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Qi Zhu Fractured Structure on Condensed Anima

Abstract

We compare notions generalizing features of topology, namely condensed mathematics
and cohesive resp. fractured ∞-topoi. After showing that cohesion is not sensible on the
∞-topos of condensed anima Cond(An) we provide a fractured structure on Cond(An). We
apply this to compare sheaf cohomology with condensed cohomology and show that for
the corporeal objects of the fractured structure which simultaneously are also topological
spaces the cohomologies agree.
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0 Introduction

Topology is useful, basic, and ubiquitous. Nonetheless, it was only in 1940 that today’s axiomatic
definition of a topological space as a collection of open subsets of a set was first formulated
by the Bourbaki group [Bru18, p. 134] while an axiomatization of topological spaces through
neighborhoods was defined by Felix Hausdorff in his Grundzüge der Mengenlehre in 1914 [Hau49,
Chapter 7.1]. On the other hand, topological ideas were floating around long before: first
instances of the idea of a topology go back to Euler and his polyhedron formula in 1750 [Bru18,
p. 124, 125] leading to the modern notion of the Euler characteristic χ. Needless to say, the idea
of ’being close’, as topology is supposed to axiomatize, has existed for a long time, even before
Euler.

Today, the notion of topology is used in almost every part of mathematics – topology is useful
and ubiquitous. Just to name some examples, algebraic geometers adhere to their famous
Zariski topologies, number theorists consider p-adic topologies, functional analysts use differ-
ent topologies on function spaces and probability theorists refer to their Polish spaces.

Topology is also basic: already in calculus, we draw back to topological notions. Weierstraß’s
Extreme Value Theorem depends on the notion of compactness and the Intermediate Value The-
orem depends on the notion of connectedness. So nowadays every mathematician encounters
topological ideas early on in their mathematical lives.

However, even a notion as basic and ubiquitous as topology can be flawed. Sometimes, the
wishful thinking of marrying topological ideas with other ideas in mathematics can lead to
unwanted complications. We present problems occurring in mathematical areas that conflict
with the notion of topology.

1. Algebra: The problem of classifying certain algebraic structures is important but hopeless.
It is impossible to classify all abelian groups. So often mathematicians instead endow
this algebraic category with more structure and, for instance, consider the category of
topological abelian groups TopAb or possibly of Lie groups or group schemes. The
additional structure on TopAb now opens up possibilities for more tools involving
topology. For example, if the topological group is moreover also locally compact and
Hausdorff, then we have Pontryagin Duality in our arsenal.

This is a helpful observation but unfortunately, the category TopAb admits a fatal flaw:
it is not an abelian category. The map idR : Rdisc → Reucl from R with the discrete
topology to R with the Euclidean topology has trivial kernel and cokernel but is not an
isomorphism! So a priori, it is not possible to use homological algebra in TopAb.

2. Homotopy Theory: Especially with the emergence of higher category theory and ho-
motopy type theory, working with homotopy types became more relevant than ever. A
homotopy type can be modeled with actual spaces, i.e. CW complexes or Kan complexes,
so for example the unit disc D2 models a particular homotopy type, namely the trivial
homotopy type ∗.

However, this process of passing from an actual space to its homotopy type forgets the
topological information that can potentially be useful. For example, Brouwer’s Fixed
Point Theorem famously states that every continuous map D2 → D2 admits a fixed point
but this becomes an obvious statement in the homotopy type context: a map ∗ → ∗ surely
has a fixed point.

At long last, a topology is by definition a collection of open subsets of a set as defined by
Bourbaki. Hence, we necessarily need an underlying set to talk about a topology. However, we
sometimes even wish for properties of topology on objects without a naturally underlying set.
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All of these problems prompt the quest for a more well-suited structure or an axiomatization of
topological properties. This goal occupies much of contemporary mathematics.

Topos theory is the first step in this procedure. A Grothendieck topos is a category of sheaves
that abstracts the notion of a covering from topology. Topos theory already appeared in the
1960s [AGV71] and is hence by now a well-studied topic. It is the stepping stone to two modern
notions that we are interested in.

Simultaneously and independently of each other, Dustin Clausen and Peter Scholze introduced
condensed mathematics [Sch19] while Clark Barwick and Peter Haine introduced pyknotic
mathematics [BH19] in 2019. These are – up to a set-theoretic technicality – the same notion and
use sheaves on compact Hausdorff spaces to give a framework in which algebra and topology
can actually be combined.

Another, purely topos-theoretic attempt, lies in cohesion. In 2007, William Lawvere [Law07]
first gave a formal axiomatization of cohesive topoi which generalizes the adjunction quadruple

Toplocally path-connected Set

π0

U
Disc

CoDisc

⊥

⊥

⊥

of connected components, discrete topology, forgetful functor, and codiscrete topology. This
forms the basis to encode how points are held together. Urs Schreiber then generalized this to
the world of ∞-categories in 2013 [Sch13] allowing us to remember much more homotopical
information. Even more recently, Jacob Lurie [Lur18, Chapter 20] and David Carchedi [Car20]
developed a local version of cohesion that Lurie coined fractured ∞-topoi in 2018 in order to
axiomatize a suitable notion of gluings of sheaves on schemes [Lur18, Section 20.1].

Condensed mathematics and cohesive resp. fractured topoi both being notions axiomatizing
topological features leads to the natural question of relationships between these notions. The
main goal of this thesis is to compare the two concepts.

Here’s a linear overview of the thesis.

• Section 1: We give a crash course in higher topos theory where we begin by recalling
basic notions in ∞-category theory. In particular, the thesis is readable without prior
knowledge of ∞-category theory when taking on certain parts on faith. Many results
don’t change if one omits the ∞. Afterward, we will define ∞-topoi and will introduce
the relevant concepts about them: Grothendieck topologies, descent, object classifier, and
hypercompleteness.

• Section 2: We begin by enhancing ∞-topoi with the property of cohesion and give numer-
ous examples of cohesion. Then, we discuss fractured structures and introduce machinery
called admissibility structures to construct non-trivial fractured ∞-topoi.

• Section 3: After an interlude on point-set topology regarding the subcategories Stone
and Stonean of the category of compact Hausdorff spaces CHaus, we define condensed
objects Cond(C ) of an ∞-category C . In particular, we obtain the ∞-topos of condensed
anima Cond(An) and will formulate a number of results ∞-categorically which are often
only phrased 1-categorically in the literature.

• Section 4: After proving that Cond(An) is not a cohesive ∞-topos, we obtain the main
result of the thesis, namely a fractured structure on condensed anima.

Theorem 0.1. There exists a suitable ∞-topos Condopen(An) and an adjunction triple
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Cond(An) Condopen(An)i∗

i!

i∗

⊥

⊥

which yields the structure of a fractured ∞-topos.

With a computational argument, we prove that this is a non-trivial fractured structure.

• Section 5: A concrete application of this formal machinery lies in cohomology. We discuss
the setting in which sheaf cohomology H•sheaf agrees with condensed cohomology H•cond
and give an approach via our fractured structure on condensed anima. In particular, we
show that they agree on what we call corporeal spaces.

• Section 6: Certain unanswered questions concerning our investigations remain. It is
unclear for which spaces the ansatz in section 5 yields positive results. Possibly adjusting
the fractured structure on condensed anima could yield further viewpoints. At the very
least, this provides a readable summary for the author to take up the problem again in the
future.

There are three subsections that seemed too important to omit but which will not be explicitly
required later for our comparison of fractured structures with condensed mathematics. For
completeness we will include them and will decorate the respective subsections with a star *.
The reader can feel free to skip them and will still be able to read the following sections.

The goals of this thesis are two-fold.

1. We give an expository account of higher topos theory, cohesion and fractured structure,
and condensed mathematics. Much of this is modern mathematics with only few write-
ups, so any additional text about them is useful. To our knowledge, some parts are more
detailed here than presented anywhere else in the literature. A comparison of cohesion
with fractured ∞-topoi also seems to be new.

2. We present novel results comparing cohesion and fractured structures with condensed
mathematics. We construct a fractured structure on condensed anima which we apply to
compare sheaf cohomology with condensed cohomology.

We hope to have provided a little more towards the condensed world that has gained so much
attention recently!

Acknowledgements. First, I would like to thank Kaniuar Bacho, Ilka Buning, and Daniel Perniok
for proofreading drafts of this thesis. They were a great help in the preparation of this text and
read this document despite not being specialized in homotopy theory or even mathematics!
Next, I want to thank Prof. Stefan Schwede for teaching me most of the homotopy theory I know
and for sparking the interests in the subject I now have. At long last, I wholeheartedly thank
my master’s thesis supervisor Nima Rasekh for endless help with any concerns I had in this
stage of my mathematical career. He answered any small question I had, provided countless
ideas towards progressing with the thesis1, helped me with preparing presentations on the
topic, spent much time reviewing my PhD applications and was always there – either in-person
or on Discord – for fun conversations. Thanks, everyone! ♡

1In particular, anything novel in this thesis is joint with Nima Rasekh.
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1 Crash Course in Higher Topos Theory

Our main focus in this thesis is to study ways of generalizing the notion of topology. Countless
possibilities are thinkable but one direction is to axiomatize the notion of (open) coverings of
spaces. This leads to the notion of Grothendieck topologies which is precisely the concept that
allows us to define sheaves on general categories after equipping them with a Grothendieck
topology. The collection of sheaves yields categories of sheaves which form the prototypical
examples of Grothendieck topoi. These will be the mathematical objects which will accompany
us throughout in this thesis.

In that regard, we will study cohesive and fractured ∞-topoi as further axiomatizations of
topology. Moreover, our essential objects of study, namely condensed anima, will be examples
of ∞-topoi and will give us another direction to generalize topological ideas.

Topos theory itself was already studied classically for the purpose of algebraic geometry in
SGA4 [AGV71] but we will employ the modern notion of ∞-topoi. The canonical reference
remains Jacob Lurie’s Higher Topos Theory [Lur09] but there are also inspiring lecture notes
floating around in the world wide web like Charles Rezk’s Leeds Lectures [Rez19] as well as a
number of papers, e.g. [BGH20, HPT22, Hai22], in which various concepts are worked out.

In this section we will give an overview of higher topos theory with a particular focus towards
applications in the thesis. Nonetheless, we will discuss key concepts like descent (1.4) or object
classifiers (1.5) that will find no explicit application in this text. These concepts seem far too
essential to omit, so we included them.

1.1 Crash Course to Higher Category Theory

Slowly but surely, (∞, 1)-categories have conquered the homotopical world and have become
the most popular modern language for homotopy theory. The essence is to remember all higher
coherences in a compact model. We want to give a brief recollection to set the stage for the
notation used in this text. Readers not familiar with higher categories should not need more to
understand this thesis but can also read the entire text by omitting the words ’higher’ or ’∞’
and should still be able to grasp the main ideas.

We mostly follow Lurie’s Higher Topos Theory [Lur09] but will also follow textbook accounts
like [Lan21]. We assume knowledge of basic homotopy theory such as some acquaintance with
simplicial sets e.g. as in [Lan21, GJ99].

