C)}, and r(f,h) = hf = f;h, the
converse of composition. That is, the points of this space are all arrows into b,
its states are all arrows out of b, and the matrix entries f; h are all composites
a L b2 ¢ of inbound arrows with outbound.

(A, r, X) is separable because X includes the identity morphism 1, for which
we have s(f,1;) = f;1p = f, whence f # f" implies s(f, 15) # s(f’, 15). Likewise
A also includes 1, and the dual argument shows that (A, r, X) is extensional.



3.4. CONCRETELY EMBEDDING SMALL CATEGORIES 23

For morphisms take F(g: b — ') to be the pair (¢,%) of functions ¢ : A —
A Y X' — X defined by o(f) = f;g, ¥(h) = g;h. This is a Chu transform
because the adjointness condition ¢(f);h = f;1(h) for all f € A, h € X’ has
f3;9;h on both sides. In fact the adjointness condition expresses associativity
and no more.

To see that F' is faithful consider g,¢’ : b — b'. Let F(g) = (¢,%), F(¢') =
(¢, ¢'). If F(g) = F(g') then g = Ly;9 = (1) = ¢'(1y) = Ly; ¢’ = ¢'.

For fullness, let (¢,) be any Chu transform from F(b) to F(b'). We claim
that (p,) is the image under F of ¢(1). For let F(o(1p)) = (¢',4"). Then
O'(f) = Fro(p) = f10(16); 1y = fi1p;9(1y) = f;9(1y) = @(f), whence ¢’ =
. Dually 9" = 1. O

Comparing this embedding with the covariant Yoneda embedding of C' in
Setcop, we observe that the latter realizes ¢, directly while deferring 1, via
the machinery of natural transformations. The contravariant embedding, of C'
in (Set®)°P (ie. of C° in Set®) is just the dual of this, realizing ¥, directly
and deferring ¢,. Our embedding in Chu avoids functor categories altogether
by realizing both simultaneously.

Anticipating the treatment of dinaturality in Chapter 6, the adjointness con-
dition can be more succinctly expressed as the dinaturality in b of composition
Mabe : C(a,b) x C(b,c) — C(a,c). The absence of b from C(a,c) collapses the
three nodes of the right half of the dinaturality hexagon to one, shrinking it to
the square

Cla,b) x O ¢) 2 C(a,b) x C(b,c)

Pg x 1 Mabe

Cla,b') x C(b,c) ™t C(a,c)

Here 1 x ¢4 abbreviates C(a,b) x C(g,c) and ¢4 x 1 abbreviates C(a, g) X
C(V',c). Commutativity of the square asserts ¢4(f);h = f;1¢4(h) for all f :
a —band h:b — c. By letting a and ¢ range over all objects of C' we extend
this equation to the full force of the adjointness condition for the Chu transform
representing g.

This embedding is concrete with respect to the forgetful functor which takes
the underlying set of b to consist of the arrows to b. From that perspective the
theorem (but not its witnessing realization) is a special case of the following,
which allows the forgetful functor to be almost arbitrary. The one restriction
we impose is that objects of C' with empty underlying set be initial. When this
condition is met we say that C' is honestly concrete.

Theorem 3.4. Every small honestly concrete category (C,U) embeds fully and
concretely in ChuEbEOb(c) Ub)-

Here the alphabet 3 is the disjoint union of the underlying sets of the objects
of C'. In the previous theorem the underlying sets were disjoint by construction
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and their union consisted simply of all the arrows of C. Now it consists of all
the elements of C' marked by object of origin.

Proof. Without loss of generality assume that the underlying sets of distinct
objects of C' are disjoint. Then we can view X as simply the set of all elements
of objects of C. Modify F(b) = (A, r, X) in the proof of the preceding theorem
by taking A = U(b) instead of the set of arrows to b. When U(b) # 0 take
X as before, otherwise take it to be just {1,}. Lastly take »(f,h) = U(h)(f)
where f € U(b), i.e. application of concrete U(h) to f instead of composition
of abstract h with f. (We stick to the name f, even though it is no longer a
function but an element, to reduce the differences from the previous proof to a
minimum.)

(A, r, X) is separable for the same reason as before. For extensionality there
are three cases. When U(b) = () we forced extensionality by taking X to be
a singleton. Otherwise, for h # I/ : b — ¢, i.e. having the same codomain,
U faithful implies that U(h) and U(h') differ at some f € U(b). Finally, for
h:b—c, b :b— ¢ where c# ¢, any f € U(b) suffices to distinguish U(h)(f)
from U(h')(f) since U(c) and U(c’) are disjoint.

For morphisms take F((g: b — ') to be the pair (¢, ) of functions ¢ : A —
A, X' — X defined by o(f) = U(g)(f), ¥(h) = U(hg). This is a Chu
transform because the adjointness condition U(h)(¢(f)) = U (h))(f) for all
f €A he X has U(hg)(f) on both sides.

This choice of ¢ makes ¢ = U(g), whence F' is faithful simply because U is.

For fullness, let (¢,1) be any Chu transform from F(b) to F(b'). We break
this into two cases.

(i) U(b) empty. In this case there is only one Chu transform from F(b) to
F(b'), and by honesty there is one from b to b’, ensuring fullness.

(ii) U(b) nonempty. We claim that ¢ (1;/) is a morphism g : b — b, and that
F(g) = (p,9). For the former, 1(1;) is a state of F(b) and hence a map from
b. Let f € U(b). By adjointness U(1y)(p(f)) = U(¥(1y))(f) but the left hand
side is an element of U(b') whence (1) must be a morphism to b'.

Now let F(¢(1y)) = (¢',9). Then for all f € U(b),

U@ (M)(f) = Uhoy(ly))(f)
= UMUE1L))(/)
= UMUy) (e ()
= UM)(#(f))
= U@Mh)(f)

Hence U (¢ (h)) = U(y(h)). Since U is faithful, ¢’(h) = 1 (h). Hence ¢’ = 4.
Since F'(b) is separable, ¢’ = . O



Chapter 4

Operations on Chu spaces

We define a number of operations on Chu spaces. These operations come from
linear logic [Gir87] and process algebra as interpreted over Chu spaces [GP93,
Gup94]. There is some overlap: linear logic’s plus operation A @ B does double
duty as independent (noninteracting) parallel composition, while tensor A @ B
serves also as orthocurrence [Pra86]. This last combines processes that “flow
through” each other, as with a system of trains passing through a system of
stations, or digital signals passing through logic gates.

For hands-on experience with all the finitary operations presented here ex-
cept the nondiscrete limits and colimits, visit the web site
http://boole.stanford.edu/live/ and a menu-driven Java-based Chu space
calculator will immediately be running on your computer accompanied by a
detailed tutorial containing many exercises.

Perp. We have already defined the perp A+ of A = (A,r, X) as (X,r", A).
When A is separable (all rows distinct), A+ is extensional (all columns dis-
tinct). Likewise when A is extensional, A~ is separable. Thus perp preserves
biextensionality.

The definition of A+ makes A++ not merely isomorphic to A but equal to
it, giving us our first law: A++ = A.

Tensor. The tensor product A® B of A = (A,r,X) and B = (B,s,Y)
is defined as (A x B,t,F) where F C Y4 x XP is the set of all pairs (f,g) of
functions f: A - Y, g: B — X for which s(b, f(a)) = r(a,g(b)) for alla € A
and b € B, and t : (A x B) x F is given by t((a,b), f) = s(b, f(a)) (= r(a, g(b))).

When A and B are biextensional, F can be understood as all solutions to
an A x B crossword puzzle such that the vertical words are columns of A and
the horizontal words are rows of B+ (columns of B). The columns of A ® B are
then the solutions themselves, with the rows of the solutions laid end to end
and transposed to form a single column.

Associated with the tensor product is the tensor unit 1, namely the space
({*},r,X) where r(x, k) =k for k € X.

When A and B are extensional, A ® B is extensional by definition: two dis-
tinct functions in F must differ at a particular point (a,b). It need not however

25
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be separable, witness A4 ® A where A = . The two “crossword solutions” here

00
are 9 and . Hence A® A = , whose biextensional collapse is .
01

Functoriality. We have defined A+ and A® B only for Chu spaces. We now
make these operations functors on Chuy by extending their respective domains
to include morphisms.

Given (f,g) : A — B, (f,9)* : B* — Al is defined to be (g, f). This
suggests the occasional notation f+ for g.

Given functions f : A — A" and g: B — B, define fQg: AQB — A QB
to be the function (f®g)(a,b) = (f(a), g(b)). When f and g are continuous, so is
f ® g, whose adjoint (f ® g)* from G to F (where G and F consist respectively
of pairs (' : A - Yk : B - X')and (h : A - Y,k : B — X)) sends
B :A =Y togth'f: A—Y.

Laws. Tensor is commutative and associative, albeit only up to a natural
isomorphism: A®B = B Aand A® (BRC) = (A® B)®C. The natural-
ity of these isomorphisms follows immediately from that of the corresponding
isomorphisms in Set. We show their continuity separately for each law.

For commutativity, the isomorphism is (v,4) : (A® B) — (B ® A) where
ARB=(AxB,t,F), B& A= (B x Au,G), v: AB — DB®A satisfies
~(a,b) = (b,a), and 6 : G — F satisfies 6(g, f) = (f,g). The continuity of (v, d)
then follows from u(y(a,b), (g, f)) = u((b, a), (g, f)) = r(a,g(b)) = s(b, f(a)) =
t((a,b), (f,9)) = t((a,b),54(g, f)), for all (a,b) in A x B and (g, f) in G.

For associativity, let A = (4,7, X), B = (B,s,Y), and C = (C,t,Z). Ob-
serve that both (A®B)®C and A®(B®C) can be understood as (Ax BxC, u, F)
where F consists of all functions m : A x B x C' — X satisfying the conjunction
of three conditions: (i) for all b, ¢ there exists x such that for all a, m(a,b,c) =
r(a,x); (ii) for all ¢, a there exists y such that for all b, m(a,b,c) = s(b,y); and
(iii) for all a,b there exists z such that for all ¢, m(a, b, c) = t(c, z). In the im-
agery of crosswords, A, B and C supply the dictionaries for the respective axes
of a three-dimensional crossword puzzle, with Aa.m(a,b,c) denoting the word
in m at point (b,¢) of B x C parallel to the A axis and similarly for the word
Ab.m(a, b, c) at (¢, a) parallel to the B axis and Ac.m(a,b,c) at (a,b) parallel to
the C' axis.

With this observation we can now describe the isomorphism between (A ®
B)®C and A® (B®C): on the points it is the usual set-theoretic isomorphism
of (A x B) x C and A x (B x C), while on the states it is the correspondence
pairing each map m : (A x B) x C — X with the map m' : Ax (BxC) = X
satisfying m/(a, (b, ¢)) = m((a,b),c). It is immediate that this pair of bijections
is a Chu transform. Hence tensor is associative up to this isomorphism.?

The tensor unit behaves as such, i.e. A®1 = A, via the evident isomorphism
pairing (a, %) with a.

Linear Implication. We define linear implication, namely A—oB, as (A ®

LIf Set is organized to make cartesian product associative “on the nose”, i.e. up to identity,
possible assuming the Axiom of Choice though not if Set is required to be skeletal [Mac71,
p.161], then tensor product in Chuy, is also associative on the nose.
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Bt)+. Tt follows that A—oB = (F,t,A x Y) where F is the set of all pairs
(f,9), f: A— Band g:Y — X, satisfying the adjointness condition for Chu
transforms.

For biextensional spaces the crossword puzzle metaphor applies. A function
f A — B may then be represented as an A x Y matrix m over ¥, namely
m(a,y) = s(f(a),y). Taking the row s(f(a), —) as the representation in B of
f(a), this representation of f is simply a listing of the representations in B of the
values of f at points of A. Dually a function g : B~ — A’ may be represented
as a Y x A matrix over X, namely m(y,a) = r(a, g(y)). For such spaces we then
have an alternative characterization of continuity: a function is continuous just
when the converse (transpose) of its representation represents a function from
Bt to AL

With one additional perp the definition of linear implication can be turned
into that of par, A% B, defined as (A+ ® B*)*. Thus tensor and par are De
Morgan duals of each other, analogously to the De Morgan duality of conjunc-
tion and disjunction in Boolean logic.

With biextensional arguments 4—oB8 and A% B are separable but not neces-
sarily extensional for the same reason A ® B is extensional but not necessarily
separable. Hence to make A—oB and A% B biextensional, equal columns must
be identified.

Additives The additive connectives of linear logic are plus A@ B and with
A& B, with respective units 0 and T.

A @ B is defined as (A + B,t,X xY) where A + B is the disjoint union
of A and B while t(a,(x,y)) = r(a,z) and (b, (z,y)) = s(b,y). Its unit 0
is the discrete empty space having no points and one state. For morphisms
fA-A, g: BB, fog: AeB — A @B sendsa€ Ato f(a) e A
and b € B to g(b) € B'. With as the De Morgan dual of plus is defined for both
objects and morphisms by A&B = (A+ @ BY)*, while T = 0.