Let us recall the most popular model of (∞, 1)-categories.

Definition 1.1 (Boardman-Vogt, 1973). A quasicategory C is a simplicial set satisfying all inner
horn lifting properties, i.e. for all 0 < i < n and maps Λn

i → C there exists a lift as in the
following diagram:

Λn
i C

∆n
∃

.

We write qCat for the full subcategory of quasicategories in the category of simplicial sets sSet.

This is a model for ∞-categories and in the literature, people often use the words ’quasicategory’
and ’∞-category’ interchangeably. We will do the same and will always mean a quasicategory
whenever we write ∞-category unless otherwise noted.

Recall that a simplicial set K satisfying all horn lifting properties is called Kan complex. Kan
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complexes are simplicial sets which resemble spaces which suggests that an ∞-category gen-
eralizes the notion of spaces. On the other hand, it also generalizes the notion of 1-categories,
as one may think of the 0-simplices as objects and the 1-simplices as morphisms where for
an object x the degeneracy s0(x) defines idx and composition is obtained (non-uniquely) via
inner horn liftings Λ2

1 → ∆2. The higher inner horn liftings amount to coherences of the higher
homotopical data and that’s what an ordinary 1-category does not see.

Nevertheless, every 1-category can be viewed as an ∞-category via the nerve N : Cat ↪→ sSet
which is fully faithful and maps a category to an ∞-category [Lur09, Proposition 1.1.2.2].

Collapsing the higher data leads to the homotopy category hC of an ∞-category C .

Definition 1.2. Let X ∈ sSet and let x, y, z ∈ X0.

(i) Two 1-simplices f , g ∈ X1 from x to y are equivalent if there exists a 2-simplex σ : ∆2 → X
such that σ|∆{0,1} = f , σ|∆{0,2} = g, σ∆{1,2} = idy.

y

x y
σ

idyf

g

We write f ∼ g.

(ii) The homotopy category hX of X has objects X0 and morphisms freely generated by X1
where a 1-simplex f ∈ X1 from x to y defines a morphism f : x → y. For f : x → y and
g : y→ z we define composites g ◦ f via the following relations:

(a) We demand idx = s0(x).

(b) For every 2-simplex σ : ∆2 → X with boundary ( f , g, h) we demand h = g ◦ f .

(c) If f ∼ f ′, then g ◦ f ∼ g ◦ f ′ and f ◦ h ∼ f ′ ◦ h for composable morphisms.

Sometimes, hX is also called fundamental category of X. It induces a functor h : sSet → Cat
which turns out to be left adjoint to the nerve N : Cat → sSet [Lan21, Proposition 1.2.18].
As is customary, we will occasionally omit N from the notation. If C is an ∞-category, then
hC is isomorphic to the category π(C ) whose 0-simplices are given by X0, whose 1-simplices
are given by X1 modulo equivalence (1.2(i)) and composition is given via inner horn lifting
Λ2

1 → ∆2 [Lur09, Proposition 1.2.3.9].

Here are some definitions much akin to what we are used to from 1-category theory.

Definition 1.3. Let C be an ∞-category. Then, a map f in C is an equivalence if f becomes an
isomorphism in hC .

Definition 1.4. Let C be an ∞-category. Then, its core C core is defined as the pullback

C core C

(N(hC ))core N(hC )

⌟

in sSet.

In other words, C core ↪→ C is the maximal ∞-subgroupoid of C .
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Definition 1.5. A functor of ∞-categories C → D is a morphism of simplicial sets C → D . We
define the functor ∞-category as the internal-Hom object

Fun(C , D) = HomsSet(C , D)

which has n-simplices HomsSet(C , D)n = HomsSet(C × ∆n, D).

Using results about so-called inner-anodyne maps, one can prove that this is an ∞-category
[Lur09, Proposition 1.2.7.3] justifying its name.

Definition 1.6. Let C be an ∞-category and x, y ∈ C0 be 0-simplices. We define the Hom-anima
HomC (x, y) as the pullback

HomC (x, y) Fun(∆1, C )

∆0 C × C .

⌟
(source, target)

(x,y)

More precisely, the right vertical map is given by evaluation at 0 and 1.

Recall that there is a homotopy-coherent version of the nerve Nhc : sCat→ sSet which takes as
input a simplicially-enriched category [Lur09, Definition 1.1.5.5]. For Kan-enriched categories
this has an ∞-category as output by Cordier-Porter [Lur09, Proposition 1.1.5.10]. This is one of
the main tools to construct ∞-categories.

Construction 1.7. The full subcategory qCat ↪→ sSet is Kan-enriched via

HomqCat(C , D) = HomsSet(C , D)core.

Then, the ∞-category of ∞-categories is Cat∞ = Nhc(qCat).

Construction 1.8. Let Kan ↪→ sSet be the full subcategory spanned by the Kan complexes con-
sidered as a simplicially-enriched category. Then, the ∞-category of anima is An = Nhc(Kan).

This makes sense because the internal simplicial Hom-objects of Kan are Kan complexes again
[Lan21, Corollary 1.3.38].

Remark 1.9. The terminology anima is quite popular in Bonn not only due to certain famous
personalities at the university. The ∞-category of anima An is more classically also known as
the ∞-category of spaces S , of homotopy types or of ∞-groupoids Grpd∞. We have already
employed this terminology in the notion of mapping anima (1.6) which is more classically called
mapping space. The term ’anima’ refers to the ’soul’ of a space [ČS20, Section 1.2]. While this
is first and foremost merely a matter of terminology, there are mathematical reasons why it
appears counterproductive to write about the ∞-category of spaces in the setting of this thesis
about condensed anima. We will come back to this discussion in 3.20.

Remark 1.10. For an ∞-category C and x, y ∈ C0 we are justified to call HomC (x, y) a Hom-
anima as done in 1.6 since HomC (x, y) is in fact a Kan complex by virtue of Joyal’s Lifting
Theorem [Lan21, Corollary 2.2.4]. Note that this is perhaps better known as mapping space in
the literature.

Alternatively, we can also consider the Kan-enriched category CW with CW complexes as
objects and simplicial mapping objects given by the singular set of the mapping spaces. Then,
Nhc(CW) ≃ An [Lan21, Corollary 2.5.37]. So we may model anima with Kan complexes or
with CW complexes which we think of as actual spaces. The anima itself only remembers the
homotopy type, i.e. the soul of these spaces.

In ∞-category theory An typically takes the role of Set. We can immediately give an illustration.
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Definition 1.11. Let C be an ∞-category. Then,

PSh(C ) = Fun(C op, An)

is the presheaf ∞-category of C .

Remark 1.12. As seems to have become the tradition we will adopt Grothendieck universes
to settle our set-theoretic details [Lur09, Chapter 1.2.15]. We consider a strongly inaccessible
cardinal κ and assume the existence of the collection of all sets having cardinality < κ which
we denote by U (κ). This is a Grothendieck universe. Then, a mathematical object is small if it
belongs to U (κ). With this remark, we want to slightly redefine Cat∞ and An which can mostly
be ignored throughout this thesis.

(i) By taking the coherent nerve of small ∞-categories we denote by Cat∞ = Nhc(qCatsmall)
the ∞-category of small ∞-categories and by Ĉat∞ = Nhc(qCat) the ∞-category of (large)
∞-categories.

(ii) We denote by An = Nhc(Kansmall) the ∞-category of small anima and by ”An = Nhc(Kan)
the ∞-category of (large) anima.

We will only occasionally need this finer distinction.

The theory of quasicategories is not the only model for (∞, 1)-category theory. There is a myriad
of other ones, such as topologically enriched categories, simplicially enriched categories, relative
categories, complete Segal spaces, Segal categories, or 1-complicial sets, to just name a few.
Each of these comes with its own merits and perks and unfortunately one has to develop a new
theory in each of these models from scratch and then compare the theories in each model. Not
only is this a lot of work, but the definition of certain standard constructions in category theory
can become rather cumbersome in certain models.

A recent approach by Emily Riehl and Dominic Verity [RV22] incorporates all of the models in
a model-independent approach which encodes basic categorical constructions in a language
similar to the one we are familiar with from classical category theory. This is the language of
∞-cosmoi.

In this framework, we may define categorical concepts like adjunctions, (co-)limits, Kan ex-
tensions or (co-)Cartesian fibrations for ∞-categories without referring to models of higher
categories and use definitions akin to those from basic category theory. Most results carry
over and it turns out that the formal synthetic theory of ∞-categories discussed here is indeed
compatible with the classical theory of quasicategories as found in Joyal’s or Lurie’s work [RV22,
Appendix F]. So we may freely use the quasicategorical notions independently with these rather
model-independent definitions and will use them as if we were dealing with 1-categories unless
some higher input makes a relevant difference.

In that regard, we will work with basic categorical constructions like the Yoneda embedding,
slice categories, adjunctions, (co-)limits, Kan extensions, and so on similar to what we are used
to from 1-categories, while remembering that we are using Hom-anima instead of Hom-sets.

We now move on to certain size-theoretic conditions – presentability and accessibility – that are
difficult to access via formal means which we want to recall. They are highly useful which is
why we cannot ignore them. In particular, the definition of a presentable ∞-category is almost
the same as the definition of an ∞-topos. So naturally we need to introduce this notion here.

Let κ be a regular cardinal. We will define properties Prop of objects dependent on κ, which will
be said to satisfy κ-Prop. We then say that an object has property Prop if it has property λ-Prop
for some regular cardinal λ.

We begin with some size conditions.

8



Qi Zhu Fractured Structure on Condensed Anima

Definition 1.13. Let κ be a regular cardinal and let C be an ∞-category.

(i) Then, C is κ-filtered if for every κ-small simplicial set K and every map f : K → C there
exists an extension f : K▷ → C .

(ii) Let C have small κ-filtered colimits. An object C ∈ C is κ-compact if the evaluation of the
Yoneda embeddingよC : C → ”An preserves κ-filtered colimits.

(iii) The ∞-category C is essentially κ-small if the collection of equivalence classes of objects
in C is κ-small and if for every map f : C → D in C and for every i ≥ 0 the homotopy set
πi
(
HomC (C, D), f

)
is κ-small.

We can already define accessibility!

Definition 1.14. Let κ be a regular cardinal and let C , D be ∞-categories.

(i) Then, C is κ-accessible if C admits all small κ-filtered colimits and there exists an essen-
tially small full subcategory C ′ ↪→ C of κ-compact objects which generates C under small
κ-filtered colimits.

(ii) Let C be an accessible ∞-category. A functor F : C → D is κ-accessible if it preserves
κ-filtered colimits.

So roughly, an accessible ∞-category is an ∞-category with filtered colimits which are controlled
by a small number of objects.

Let us record a stability result for later (1.36).

Proposition 1.15. Let C be an accessible ∞-category and let K be a small simplicial set. Then,
Fun(K, C ) is accessible.

Proof. See [Lur09, Proposition 5.4.4.3].

Here is the crucial definition of presentable ∞-categories!

Definition 1.16. An ∞-category is presentable if it is accessible and admits small colimits.

Proposition 1.17 (Simpson). An ∞-category C is presentable if and only if there exists a small
∞-category D and a functor PSh(D)→ C with a fully faithful accessible right adjoint.

Proof. See [Lur09, Theorem 5.5.1.1].

There are many more equivalent characterizations of accessible resp. presentable categories.
We will not recount them here but will refer to [Lur09, Proposition 5.4.2.2, Proposition 5.5.1.1].
Simpson’s characterization is already close to the definition of an ∞-topos.

Example 1.18. Here are three constructions of presentable categories.

(i) Presheaf ∞-categories are presentable [Lur09, Remark 5.5.3.7]. In particular, An = PSh(∗)
is presentable.

(ii) Let C be a presentable ∞-category, then its stabilization Sp(C ) is presentable [Lur17,
Proposition 1.4.4.4]. In particular, the ∞-category of spectra Sp = Sp(An) is presentable.

(iii) Let A be a partially ordered set considered as a category. Then, its nerve NA is presentable
if and only if every subset of A has a supremum [Lur09, Remark 5.5.2.5].

Presentable ∞-categories have pleasant categorical properties among which are versions of
adjoint functor theorems.

9
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Proposition 1.19. Presentable ∞-categories are bicomplete.

Proof. See [Lur09, Corollary 5.5.2.4].

Proposition 1.20. Let C be a presentable ∞-category and consider a functor F : C op → An.
Then, the following are equivalent:

(i) The functor F is representable.

(ii) The functor F preserves small limits.

Proof. See [Lur09, Proposition 5.5.2.2].

Equivalently [Lur09, Proposition 5.5.2.7], we can also demand

(iii) The functor F preserves small limits and is accessible.

So accessibility comes for free in this context.

Proposition 1.21 (Adjoint Functor Theorem). Let F : C → D be a functor between presentable
∞-categories.

(i) The functor F has a right adjoint if and only if it preserves small colimits.

(ii) The functor F has a left adjoint if and only if it is accessible and preserves small limits.

Proof. See [Lur09, Corollary 5.5.2.9].

For (i) it suffices that D is only (essentially) locally small [Lur09, Remark 5.5.2.10].

This is a major result about presentable ∞-categories and often allows us to obtain functors for
free! Especially in the ∞-categorical setting where constructing functors is everything but easy,
this is of immense substance.

Definition 1.22. We write PrL ⊆ Ĉat∞ for the subcategory of presentable ∞-categories with left
adjoint functors as maps.

The dual version PrR turns out to also be useful. There is an equivalence PrL ≃ (PrR)op in Ĉat∞
[Lur09, Corollary 5.5.3.4]. The ∞-category PrL admits a closed symmetric monoidal structure
[Lur09, Remark 5.5.3.9] which is one reason that makes PrL indispensable to modern pure
mathematics. We will however not require PrL in this text.

We conclude this section with a quick recollection of the notion of truncation. It’s a classical
homotopy-theoretic notion that we may generalize to arbitrary ∞-categories via the Yoneda
Formalism.

Definition 1.23. Let C be an ∞-category and let k ≥ −1 be an integer.

(i) A Kan complex X is k-truncated if πℓ(X, x) ∼= ∗ for every basepoint x ∈ X and every
integer ℓ > k.

(ii) An object C0 ∈ C is k-truncated if for every C′ ∈ C0 the Hom-anima HomC (C′, C) is
k-truncated. We say that C ∈ C0 is (−2)-truncated if C is a terminal object in C .

(iii) A morphism f : C′ → C is k-truncated if f ∈ (C/C)0 is k-truncated.

(iv) A morphism f : C′ → C is a monomorphism if f is (−1)-truncated.

10
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These definitions are compatible: An object X ∈ An is k-truncated in the sense (i) if and only if
it is k-truncated in the sense (ii) [Lur09, Remark 5.5.6.4].

There is an alternative inductive definition for finitely complete categories which we will not
recall here [Lur09, Lemma 5.5.6.15].

Remark 1.24. Classically, a morphism f : X → Y between Kan complexes is k-truncated if
its homotopy fibers are k-truncated. Then, a morphism f : C′ → C in an ∞-category C is
k-truncated if and only if

f∗ : HomC (C′′, C′)→ HomC (C′′, C)

is k-truncated for every C′′ ∈ C (in the classical sense) [Lur09, Remark 5.5.6.10].

Again, the classical truncatedness on Kan complexes is compatible with the general truncated-
ness [Lur09, Remark 5.5.6.9]. In particular, a morphism f : X → Y in An is a monomorphism if
its homotopy fibers are ∗ or ∅. So this is a sensible way of defining monomorphisms.

Let k ≥ −2 be an integer. For an ∞-category C we write τ≤kC for the full subcategory of C
spanned by the k-truncated objects.

Proposition 1.25. Let C be a presentable ∞-category, let k ≥ 2. Then, the inclusion τ≤kC ↪→ C
has an accessible left adjoint τ≤k : C → τ≤kC .

Proof. See [Lur09, Proposition 5.5.6.18].

The notation makes sense: τ≤kC is the essential image of τ≤k [Lur09, Remark 5.5.6.19].

The main use of n-truncatedness for us will be to define n-connectedness which will allow us to
study the so-called hypercomplete ∞-topoi, i.e. topoi in which the Whitehead Theorem holds.

1.2 The ∞-category of ∞-topoi

Just like in classical topos theory, there are many different equivalent characterizations of ∞-
topoi, some more intrinsic and some more extrinsic. For example, there are several formulations
similar to the classical Giraud’s axioms. We will only discuss one formulation that is almost
an immediate generalization of a definition for 1-topoi and leave the remaining ones for the
curious reader to explore on their own, e.g. in [Lur09, Chapter 6].

In the entire text, when we write about ∞-topoi, we will always mean Grothendieck-Lurie
∞-topoi generalizing the notion of Grothendieck (1-)topoi. We remark that there are concepts
generalizing this notion, such as the elementary higher topoi from Nima Rasekh [Ras18].

Recalling that a left-exact functor is a finite-limit-preserving functor, we may define the main
player in this section.

Definition 1.26. An ∞-topos is an ∞-category X such that there exists a small ∞-category C
and a left-exact functor PSh(C )→ X with a fully faithful accessible right adjoint.

Remark 1.27. Accessibility is not required for 1-topoi because it is automatic [Lur09, Remark
6.1.0.5].

Remark 1.28 (Warning). If G ̸= ∗ is a 1-topos, then NG is not an ∞-topos. This will become
clear when we discuss descent (1.4) and object classifiers (1.5) which are features only of higher
topos theory but not of ordinary topos theory.

11
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Let’s introduce some terminology: A functor F : C → D between ∞-categories is a localization
if it has a fully faithful right adjoint. In that regard, one also speaks of PSh(C ) → X as an
accessible left-exact localization. Note that accessible refers not to the localization functor but
rather to the right adjoint. After all, localizations as left adjoints automatically preserve all
colimits anyway.

The only thing missing towards an ∞-topos from presentability is the left-exactness.

Lemma 1.29. Every ∞-topos is presentable.

Proof. This is immediate by Simpson’s Theorem (1.17).

Example 1.30. Here are some ∞-topoi that we can already construct without further machinery.

(i) Any presheaf ∞-category PSh(C ) of an ∞-category C is an ∞-topos.

(ii) In particular, An ≃ PSh(∗) is an ∞-topos.

(iii) A presheaf F : N(OpenX)op → An is a sheaf if for every open U ⊆ X and every open
cover {Ui}i∈I of U =

⋃
i∈I Ui the evident map

F(U)→ lim
∅ ̸=J⊆I

F

Ñ⋂
j∈J

Uj

é
is an equivalence. The full subcategory Sh(X) of PSh(X) spanned by the sheaves is an
∞-topos [Rez19, p. 6]. This is a special case of the techniques set up in the next section
where we discuss machinery to construct ∞-sheaf categories via Grothendieck topologies
(1.3).

As honest category theorists we still ought to make the collection of ∞-topoi into an ∞-category.
So we need to define morphisms between ∞-topoi.

Definition 1.31. Let X and Y be ∞-topoi. A geometric morphism from X to Y is a functor
f∗ : X → Y which admits a left-exact left adjoint f ∗ : Y → X .

Remark 1.32. Sometimes, one also refers to f ∗ : Y → X for the geometric morphism from
X → Y . This is not ambiguous because f∗ and f ∗ as adjoint functors determine each other up
to equivalence.

Example 1.33. The inclusion functor X ↪→ PSh(C ) of an ∞-topos X in a presheaf category is
a geometric morphism by definition.

Definition 1.34. We define subcategories LTop, RTop ⊆ Ĉat∞ as follows:

• The objects of LTop and RTop are the ∞-topoi.

• A functor f ∗ : Y → X belongs to LTop if and only if f ∗ is a left-exact left adjoint.

• A functor f∗ : X → Y belongs to RTop if and only if f∗ has a left-exact left adjoint.

In other words, a functor belongs to LTop or RTop if it is a geometric morphism.

Proposition 1.35. There is an equivalence LTop ≃ RTopop in Ĉat∞.

Proof. See [Lur09, Corollary 6.3.1.8].

We conclude this subsection with two stability results for ∞-topoi.

12
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Proposition 1.36. Let C be a small ∞-category and Y be an ∞-topos. Then, Fun(C , Y ) is an
∞-topos.

Proof. Consider an accessible left-exact localization

PSh(D) Y
L

R
⊥

We wish to show that the adjunction

Fun(C , PSh(D)) Fun(C , Y )
L∗

R∗
⊥

realizes a presentation of Fun(C , Y ). Here,

Fun(C , PSh(D)) ≃ Fun ((C op)op ×Dop, An) = PSh(C op ×D)

is indeed a presheaf category. We need to check the following:

• The functor R∗ is fully faithful: See [GHN17, Lemma 5.2].

• The functor L∗ is left-exact: This follows because limits are computed pointwise on functor
categories.

• The functor L∗ is accessible: This follows from 1.15.

Proposition 1.37. Let X be an ∞-topos and X ∈ X . Then, X/X is an ∞-topos.

Proof. See [Lur09, Proposition 6.3.5.1].

1.3 Grothendieck Topologies

The main method to construct ∞-topoi is by defining ∞-sheaves on ∞-categories equipped
with further data, namely Grothendieck topologies. Unlike in the classical setting, not every
accessible left-exact localization of presheaf categories is recovered by Grothendieck topologies.
In particular, it remains an open question whether every ∞-topos can be constructed as a sheaf
category.

We start by setting up the notion of Grothendieck topologies which – up to minor technicalities
such as a rigorous definition of pullback sieves – is the same as in the classical theory.

Definition 1.38. Let C be an ∞-category.

(i) A sieve on C is a full subcategory C (0) ↪→ C having the property that if f : C → C′ is a
morphism in C and C′ ∈ C (0), then also C ∈ C (0).

(ii) If C ∈ C , then a sieve on C is a sieve on the ∞-category C/C.