Limits and Colimits The additives equip linear logic with only finite discrete
limits and colimits. In particular A @ B is a coproduct of A and B while A&B
is their product.

In fact Chuy is bicomplete, having all small limits and colimits, which it
inherits in the following straightforward way from Set. Given any diagram
D : J — Chuy where J is a small category, the limit of D is obtained indepen-
dently for points and states in respectively Set and Set°P.

Exzxercise. Determine the matrix associated with general limits and colimits.
(Use the discrete case above as a guide.)

Ezxponentials The exponential A serves syntactically to “loosen up” the
formula A so that it can be duplicated or deleted. Semantically as defined below
it serves to retract Chuy to a cartesian closed subcategory.

A candidate for this subcategory is that of the discrete Chu spaces (4, X4),
a subcategory equivalent to the category Set of sets and functions. A larger
subcategory that is also cartesian closed is that of the comonoids, which we now
define.

A comonoid in Chuy is a Chu space A for which the diagonal function
0: A— A®A and the unique function € : A — 1 are continuous (where 1 is the
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tensor unit). These two functions constitute the interpretation of duplication
and deletion respectively.

The comonoid generated by a normal Chu space A = (A4, X), denoted A,
is defined as the normal comonoid (A,Y") having the least Y O X. That this ¥
exists is a corollary of the following lemma.

Lemma 4.1. Given any family of comonoids (A, X;) with fized carrier A,
(A,N; Xi) is a comonoid.

Proof. The unique function from (A4, X) to 1 is continuous just when X includes
every constant function. All the X;’s must have this property and therefore so
does their intersection.

Given A = (A4,X), 6 : A — A® A is continuous just when every A x A
crossword solution with dictionary X has for its leading diagonal a word from
X. It follows that if a solution uses words found in every dictionary X;, then
the diagonal is found in every X;. Hence the dictionary (), X; also has this
property.

Therefore (A,(, X;) is a comonoid. O

The domain of the ! operation is easily extended to arbitrary Chu spaces by
first taking the biextensional collapse.

Comonoids over 2 are of special interest. FEzercise: (M. Barr) The state
set of a comonoid over 2 is closed under finite union and finite intersection. It
follows that finite comonoids over 2 are simply posets.

Define a comonoid to be T} (as in point-set topology) when it is over 2
and when for every distinct pair a,b of points there exist states z,y such that
r(a,z) = r(b,y) # r(a,y) = r(b,z) (equivalently, when no point is included in
another as subsets of X). By the preceding exercise, finite 77 comonoids are
discrete (X = 24).

FExercise: Extend this to countable 77 comonoids.

Open problem: Is every T7 comonoid discrete?

The following operations are motivated by applications to process algebra.
Each assumes some additional structure for 3.

Concatenation. This operation assumes that ¥ is partially ordered, for ex-
ample 0 < 1 for two-state events or 0 < 1 < 2 for three-state events (respectively
“not started,” “ongoing,” and “done”). This induces the usual pointwise partial
ordering of £4: given f,g: A — %, f < g just when f(a) < g(a) for all a € A,
and similarly for ¥X. The intent of the order is to inject a notion of time by
decreeing that an event in state s € ¥ can proceed to state s" only if s < s'.

The concatenation A; B is that quotient of A+ 3 obtained by taking only
those states (x,y) of A+ B such that either z is a maximal (= final) state of A
or y is a minimal (= initial) state of B under the induced pointwise orderings.
The idea is that B may not leave whatever initial state it is in until A enters
some final state. We call this a quotient rather than a subobject because the
subsetting is being done in the contravariant part.
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Concatenation is clearly not commutative, but is associative, the common
condition on ((z,y),2) and (z,(y,z)) being (z maximal V y minimal) A (y
maximal V z minimal) A (z maximal V z minimal).

Choice. This operation assumes that ¥ contains a distinguised element 0
corresponding to nonoccurrence. The choice AUB is defined as (A+ B, t, X+Y)
where t(a, ) = r(a,x), t(b,y) = s(b,y), and t(a,y) = t(b,z) = 0. Thus if A+ B
finds itself in a state of A, none of the events of B can have occurred in that
state, and conversely for states B.

Choice is both associative and commutative, up to isomorphism, but is not
however idempotent, unlike its regular expression counterpart a + b which sat-
isfies a + a = a. This departs from process algebra which takes choice to be
idempotent, in the tradition of regular expressions.
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Chapter 5

Axiomatics of
Multiplicative Linear Logic

(This chapter is adapted from a journal submission.)

We axiomatize Multiplicative Linear Logic (MLL) and propose the machin-
ery of Danos-Regnier switching as its semantics. To develop intuition about the
nature of switching we prove a bijection between the essential switchings of a
cut-free proof in MLL and the interpretations of the implications in that proof
as based on evidence either for or against.

5.1 Axiomatization

We have already encountered the linear logic connectives in the form of func-
tors on Chuyg, which we shall take as the Chu interpretations of the linear logic
connectives. What makes linear logic a logic is its axiomatization and its re-
lationship to those interpretations, the subject of this chapter. We give two
axiomatizations, systems S1 and S2, the latter being more suited to interpre-
tation over Chu spaces. In the process we give a tight correspondence between
the two systems in terms of linkings and switchings.

Linear logic is usually axiomatized in terms of Gentzen sequents I' F A.
However it can also be axiomatized in Hilbert style, with A - B denoting not a
Gentzen sequent but rather the fact that B is derivable from A in the system,
the approach we follow here. This continues an algebraic tradition dating back
to Peirce and Schroder’s relational algebra [Pei33, Sch95], updated for linear
logic by Seely and Cockett [See89, CS97]. We confine our attention to the
multiplicative fragment, MLL, further simplified by omitting the constants 1
and 1+ = L.

It will be convenient to assume a normal form for the language in which
implications A—oB have been expanded as A+% B and all negations have been
pushed down to the leaves. Accordingly we define a formula A (B, C,...) to
be either a literal (an atom P or its negation P1), a conjunction A® B of two
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formulas, or a disjunction AR B of two formulas. This simplifies the axiom
system by permitting double negation, the De Morgan laws, and all properties
of implication to be omitted from the axiomatization. Call this monotone
MLL.

We axiomatize MLL with one axiom schema together with rules for associa-
tivity, commutativity, and linear or weak distributivity.

T (PLBP)®...0 (Pf8P,), n>1
A (AR B)®C + A®(B®C)

A (ARB)BC + A%R(B30O)

C A®B + B®A

C ABB + B®A

D (ARB)®@C + AB(B®C)

E A®B + A ®B

E ABB + A'RB

Table 1. System S1

The rules have the interesting feature of all having exactly one premise.’

This makes the system cut-free, lacking the cut rule either in the form “from
A—oB and B—o(C' infer A—oC,” or as modus ponens, “from A and A—oB infer
C.” Tt also performs all collecting of theorems at the outset in a single axiom
rather than later via a rule of the form A, B+ A ® B. We may then treat - as
a binary relation on formulas, being defined as the reflexive transitive closure of
the binary relation whose pairs are all substitution instances of the above rules.
We read AF B as A derives B, or B is deducible from A.

Rules E and E assume A + A’ and B - B’, allowing the rules to be applied
to subformulas.

An instance of T is determined by a choice of association for the n — 1
®’s and a choice of n literals (atoms P or negated atoms P*). When P
is instantiated with Q* the resulting double negation is cancelled, as in the
instance (Q+%Q)® ((P* % P)® (Q® Q1)) which instantiates P; with Q and P3
with Q.

An MLL theorem B is any formula deducible from an instance A of axiom
schema T, i.e. one for which A - B holds. For example (P ® Q)—o(P ® Q),
which abbreviates (P-28Q+)% (P ® Q), can be proved as follows from instance
(PR P)® (Q138Q) of T.

(PLBP) 2 (Q*2Q) +F P*3(P2(Q*3Q)) (D)
F PrR(Q*3Q)®P) (CE)
F PiR(Q+8(Q®P)) (D,E)
F PIR(QIB(P®Q)) (CE)
F (PBQY)R(P2Q) (A)

IWe view T purely as an axiom and not also as a rule with no premises.



5.2. SEMANTICS 33

Although this theorem has the form of an instance of P;—oP;, it cannot be
proved directly that way because the P;’s may only be instantiated with literals.
Nevertheless all such more general instances of T can be proved.

5.2 Semantics

Multiplicative linear logic has essentially the same language as propositional
Boolean logic, though only a proper subset of its theorems. But whereas the
characteristic concern of Boolean logic is truth, separating the true from the
false, that of linear logic is proof, connecting premises to consequents.

In Boolean logic proofs are considered syntactic entities. While MLL deriva-
tions in S1 are no less syntactic intrinsically, they admit an abstraction which
can be understood as the underlying semantics of MLL, constituting its abstract
proofs. These are cut-free proofs, S1 being a cut-free system.

Define a linking L of a formula A to be a matching of complementary pairs
or links P, P+ of literal occurrences. Call such a pair (A, L) a linked formula.

There exist both syntactic and semantic characterizations of theorems in
terms of linkings, which Danos and Regnier have shown to be equivalent [DR89).

For the syntactic characterization, every MLL derivation of a theorem A
determines a linking of A as follows. The linking determined for an instance
of T matches P;* and P; in each conjunct. Since the rules neither delete nor
create subformulas but simply move them around, the identities of the literals
are preserved and hence so is their linking. Call a linking so determined by a
derivation sound. It is immediate that A is a theorem if and only if it has a
sound linking.

For the semantic characterization, define a switching o for a formula A to be
a marking of one disjunct in each disjunction occurring in A; since disjunctions
are binary and there are n of them, there are 2" possible switchings. A linking L
of A and a switching o for L together determine an undirected graph G(A, L, o)
whose vertices are the 4n — 1 subformulas of A, consisting of 2n literals, n — 1
conjunctions, and n disjunctions, and whose edges consist of:

(i) the n pairs (P;, Pi*) of literals matched by the linking;

(ii) the 2n — 2 pairs (B, C) where B is a conjunction in A and C is either of
B’s two conjuncts; and

(ii) the n pairs (B, C) where B is a disjunction in A and C' is the disjunct
in B marked by o (n disjunctions hence n such edges).

Call a linking L of formula A walid ?> when for all switchings o for L,
G(A,L,0) is a tree (connected acyclic graph).® This criterion is semantical in
the same sense as validity in Boolean propositional calculus, defined as truth
over all assignments of truth values to variables.

2 Although it is not customary to refer to this notion as validity, the idea of linear logic as
basically a connectionist logic makes it natural to think of switching as the connectionist coun-
terpart of truth assignment, and hence a condition universally quantified over all switchings
as a notion of validity.

3There being 4n — 1 vertices and 4n — 2 edges, had G(A4, L, o) failed to be a tree it would
necessarily have done so by both being disconnected and containing a cycle.
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Theorem 5.1. (Danos-Regnier [DR89]) A linking of a formula is sound if and
only if it is valid.

This result constitutes a form of completeness result for MLL. However it
is stronger than the usual notion of completeness in that it sets up a bijection
between syntactic and semantic criteria for theoremhood called full complete-
ness, the term coined by Abramsky and Jagadeesan for their game semantics
of MLL [AJ92] but equally applicable to switching semantics. Here the bijec-
tion is identification: the valid linking that each sound linking is paired with
is itself. The sound linkings of A constitute abstract proofs of A, semantically
justified by their validity. For transformational semantics as treated in Chapter
6, the corresponding bijection is between cut-free proofs (as sound linkings) and
transformations meeting a suitable naturality condition.

5.3 Syntactic Expression of Linking

The boundary between syntax and semantics is not sharp, and semantical in-
formation can often be encoded syntactically. For example the satisfying as-
signments of a Boolean formula can be represented syntactically by putting the
formula in disjunctive normal form, with each disjunct (conjunction of literals)
then denoting those satisfying assignments for which the positive literals in the
disjunct are assigned true and the negative false. When all the atoms occurring
in a formula occur in every disjunct, either positively or negatively, the disjuncts
are in bijection with the satisfying assignments.

The semantical notions of linking and switching can likewise be incorporated
into MLL formulas. We begin with linking, the key idea for which is to label
each atom with the name of the link it belongs to.

In general a formula A may have many linkings or no linking. But for a bi-
nary formula, one such that every atom occurring in A does so once positively
and once negatively (e.g. when all P;’s of T are distinct), there exists a unique
linking. Conversely a linking of an arbitrary formula A determines a binary
formula A’ obtained from A by assigning distinct names to the links and sub-
scripting each atom with the name of the link it belongs to. It follows that the
notions of a linked formula and a binary formula can be used interchangeably.
It should be borne in mind that the theoremhood question for a formula is in
general harder than for a linked or binary formula.