Lemma 1.39. Let F : C → D be a functor of ∞-categories and f : C′ → C be a map in C .

(i) Let D (0) ↪→ D be a sieve on D . Then,

F−1D (0) = D (0) ×D C

is a sieve on C .

(ii) Let C (0)
/C be a sieve on C. Then, there exists a unique sieve f ∗C (0)

/C on C′ such that f ∗C (0)
/C

and C (0)
/C determine the same sieve on C/ f by applying (i) on the diagram

13
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C/ f

C/C C/C′

to obtain sieves on C/ f .

Proof. This can be checked by hand [Lur09, Definition 6.2.2.1]. The ∞-categorical detail for (ii)
is that C/ f → C/C′ admits a section [Lan21, Lemma 1.3.46, Theorem 1.4.23].

More concretely, f ∗C (0)
/C is spanned by those maps into C′ that become equivalent to an object in

C (0)
/C after postcomposition with f .

Definition 1.40. Let C be an ∞-category. A Grothendieck topology on C is the data of a
collection of sieves on each object called covering sieves satisfying the following properties:

(i) For every C ∈ C the maximal sieve C/C is a covering sieve on C.

(ii) For any map f : C → C′ in C and a covering sieve C (0)
/C′ on C′ the pullback f ∗C (0)

/C′ is a
covering sieve on C.

(iii) Let C ∈ C and C (0)
/C , C (1)

/C be sieves on C where C (0)
/C is a covering sieve. Suppose that for

every map f : C′ → C in C (0)
/C the pullback f ∗C (1)

/C is a covering sieve on C′. Then, C (1)
/C is a

covering sieve on C.

An ∞-category equipped with a Grothendieck topology is an ∞-site.

Let C be an ∞-category and Z ∈ C . We write Sub(Z) for the class of equivalence classes of
monomorphisms over Z in C . In other words, these are the equivalence classes of the truncation
τ≤−1(C/Z). It can be shown that Sub(Z) is a set if C is presentable [Lur09, Proposition 6.2.1.3].

Classically, for a 1-site C , a sieve on C ∈ C corresponds to a subobject ofよ(C) essentially by
unravelling the definition. The same result is true for ∞-categories but it requires more work to
recover this correspondence.

Proposition 1.41. Let C be a small site with C ∈ C . For any U ∈ C there then exist ∞-categories
C/C(U) such that

Sub(よ(C))→ {sieves on C}, (i : U →よ(C)) 7→ C/C(i)

is a well-defined bijection.

Proof. We begin with the construction of these C/C(i).

Let C be a small ∞-category, C ∈ C and i : U → よ(C) be a monomorphism in PSh(C ). We
denote by C/C(i) the full subcategory of C/C spanned by those objects f : C′ → C of C/C such
that there exists a commutative triangle

よ(C′) よ(C)

U

よ( f )

i

Then, C/C(i) is a sieve on C. Indeed, let
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C′ C′

C

f

be a map in C/C such that (C′′ → C) ∈ C/C(i). In other words, there exists a commutative
triangle

よ(C′′) よ(C)

U

and by precomposing this triangle withよ( f ) we obtain a commutative diagram

よ(C′) よ(C′′) よ(C)

U

which implies (C′ → C) ∈ C/C(i). So we have observed the sieve condition for C/C(i). Moreover,
if U →よ(C) and U′ →よ(C) are equivalent subobjects ofよ(C), then we obtain

C/C(U →よ(C)) = C/C(U′ →よ(C)),

so our map is well-defined.

That the map is a bijection is achieved by reducing to a slice-free version and we refer to [Lur09,
Proposition 6.2.2.5].

Our notation is slightly more precise than Lurie’s notation: He writes C/C(U) instead of C/C(i).

Definition 1.42. Let C be a small ∞-category with a Grothendieck topology and let

S = {i : U ↪→よ(C) monic : i corresponds to a covering sieve via 1.41}.

An object P ∈ PSh(C ) is an ∞-sheaf if the functor HomC (−, P) : PSh(C )op → An induces an
equivalence HomC (i, P) for all maps i in S. The full subcategory of PSh(C ) spanned by the
∞-sheaves is denoted Sh(C ).

Let D be an ∞-category. We write ShD (C ) for D-valued sheaves which is the same definition
for D-valued functors. With this terminology we have Sh(C ) = ShAn(C ).

More succinctly, a presheaf P ∈ PSh(C ) is a sheaf if it is S-local. We could suggestively say that
P is a sheaf if it is local with respect to covering sieves.

If i : U ↪→ よ(C) is a covering sieve, then one also says that a presheaf P ∈ PSh(C ) satisfies
descent with respect to i. We want to stress that this is not the same notion as descent in ∞-topoi
as will be introduced in section 1.4.

Classically, a sheaf can be described as a presheaf satisfying an equalizer condition. This
generalizes to higher categories via Čech nerves which we spell out in the following. Since we
could not find any complete proof in the literature, we give one here.

Proposition 1.43. Let C be a small site. Let P ∈ PSh(C ). The following are equivalent:

(i) The presheaf P is a sheaf.
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(ii) For every C ∈ C and every family of maps {Ui → C}i generating a covering sieve
corresponding to η : U →よ(C) the map

P(C)→ lim

(
∏

i
HomPSh(C )(よ(Ui), P) ⇒ ∏

i,j
HomPSh(C )(よ(Ui)×よ(C)よ(Uj), P)→→→ · · ·

)

induced by the Čech nerve of ⨿iよ(Ui)→よ(C) is an equivalence.

Proof. Let η : U → よ(C) be a subobject corresponding to a covering sieve generated by a
family of maps { fi : Ui → C}i. These maps induce another morphism f : ⨿iよ(Ui) → よ(C).
We consider its Čech nerve Č( f ) : N(∆+)op → PSh(C ) with underlying simplicial object
W• = Č( f )|N(∆)op : N(∆)op → PSh(C ). We prove the more precise statement that P is local with
respect to η if and only if the induced map

P(C)→ lim HomPSh(C )(W•, P)

is an equivalence.

The (−1)-truncation τ≤−1 f in PSh(C )/よ(C) is equivalent to η [Lur09, Lemma 6.2.3.18]. On the
other hand, (−1)-truncations are computed by colimits of Čech nerves [Lur09, Proposition
6.2.3.4], so τ≤−1 f ≃ colim U•. Thus, P is local with respect to η if and only if

HomPSh(C )(よ(C), P) ≃ HomPSh(C )(U, P)
≃ HomPSh(C )(colim W•, P)
≃ lim HomPSh(C )(W•, P)

as desired.

If C has pullbacks, then this simplifies to

P(C) ≃ lim

(
∏

i
P(Ui) ⇒ ∏

i,j
P(Ui ×C Uj)

→→→ · · ·
)

by the Yoneda Lemma. This is precisely the higher version of the equalizer condition.

We now give a generating notion of Grothendieck topologies. It will be particularly useful to us
when we discuss fractured structures on ∞-topoi. We follow Lurie’s Spectral Algebraic Geometry
[Lur18, Section 20.6.1].

Definition 1.44. Let C be an ∞-site with Grothendieck topology τ and let C ∈ C . A collection
of morphisms { fα : Uα → C}α in C is a τ-covering if it generates a covering sieve on C.

More precisely, this means that a collection of morphisms { fα : Uα → C}α is a τ-covering if the
full subcategory C (0)

/C ↪→ C/C spanned by those morphisms which factor through some fα is a
τ-covering sieve.

Example 1.45. This allows us to write out some examples of sheaf categories more succinctly.
We tacitly only take small enough objects to avoid set-theory problems.

(i) Sheaves on spaces: Let X be a topological space and consider the poset category Open(X).
A covering sieve on an open subset U ∈ Open(X) is generated by a collection of open sub-
sets {Ui ↪→ U}i∈I which jointly surject onto U as sets. Equipped with this Grothendieck
topology we recover Sh(X) ≃ Sh(Open(X)).
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(ii) Sheaves in algebraic geometry: Let S be a scheme and consider the 1-category of S-schemes
C = Sch/S. We present the following classical Grothendieck topologies in an increasingly
fine order. Let X ∈ Sch/S. A family of maps { fi : Xi → X}i∈I generates a covering sieve
in the

• Zariski topology if the fi are jointly surjective open embeddings,
• étale topology if the fi are jointly surjective étale maps,
• fppf topology if the fi are jointly surjective, flat, and locally of finite presentation,
• fpqc topology if there exists a refinement {gj : Yj → X}j∈J of { fi}i∈I such that the map

⨿j∈J Yj → Y is faithfully flat and quasicompact.

These yield the Zariski sheaves, the étale sheaves, the fppf sheaves, and the fpqc sheaves.
Studying higher versions of these is part of spectral algebraic geometry [Lur18].

(iii) Motivic homotopy theory: Let S be a scheme and consider the 1-category of smooth S-
schemes C = Schsmooth

/S . Let X ∈ Schsmooth
/S . A family of maps { fi : Xi → X}i∈I generates

a covering sieve if ⨿i∈I Xi(k) → X(k) is surjective for every field k. This is called the
Nisnevich topology and sheaves on the induced site are Nisnevich sheaves.

A presheaf F ∈ PSh(Schsmooth
/S ) is called A1-invariant if pr∗X : F(X) → F(X ×A1) is an

equivalence for every X ∈ Schsmooth
/S .

A motivic anima on S is an A1-invariant Nisnevich sheaf.

These objects are studied in motivic homotopy theory which is another approach in which
algebraic geometry is married with homotopy theory [MV99].

(iv) Condensed mathematics: We endow the category of compact Hausdorff spaces CHaus
with a Grothendieck topology given by the finitely jointly surjective families of maps.
Then,

Cond(Set) = ShSet(CHaus)

is the category of condensed sets.

We will give a more thorough introduction to condensed mathematics in section 3 where we, in
particular, use the ∞-categorical language (3.12).

Here are some results about pulling back Grothendieck topologies that we will need to pass
between sheaf categories.

Proposition 1.46. Let F : C → D be a functor between ∞-categories and let τ be a Grothendieck
topology on D . Assume that C admits pullbacks and that F preserves pullbacks. Then, there is
a Grothendieck topology F∗τ on C defined as follows: For any C ∈ C a sieve C (0)

/C ↪→ C/C is a
covering sieve if and only if the collection {F(U)→ F(C)}U∈C (0)

/C
is a τ-covering of F(C).

Proof. See [Lur18, Proposition 20.6.1.1].

Proposition 1.47. Let F : C → D be a functor between ∞-categories and let τ be a Grothendieck
topology on D . Assume that C admits pullbacks and that f preserves pullbacks. Then, the
precomposition functor f ∗ : PSh(D)→ PSh(C ) induces a functor f ∗ : Shτ(D)→ Sh f ∗τ(C ).

Proof. See [Lur18, Proposition 20.6.1.3].

We conclude the section by analyzing the localizations appearing through Grothendieck topolo-
gies. Even though this construction of ∞-sheaves does not yield all accessible left-exact localiza-
tions of presheaf categories, as we will see, it does yield a large class of examples which can be
nicely described. We want to give the characterization of these objects and start by defining a
stability condition.
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Definition 1.48. Let C be a cocomplete ∞-category and S be a collection of morphisms in C .
Then, S is strongly saturated if it satisfies the following properties.

(i) The collection S is stable under pushouts.

(ii) The full subcategory of Fun(∆1, C ) spanned by S is stable under small colimits.

(iii) For all 2-simplices

X Y

Z

f

g
σ

h

in C the 2-out-of-3 property holds: If any two of f , g, h belong to S, then so does the third.

Remark 1.49. Localizations play an enormous role in higher topos theory, as our very definition
of an ∞-topos involves the notion of a localization. In that regard, it is important to understand
this concept. That’s the purpose of strongly saturated classes of morphisms: They give a full
characterization of accessible localizations in presentable ∞-categories [Lur09, Proposition
5.5.4.15].

Arbitrary intersections of strongly saturated classes of morphisms are strongly saturated again.
So any collection of morphisms S′ in C is contained in a smallest strongly saturated class of
morphisms S′ containing S′, called the strongly saturated class of morphisms generated by S′.

Definition 1.50. Let C be a presentable ∞-category and let S be a strongly saturated collection
of morphisms of C . Moreover, let D be another ∞-category.

(i) Then, S is topological if it satisfies the following properties:

(a) There exists a subset S′ ⊆ S consisting of monomorphisms such that S′ = S

(b) The class S is stable under pullback.

(ii) A localization L : C → D is topological if

{ f ∈ X1 : L f is an equivalence}

is topological.

Proposition 1.51. Let C be a presentable ∞-category. Then, any topological localization C → D
is accessible and left-exact.

Proof. See [Lur09, Corollary 6.2.1.6].

Corollary 1.52. Let C and X be ∞-categories such that there exists a topological localization
PSh(C )→ X . Then, X is an ∞-topos.

Proof. This follows from 1.51 because presheaf categories are presentable (1.18).

Theorem 1.53. Let C be a small ∞-category. Then, there is a bijective correspondence between
Grothendieck topologies on C and (equivalence classes of) topological localizations of PSh(C ).

Proof. See [Lur09, Proposition 6.2.2.17].
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So that is what’s topological about topological localizations!

Note that topological localizations not only remember the resulting ∞-topos but actually they
remember the data of the Grothendieck topology. In other words, two Grothendieck topologies
generating the same ∞-sheaf categories must coincide. This is contained in Lurie’s proof and is
more precisely [Lur09, Proposition 6.2.2.16].

Grothendieck topologies only correspond to topological localizations and not all accessible
left-exact localizations of presheaf categories which are involved in defining ∞-topoi. Let us
speak out a warning: Naively, one might now expect that there exists ∞-topoi which cannot be
constructed as an ∞-sheaf category arising from an ∞-site. However, this is not at all clear and
in fact, to our knowledge, it remains an open problem up to this date, whether every ∞-topos is
a sheaf category.

On the other hand, it is possible to reconstruct every ∞-topos after one more localization,
namely after a so-called cotopological localization [Lur09, Proposition 6.5.2.19].

1.4 Descent*

Remembering all higher coherences via ∞-category theory simplifies parts of the theory. This is
clearly visible in topos theory where ∞-topoi admit several advantages that only appear once
passing to the ∞-world. Out of these, we will discuss Charles Rezk’s notion of descent as well
as object classifiers, both of which are not available to us in 1-topos theory in this form.

We begin with descent theory and will follow [Lur09, Rez19, Rez10]. We start by giving several
constructions involving slice categories which are relevant in the setting of descent.

Let C be an ∞-category with pullbacks. Consider any map f : C → C′ in C . Then, pullback
along f and postcomposition by f induces an adjunction pair [Lur09, Section 6.1.1]

C/C C/C′ .
f!

f ∗
⊥

More precisely, the target fibration ev1 : Fun(∆1, C )→ C is a biCartesian fibration because C
has all pullbacks [Lur09, Lemma 6.1.1.1]. Therefore, pulling back along the functor ∆1 → C
represented by f yields another biCartesian fibration which thus induces an adjunction pair.

This allows us to define the setting we wish to work in.

Definition 1.54. Let C be a cocomplete ∞-category with pullbacks. Then, colimits in C are
universal if for any map f : C → C′ in C the functor

f ∗ : C/C′ → C/C

preserves colimits.

Symbolically, this amounts to equivalences

colim
i∈I

(Ci ×C C′) ≃
Å

colim
i∈I

Ci

ã
×C C′

for all diagrams {Ci}i∈I in C .

If C is an ∞-category with pullbacks, then the target fibration ev1 : Fun(∆1, C ) → C is a
Cartesian fibration [Lur09, Lemma 6.1.1.1] and thus corresponds to a functor

C/− : C op → Ĉat∞

by Straightening-Unstraightening [Lan21, Theorem 3.3.10]. This is one of the fundamental
functors in topos theory!
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Definition 1.55. Let C be a cocomplete ∞-category with pullbacks. Then, C satisfies descent if
the functor

(C/−)core = (−)core ◦ C/− : C op → ”An

preserves limits.

This is sometimes also called (homotopical) patching [Rez10, 6.5]. In particular, this descent is not
to be mistaken with the wording that is occasionally used for the property a presheaf needs to
become a sheaf.

We give an alternative description of descent to showcase a more diagrammatic definition. For
the sake of language, we introduce the following definition.

Definition 1.56. Let C be an ∞-category, K ∈ sSet and p, q : K → C be two diagrams. A natural
transformation α : p⇒ q is Cartesian if for every edge e : x → y in K the naturality diagram

p(x) p(y)

q(x) q(y)

p(e)

αx αy

q(e)

is a pullback in C .

This allows us to succinctly state the following result.

Proposition 1.57. Let C be a presentable ∞-category. The following are equivalent.

(i) Colimits in C are universal and C has descent.

(ii) The functor C/− : C op → Ĉat∞ preserves limits.

(iii) Let K be a small simplicial set and α : p ⇒ q be a natural transformation of diagrams
p, q : K▷ → X . Suppose that q is a colimit diagram and that α|K is Cartesian. Then,

p is a colimit diagram ⇐⇒ α is Cartesian.

Proof. See [Lur09, Lemma 6.1.3.7] and [Lur09, Theorem 6.1.3.9].

Remark 1.58. Sometimes, a presentable ∞-category C is also said to have descent if it satisfies
one of the equivalent conditions above (1.57). This is justified by the experience that descent
rarely appears in categories in which colimits are not universal. Nonetheless, we will not follow
this convention because we want to distinguish descent from universality of colimits.

Example 1.59. Let’s illustrate this by giving examples of some prominent colimits. Let C be
a presentable ∞-category with descent in which colimits are universal. Furthermore, let ∅C

denote an intial object of C .

(i) Initial objects: Let f : C → ∅C be a map in C , then C ≃ ∅C . This is also known as a strict
initial object.

(ii) Coproducts: Consider collections of objects {Ci}i∈I , {C′i}i∈I in C and a collection of
morphisms { fi : Ci → C′i}i∈I in C . Then, the diagram

Ci ⨿i∈I Ci

C′i ⨿i∈I C′i

fi
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is a pullback square for every i ∈ I. This is also known as extensive coproducts.

Conversely, consider a collection of objects {C′i}i∈I and collections of morphisms {Ci →
C}i∈I , { fi : Ci → C′i}i∈I in C . Suppose that there exists a map f : C → ⨿i∈I C′i such that
there are pullback squares

Ci C

C′i ⨿i∈I C′i

f

for every i ∈ I. Then, ⨿i∈I Ci ≃ C. This is also known as disjoint coproducts.

(iii) Pushouts: Consider a commutative cube

C0 C1

C2 C

C′0 C′1

C′2 C′

in C such that the back faces are pullbacks and the bottom face is a pushout. Then, the
front faces are pullbacks if and only if the top face if a pushout.

Actually, strict initial objects (i) are already given in any presentable ∞-category in which
colimits are universal [Lur09, Lemma 6.1.3.6]. Indeed, descent is a vacuous statement for initial
objects. The fact that descent unites all these important properties shows the power of descent.

Note also these special cases together almost subsume universality of colimits + descent since
all colimits can be constructed through coproducts and pushouts.

The main source of examples for categories with descent comes from ∞-topoi.

Theorem 1.60. Let X be an ∞-category. The following are equivalent.

(i) The ∞-category X is an ∞-topos.

(ii) The ∞-category X is presentable, has descent and colimits in X are universal.

Proof. See [Lur09, Proposition 6.1.3.10].

Remark 1.61. It is important to stress that the ’∞’ makes a difference here. Mere 1-topoi are
not a source for examples. Let G be a 1-topos. By an explicit computation in Set, colimits
in G are universal. So if we analogously define that G satisfies descent if the pseudofunctor
G/− : G op → Ĉat preserves limits, then it turns out that the only 1-topos satisfying descent
is the trivial topos ∗. The main ingredient towards a proof of this statement is the failure of
descent on Set [Rez10, Example 2.3].

Instead, 1-topoi do satisfy a weaker version called weak descent: Let G be a 1-topos. We would
try to say that the pseudofunctor

G/− : G op → Ĉat
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preserves limits. This leads to comparison morphisms between the limits.

Let {Xi}i∈I be a collection of objects in G and let X′1 → X′0 ← X′2 be a diagram in G . We obtain
functors

G/⨿i∈I Xi ∏i∈I G/Xi
G/X′1⨿X′0

X′2
G/X′1

×G/X′0
G/X′2

F

G

F′

G′
⊥ ⊥

where F, F′ are induced by taking pullbacks while G, G′ are induced by taking the respective
colimit. It turns out that F and G define mutual inverses up to equivalence but the same
cannot be said about F′ and G′. Indeed, G′F′ ≃ idG/X′1

⨿X′0
G/X′2

while the component maps of the

natural map F′G′ ⇒ idG/X′1
×G

/X′0
G/X′2

are only given by regular epimorphisms but not necessarily

isomorphisms. This can be checked in Set by hand and be transported onto any 1-topos through
abstract nonsense [Rez10, Proposition 2.2].

The failure of F′G′ ⇒ id being an isomorphism is what is missing towards descent. On the
other hand, passing to ∞-categories and thus to homotopy pushouts repairs this problem (1.60).
So this is an instance of how remembering the higher data leads to a more natural theory!

1.5 Object Classifier*

An important property of an elementary 1-topos G is the existence of a subobject classifier
which is a representing object of the subobject functor Sub : G → Set. Again, the passage to
∞-categories improves the situation considerably and allows for object classifiers which do not
even make sense for 1-categories.

Just as for 1-topoi, ∞-topoi also have subobject classifiers.

Proposition 1.62. Let X be an ∞-topos. Then, there exists a subobject classifier, i.e. the functor

Sub : X → Set

is representable by an object Ω ∈ X .

Proof. See [Lur09, Proposition 6.1.6.3].