Since we will be dealing only with linked formulas (A, L) in this chapter, for
simplicity we assume for the rest of this chapter that all formulas are binary.
The links still exist but they are now uniquely determined by A alone, having
been absorbed into the language. G(A, L, o) becomes just G(A, o), and instead
of saying the linking L of A is sound or valid we can simply say that the binary
formula A is provable or valid respectively. The Danos-Regnier theorem then
says that a binary formula A is provable if and only if it is valid.
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5.4 Syntactic Expression of Switching

Switching semantics is well motivated in that it serves as a crucial stepping stone
for all known completeness proofs of other MLL semantics. A more intrinsic
motivation for it however is based on the notion of information flow in proofs.
In the Chu interpretation this flow is realized by transformations. However
the flow can be understood abstractly in its own right, which we treat prior
to considering the transformational interpretation of such flows. The key idea
here is the choice of A-—oB or Ao—B* as direction-encoding synonyms for the
direction-neutral A% B. Marking B with each of two possible directions permits
us the reconcile the commutativity of 2 with our A-calculus interpretation of
the axiom and rules of system S2.

The customary direction of flow in assigning a denotation to an expression
is upwards in the tree, with the denotation of the expression flowing from leaves
to root. But now consider the theorem (P ® (P—oQ))—o@Q. There is a natural
direction of flow starting from P through P—o(Q and ending at ). The flow at
P—oQ would seem to go from the P leaf up to the —o thence down to the @
leaf.

Now this theorem is just an abbreviation of (P1%(P ® Q1))®(Q, whose
connectives can be reassociated and permuted to yield PR (Q%B (P @ Q1)).
The latter can be abbreviated as P—o(Qt—o(P ® Q1)), with the flow now
taking on the form of a pair of flows from P to P and from Q' to Q*, changing
the apparent direction of one of the two %’s.

This example suggests the possibility of correlating switchings with theorems
stated using implications. In fact there exists a very good correlation taking the
form of a bijection between the essential switchings of a binary theorem A and
the set of bi-implicational expressions of A, terms that we now define.

Essential switchings. Given a binary theorem A, the tree G(A, o) induced by
a switching ¢ is made a directed graph by orienting its edges towards the root.
Non-link edges, namely those connecting a conjunction or disjunction to one of
its operands, may be oriented either downwards or upwards. Call a conjunction
or disjunction downwards or upwards in G(A, o) according respectively to
whether or not a downwards edge is incident on it. The root is necessarily
upwards. For example in (P1%(P ® Q1))®8Q, P ® Q is downwards for all
switchings save that in which the first B is switched to the right and the second
to the left, and for that switching the links are oriented P+ to P and Q to Q.

We now analyze the topology of G = G(A,0) at any given ®. For any
subformula B = C® D, if the edge from B to whichever of C' or D it is directly
connected to is removed, G must separate into two trees. The tree containing
vertex B cannot contain either C' or D or there would be a cycle when the
corresponding edge from B is put in. Hence the other tree must contain both
C and D.

Now suppose B is an upward disjunction. Then whichever of C' or D was
directly connected to B in G must be the root of the tree containing it, and the
other of C or D a leaf. This is interchanged by changing the switching at B,
which has the side effect of reversing all edges along the path between C' and
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D.

If however B is a downward disjunction, then both C' and D are leaves of
their common tree. Changing the switching at B does not change this fact, nor
the orientation of any edge in either tree.

In the above example (P+% (P ® Q1))®(Q, when the second % is switched
to the right, the first % becomes downwards. In that case the path to the
root starts at P~ and proceeds via P, P ® Q+, Q*, and @ ending at the root
(P33 (P®Q1))RQ; the direction of the first 2 connects the vertex P-% (P ®
Q1) to one of P+ or P® Q+. Changing that connection does not reverse any
edge but merely replaces one downwards edge from P+%(P® Q') by the other.

An essential switching is one that records the direction only of the up-
ward disjunctions for that switching. We can think of the downwards dis-
junctions as being recorded as X for don’t-care. This has the effect of iden-
tifying those switchings differing only at their downward disjunctions. Thus
(P13 (P ® Q1))®Q has only three essential switchings because when the sec-
ond % is switched to the right we ignore the now downward first 3.

5.5 Bi-Implication

We would like to interpret the formulas A ® B and A% B as types. With the
Chu interpretations of these connectives in mind, we regard entities of the former
type as pairs, and of the latter as functions, either from A+ to B or from B+
to A.

Now the connectives appearing in the rules of S1 are just ® and %, without
any negations A+. It would be a pity to have to introduce negations as a side
effect of interpreting A% B as consisting of functions. To avoid this we shall
make —o perform the role of &, allowing us to talk of functions of type A—oB.

This works fine except for Rule C, commutativity of %, which must rewrite
A—oB as B+—0A'. To avoid having negation appear in C we adopt Ao—B as
a synonym for B+—oA~L.

With this motivation we introduce the language of bi-implicational MLL. A
formula in this language is one that is built up from literals using ®, —o, and
o—.

We axiomatize bi-implicational MLL as per Table 2 below. The axiom and
rules are obtained from System S1 by rewriting each A% B in T or on the left
side of a rule by either At—oB or Ao—B* in all possible combinations, with
the negations pushed down to the metavariables (A, B,C,...) and with any
resulting negative metavariables then instantiated with their complement.

By Po—-oP we mean the choice of P—oP or Po— P, where P is a literal as for
system S1, with the choice made independently for each of the n implications of
T. Thus T has 2" instantiations for any given selection of n literals. As before
we assume A A’ and B+ B for E—E .

As with system S1, the only negations are on literals and remain there, and
the rules do not mention negation, catering solely for ®, —o, and o—.
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T (PiooP)®...® (PyooP,), n>1
A (A®B)®C F A®(B®C)
A (A® B)—C F A—o(B—oC)
A (A—oB)o-C + A—o(Bo-C)
A’ (Ao-B)o-C + Ao—(B®C)
C A®B + B®A

C A—B F Bo-A

c Ao—B F B-oA

D (A-B)®C F A—-o(B®C)
D’ (A-B)®C F Ao—(Bo-C)
E A®B + A @B

E A'—B + A-—-oB’

E Ao-B' + A'o-B

Table 2. System S2

Theorem 5.2. The binary theorems of S2 are in bijection with the pairs (A, o)
where A is a binary theorem of S1 and o is an essential switching for A.

(Note that different linkings of the same nonbinary theorem can affect which
switchings are essential. Hence we cannot strengthen this to a bijection between
the theorems of S2 and pairs (A, o) where A is a theorem of S1, since not all
linkings of A need be compatible with the same o.)

Proof. We exhibit a map in each direction and prove that they compose in
either order to the respective identity. Neither map by itself requires induction
on length of proofs to specify the map, but does require it in order to prove
theoremhood of the result.

We translate theorems of S2 to formulas of S1 via bi-implication expan-
sion. This is simply the result of rewriting each A—B as A*% B and Ao—B
as A% B+ and pushing the negations down to the literals via De Morgan’s laws
for ® and %, canceling double negations.*

Applying this translation to S2 converts it to S1. It follows by induction on
length of proofs that every theorem of S2 translates in this way to a theorem of
S1.

For the other direction, we are given a binary theorem A of S1 together with
a switching o and want a theorem of S2. We can specify a formula without
using induction on length of proofs by appealing to the Danos-Regnier theorem.
The switching determines a graph G(A, o), oriented as in the description above
of essential switchings.

Rewrite each downward disjunction B = C®D as (C*+ ® D+)L. Note that
this rewriting ignores the direction of switching at this 2. Rewrite each upward
disjunction B = C® D as either Co— D~ or C+—oD according to whether C or D

4For noncommutative 1 inear logic [Abr90] the De Morgan laws also reverse order; here we
leave the order unchanged so as to preserve the exact structure of all formulas.
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respectively is the marked disjunct. Lastly rewrite each downward conjunction
B ® C as either (B+o-C)* or (B—C*)! according to whether the path from
B ® C goes to B or C respectively. Cancel any double negations that arise
directly from this translation. Call the final result the o-translation of A.

We now claim that the o-translation of a binary theorem of S1 is a formula
in the language of S2. To see this observe that the negations introduced by
this rewriting appear only on downward edges. Morever every downward edge
between two compound subformulas (i.e. not involving a literal) receives a nega-
tion at each end, whence all such negations may be cancelled directly without
bothering to apply De Morgan’s laws to push negations down. The only remain-
ing negations are then those on nonlink edges involving literals. If the literal is
P~ then we have another pair of negations that may be cancelled. If it is P then
leave the negation in place so that it becomes P1, and observe that the literal
to which P (now negated) is linked is P+. It follows that the only remaining
negations are at literals, and furthermore that links connect occurrences of the
same literal (in S1 they connected complementary pairs). Such a formula is in
the language of S2.

We further claim that this formula is a theorem of S2. To see this proceed by
induction of the length of proofs in S1. For the basis case, translating an instance
of T in S1 turns the i-th disjunctions into one of P—oP, Po—P, P+—oP~ or
Plo— Pt depending on the sign of P; in the S1 theorem and the direction
determined by o for that % in the o-translation.

For the inductive step, every way of rewriting the 2’s on the left of a rule of
S1 as either —o or o— is represented on the left of some rule of S2. (Associativity
has only three such combinations rather than four for essentially the same reason
that (P13 (P ® Q1))®8(Q has only three essential switchings: when the second
% is switched to the right the first 2 becomes downwards, and translates to
® which does not have separate notations for its two directions.) Hence every
step of an S1 derivation can be mimicked by an S2 step, preserving the claimed
bijection. This completes the proof of the claim.

It should now be clear that the two translations are mutually inverse, estab-
lishing the bijection claimed by the theorem. O

What we have shown in effect is that S1 and S2 are equivalent axiomatiza-
tions of MLL, modulo the difference in language and the additional information
in S2 about the switching. From the Danos-Regnier theorem we have that each
binary theorem A of S1 in monotone MLL corresponds to a set of theorems of
S2 in bi-implicational MLL, one for each essential switching of A.

Higher Order Theorems. Note that Rule D’ of S2 may increase order (depth
of nesting of implications in the antecedent). This allows S2 to prove theorems
of arbitrarily high order limited only by n. For example with n = 3 we can
proceed using only D’ as follows to obtain a theorem of order 5.

(P—P)® (@—Q) @ (R—oR)) F (P—oP)® ((R—oR)—Q)—Q)
F ((R—oR)—Q)—Q)—oP)—oP
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Starting from an axiom of order one, each step adds two to the order. Thus
if we had started with n implications, in n — 1 steps we would by the above
process prove a theorem of order 2n — 1.

Negative Literals. Having avoided negation everywhere else it seems a shame
to have negative literals in formulas. This is unavoidable if S1 theorems such as
(PBP)—o(P%P) are to have S2 counterparts, since such theorems cannot be
expressed in the bi-implicational language using only positive literals.

5.6 The Dialectic M\-Calculus

One popular formulation of constructive logic is based on the notion of evidence
a for a proposition A, written a : A. The Curry-Howard isomorphism of types
and propositions reads a : A ambiguously as an element a of type A, and as
evidence a for proposition A. It further reads A x B ambiguously as the product
of types A and B, and as conjunction of propositions; thus evidence a for A and
b for B constitutes evidence (a, b) for the conjunction A x B. Similarly A — B is
read as the function space from A to B and the implication of B by A. Evidence
for an implication A — B takes the form of a function f : A — B which given
evidence a for A produces evidence f(a) for B.

Proofs as evidence for theorems may in a suitable setting be identified with
closed terms of the simply-typed A-calculus. For example the closed term
Ma,b) : Ax B . (bya) : B x A proves the theorem A x B — B x A while
Aa:A.Mb:B.a:Aproves A— (B — A).

From the viewpoint of System S2 above, the A-calculus has the limitation
that the direction of f : A — B is always from A to B. This is not compatible
with switching semantics, which capriciously chooses a direction for every %.
This is where Chu spaces enter the picture. A Chu space consists of not one
but two sets A and X, both of which can be thought of evidence. But whereas
points a € A serve as evidence for A, states z of X, the underlying set of AL,
can be thought of as evidence against A, i.e. evidence for the negation A+, an
interpretation suggested to us by G. Plotkin [conversation].

Now we could write z : AL but this requires writing A+ in the rules, which we
would like to avoid as not matching up well to S2. Instead we shall introduce
a new notation z--A, dual to a : A, expressing that x is evidence against A,
permitting us to avoid saying “evidence for A+.” In the Chu space interpretation
of a proposition A as a Chu space A = (4,7, X), evidence a for A is a point of
A while evidence x against A is a state of A.

We realize evidence for A—oB as an adjoint pair (f; f’) of functions, one
mapping evidence for A to evidence for B, the other mapping evidence against
B to evidence against A. (Abbreviating (f; f’) to f is permitted; the use of
semicolon instead of comma avoids the ambiguity that would otherwise arise
when say the pair ((f; f'),g) is abbreviated to (f,g).) Evidence for Bo—A is
then (f’; f), as an application of commutativity. Note that this is not the same
thing as evidence against A—oB, i.e. for A® B+, namely a pair (a, x) consisting
of evidence for A and evidence against B.
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With Godel’s Dialectica interpretation and the work of de Paiva [dP89a,
dP89b] in mind, we call this variant of the simply-typed A-calculus the dialec-
tic A-calculus. The two language features distinguishing it from the simply-
typed A-calculus, taken to have the usual exponentiation operator — and also
x for convenience, are a second implication <, and the notion z--A of evidence
against, dual to evidence for, a : A.