A subobject classifier in a category C is an object Ω such that elements in HomC (X, Ω) identify
with monomorphisms Y → X. Hence, an object classifier should be an object ‹Ω such that
elements in HomC (X,‹Ω) identify with morphisms Y → X.

However, when we are not restricting to monomorphisms, there may be non-trivial automor-
phisms of Y → X as objects in C/X. In other words, (C/X)core may have non-trivial morphisms.

There is no way to take these into account since HomC (X,‹Ω) is merely a set and not a groupoid.
On the other hand, ignoring these automorphisms would be unnatural and would dismiss the
philosophy of ∞-categories to remember the data of isomorphisms. The fix is to pass to the
∞-world where we don’t only have Hom-sets but actually ∞-groupoids of Hom’s.

Here’s a heuristic idea. We can try to do the following inductive procedure: Let C be an (n, 1)-
category. An object classifier U should ideally let C (C, U ) identify with some subcategory D of
(C/C)core for all C ∈ C . Since C (C, U ) is an (n− 1, 1)-category [Lur09, Proposition 2.3.4.18] we
should demand the same thing for D . One naive way of realizing this is to take the truncation
τ≤n−2(C/C)core which is an (n− 1, 1)-category [Lur09, Proposition 2.3.4.18].

Example 1.63. Let n = 1. Then, the above construction should yield U ∈ C with

C (C, U ) ≃ τ≤−1(C/C)core

but the (−1)-truncated morphisms are by definition the monomorphisms. So the right side
simplifies to Sub(C) and hence we recover the notion of a subobject classifier.
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The need to apply τ≤n−2 vanishes when we pass to the ∞-world since ∞ = ∞− 1!

Let κ be a regular cardinal. We will introduce more size constraints.

Definition 1.64. Let C be a presentable ∞-category. A morphism f : X → Y in C is said to be
relatively κ-compact if for all pullback squares

X′ X

Y′ Y

⌟
f

and κ-compact objects Y′ the object X′ is κ-compact.

We need to introduce some language that we will only use in this section. The notation is from
[Lur09, Definition 6.1.6.1]. Let C be an ∞-category with pullbacks and let S ⊆ Mor C be a
collection of morphisms stable under pullback. We write O (S)

C for the subcategory of Fun(∆1, C )
spanned by S with morphisms the pullback squares.

Let Mono C ⊆ Mor C denote the monomorphisms in C . Note that to contain a subobject
classifier is the same thing as O (Mono C )

C admitting a terminal object. Let us mimic this for object
classifiers.

Let RelCompC
κ ad hocly denote the collection of relatively κ-compact morphisms in C .

Theorem 1.65 (Rezk). Let X be a presentable ∞-category. The following are equivalent.

(i) The ∞-category X is an ∞-topos.

(ii) Colimits in X are universal and for sufficiently large regular cardinals κ there exists an

κ-compact object classifier, in other words, O
(RelCompX

κ )
X has a terminal object Uκ.

Proof. See [Lur09, Theorem 6.1.6.8].

Morally, this says that for an ∞-topos X the functor

X core
/− : X op → ”An

is representable but the statement is not quite correct in this way without introducing size
constraints. That’s the purpose of the relatively κ-compact morphisms. This functor preserves
limits by descent (1.60), so it’s almost an immediate formal argument for presentable categories
by 1.20. The only culprit is again set theory.

This along with descent are testaments to how for an ∞-topos X the functor

X/− : X op → Ĉat∞

or variations thereof are amongst the most important objects in topos theory.

Remark 1.66. The size restriction arises from the hope of an object U with a natural equivalence

(X/C)core ≃ HomX (C, U ).

In a locally small ∞-category the right side is small while the left side is in general not small.

More concerely, let X = An and C = ∗, then we get Ancore ≃ U , so the anima U is as large
as An. This could heuristically be said to be the anima of all anima akin to the set of all sets
from Russell’s paradox. Hence, this is a higher version of Russell’s paradox. The solution is to
restrict the left side.

Descent and object classifiers are clear advantages of the theory of ∞-topoi towards that of
1-topoi but those are not the only upshots. Certainly, this is not the end of the story: Passing
to ∞-topoi allows far more simplifications of the theory. For example, every groupoid object
in ∞-topoi is effective [Lur09, Remark 6.4.3.8], and so we invite the reader to learn even more
about higher topoi.
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1.6 Hypercomplete Topoi

One essential result in homotopy theory is the Whitehead Theorem. As ∞-topoi are seen as
the categories in which one can perform homotopy theory, one might naively expect that some
version of the Whitehead Theorem should hold for ∞-topoi. It turns out that this is not the case
but instead one sometimes passes to the universal construction, the so-called hypercompletion,
where the Whitehead Theorem holds.

Definition 1.67. Let C be a presentable ∞-category and let n ≥ −1 be an integer.

(i) A map f in C is n-connected if τ≤n f is an equivalence. An object C ∈ C is n-connected if
C → ∗C is n-connected.

(ii) A map in C is ∞-connected if it is k-connected for all integers k ≥ −1. An object C ∈ C is
∞-connected if C → ∗C is ∞-connected.

We require presentability to have a truncation functor τ≤n : C → τ≤nC (see 1.25).

Remark 1.68. Sometimes, the terminology n-connectivity is used for (n − 1)-connectedness
[Lur09, Definition 6.5.1.10]. This e.g. has the terminological advantage that Eilenberg-MacLane
objects are n-truncated and n-connective. On the other hand, one has to consider (n − 1)-
truncations τ≤n−1 in the definition and we rather want to avoid this shift in indices, so we
decided to go with the notion of connectedness.

It turns out that the Whitehead Theorem can fail, even in an ∞-topos: An ∞-connected map
need not be an equivalence [Rez19, Lecture 5].

Definition 1.69. Let C be an ∞-category.

(i) An object C ∈ C is hypercomplete if HomC ( f , C) is an equivalence for all ∞-connected
maps f in C . We write C hyp for the subcategory spanned by hypercomplete objects, called
the hypercompletion of C .

(ii) The ∞-category C is hypercomplete if C hyp = C .

One also says that hypercomplete objects are local with respect to the ∞-connected morphisms.
In particular, by the Yoneda Lemma an ∞-category is hypercomplete if and only if every ∞-
connected map is an equivalence. The classical Whitehead Theorem is precisely the statement
that An is hypercomplete.

Remark 1.70. Hypercompleteness is a purely ∞-categorical phenomenon. Let n ≥ 1 be an
integer and let C be an (n, 1)-category, i.e. C is an ∞-category with C = τ≤nC . Then, every ∞-
connected morphism in C is automatically an equivalence by definition, so C is hypercomplete.

If X is an ∞-topos, then localizating at the ∞-connected morphism yields a left-exact accessible
localization X → X hyp. In particular, X hyp is also an ∞-topos [Lur09, Section 6.5.2]. As the
name suggests, it is also hypercomplete [Lur09, Lemma 6.5.2.12].

Alternatively, one may also describe the hypercompletion of an ∞-topos as the localization at
the so-called hypercoverings [Lur09, Corollary 6.5.3.13].

Remark 1.71. Even though hypercompleting an ∞-topos naively may seem like an improvement
of the category, this is not at all true in general. Often, an ∞-topos X behaves better than X hyp

such as having better finiteness properties, and important cohomology results like proper base
change. See [Lur09, Chapter 6.5.4] for a thorough discussion on this matter.
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We conclude this section by alluding to ways of restricting the category in which we are taking
sheaves. More specifically, let C be an ∞-site, then we can form Sh(C ). We wish for conditions
on subcategories D ⊆ C such that Sh(C ) ≃ Sh(D). Classically, sheaves on topological spaces
are already understood on a basis of the space (under suitable conditions). This motivates the
following terminology.

Definition 1.72. Let C be an ∞-site. A full subcategory D ↪→ C is a basis for C if for every
C ∈ C there exists a covering sieve { fi : Di → C}i∈I with a small set I and Di ∈ D .

Note however, that this is not the same basis that is sometimes called Grothendieck pretopology
which restricts the family of coverings to smaller families [MLM94, Definition III.2.2].

Lemma 1.73. Let C be an ∞-site and let D ↪→ C be a basis. Then, there is a unique Grothendieck
topology on D such that: A collection of maps {Di → D}i∈I in D is a covering sieve if and only
if it is a covering sieve in C .

Proof. See [Lur19, Proposition B.6.3].

Proposition 1.74 (Comparison Lemma). Let C be an ∞-site and let D ↪→ C be a basis.

(i) Presheaf restriction defines an equivalence of hypercomplete ∞-topoi

i∗ : Shhyp(C ) ∼−→ Shhyp(D), F 7→ F |Dop .

(ii) Suppose that D and C are n-categories for some n and have finite limits. Then, presheaf
restriction defines an equivalence of ∞-topoi

i∗ : Sh(C ) ∼−→ Sh(D), F 7→ F |Dop .

Proof. See [BGH20, Proposition 3.12.11] and [Aok23, Corollary A.8].

For 1-topoi the comparison lemma works without any restrictions for bases [Lur19, Proposition
B.6.4] but in the ∞-world there need to be restrictions. There are also other approaches which
can be found in the literature – see e.g. [Hoy14, Lemma C.3] or [BGH20, Corollary 3.12.13,
3.12.14]. We will use the Comparison Lemma to interchange different categories related to
condensed mathematics.

2 Cohesion and Fractured Structure

An ∞-topos behaves similarly to the ∞-category An and is hence a suitable setting to perform
homotopy theory. For example, one can construct homotopy sheaves on an ∞-topos [Lur09,
Chapter 6.5]. However, passing to homotopy types dismisses the topological information of a
space which can be valuable.

This suggests the need to recover the relevant information through an axiomatization of the
properties in question. We introduce the notion of cohesion and fractured structures precisely
for this purpose.

2.1 Cohesion

We will begin with the more classical notion of a cohesive topos first developed by William
Lawvere [Law07]. Urs Schreiber generalized it to the ∞-world in his Differential cohomology in
a cohesive infinity-topos [Sch13]. One can think of the word cohesion as inspired by chemistry
which describes how molecules stick together. In that sense, mathematical cohesion is supposed
to describe how points ’cohere’ or ’stick together’.

We will mostly follow Schreiber [Sch13] and begin by defining a relative version of cohesion.
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Definition 2.1. Let X be an ∞-topos over an ∞-topos Y realized by a geometric morphism
f∗ : X → Y .

(i) If f∗ admits fully faithful adjoints

X Y ,f∗

f ∗

f !

⊥

⊥

then X is called local over Y .

(ii) If X is local over Y as in (i) and f ∗ admits a further left adjoint f! which preserves finite
products, then X is called cohesive over Y .

The notation for the four functors of cohesion is often chosen as

X Y .

f!

f∗

f ∗

f !

⊥

⊥

⊥

Remark 2.2. For locality, it suffices to demand that one of the adjoints of f∗ is fully faithful since
f ∗ is fully faithful if and only if f ! is fully faithful [MLM94, Lemma VII.4.1].