The linear dialectic A-calculus imposes the additional requirement that every
A-binding binds exactly one variable occurrence in the formula. We distinguish
the linear case in the manner of linear logic by writing ®, —o, and o— in place
of x, —, and «.

We now specify in full the language of the linear dialectic A-calculus. Exam-
ples of all constructs can be found in Table 3 below. Terms are built up from
variables a,b,...,z,y,... and types A, B, ... using A-abstraction, application,
and pairing. All terms are typed either positively or negatively.

A type is any bi-implicational MLL formula A all of whose literals are posi-
tive. The atoms P, @, ... of A constitute its ground types. In the terminology of

context-free or BNF grammars, P, @, ... here play the role of terminal symbols
or actual type variables while A, B, ... serve as nonterminal symbols or type
metavariables.

A variable a,b,...,z,y, ... of the A-calculus is either positively typed as in

a : A or negatively typed as in z--A. Both positively and negatively typed
variables are drawn from the same set of variables, but by convention we will
usually use a,b,c, ... for positively typed variables and z,y, z, ... for negative
as an aid to keeping track of the sign of its type.

A positive application M N consists of a pair of terms positively typed re-
spectively A—oB and A,> and is positively typed B. A negative application M N
consists of a pair of terms, with M positively typed Ao—B and N negatively
typed A, and is negatively typed B. For linearity M and N must have no free
variables in common, either as an occurrence or as \a.

A positive or consistent pair is a term (M : A, N : B) positively typed by
A ® B. A negative or conflicting pair is either a term (M : A, N--B) negatively
typed by A—oB or (M--A, N : B) negatively typed by Ao—B. For linearity M
and N must have no A-variables in common, either as an occurrence or as Aa.
(In consequence of this and the corresponding rule for application, a A-variable
can appear just once in the form Aa.)

A positive M-abstraction is a term Aa : A. M : B positively typed A—oB, and
the variable a must occur in M with positive type A. A negative A-abstraction
is a term Ax--A . M--B positively typed Bo—A, and the variable z must occur
in M with negative type A.

When the variable a of a A-abstraction is positively typed by a conjunction or
negatively typed by an implication (in which case we will have usually written
x rather than a), @ may be expanded as the pair (a1, as) where the a;’s are
variables of the appropriate type and sign depending on A and its sign. This

5Were we trying to follow noncommutative linear logic more closely we would presumably
write positive applications in the reverse order, N M, along with some other order reversals.
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expansion may be applied recursively to the a;’s, as for example in Rule A of
Table 3 below.

When a is positively typed by an implication, a may be written (a1;az2) but
the a;’s do not have any type of their own independent of that of a. Unlike
A-bound pairs (a,b), A-bound functions (a;;as) cannot be split up, and the
occurrence of the a;’s in M is restricted to either (ai;as) positively typed by
the implication A (either A;—0Ay or Ajo—As) or (ag;ay) positively typed by
the reverse implication (respectively either Aso—A; or Ay—0Ay).

This completes the specification of the language of the linear dialectic A-
calculus.

The usual syntactic approach to defining the meaning of any A-calculus is
in terms of reduction rules. To avoid getting too far afield here we shall instead
view A-terms as denoting Chu transforms parametrized by choice of Chu spaces
over some fixed alphabet Y interpreting the ground types. For example, given
an interpretation of ground type P as a Chu space A, Aa : P . a : P is the
identity function 14 on A. Technically speaking such an interpretation of a
A-term is a natural transformation (more precisely dinatural), but we defer that
point of view to the next chapter since the idea of a parametrized function is
natural enough in its own right when represented as a typed A-term.

We interpret System S2 in the linear dialectic A-calculus as follows. The
i-th atomic implication in an instantiation of axiom T has one of four forms
interpreted as follows:

i) P,—oP; as \a; : P; . a; : Py

ii) Plto—P* as Aa;~Pi . a;- P

K2 7 ?

(
(
(111) Pio—P; as \x;--P; . ;- Py and
(

iv) PA—oPt as A, : P . w0 P

3

These constitute the four ways of typing the identity function 1p, on F;,
which we construe as either a ground type or if P; is a negative literal then the
negation of ground type. All four types are necessary if one wishes to be able
to interpret every theorem of S2 in this way.

Interpret T itself as consisting of those n identity functions, associated into
pairs of pairs however the conjunctions are associated. For example the instance
(P—oP)® ((Qto-Q1) ® (R-—R1Y)) of T is interpreted as (1p : P—oP, (1q :
Qto-Q*, 1 : Rt —oRY)).

With this interpretation of the axiom instance as the starting point, inter-
pret successive theorems in a proof by applying the following transformations,
each associated with the correspondingly labeled inference rule of S2. In the
derivation A - B via rule R, the transformation associated by Table 3 to rule
R maps the A-term interpreting A to that interpreting B.
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A A(a,b),¢): (A B)®C . (a,(bc)): A® (B® ()
A AM:(A®B)—C .Xa:A.Xb:B . f(a,b): C
A Af: (A—oB)o—C . Xa: A . \y-B . f(a,y)--C
A’ Af: (Ao—-B)o—C . Ax--A . Ab: B . f(x,b)-C

C Ma,b) : A® B . (ba): B® A

C/ Mf;f):A—B . (f';f): B—A

C Mf;f): Ao—B . (f'; f): B—oA

D Af,¢): (A—-B)®C . Xa: A . (f(a),c): B&C
D’ Af,¢): (A-B) @ C . Xx--A . (f(x),c)--Bo—C
E Aa,b): A® B . (f(a),g(b)): A’ ® B’

E M : A'—B . ghf : A—oB’

E Ahv: Ao—B' . ¢'hf': Alo-B

Table 3. Transformations Associated to Rules of S2

Rules E — E assume that A - A’ is realized by (f;f'): A—~A’ and B+ B’
by (g;9') : B—oB'.

Rule A transforms evidence ((a, b), ¢) for (A® B)®C to (a, (b, ¢)) as evidence
for A® (B ® C). Rule A maps the function f witnessing (A ® B)—C to the
function Aa . A\b . f(a,b) witnessing A—o(B—oC).

Rule A’ maps witness f for (A—oB)o—C to Aa . Ay . f(a,y) which given
evidence a for A and y against B, constituting evidence against A—o B, produces
evidence f(a,y) against C.

The remaining rules are interpreted along the same lines.

Theorem 5.3. FEvery theorem of S2 is interpreted by Table 8 as a transforma-
tion represented by a closed term of the linear dialectic A-calculus.

Proof. This is a straightforward consequence of the form of Table 3. The in-
terpretations of the axiom instances and the rules are in the language, contain
no free variables, A-bind exactly one variable, and are typed compatibly with
the rules. Free variables in A, B,C remain free after transformation, by the
requirement that all A-bound variables are distinct. The theorem then follows
by induction on the length of II. O

It is a nice question to characterize those terms of the linear dialectic A-
calculus for which the converse holds: every closed term of the linear dialectic
A-calculus meeting that characterization interprets some theorem. Taking this
a step further, a calculus with reduction rules should permit a notion of normal
form permitting a strenthening of the above theorem to a bijection between
certain terms in normal form and cut-free proofs.



Chapter 6

Transformational Logic

6.1 Natural Transformations

Transformation is fundamental to logic, mathematics, and computer science.
First order logic transforms premises into conclusions while equational logic
transforms terms into terms. In mathematics algebra transforms structures ho-
momorphically into other structures while geometry transforms spaces contin-
uously, linearly, etc. into other spaces. In computer science, programs operate
by transforming data structures into other data structures, while programmers
develop software by transforming available programs, data specifications, and
process specifications in order to match them up with software requirements.

Consider for example functions between two sets A and B. Now there are
many such functions, in fact |B|l4l of them. When A = B = {0,1} we have
names for all of them: the identity, the two constant functions, and the “twist
map” or Boolean negation. But for much larger sets, most of the functions
between them are as anonymous as ants in a colony. However we do have
names for certain ants such as the queen. Is there a counterpart for functions
between sets?

One approach to limiting to namable functions is by fiat: adopt a system
of names such as the A-calculus. The dialectic A-calculus introduced in the
previous chapter achieves this. It provides a syntactic connection with Chu
spaces by depending on its mixture of points and states as positive and negative
evidence, and moreover has furnished us with a potentially useful library of
transformations of Chu spaces, namely those defined by Table 3 by induction
on length of derivation, starting with the n-tuple of identity transformations
named by Axiom T.

The trouble with such syntactically defined classes of transformations is that
it is easy to imagine extending the class by extending the A-calculus to something
richer. What is so special about the A-calculus that we should stop there? The
intrinsic interest in the class would be more compelling if it had some other
characterization making no mention of the A-calculus.

43
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The functions from A to 2 = {0, 1} are a case in point, being understandable
as bit vectors. In the absence of any information about the elements of A, we
can nevertheless name and even reason about the two constant functions. We
can write these as Az.0 and Az.1, these constants being available because of
the involvement of the set containing them. As an example of such reasoning,
any function from 2 to B when composed with either of these two constant
functions is itself a constant function from A to B, an inference that required
no knowledge of A or B.

Can we identify and reason about any other functions from A to 27 Well,
if we knew that A were the set of integers then a great many predicates would
immediately spring to mind: positive, even, square, prime, and so on, and for
some of these predicates such as primality the literature contains a wealth of
reasoning.

But if we are given no information at all about the set A then we are hard
pressed to name any further functions. And what about other situations, such
as functions from 2 to A?

Can our intuition of what is namable be formalized?

A reasonable first thought might be that a namable function f : A — 2
should be permutation invariant. That is, for any bijection 7 : A — A, we
require f = fmr. And it is easy to see that the constant functions to 2 are all
and only those functions A — 2 that are invariant in this sense.

But suppose now that we take f : A — 2 to be the constantly one function
in the case that A contains v/17 , and the constantly zero function otherwise.
We have certainly named a function, and it is certainly a constant function,
as we have just proved it must be. But it is also clear that we have exploited
a loophole in our definition of “namable” that allows arbitrarily absurd names
that depend on the choice of A.

We can dispose of that example by broadening the class of bijections to
m: A — B. This entails modifying the requirement f = fmr to f4 = fpm where
fa:A—2and fp: B — 2 so that the types make sense. But now we have a
polymorphic requirement, imposed not on single functions but on families f4 of
functions indexed by the class of all sets A. We take “transformation” to denote
such a family of functions, or “polymorphic function.”

But this too fails: let f4 be the constantly one function when the number
of elements of A is finite and prime, say, and zero otherwise.

So bijections aren’t good enough either. But we can easily dispose of this
example by further broadening our requirement to invariance under arbitrary
functions g : A — B.

Call a transformation from A to 2 meeting this criterion natural.

Proposition 6.1. There are two natural transformations from A to 2, namely
the two constant functions chosen independently of A.

Proof. The two constant functions are easily verified to be natural. For the
converse, let fa be natural, let a € A, and let g, : 1 — A (where 1 = {%}) be
the function satisfying g,(x) = a. Then fa(a) = faga(x) = fi1(x). Hence f4 is
a constant function whose value depends only on the choice of f;. O
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Earlier we mentioned the converse problem of naming functions from 2 to
A. The corresponding naturality condition here is the requirement that, for all
functions g : A — B, gfa = fp. Clearly there can be no natural transformation
from 2 to A as A could be empty.

Now we have two separate notions of naturality, one for each of A — 2 and
2 — A, along with two different results for them. We want to put them on the
same footing. A reasonable first step would be to consider natural transforma-
tions from A to B. What we have observed is that when A is unknown and B
is known, there would appear to be |B| natural transformations from A to B,
namely the constant functions, while when A is known and B is unknown, there
is one if A is empty and otherwise none. Going beyond this, it is reasonable to
suppose that if both A and B are known then all functions from A to B ought
to be natural, while if neither is known then there should be none.

The appropriate formalization of this intuitively clear notion of naturality is
due to Eilenberg and Mac Lane [EML42b, 11.12]. There they defined naturality
just for group homomorphisms, but subsequently generalized the concept to
families of morphisms in arbitrary categories [EML42a]. To define naturality
they had first to define functor, but to define functor they had first to define
category.

Given two categories C, D and two functors F, G : C' — D, a transformation
7: F — G is a family 7, of morphisms of D indexed by objects a of C. A
transformation is natural when it satisfies G(f)7, = 7 F(f) for all objects a, b
and morphisms f : a — b of D, i.e. when the following diagram commutes.

F(a) =% G(a)
FH| |ew
F(b) = G(b)

For the examples thus far, take C = D = Set, the category whose objects
are sets and whose morphisms are functions. Represent an unknown set by the
identity functor I : Set — Set, which sends all sets and functions to themselves,
and a known set A by a constant functor K 4 : Set — Set defined as K4(B) = A
for all sets B and K4(f) = 14, the identity function on A, for all functions
f between any two sets. It is now a straightforward exercise to rephrase the
above special-case definitions and their associated propositions and proofs for
this formalization of “natural,” and to verify the above conjectures for the cases,
A and B both known, and both unknown.

So far we have only considered two extremes: no information and total
information about a set. A more common situation is partial information. For
example we may have an unknown square A2. The fact that A2 is a square
gives us a little more information to go on.

Exercise. (i) There are two natural transformations from A2 to A, namely
the two projections. (Hint: set A to 2 = {0,1}, show that only two of the
16 functions from 22 to 2 are natural, then deduce that the choice for A = 2
determines f4 for all other A.)
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(ii) There is only one natural transformation from A to A%, namely the
diagonal function f(a) = (a,a).

(iii) There are four from A? to 2, namely the two constants, equality, and
its negation. (How nice that equality is natural.)

Problem. How many from A3 to 2? (There are 32 obvious ones, are there
any more?)

Instead of the unknown square A% we may have the unknown power set
24, Here there are at least three functors we could associate with 24, taking
[+ A — B to the inverse image function f~1(X) = {a € A|f(a) € X}, the direct
image function f(X) = {f(a)|a € X}, and its dual f(X) = {f(a)|a ¢ X}. For
each we may ask the same questions as above with 24 in place of A%2. Clearly
there are no natural transformations from 24 to A because of the case A = 0,
but the other cases are more fun to pursue.

Other kinds of object. Instead of functions from the set A to itself we could
ask about the naturality of homomorphisms from a group G to itself.

Proposition 6.2. The natural transformations on the identity functor on the
category Grp of groups are in bijection with the integers.

Rather than proving this directly we may prove both it and the fact that
there is only one natural transformation from the set A to itself from the same
master theorem about varieties. A variety is a category whose objects are the
models of some equational theory and whose morphisms are the homomorphisms
determined by the signature of that theory. The n-ary operations of a variety
are the elements of the free algebra on n generators, i.e. the terms built from
variables x1,...,x, up to provable equality. A variety is commutative when
all its unary operations commute.

We say that a term ¢(z) in one variable realizes the operation t4 = Az :
A.t(z) on algebra A, where x : A means that the values of x range over A. For
every algebra A of a commutative variety, every term ¢(z) realizes an endomor-
phism (self-homomorphism) ¢4 : A — A.

Theorem 6.3. The natural transformations on the identity functor on a com-
mutative variety are the unary operations of the variety realized on its algebras.

In particular for pointed sets there are two unary operations, namely the
identity function and the constant function, and therefore two natural trans-
formations on s+, the identity functor on the category Set™ of pointed sets.
For monoids the unary operations are the nonnegative integer scalar multiples,
while for groups they are all integer scalar multiples, proving Proposition 6.2.

Proof. We first verify naturality of the family of realized operations. For any
unary operation t(z) realized ast4 : A — A and any homomorphism h : A — B,
the naturality condition h(t4(a)) = tg(h(a)) holds because h is a homomor-
phism.

To see that there are no other natural transformations, let F' be the free
algebra on one generator x. The endomorphisms of F' are exactly the unary
operations ¢, since these correspond to where the generator of F is sent. (This
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generalizes the situation in Set where there is just one function on the singleton.)
Now consider any homomorphism h : FF — A where A is any algebra of the
variety. There is one such for each element of A, determined by where h sends
the generator x € F, since F is free. Hence by naturality the choice of tp
determines t4 at every element a € A: t4(a) = h(tp(x)). O

6.2 Naturality in Chu

One difference between Chu spaces and sets is that Set is a cartesian closed
category. The one product A x B does double duty as categorical product with
projections and as tensor product left adjoint to the internal hom A — B. Chu
is not cartesian closed and has these as distinct products, respectively A&B
and A ® B. This greatly increases the number of functors constructible with
products.

As in the previous chapter we restrict ourselves to the tensor product A® B
as being more fundamental to Chu by virtue of its intimate connection with
the internal hom or linear implication . A—oB. Since the carrier of A ® B is just
cartesian product of carriers, any natural transformation in Chu (for any X)
between functors built with tensor products is also natural in Set. Hence the
natural transformations in Set serve as an upper bound on those in Chu for such
functors.

Recall that in Set there were two natural transformations from A% to A, and
one from A to A2. In Chus, there are no natural transformations between .42
(= A® A) and A, in either direction.

The problem is not with naturality but continuity. Naturality limits the

functors from A2 to A to being just the two projections, which fail continuity at
00

certain A’s, for example A = . Here A% = %/ and the 4 x 2 crossword solutions

00 00
constituting the two projections are P°!| and , whose right-hand column does
01 01

not appear in A2,

This choice of A does not however rule out the diagonal function d : A4 — A2,
which is continuous there. However the diagonal is not continuous at A = ,

01

for which A% = |19, The diagonal map is represented by the crossword solution
01

OTl, whose columns do not appear in A. (This A also makes the projections

discontinuous.)

There are however two natural transformations from A? to itself, sending
(a,b) to respectively (a,b) and (b,a). Set of course has these, as well as (a,a)
and (b,b), namely the composites A2 T4 % A2 where g, ™1 are the two
projections. A similar argument to the above rules out the latter two for Chu.
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6.3 Dinatural Transformations

For both Set and Chu, not to mention other closed categories, the internal hom
or implication A — B (A—oB in Chu) is a useful functor to which we would
like to extend all of the above. In any closed category C' the type of — is
C°P x C' — C. That is, A occurs contravariantly or negatively in A — B, while
B occurs covariantly or positively.

A difficulty enters when we allow the same variable to appear both positively
and negatively. While we can treat A% as a functor from C to C without
difficulty, we cannot do so with A — A because there is no sensible extension
of the functor to morphisms f. In f—of, f does not know which way to turn.

Such cases of mixed variance can be treated by generalizing naturality to
dinaturality, connoting “naturality in both directions.” Given functors F, G :
C° x C — D, a “diagonal transformation” 7 : F' — G, one whose family 7,, of
morphisms in D is indexed only by the diagonal of C°P x C, is called dinatural
when for every f:a — bin C, the diagram on the left below commutes.

F(pip) = G(p;p) 1 =% H(p;p)
F(f;p)T lG( i f) | H(p; f)
F(q;p) G(p;q) 1 H(p;q)
F(q;f)l G(f;q) | H(f;q)
F(g:9) =% G(g:q) 1% H(gq)

The diagram on the right shows the simplification possible in MLL. We can
transpose each morphism 7, : F(p;p) — G(p;p) to an element 7, of H(p;p),
where H(p;q) is defined as (F—oG)(p;q). We refer to the resulting dinatural
transformation as a dinatural element. Here 1 = px is Chug’s tensor unit.

We may think of dinatural transformations as variable morphisms, and of di-
natural elements as variable elements or points. Now dinaturals are defined only
on the diagonal of (C°P)™xC™, namely at pairs of n-tuples (p1, ..., Pn; D1y -+, Pn),
with the further requirement that the p;’s be objects. This restriction makes the
(C°P)™ portion of parameter space redundant for dinaturals. Hence in think-
ing of dinaturals as variable morphisms the parameter space over which those
morphisms vary can be taken to be simply the objects of C™, and the generic
parameter can therefore be simplified to (p1,...,pn).

In the next two sections we develop soundness and (to the extent possible)
full completeness results for Chus based on dinaturality semantics, with similar
results to Blute and Scott [BS96] who studied the corresponding question for
vector spaces perturbed by group actions. We follow this with an example
showing the limitations of dinaturality for Chu spaces, motivating the treatment
of (binary) logicality as a suitable strengthening of dinaturality, using methods
analogous to those of Plotkin [P1o80].
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6.4 Soundness of MLL for dinaturality seman-
tics

The following enunciation of soundness holds more generally for any *-autonomous
category [Bar79], of which Chu is just an instance. We state and prove it just for
Chu to avoid the considerable work of defining a general *-autonomous category,
of which Chu is a reasonably representative example.

Theorem 6.4. (Soundness) Every n-variable theorem of MLL, interpreted as
an n-ary operation on Chu, contains a dinatural element.

Proof. We prove this by induction on the length of proofs in System S1, whose
steps are interpreted according to Table 3 as transforming transformations start-
ing with the identity transformation interpreting Axiom T at the polymorphic
object (p1,...,pn) of Chu™. Although Table 3 is given for System S2, the latter
can be understood as simply System S1 with a specified orientation for each %,
yielding the evident application of Table 3 to System S1.

To establish dinaturality of this element, observe that for any n-tuple (f; :
pi — ¢i) of Chu transforms, F(pi,...,pn;f1s---sfn) © (1p,...,1, ) and
F(fla c. '7.fn;(I17 s 7Qn) o (11113 teey 1qn) both Slmphfy to (f17~ . 7fn)

The structural rules for associativity and commutativity correspond to iso-
morphisms, which therefore cannot harm dinaturality.

For linear distributivity, Rule D, suppose ¢((A—oB) ® C) has a dinatural
element. We exhibit the corresponding dinatural element of ¢(A—o(B ® C)).
We prove this first for the case where (A—B) ® C' is the whole formula, then
generalize.

Let the formulas A, B,C denote the (variable) Chu spaces A, B,C respec-
tively. A dinatural element of (A—oB) ® C is a pair (g,c) where g : A — B is
a dinatural element of A—of5, equivalently a dinatural transformation from A
to B, and c is a point of C. There is an evident choice of corresponding dinat-
ural element of A—o(B ® C), which we can write as Aa.(g(a), c), viewable as a
transformation from A to B® C.

Claim: The following diagram commutes. (Here f : p — ¢ is as before the
generic test of (di)naturality while g, ¢’ are the values of the given dinatural
transformation from A to B at p, q respectively.)

A(pip) Aa-(g(8).c) B(p;p) @ C(p; p)
(

A(f;p)T B(p; f) @ C(p; f)
Alg;p) B(p;q) ®C(p, q)
Algs ) | [B(fi0) @ C(f:0)
Algig) 9 Blgsq) @ Clgsq)

This follows from the fact that the maps associated with B and C' commute
separately, by dinaturality of g and ¢, whence so does their tensor product. We
conclude that Aa.(g(a),c) is dinatural.
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When (A—B) ® C appears as a proper subformula of p((A—B) ® C), we
can view the latter as having the form D —o(F; ® (Dy—o(FE2 ® ... (Dp—o(Ff ®
((A® B)—o()))...))). This is the same situation as before, except that f now
becomes a function of the Chu space D1 ® Dy ® ... R Dy, where each D; denotes
D;. O

Like f and ¢, the D;’s are polymorphically dependent on the parameter
space Chu™; without the polymorphism convention this picture would be much
messier.

6.5 Full completeness of BMLL for dinaturality

In this section we prove that System S1 of Chapter 5, restricted to the binary
fragment of MLL, is fully complete for the dinaturality semantics of Chus spaces.
Binary MLL (BMLL) is that fragment of MLL for which each variable oc-
curs exactly once with each sign. The interest in this small fragment of MLL
is that dinaturality in Chugy is well-behaved there, in particular all dinatural
transformations of BMLL can be accounted for as abstract cut-free proofs of
multiplicative linear logic. This type of result is called full completeness.

Full completeness may be defined formally in terms of representation of
proofs by transformations. We are given a “syntactic” category C' consisting
of formulas as objects and proofs or entailments as morphisms between those
formulas. We are further given a “semantic” category D . The formula ¢, as an
object of C, is represented by the object F'(¢) of D, while the proof 7 : ¢ — ¢ is
represented by the morphism F(7) : F(¢) — F(c'). This representation is faith-
ful and/or full according to whether F' is a faithful or full functor respectively.
When it is both, we say that D together with F' constitutes a fully complete
semantics for C.

For the case at hand, BMLL interpreted over Chu, the objects of C are the
formulas of BMLL and its morphisms are the cut-free proofs between BMLL
formulas. The objects of D are functors built from projections using tensor
and perp, while the morphisms are dinatural transformations between those
functors, which in this restricted situation compose to form a category. (In
general dinatural transformations fail to compose.)

When distinctions between morphisms of a homset of C' are ignored, we ask
only whether there exists a morphism (proof) from ¢ to ¢’. The functor itself
witnesses soundness of such a proof 7 : ¢ — ¢ with an interpretation F(w) of
that proof. Fullness ensures only that if there exists a morphism from F(c) to
F (') then there exists a proof from ¢ to ¢/, which amounts to the usual notion
of completeness in logic, that every valid sentence have a proof.

When the morphisms of a homset are distinguished, faithfulness and fullness
together entail a bijection between syntactic proofs and their semantic interpre-
tations.