In particular, a geometric morphism f∗ realizing a relative local ∞-topos corresponds to f∗ being
a localization: The functor f∗ being a geometric morphism already includes the information
of a left adjoint f ∗, so what’s missing is a fully faithful right adjoint f ! and that’s precisely the
meaning of a localization.

If X is cohesive over Y , then Y embeds into X in two ways, namely via f ∗ and f !.

From our relative notion of cohesion we want to define an absolute notion which puts Y = An.
For this, we work out a geometric morphism X → An which is fundamental in the theory of
∞-topoi.

Definition 2.3. Let X be an ∞-topos and let ∗X be a terminal object in X . Then, the global
sections functor is given by

Γ = HomX (∗X ,−) : X → An, F 7→ HomX (∗X , F ).

Since Γ is limit-preserving and accessible [Lur09, Proposition 5.3.4.17], it admits a left adjoint
Disc : An→ X by the Adjoint Functor Theorem (1.21). In fact, it can be described explicitly as

Disc = ∗X ⊗− : An→ X

via the equivalence

HomX (∗X ⊗ K, X) ≃ HomX (∗X , X)K = HomAn(K, HomX (∗, X)) = HomAn(K, Γ(X))

natural in K ∈ An and X ∈ X . Explicitly,

Disc(K) = ∗X ⊗ K = colim
Ä

K → ∗ ∗X−−→ X
ä

by [Lur09, Corollary 4.4.4.9]. For example, if K is discrete, then ∗X ⊗ K ≃ ⨿K ∗X .

Lemma 2.4. Let X be an ∞-topos, then Γ : X → An is a geometric morphism.
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Proof. Since X is an ∞-topos, there exists an (accessible) left-exact localization a : PSh(C )→ X
for some small ∞-category C . Let ∆ : An→ PSh(C ) denote the constant diagram functor. The
composition of the two adjunction pairs

An PSh(C ) X
∆

Hom(∗PSh(C ),−)

a
⊥ ⊥

compose to another adjunction pair. Therefore, up to equivalence, they must compose to the
adjunction pair

An X
Disc

HomX (∗X ,−)
⊥

and so Disc ≃ a ◦ ∆ is left-exact because ∆ and a are.

In fact, Γ is the unique geometric morphism X → An up to homotopy [Lur09, Proposition
6.3.4.1].

The upshot is that X is an ∞-topos over An via Γ : X → An. So it makes sense to ask about
locality and cohesion of X over An via Γ.

Definition 2.5. Let X be an ∞-topos.

(i) If Γ : X → An is local, then X is a local ∞-topos.

(ii) If Γ : X → An is cohesive, then X is a cohesive ∞-topos.

Since Γ : X → An is the unique geometric morphism X → An, it is equivalent to spell out the
definition for any geometric morphism X → An.

Remark 2.6. If X is a cohesive ∞-topos, then the following notation is typically used:

X An.

Π

Γ
Disc

CoDisc

⊥

⊥

⊥

The notation follows our geometric intuition:

• The functor Π is like the fundamental ∞-groupoid of a space.

• The functor Disc is like the discrete ’topology/cohesion’.

• The functor Γ is like the global sections functor.

• The functor CoDisc is like the codiscrete ’topology/cohesion’.

This is probably best demonstrated through an example on the 1-categorical level. An anal-
ogous definition yields cohesive 1-topoi (over Set). In fact, cohesion can be defined more
generally than just for topoi. Indeed, the 1-category of locally path-connected topological spaces
Toplocally path-connected is cohesive over Set realized by the adjunction quadruple

Toplocally path-connected Set

π0

U
Disc

CoDisc

⊥

⊥

⊥

which suggests our indicated geometric intuition:
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• The functor π0 takes the connected components of a space.

• The functor Disc takes the discrete topology on a set.

• The functor U is the forgetful functor.

• The functor CoDisc takes the codiscrete topology on a set.

We require local path-connectedness to obtain a well-defined functor π0. The other three
functors also exist for Top, so Top is local.

There is a similar cohesion on sSet, namely

sSet Set.

π0

(−)0

const

E

⊥
⊥

⊥

This provides a topos-theoretic example that mirrors the example on Top.

That the connected components functor π0 becomes the fundamental ∞-groupoid functor Π in
the ∞-world has the slight disadvantage that it is more complicated but the major advantage
that it encodes far more information!

Here is a result that helps in checking for cohesion.

Lemma 2.7. Let X be an ∞-topos with an adjunction triple (Π ⊣ Disc ⊣ Γ) : X → An. The
following are equivalent.

(i) The functor Disc is fully faithful.

(ii) The functor Π preserves terminal objects.

Proof. Suppose first (i), i.e. that Disc is fully faithful. Equivalently, the counit Π ◦Disc⇒ idX

is an equivalence. Thus,
Π(∗An) ≃ Π (Disc(∗X )) ≃ ∗X

where the first step uses that Disc as a right adjoint preserves terminal objects.

Conversely, suppose that Π preserves terminal objects. We wish to show that the counit map
Π ◦Disc⇒ idX is an equivalence. We compute

Π(Disc(S)) ≃ Π
Å

Disc(colim
S
∗An)
ã
≃ colim

S
Π (Disc(∗An)) ≃ colim

S
∗An ≃ S

where the second equivalence uses that left adjoints preserve colimits and the third equivalence
uses that Π and Disc preserve terminal objects by assumption (ii) and right adjointness of Disc.
This equivalence composes to the counit map.

Now we want to demonstrate that cohesion is a rich phenomenon that includes a myriad of
examples. We begin by giving three recipes for constructing cohesive ∞-topoi.

Proposition 2.8. Let C be a small pointed ∞-category and let Y be an ∞-topos. Then, Fun(C , Y )
is an ∞-topos cohesive over Y .

Proof. First, Fun(C , Y ) is indeed an ∞-topos because Y is an ∞-topos and C is small (1.36).
The constant functor ∆ : Y → Fun(C , Y ) has left and right adjoints

Fun(C , Y ) Y

ℓ

c

∆
⊥

⊥

28



Qi Zhu Fractured Structure on Condensed Anima

exhibited as colimit and limit functors. Since C has a zero object 0, these functors are given by
evaluation in 0. Therefore, c preserves limits and in particular products. Moreover, ℓ preserves
colimits, so it admits a right adjoint by the Adjoint Functor Theorem (1.21). To finish, ∆ is fully
faithful because the counit ∆c⇒ idY is an equivalence.

Example 2.9. This single innocent result yields many examples from classical homotopy theory.

(i) Set Y = An. Then, PSh(C ) is a cohesive ∞-topos.

(ii) Set C = N(FinSet∗). Then we are in the setting of Γ-objects.

(iii) Set C = Anfin
∗ . Then we are in the setting of Goodwillie calculus.

Proposition 2.10. Let X be a cohesive ∞-topos over an ∞-topos Y and let D be an ∞-category
with initial object ∅D and terminal object ∗D . Then, Fun(D , X ) is cohesive over Y , exhibited
by the following adjunction quadruple:

Fun(D , X ) X Y .

∗∗D

∅∗D

p∗

(∅D )∗

Π

Γ
Disc

CoDisc

⊥

⊥

⊥

⊥

⊥

⊥

Proof. The main ingredient is the adjunction triple

∗ D

∅D

∗D

p
⊥

⊥

There are adjunction triples

Fun(D , X ) X X Fun(D , X )(∅D )∗

(∅D )!

(∅D )∗

p∗

(∗D )∗

(∅D )∗

⊥

⊥

⊥

⊥

induced by Kan extension and by Fun(−, X ).

These already give the four adjoints

Fun(D , X ) X

∗∗D

∅∗D

p∗

(∅D )∗

⊥

⊥

⊥

from which we still need to verify the additional properties from cohesion.

As a right adjoint ∗∗D preserves limits and particularly finite products, so the leftmost map
in the quadruple preserves finite products. Moreover, the counit map ∗∗D ◦ p∗ ⇒ idX is an
equivalence since p ◦ ∗D = id∗D . So p∗ is fully faithful.

Example 2.11. Let X be an ∞-topos. So in particular, X is cohesive over itself via idX .
The arrow category Fun(∆1, X ) is a cohesive ∞-topos (2.10) over X via the source fibration
ev0 : Fun(∆1, X )→ X .

Proposition 2.12. Let X be an ∞-topos. The ∞-topos of simplicial objects

sX = Fun(∆op, X )

is cohesive over X .
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Proof. By formal reasons, there is a quadruple adjunction

sX X

|−|

(−)0

const

E

⊥
⊥

⊥

consisting of geometric realization, constant simplicial objects, 0-simplices, and the bar con-
struction. Indeed, we consider the three functors

∆0 ∆op ∆0F G

where F corresponds to [0] ∈ ∆op which by Kan extension give rise to adjunction triples

Fun(∆0, X ) Fun(∆op, X ) Fun(∆op, X ) Fun(∆0, X )G∗

G!

G∗

F∗

F!

F∗

⊥

⊥

⊥

⊥

Since GF = id∆0 , we obtain F∗G∗ = idX and thus G∗ ≃ F!. In particular, by explicit computation
F∗ = (−)0 and so we obtain a quadruple adjunction from the above. The above argument also
shows that const = F! is fully faithful. An argument similar to [GZ67, Section III.3] shows that
| − | = G! preserves finite products.

Example 2.13. For instance, the ∞-category of simplicial anima sAn = Fun(∆op, An) forms a
cohesive ∞-topos.

Example 2.14. Cohesion also appears in global homotopy theory: Let G be a compact Lie group,
then there exists a quadruple adjunction

(AnGlo)/BG G-An

ΠG

ΓG

∆G

∇G

⊥

⊥

⊥

exhibiting (AnGlo)/BG as a cohesive ∞-topos over G-An which we will not further elaborate on.
See [Rez14, Chapter 5]. Note that Rezk writes Top where we write An.

Let us conclude this section with one result about cohesion that we will not prove because we
have not discussed the homotopy dimension of an ∞-topos.

Proposition 2.15. A cohesive ∞-topos is hypercomplete.

Proof. See [Sch13, Proposition 3.4.3].

There are more precise statements about homotopy and cohomological dimensions of cohesive
∞-topoi as well as statements about its shape [Sch13, Proposition 3.4.3]. In fact, already local
∞-topoi are hypercomplete [Sch13, Proposition 3.2.2] but the virtue of cohesive ∞-topoi is that
there are certain tools to construct them:

An ∞-site is an ∞-cohesive site once one demands certain conditions on the site [Sch13, Defini-
tion 3.4.17]. They then immediately give rise to cohesive ∞-topoi [Sch13, Proposition 3.4.18].
This machinery allows us to construct many more cohesive structures. We will not go into
details here but will give a similar procedure for fractured structures. These cohesive structures
can still be further refined, e.g. into real-cohesion [Shu18] or differential cohesion [Sch13] to
name just two examples.