We begin our treatment of the BMLL of Chu spaces with ordinary complete-
ness, namely that every BMLL formula with a semantic proof has a syntactic
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proof.

Proposition 6.5. Every BMLL formula A containing a dinatural is a theorem
of MLL.

Proof. We follow the line of argument initiated by Abramsky and Jagadeesan
applicable in the presence of MIX, and generalized by Hyland and Ong in the
absence of MIX. Call an MLL formula semisimple when it is a par of tensor
products of literals. (With MIX one uses the stronger notion of simple in which
the tensor products contain at most two literals.) A semisimple formula can
equivalently be described as being in disjunctive normal form. Hyland and Ong
show that if all the semisimple consequents of an MLL formula are theorems
then so is that formula. Hence to show that a formula is not a theorem it suffices
to show that none of its semisimple consequents are.

We first treat the case of balanced binary, each variable occurring twice,
once positively and once negatively. This case uniquely determines a proof-net.

We use the Danos-Regnier criterion to show that every semisimple nonthe-
orem A of BMLL contains no dinatural. We do this by giving a particular
assignment of Chu spaces to variables for which A evaluates to the 0 x 1 Chu
space 0.

A semisimple BMLL formula determines an undirected graph whose vertices
are the tensor products and whose edges are complementary pairs of literals
each in one of the tensor products. Since there is only one %, at the root of A,
its switchings are immaterial. Incorrect proof-nets as such graphs are therefore
either disconnected or contain a cycle.

Case 1. The graph of A is disconnected.

We use the fact that all occurrences of a variable must occur within a con-
nected component, since the formulas are binary. Set the variables of one com-
ponent to the 1 x 1 Chu space g, call this W for white. Set the remaining
variables to the 1 x 1 Chu space [, call this B for black.

BEasy calculations show W+ = W @ W = W8W, B+ = B® B = B3B,
BRW = 0 where 0 is the 0 x 1 (empty discrete) Chu space. It follows that each
clause in the W component evaluates to W, as does the par of those clauses.
Similarly each of the remaining clauses evaluates to B, as does their par. The
par of the B clauses and the W clauses is then 0, whence no element can exist
let alone a dinatural one.

We illustrate this case with the formula P2 P2 Q®Q"L, all clauses of which
are singletons. The P link connects the first two clauses while the @ link
connects the other two, but this leaves two connected components. Setting
P to white and @ to black makes P2 P+ white, Q® Q' black, and their par 0.

Case 2. The graph of A is connected and contains a cycle.

Select a cycle and orient it, and hence its links. Orient the remaining links
to point towards the cycle, in the sense that the target end of the link is closer
to the cycle than the source end, with ties broken arbitrarily. Now assign 0 or
T = 0 to the variables in such a way that every link is oriented from 0 to T. It
is immediate that all clauses on the cycle contain a 0 literal, and an argument
by induction on distance from the cycle extends this property of clauses to the
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remainder of the graph. Since 0 ® A = 0 for all Chu spaces A, all clauses
evaluate to 0 and hence so does their par.

We illustrate case 2 with the formula (A ® B)®(A+ ® B+ ® C)8C*. The
A and B links between the first two clauses create a cycle with two edges. To
orient it properly set A to 0 and B to T (or vice versa). This makes the first
two clauses 0. Setting C to T zeros both C* and the whole formula.

This disposes of the balanced binary case. In the unbalanced case, the
two-occurrence limit means that at least one literal has no oppositely signed
counterpart. Assign that literal 0, and all other literals W (the 1 x 1 “white”
Chu space, but B would do as well). Then all clauses evaluate to either 0 or W,
and there is at least one 0 clause. Since WRBW =W and WR0 = 080 = 0, it
follows that the formula evaluates to 0. Hence no dinatural is possible for the
unbalanced binary case, or for that matter any formula in which all occurrences
of some variable have the same sign. O

Full Completeness. We now prove that every dinatural element of the functor
denoted by a binary MLL theorem A corresponds to a cut-free proof net of A.
In the binary case this is the rather unexciting result that a theorem has only
one dinatural element. We shall first show this for semisimple binary theorems
and then extend to general binary formulas.

Proposition 6.6. (Full completeness) Every semisimple theorem of BMLL has
at most one dinatural.

Proof. Let A be such a theorem. Being binary, it uniquely determines a graph
whose edges are links P — P as in the previous section. Being a theorem, its
graph is an undirected tree. Make it a rooted oriented tree by choosing any
singleton clause for the root and orienting the edges to point towards the root.

We shall show by induction on the number n of variables that a dinatural
element of A is uniquely determined at every assignment (point of parameter
space). We shall start from the assignment of all 1’s and proceed to an arbi-
trary assignment in n steps, showing that at each intermediate assignment all
dinaturals have the same value at that assignment.

For the basis of the induction we take the assignment assigning the Chu space
L to the distal end of each link (that is, to the literal associated with that end of
that link) and hence 1 to its near end. Since there is one edge leaving each clause
except the root, which has no edges leaving it, it follows that the root clause
evaluates to 1 while the remaining clauses evaluate to 1 ® 1® ... ® L ®...® 1
= 1. Hence A evaluates to 1. But 1 has only one element, so every dinatural
element must be the same here.

We now move from this assignment to an arbitrary assignment. For simplic-
ity of exposition assume that the distal literal occurrence of each P is negative,
substituting P+ for P if necessary, so that all variables have value 1 before the
move. Assign Chu spaces arbitrarily to variables. We shall transform the all-
ones assignment into this arbitrary assignment one variable at a time, at each
stage showing that there is still at most one dinatural element.
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Enumerate the variables in order of increasing distance from the root, with
ties broken arbitrarily. For each variable P we first change the value of its
positive occurrence to the Chu space chosen above for P, call it A, and then
change the value of its negative occurrence P+ from L to A™L.

The value of A during the processing of one such variable P can be expressed
as (BB P1)% (P ® C) where B and C remain fixed while P varies.

C is the value, at the start of this stage, of the clause containing the positive
occurrence of P. P+ comes from the clause containing P, all of whose literals
other than P+ are positive and have value 1 throughout this stage, being further
from the root than P. B denotes the combined value of all the remaining clauses
(as combined by ). It will be convenient to rename B to B+ allowing us to
rewrite this expression as (B ® P)—o(C ® P).

At the start of this stage P =1, so A = B—o(C. By the induction hypothesis
all dinatural elements have the same value here, call it f : B — C. Transform
the positive (righthand) occurrence of P from 1 to A via an arbitrarily chosen
map a : 1 — A (an element of A). This determines a map B—o(C ® a) :
(B—(C®1)) = (B—(C ®.A)). This map sends the dinatural f to Ac.(f(c),a),
a function from B to C ® A.

Now consider (B ® A)—o(C ® A). The above map a : 1 — A determines
amap (B®a)—-o(C®A) : (B A)—o(C®A) — (B1)—o(C @ A). Any
dinatural element g at (B ® A) — (C ® A) is sent by this map to Ac.g(c, a),
which by dinaturality must equal Ac.(f(c),a) as defined above. This must hold
for all elements a € A, whence g must satisfy g(c,a) = (f(c),a) for all ¢ € B and
a € A. But this uniquely determines g, whence (B ® A)—o(C ® A) can contain
at most one dinatural.

Proceeding in this way for all variables of A, we arrive at the arbitrarily
chosen assignment to all variables, at which A still has at most one dinatural
element. O

We conclude by extending the above theorem from the semisimple case to
general formulas of BMLL.

Proposition 6.7. (Full completeness) Every theorem of BMLL has at most one
dinatural.

Proof. Tt suffices to show that linear distributivity maps dinaturals injectively.
For if our claim were false and some BMLL theorem had two or more dinaturals,
each of its semisimple consequents would have two or more as well, contradicting
the previous theorem.

Consider first the top-level case where (A—B) ® C derives A—o(B @ C).
Here (f,c) is mapped to Aa.(f(a),c). If (f,¢) # (f',¢’) then either f # f" or
¢ # . In either case \a.(f(a),c) # Aa.(f'(a), ).

In the general case the dinatural element being so transformed becomes
a function from D ® Dy ® ... ® Dy to A—o(B ® C). Having two distinct
dinaturals means that for some tuple (di,...,d;) we have (f,c) # (f',c) as
above. But then at the same tuple we have the corresponding Aa.(f(a),c) #
Aa.(f'(a),c). O
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Combining this proposition with soundness, we have

Theorem 6.8. BMLL is fully complete for the dinaturality semantics of Chus.

6.6 Incompleteness of MLL for dinaturality se-
mantics in Chu

The full completeness of MLL for dinaturality semantics, which in the previous
section we showed for two occurrences of a variable, does not extend to formulas
containing four occurrences of a variable.

Proposition 6.9. Chuy contains exotic dinaturals on A—oA, in the sense that
they correspond to no MLL proof of (A—A)—o(A—A).

Proof. We exhibit a specific exotic dinatural transformation 7 that will depend
on the following notion. Call those Chu spaces which contain both a row of
all zeros and a column of all zeros the Type I spaces, and the rest the Type II
spaces. We claim that A—o.A is Type I if and only if A is.

(If) We need to show that A—o.A has both a zero row, namely a constantly
zero function, and zero column, namely a pair (a,z) in A X X at which every
function is zero. The former is representable because A (in its role as target of
A—oA) has a constantly zero row, and is continuous because A in the role of
source has a constantly zero column. The latter follows by taking a to be the
point indexing A’s zero row, and z the state indexing its zero column.

(Only if) If A—oA is of Type I then it has a zero row, i.e. a zero function,
possible only if A as source has a zero column and as target a zero row. Hence
A must also be Type L.

We now define the transformation 74 at Type I spaces A to be the constantly
zero function on A — A, and at all other Chu spaces the identity function on
A — A, both easily seen to be continuous by the above claim. For dinaturality,
observe that the dinaturality hexagon commutes for any pair A, B of Chu spaces
of the same type and for any Chu transform f : A — B. For A, B of Type I this
is because going round the hexagon either way yields the zero row. For Type II
it is because f commutes with identities.

When A and B are of opposite types, one of the two homsets Hom(.A4, B) or
Hom(B, A) must be empty, the former when A lacks a zero column or B lacks a
zero state, the latter when it is B that lacks the zero column or A that lacks the
zero state. If Hom(A, B) is empty then there can be no hexagon because there
isno f: A — B. If Hom(B, A) is empty then the hexagon commutes vacuously,
its starting object being empty. We have thus shown that 7 is dinatural.

By soundness of dinaturality semantics, all cut-free proofs have already been
paired up with dinaturals none of which are of the above form. Hence the latter
are exotic. O



Chapter 7

Full completeness of MLL
for Chu spaces

(This chapter is adapted from [DHPP99)].)

7.1 Logical Transformations

The preceding chapter concluded on a negative note: dinaturality semantics is
incomplete for Chu spaces. Is there some stronger criterion than dinaturality
that works with mixed variance? In this chapter we show that binary logical
transformations strengthen dinatural transformations sufficiently to achieve full
completeness of MLL, at the cost of narrowing the scope of their applicability
to functors built with the operations of MLL.!

We extend the MLL operations to act not on morphisms but on binary
relations R : A—x B, yielding binary relations F(R) : F(A) = F(B). Unlike
functions, binary relations are closed under converse, which neatly sidesteps the
main difficulty with mixed variance.

Definition 1. A Chu relation R = (R",R") : A B between Chu spaces
A= (A,r,X)and B = (B,s,Y) is a pair of ordinary binary relations R* C Ax B
and R~ C X x Y meeting the following adjointness condition: for all a,b,z,y
such that aR"b and Ry, we have a-x = b - y. O

In the special case when R is a function A — B and R~ a function Y — X,
a Chu relation is exactly a Chu transform. Hence Chu relations generalize Chu
transforms.

L Actually the definition of logical relations between Chu spaces via the Chu construction
applied to the bicomplete cartesian closed category of logical relations between sets allows log-
ical transformations of any arity to work also with all limits and colimits. We have not looked
at whether they work with linear logic’s exponentials, or with process algebra’s concatenation
and choice.

95



56 CHAPTER 7. FULL COMPLETENESS OF MLL FOR CHU SPACES

We need the following notion both to define the action of MLL operations
on Chu relations, and to define logical relations.

Definition 2.  Let (A, B, R) be a two-sorted relational structure with one
binary relation R C A x B. Take a second structure (A’, B’, R') of the same
similarity type. We call a pair of functions f : A — A’, g : B — B’ a two-
sorted homomorphism when for all aRb we have f(a)R'g(b). O

We now define how MLL operations act on Chu relations.

Perp. If R = (R+,R7) A= B,sothat R* CA" xB" and R~ C A xB~
satisfy adjointness, then R+ = (R™, R") : At — B, also satisfying adjointness.
In the special case where R is a Chu transform from A to B, R+ will be a Chu
transform from B+ to A*.

Tensor. Given R: A~ Band R’ : A’ - B’, we define RQR' : AQ A" <« B®
B by (i) (a,a')(R® R (b,0) iff aR"b and o’R'"V, and (ii) (f1, f2)(R ®
R (91,92) iff (f1,91) is a two-sorted homomorphism from R" to R’~ and
(fa,92) is a two-sorted homomorphism from R'* to R~

This brings us to the main concept for our result, that of logical transfor-
mation.

Let n : F — G be a transformation between n-ary MLL operations. Then
each component 74 : FA — GA is a Chu transform, consisting of an adjoint
pair of functions n4" : FA" — GA" and g4~ : GA~ — FA™ (read FA" as
(F(A))"). The usual naturality commuting square becomes a pair of squares,
one for points, and one for states, which we call the positive and negative
logicality squares, the top and bottom faces of the following cube.

.
n,
FB* 5 - GB'
GR*
FA" " ~GA"
nA
TGB
TFB TGA
TFA
_ 3 _
y FB GB
GR™
FA = — GA™
nA

In the cube A = (Ay,...,A,) € Chu", B = (By,...,B,) € Chu", R =
Ri,..., R, is a tuple of Chu relations R; : A; < B;, FR" abbreviates (F(R))",
and r¢ denotes the matrix of C. The positive logicality square, namely the top
face of the cube, consists of a two-sorted homomorphism between F(R)" C
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F(A)" x F(B)" and GR)" C G(A)" x G(B)", namely a pair of functions
na" : F(A)" — G(A)" and ng™ : F(B)" — G(B)" such that a F(R)b implies
na(a) GR)ng(b) for alla € F(A)" and b€ F(B)".

Definition 3. A transformation 1 between n-ary MLL operations F' and G
is logical when all logicality squares in 77 are two-sorted homomorphisms. [

A less elementary but faster equivalent definition of both the action of MLL
operations on relations and of logicality takes for these cubes the morphisms
of Chu(Log,2). This is the result of applying the Chu construction [Bar79,
App.] to Log, the category of binary relations as objects and two-sorted homo-
morphisms between them, with dualizer the identity relation 15. This approach
requires a familiarity with the general categorical Chu construction that we have
not presumed here.

7.2 Semisimple full completeness

An MLL formula is semisimple if it is of the form 28,,, ( <k L;;) where
L;; are literals. Our route to full completeness for semisimple formulas passes
through the category Coh of coherence spaces, via the map (:) constructed
above. The primary attraction of Coh is the existence of full completeness
results for MLL with MIX, for example [Tan97], which allow us to assign a MIX
proof net to every logical transformation in Chu.

In the Lafont-Streicher image of Coh in Chu, the functional behaviour of the
logical transformation corresponds to a tuple of lambda calculus terms associ-
ated canonically with its MIX proof net. We argue that the behaviour of the
logical transformation outside the Coh image is also governed by the lambda
terms, by asserting logical relations to hold between arbitrary Chu spaces and
their “simulations” in the Coh image. Thus every logical transformation is char-
acterized by a distinct tuple of lambda terms.

Finally we refute MIX, by showing that any such lambda term must use
all of its arguments during computation. Hence the corresponding MIX proof
net is connected under all switchings and therefore is a proof net, giving us
the desired bijection between proofs of semisimple MLL theorems and logical
transformations in Chu.

7.3 Coherence spaces

Coherence spaces were the first and indeed motivating model of linear logic
[Gir87]. Define the x-autonomous category of coherence spaces and linear maps
as follows.

Objects. A coherence space U = (|U|, Z,,) is a reflexive undirected graph:
a set |U| of tokens and a reflexive symmetric coherence relation =, C |K| x
|U| between tokens. Define strict coherence by v, v iff u Z v and u # v,
incoherence by u = v iff ~(u ", v), and strict incoherence by u =, v iff

—(uZ,v).
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A clique a in U is a subset a of |U| made of pairwise coherent tokens; an
anticlique = in U is a subset x of |U| made of pairwise incoherent tokens. We
write U® and U° for the sets of cliques and anticliques of U respectively.

Morphisms. A linear map | : U — V is a binary relation between tokens
[ C |U|x|V| such that for all (u,v), (v/,v") € ,uZ v =vZ, v andv = v =
u =, u'. Composition is usual relational composition, with the usual identities.
A linear map [ defines a function [—]l : U®* — V* from cliques to cliques and a

reverse function {[—] : V° — U° from anticliques to anticliques, with
[a)l = {velV]:uea((uv)€l)}
lz] = {we|U]: vex((uv)el)}

Either [—]l or I[—] determines [ completely.
Linear negation: U+ = (|U|, =), the exchange of coherence and incoher-
ence. On maps I+ : V1 — U+ is given by (v,u) € I+ iff (u,v) € 1.
Tensor product: |U @ V| = |[U| x |V| with (u,v) =, (u',v") iff uZ v and
Z,v.
Tensor unit: |I| = {*}, with (necessarily) « = . Linear maps I — X
correspond to cliques of X.
The interpretations of —o and % follow from definitions of A—B as (A ®

BY)t and ABB as (A+ ® BY)*.

—~

v

7.4 The Lafont-Streicher embedding

Lafont and Streicher [LS91] exhibit a full and faithful functor LS : Coh —
Chu. Points are cliques, states are anticliques, and matrix entries are given
by intersection: LS(U) = (U®, M,U°), where aMax = |aNz|. (Note that a
clique and an anticlique can intersect in at most one point.) On linear maps
1:U—=V,1s(l) = ([-],,1[-]) : Ls(U) — Ls(V).

The embedding is weakly tensorial with tensorial strength v : LS(U) ®
LS(V) - Ls(U® V) and t : 1 — LS(I) as follows:

™ ¢ (a,b)—axb tt 0 ox= {3}
™ oz ([Hlzz-]) T 00, {(x}—1

7 is an isomorphism because LS is full and faithful. The embedding commutes
with involution: LS(U)" = Ls(U~).

7.5 Relating 1s(Coh) to Coh

Both our semisimple full completeness result and the subsequent extension to
higher types pivot on our ability to move freely between Chu and Coh. In this
section we show that any semantic proof (logical element) 1 of a formula F' in
Chu can be pulled back to a semantic proof 7 of F' in Coh. We first exhibit a

map (=), the hat map, taking points a of F(Lfﬂ]\)in Chu to cliques @ of F(U)

in Coh, then define 7 componentwise by Ty = 7.sU.
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The Chu space LSU ® LSV has the same states as LS(U ® V'), namely all
anticliques of U® V. However LSU ® LSV does not have all cliques of U® V', only
the “rectangular” ones formed as a x b, where a, b are cliques of U, V respectively.
The par LSURBLSV has the dual defect. The value in Chu of an arbitrary MLL
formula F' on 1L.8Coh will then be missing both cliques and anticliques of the
value of F' in Coh. However, sufficiently many cliques and anticliques remain
that the latter can be reconstructed as a certain closure of the former, denoted
A.

Let A = (4, r, X) be a biextensional Chu space, in other words, a Chu space
with no repeated rows or columns. Then we can identify every point a of A
with the subset {x € X : r(a,z) = 1} of X, and every state x with the subset
{a € A:r(a,x) = 1} of A. This allows us to treat A as a set of subsets of X,
treat X as a set of subsets of A, and to form unions of points and states, as in
the following construction.

Define a set of sets to be consistent when it is non-empty and pairwise
disjoint (stronger than necessary, but convenient and sufficient for our purposes).

Definition 4.  The consistent closure of a biextensional Chu space A is
the biextensional Chu space A = (4,7, X) given by

A = { U A" A" C A and A’ is consistent}

>
I

{ U X' : X' C X and X' is consistent}

and for all consistent A’ C A and consistent X’ C X

F(UA/,UX’) = \/ r(a,z)

a€A’, zeX'

For a non-biextensional Chu space A define A to be the consistent closure
of the biextensional collapse of A. O

Note that A = A and AL = ﬂl. If A= LsSU for some coherence space

U then we say that A generates U. The following Lemma states that if A
generates U and B generates V, then A ® B (tensor in Chu) generates U @ V
(tensor in Coh).

Lemma 7.5. Let A,B be Chu spaces such that A = LSU and B = LSV for
coherence spaces U,V . Then

A2B =~ Ls(UaV)

Proof. Write A = (A,r,X), B = (B,s,Y), A B= (AxB,t,F), L.sU =
(U*,N,U°) and LSV = (V*,1,V°). Thus LS(U @ V) =((U ® V)*, 11, (U ® V)°).
We define a Chu isomorphism (6,¢) : A® B — LS(U ® V), i.e. an adjoint pair
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of isomorphisms 6 : A x B — (U® V)®* and ¢ : (U ® V)° — F between sets:

o(U{ (aibi)ier}) U (@i x by)

i€l
o) = 0
$(2) U{fas:(@B) €2}
(for z#0) (=+#0)

where fo 5 = (fl)ﬁ A=Y, fgﬁ : B — X) is given by

[0}

éﬁ(a):{{ﬁ} ifa€a i,ﬁ(b)={{a} if Beb

0 ifada 0 if3¢&b

The definition of ¢(z) requires working with tokens «, 8. These are available
since for a Chu space (A, r, X) to generate a coherence space U, both A and X
must contain () (as a row and column of 0s respectively) and all singletons (i.e.
tokens) of U. O

Proposition 7.6. Let F be an n-ary MLL formula, U = Uy, ..., U, for co-
herence spaces U; € Coh, and LSU = LSUy,...,LSU,,. Then

F(LsU) = Ls(FU),

where F' is interpreted on the left as an MLL operation in Chu, and on the right
as an MLL operation in Coh.

Proof. Since AL = ZL for any Chu space A, so we can write A% B in F as
(A+ ® BY)*, then apply Lemma 7.5 recursively. O

For the following definition, note that points of F'(LSU) are a subset of the
points of F(LSU).

Definition 7. Let F be an n-ary MLL formula, U = Uy, ..., U, for coherence
spaces U; € Coh, and LSU = LsUj,...,LSU,,. Given any point a of F(LSU) in
Chu, define the clique @ of F(U) in Coh, the clique associated with a, as the
image of a under the isomorphism of Proposition 7.6, acting from left to right.
O

7.6 MIX proof nets via Coh

In this section we a associate MIX proof net 7, with every Chu logical trans-
formation 7, by passing into Coh and appealing to full completeness for MLL
with MIX [Tan97].

Lemma 7.8. Let F' be a semisimple formula. Every logical elementn:1 — F
in Chu gives rise to a dinatural transformation 7: 1 — F in Coh.
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Proof. Define fjy = 7.5y We omit the proof that 7 is dinatural. O

Tan [Tan97] has shown that every dinatural transformation of a formula in
Coh is the denotation of a unique MIX proof net, a proof structure acyclic under
all switchings, though not necessarily connected. Define the MIX proof net
m, defined by n to be the MIX proof net denoting 7 in Coh.

7.7 ) term characterization in rs(Coh)

We show that every logical transformation 7 in Chu, when restricted to the Coh-
image, is determined by a tuple of lambda terms associated cananocally with
the MIX proof net m, that assigned to it via Coh.

Lemma 7.9. Fvery MIX proof net of a semisimple formula F' = Q&gm (®j§ki Lij)
is characterized uniquely by an m-tuple (t',...,t™) of A\-terms. Each t' is of the
form A\aj . ..am_1.M* where the body M* is a tuple (M3, . .. ,M,ii) containing no

A abstractions and at most one occurrence of each variable a;, 1<j<m-—1.

Proof. Let G, be the undirected graph with vertices the clauses F; = &) i<k L;;
of F and edges the links e of 7, with e connecting F; and Fj/ in G, just when e
matches a literal of F; with a literal of F;; in w. Since F' is semisimple and 7 is
acyclic under all switchings, G, is acyclic.

We first construct ¢™. Orient the edges of the connected component of the
vertex F, so as to point towards F),. This defines a tree which we interpret
as the applicative structure of M™. Variable a; corresponds to vertex F; and
serves as the function symbol at that vertex, taking as arguments the subtrees
below it, with the leaves thus constituting ordinary variables. The k,,, incoming
edges of F'™ give rise to the ky, components M;™ of M™.

The remaining ¢ are obtained similarly, modulo matching a; with Fj . for
1 <i<m-—1. O

Our next Lemma allows us to describe every Chu transformation n : 1 —
'-7&9%(® jgkiLij) into a semisimple formula of n variables as an m-tuple of

families of functions (77,11’ . ,n;"l) indexed by A € Chu".

Lemma 7.10. Let Ay,..., A, be Chu spaces. FEvery Chu transform f: 1 —
A1® ... B A, is characterized by an m-tuple of functions (f*,..., f™), where
Flo AT XX AL XA XL x AL — AT

Proof. Omitted. O
Proposition 7.11. Let n: 1 — F be a logical element into a semisimple MLL
formula of n variables in Chu, and let t = (t',...,t™) be the tuple of lambda
terms representing the MIX proof net m, associated with n. Then n =t in

LS(Coh)™ c Chu™. In other words, niSU =t for all U =Uy,...,U, € Coh™
and 1 < i <m, where LSU = LS(U;),...,LS(Uy,) € Chu™.

Proof. Omitted. O
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7.8 A-term characterization beyond vs(Coh)

Having characterized logical transformations in the Coh-image by tuples of
lambda terms, we show that this uniform behaviour extends to the whole of
Chu.

Proposition 7.12. Let F be a semisimple MLL formula of n propositional
variables interpreted in Chu. Then every logical tranformation n : 1 — F is
determined by its restriction to the Coh-image, namely the sub-family na indexed
by A € 15(Coh)".

Proof. To determine 7 at arbitrary Chu spaces A € Chu™ we “simulate” each
A= (A,r,X) € A by a coherence space A, then use logical relations between
LS(A) in LS(Coh) and A in Chu to pin down the behaviour of 74.

The set of tokens of A is A + X + r, the disjoint union of the points, the
states, and the coordinates of the 1s in the matrix. Coherence is “coherence
along rows, incoherence within columns”: a Z(a,x) and (a,z) Z(a,y) for all
a € A and z,y € X, together with the requisite loops a Z «a. The “row”-clique
a={a}U{(a,z) € r:z € X} “simulating” a intersects the “column”-anticlique
T = {z} U{(a,z) € r : a € A} “simulating” z exactly when r(a,z) = 1.
Hence the matrix M of LS(A) “simulates” the matrix of the original: aMz =
[a NZ| = r(a,z). We establish this relationship formally as the logical relation
R4 between LS(A) and A given on points by @R.4"a for every a € A and on
states by TR 4o for every € X. Ry is logical because aMT = r(a,x), the
requisite adjointness condition.

Let t = Aa1...a;m—1.M be one of the tuple of A-terms characterizing 7 in
LS(Coh), and assume for simplicity, and without loss of generality, that the tuple
M is a singleton. Recast the type of : 1 — F to parallel the natural typing of

t, so that

Mo & G19...0G, — Ls(B)
FE, = Bhi®... ®Biki_06i

Gi = 18(Bi1)®...®LS(Bj,)—oLs(B;)

for B, B;, B;j € A and LS(A) = (LS(A}),...,LS(A,)). We shall determine

nat Pt <. xF,T — BT,
a component of the tuple characterizing n as per Lemma 7.10, by showing that

nat(fio-oo fm) = t(fry- oo fn)
for all inputs f; € F;*. For each f; define the linear map

fi:Bi®...®By, —B;

between coherence spaces by

{(Birs - biks)} ¥ fiT(biny .y big,) C fi
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for all b;; € B;;T C |Bi;|, where for a point a of a Chu space A, @ is the “row”
clique of A simulating a as defined above. Let 7; be the tensorial strength

LS(Bi1) @ ... ® LS(B,) — LS(Bi1 @ ... ® Bix,)

and define f; = LS(ﬁ-) oT; of type G, so that ﬁiis a function from (k;-tuples
of) “row”-cliques to “row”-cliques. In particular f; “simulates” f;, for example

7_)'_ PR PR e
fi (it big) = i (bis - biky) (7.1)

More formally, f;R;" f; under the Chu logical relation R; = Rp, ® ... ®
RBmi —oRpg, between G, and F;.

Since R; is a Chu logical relation between G; and F; for each i, by the logical-
ity of n we must have nLS(z)JF(E, s fm) R, T nat (f1, ..., fm). Furthermore

since an(Z)+ is a A-term t, by repeated application of (7.1) we have

77Ls(74)+(f17-~-afm) = t(ﬁw-wfm)
= t(f177fm)

Thus
t(fh' . '7f7n) RBi+77-A+(fl7' . ~7fm)

and since by construction aRp, Tb if and only if @ = b, we conclude that
A (Froeeos ) = t(f1, - fon)-

Finally, repeat the argument for each of the other lambda terms of the
tuple. O

7.9 MIX refutation

The final link in the chain to semisimple full completeness is to show that
the MIX proof net assigned to a Chu logical element is connected under all
switchings, and hence is a proof net. This occurs precisely when any (and hence
all) of the lambda terms in the characterizing tuple use all their arguments.

Lemma 7.13. | Lett = Aay ... am—1.M be a A\-term of the m-tuple character-
izing a MIX proof net m of a semisimple formula 28i§m(®j<ki Lij). If each
variable a; occurs in M, 1 <i <m — 1, then 7 is a proof net.

Proof. The graph G, in the construction of ¢ in Lemma 7.9 is connected if and
only if 7 is a proof net. O

Proposition 7.14. A A\-term of a tuple defining a Chu logical element of a
semisimple MLL operation must use all its arguments.

Proof. Without loss of generality assume that the operation has the form A—oB
where B is a literal and A = A1 ®...® A, is a product of pars of literals. The \-
term then has the form Aaq ... a,.M for some applicative term M in A-variables
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ai,...,a,. Let n be the denotation of this A-term. Set all variables of the
formula to the Chu space J =

B(J).

By inspection every MLL operation, in particular A, evaluates at J to a Chu
space having just one nonzero entry. B(J) = J since B is either a variable or
its negation and J+ = J.

By continuity of 7, every zero point (the index of an all-zero row) of A(J)
must be sent to 0 in B(J). We now argue by logicality that the one nonzero
point of A(J) must be sent to 1 in B(J). Let N be the 1 x 1 Chu space whose
one entry is 1, and take R to be the Chu relation between N and J that relates
the point of N to the nonzero point of J and the state of N to the nonzero state
of J. By induction on height of MLL operations C, C(R) is the Chu relation
between C(N) = C and C(J) that relates the point of C(N) to the nonzero
point of C(J) and the state of C(N) to the nonzero state of C(J). Applying
this to C' = A, we deduce that any two-sorted homomorphism from A(J) to J
must send the nonzero point of A(J) to the nonzero point of B(J), i.e. 1.

But the one nonzero point of A(J) is indexed by the constantly-one n-tuple.
So when all arguments to 1 are set to 1, and any one argument is then changed
to 0, the result of n; changes from 1 to 0. But then 7, and hence the A-term
denoting it, depends on all n of its arguments. O

8(1) , so 1y is a Chu transform from A(J) to

Theorem 7.15 (Semisimple full completeness). Let F be a semisimple
MLL formula interpreted in Chu. Then every logical tranformation n :1 — F
18 denoted by a unique proof of F.

Proof. Proposition 7.11 characterizes 1 as a MIX proof net 7, in the Coh-image,
and Proposition 7.12 extends this characterization to the whole of Chu. By
Proposition 7.14, in conjunction with Lemma 7.13, 7, is a proof net. O

7.10 Full Completeness

We prove our main theorem by induction on level of formulas, a measure of
distance of theorems to certain semisimple formulas. We first define the notion
of level and state key supporting lemmas.

The rules of our axiomatization of MLL either rearrange the formula invert-
ibly (A and C), cater trivially for context (E), or do some real work (D). Our
argument hinges on the behavior of this last rule.

For convenience and to make more explicit the choice implicit in linear dis-
tributivity (LD), we replace Rule D by an equivalent pair of rules either one of
which would suffice on its own.

DI (A%B)@C + (A®C)8B
D2 (A%BB)®C + A%(C®B)

A linking of the common antecedent of these rules is permuted by the rules
to yield identical linkings of the two LD consequents.
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Definition 16. The level of an MLL formula is defined to be maximal
subject to the following constraints. The level of a semisimple formula is zero.
If a level [ formula is derivable from A by associativity or commutativity then
A has level [. If a pair of LD consequents of A have level at most [ then A has
level at most [ + 1. O

So the level of a formula A is the minimum, over all occurrences within A
of a subformula matching Rule D, of one plus the maximum of the level of the
corresponding pair of LD consequents A; and As. Every MLL formula reduces
to semisimple formulas after finitely many applications of D, whence level is
well-defined.

We shall need the following lemmas.

Lemma 7.17. If the LD consequents of a transformation of an MLL formula A
in Chu both represent proof nets, then those proof nets have the same A (linking
of literals).

We defer the proof of this lemma to after the main theorem.

Lemma 7.18. If a linking A is a proof net for both Rule D consequents of a
formula A, then A is a proof net for A.

Proof. We omit the straightforward combinatorial argument. O

Theorem 7.19. FEvery logical element n of an MLL formula A represents a
proof.

Proof. We proceed by induction on level. The previous section supplied the
basis for the induction. We now assume as our induction hypothesis the case [
and prove the case [ + 1.

Let A be a formula A of level [ + 1, and let n be a logical element of A.
Apply commutativity and associativity as required to A so that when Rule D is
applied to some subformula (AR B) ® C in each of the two possible ways, both
consequents A; and A of A are of level [. The two applications of the rule map
71 to two transformations, call them 7, and 7.

By soundness each 7; is a logical element and therefore by the induction
hypothesis has a proof net. By Lemma 7.17 the two proof nets must have the
same linking A. By Lemma 7.18 (A, A) is a proof net. By soundness (A, A)
denotes a logical element 7’ while (41, A) and (A2, A) denote logical elements
7}, n5 respectively. By the induction hypothesis ] = 71 and 75 = 5. But D is
injective, so n = 17/. O

This completes the proof of our main theorem, leaving only Lemma 7.17 to
prove.

Proof. (of Lemma 7.17) Let n in A have consequents 7; and 7 representing
proof nets in Chu. Form the corresponding arrangement in Coh, consisting of
a clique 7 and consequents 77 and 72. By Lemma 7.21 7; and 7); represent the
same proof nets for i = 1,2. By Lemma 7.22 7j; and 7j3 are the LD consequents



66 CHAPTER 7. FULL COMPLETENESS OF MLL FOR CHU SPACES

of a common clique 7. By Lemma 7.20 they have the same linking, whence the
same holds for n; and 7. O

We have discharged obligation 7.17 at the expense of three new obligations.

Lemma 7.20. If the two LD consequents of a clique both realize proof nets then
those nets have the same linking.

Proof. Although the rules of System S1 nontrivially transform the coherence
spaces they act on, their constituent tokens, as tuples of tokens of W, are not
changed except to reflect permutations of variables. The linking information in
a dinatural clique in Coh resides entirely in the individual tokens [Tan97] (as
opposed to the coherence relations between the tokens). Under our reformula-
tion of Rule D as D1 and D2, the two LD consequents of a clique undergo the
same permutation of atomic tokens within each token of the clique and hence
encode the same linking. O

Lemma 7.21. If n is the unique representation in Chu of a proof net (A, A),
then 1 represents (A, A) in Coh.

Proof. Select any System S1 derivation of (A, A) and interpret it in both Coh
and Chu. In the beginning the hat relationship holds between the respective
proof representations. By commutativity of hat and derivation (Lemma 7.22)
this relationship is maintained during the proof and hence still holds when A is
reached. Since (A, A) only has one representation, the transformation in Chu
we ended up with must be 7, whence the transformation in Coh we arrived at
must be 7). O

Lemma 7.22. The hat map taking the points of the Chu space F(LSW) to the
coherence space F(W) commutes with the action of the rules of System S1.

Proof. Since the rules act according to linear A-terms it suffices to verify the
commutativity for all linear A-terms. If the correspondence between Chu spaces
F(LSW) and coherent spaces F(W) were an isomorphism this would be a trivi-
ality. However the points of the former embed as a subset of those of the latter,
and likewise for states, both for the top level formula and for all subformulas.
We therefore need to show that the correspondence is tight enough for the action
of the rules to maintain the correspondence despite this difference.

We proceed by induction on the height of A-terms. We take as our inductive
hypothesis that for all MLL formulas F', for all assignments of Chu spaces LSW,
and corresponding assignments of coherent spaces W, to variables of F', and for
all bindings of A-variables to points of F'(LSW), and correspondingly to points of
F(W), evaluating a A-term of height & in each of the two environments produces
a corresponding pair of points of respectively F(LSW) and F(W).

The basis for the induction, A-terms that are A-variables, holds by choice of
environment. We now assume the case of height i and proceed to height h + 1.

For applications M N, the Chu point denoted by M is a function f between
Chu spaces A and B (say) while the corresponding coherence space point de-

~

noted by M is a function f from A to B. Since the correspondence embeds the
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set A of points of A in A, and since N evaluates to a point @ in the image of
that embedding by the induction hypothesis, f(a) must be the corresponding
point in B, which too will be in the image of the embedding of B in B.

A A-abstraction Az.M, as a point of say A—oB, will denote a Chu transform
J of Chu spaces having corresponding coherence space map f. The induction
hypothesis ensures that f and f agree on A, while the fact that coherence
space maps commute with consistent unions ensures that the coherence space
map denoted by Az.M (as determined by evaluating M in each environment
obtained by setting = to a point of A) agrees with fon the whole of A.

For pairs (M, N) the correspondence is immediate. O

Open problem: Extend this full completeness result for MLL to the units,
additives, and exponentials. More precisely, put the logical transformations
between terms of linear logic in bijection with the cut-free proofs of those terms
as axiomatized by Girard [Gir87], and note any exceptions.
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