We also recommend the reader to look into Proper Orbifold Cohomology by Sati-Schreiber [SS20]
for more examples and applications of cohesion.
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2.2 Fractured Structure

While we have just demonstrated a myriad of examples realizing cohesion, it will turn out that
the main example in this thesis will not satisfy cohesion in a suitable way. Indeed, we will argue
in Section 4 that cohesion on the ∞-topos of condensed anima Cond(An) is not the notion to
consider (4.3, 4.7). For this purpose, we will adhere to another concept, namely that of fractured
structures developed by Jacob Lurie [Lur18] and David Carchedi [Car20].

Originally, fractured ∞-topoi were developed to axiomatize a suitable notion of gluing schemes.
Let X be a scheme and let Schfp

/X be the site of X-schemes of finite presentation with the étale

topology. Then, every object in Sh(Schfp
/X) can be written as a colimit of representables. If {Yα}α

is a diagram in Sch/X, then its colimit (after applyingよ) in Sh(Schfp
/X) will typically not be

representable by geometric objects. However, if all transition maps are étale, then the colimit
can be represented by a higher Deligne-Mumford stack which is locally of finite presentation
over X. Objects obtained in this way lie in a subcategory

Sh
Ä

Schfp
/X

äcorp
⊆ Sh

Ä
Schfp

/X

ä
and one can show Sh(Schfp

/X)corp ≃ Sh(Schét, fp
/X ) where Schét, fp

/X denotes the site of étale X-
schemes of finite presentation with the étale topology. Axiomatizing certain nice properties of
this subcategory leads to the notion of a fracture subcategory [Lur18, Section 20.1].

This viewpoint will be of no relevance to our goals. Instead, we will think of a fractured
structure as a local cohesive structure (2.20).

Next to this thesis and the aforementioned works only few texts using fractured structures are
known to us. Christopher Adrian Clough uses fractured structures to study differentiable stacks
in his dissertation [Clo21, Clo23] and recently Bastiaan Cnossen, Tobias Lenz and Sil Linskens
employed fractured ∞-topoi to study equivariant homotopy theory [CLL23].

We will follow [Lur18], define the concept, and discuss the machinery of admissibility structures
to construct non-trivial fractured structures.

Definition 2.16. Let X be an ∞-topos. A subcategory j! : X corp → X is a fracture subcategory
if it satisfies the following conditions:

(i) If X ∈ X corp and f : X → Y in X is an equivalence, then f belongs to X corp.

(ii) The ∞-category X corp admits pullbacks and these are preserved by j!.

(iii) The inclusion functor j! : X corp → X admits a right adjoint j∗ : X → X corp which is
conservative and preserves small colimits.

(iv) For every map U → V in X corp the diagram

j! j∗ j!U j! j∗ j!V

j!U j!V

induced by the counit j! j∗ ⇒ idX is a pullback in X .

A fractured ∞-topos is a pair X corp → X where X is an ∞-topos and X corp is a fracture
subcategory of X .
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Remark 2.17. Clough gives another definition of fractured structures. He defines a fractured
∞-topos as an adjunction

j! : X corp X : j∗⊥

between ∞-topoi X corp and X satisfying the following conditions:

(i) The ∞-topos X is generated under colimits by im j!.

(ii) For every U ∈ X corp the left adjoint in

(j!)/U : X
corp
/U : X/U : (j∗)/U⊥

is fully faithful.

(iii) The functor j∗ : X → X corp preserves colimits.

(iv) For any pullback square

U′ U

V ′ V

⌟

in which U → V and V ′ lie in the image of j!, the map U′ → V ′ is in the image of j!.

The definitions are equivalent [Clo23, Proposition 2.3.1].

It will turn out that X corp is an ∞-topos (2.19), so then the condition that j∗ preserves small
colimits 2.16(iii) is equivalent to it admitting a right adjoint by the Adjoint Functor Theorem
(1.21). Hence, we obtain a triple adjunction

X corp X

j!

j∗

j∗
⊥

⊥

which we can not quite manage to complete to a quadruple adjunction from cohesion. Instead,
we want to think of a fractured structure as a device to produce cohesion locally (2.20). Here,
’locally’ means to employ slice categories.

Proposition 2.18. Let X corp → X be a fractured ∞-topos. For every X ∈ X corp the inclusion
(j!)/X : X

corp
/X ↪→ X/X is fully faithful.

Proof. See [Lur18, Proposition 20.1.3.1].

Proposition 2.19. Let X corp → X be a fractured ∞-topos. Then, X corp is an ∞-topos.

Proof. See [Lur18, Proposition 20.1.3.3].

Remark 2.20. As alluded to before, a fractured structure induces cohesion locally. This is not
completely true but it almost is. We want to view it in the following sense.

Let j! : X corp → X be a fractured ∞-topos and X ∈ X corp. Since j∗ : X → X corp preserves
small colimits (2.16(iii)), it admits a right adjoint j∗ : X corp → X by the Adjoint Functor
Theorem (1.21). After passing to slice categories, we obtain a triple adjunction
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X
corp
/X X/X

(j!)/X

(j∗)/X

(j∗)/X
⊥

⊥

since X and X corp are complete ∞-categories.

The functor (j!)/X is fully faithful (2.18) and preserves pullbacks by definition (2.16(ii)). By
2.16(i) we deduce idX ∈ X

corp
/X , so it is a terminal object and hence j! preserves terminal objects.

Therefore, j! preserves pullbacks and terminal objects, so it preserves finite limits. So the
requirements for the Adjoint Functor Theorem (1.21) are almost fulfilled to yield another left
adjoint of (j!)/X. If that left adjoint furthermore preserves finite products, then this would result
in a quadruple adjunction realizing a cohesive structure.

Remark 2.21 (Warning). Here’s a notational warning. We have chosen the decoration for the
functors in our definitions of cohesion and fractured ∞-topoi from the original texts but we
realize that this could be potentially confusing. For instance, the lower shriek functor (−)!
denotes the left-most functor in the quadruple adjunction of cohesion while for fractured
structure we use (−)! to denote the right adjoint of the left-most functor.

Remark 2.22. From the above discussion, it might seem like fractured structures are a strictly
weaker concept than cohesion. However, a naive way of making cohesion imply fractured
structure does not work.

Let X , Y be two ∞-topoi with a quadruple adjunction

X Y

f!

f∗

f ∗

f !

⊥

⊥

⊥

realizing X as a cohesive ∞-topos over Y . The naive hope is that the fully faithful functor
f ∗ : Y → X realizes Y as a fracture subcategory of X .

Recall (2.9(i)): For any ∞-category C the presheaf category PSh(C ) is a cohesive ∞-topos via

PSh(C ) An.

Π

Γ
Disc

CoDisc

⊥

⊥

⊥

On the other hand, Disc : An ↪→ PSh(C ) does not realize An as a fracture subcategory of
PSh(C ) in general because the global sections functor Γ is not conservative in general.

In fact, the failure is much more general: Cohesion yields a fully faithful functor f ∗ : Y ↪→ X
but a fracture subcategory j! : X corp → X is never fully faithful unless X corp = X . If
j! : X corp → X is fully faithful, then it preserves colimits and thus X corp = X since X is
generated under colimits by im j! by 2.17.

Example 2.23. Let X be an ∞-topos.

(i) The trivial fractured structure is idX : X → X .

(ii) Consider the functor which on objects is given as

F : X ×X → Fun(∆1, X ), (X, Y) 7→ (X ↪→ X ⨿Y).

More precisely, the unit η : idX ×X ⇒ ∆ ◦ (−⨿−) of the adjunction
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X ×X X
−⨿−

∆
⊥

is a map ∆1 → Fun(X ×X , X ×X ). By the adjunction − × ∆1 ⊣ Fun(∆1,−) this
corresponds to a map η′ : X ×X × ∆1 → X ×X . Then, pr1 ◦ η′ : X ×X × ∆1 → X
is adjoint to our desired F.

This F induces an equivalence onto a fracture subcategory Fun(∆1, X )corp ⊆ Fun(∆1, X )
[Lur18, Examples 20.1.2.3].

A priori it is not so clear how to obtain non-trivial fractured structures. However, Lurie
developed machinery involving so-called admissibility structures to construct many fractured
structures [Lur18, Chapter 20.2, 20.3, 20.5]. We want to discuss this notion now.

Definition 2.24. Let C be an ∞-category. An admissibility structure on C is a collection of
morphisms in C , called the admissible morphisms, satisfying the following axioms:

(i) Equivalences in C are admissible.

(ii) If f : U → X is admissible in C and g : X′ → X is a morphism in C , then the pullback
square

U ×X X′ U

X′ X

f ′
⌟

f

g

exists and f ′ is admissible.

(iii) Consider the commutative triangle

X Y

Z

f

h g

in C where g is admissible. Then, f is admissible if and only if h is admissible.

(iv) The collection of admissible morphisms is closed under retracts in Fun(∆1, C ).

We write C ad for the wide subcategory of C with the admissible morphisms as maps.

Admissibility structures are related to factorization systems and this also motivates the above
axioms [Lur18, Section 20.2.2]. It will be of no relevance to us and we will instead focus on the
relation of admissibile morphisms to fractured ∞-topoi.

Example 2.25. Here are some examples of admissibility structures.

(i) Let AffSchft denote the category of affine schemes of finite type over Z. Then, the open
embeddings Spec Z[t−1] ↪→ Spec Z for 0 ̸= t ∈ Z determine an admissibility structure
on AffSchft [Lur18, Example 20.2.1.5].

(ii) The open embeddings determine an admissibility structure on Top [Lur18, Example
20.2.1.6].
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(iii) The injective continuous maps determine an admissibility structure CHausinj on CHaus
by some point-set topology arguments. This is a first hint towards a fractured structure
on condensed anima.

(iv) Let j! : X corp → X be a fractured ∞-topos. Then, a morphism f : U → X in X is called
X corp-admissible if for every pullback square

U ×X X′ U

X′ X

f ′
⌟

f

g

with corporeal X′ also f ′ belongs to X corp. Then, the X corp-admissible morphisms
determine an admissibility structure on X [Lur18, Proposition 20.3.1.3].

We enhance admissibility structures to geometric admissibility structures which again is mo-
tivated by an algebro-geometric setting of so-called Cartesian sheaves [Lur18, p. 1526-1527].
Once more, this viewpoint will not be relevant to us.

Definition 2.26. Let X be an ∞-topos.

(i) An admissibility structure X ad → X is called local if it satisfies the following axioms:

(a) If f : U → X is a map in X and ⨿α Xα → X is an effective epimorphism such that
Xα ×X U → Xα is admissible, then f is admissible.

(b) For every X ∈ X the slice category X ad
/X is presentable and the inclusion X ad

/X →
X/X preserves small colimits.

(ii) Let X ad → X be a local admissibility structure which hence for every X ∈ X induces
an adjunction

X ad
/X X/X

ρX

⊥

by the Adjoint Functor Theorem (1.21, 1.37). Then, X is X ad-corporeal if ρX preserves
small colimits.

(iii) Let X be an ∞-topos. A geometric admissibility structure on X is a local admissibility
structure X ad → X such that X is generated under small colimits by the X ad-corporeal
objects.

Theorem 2.27. Let X be an ∞-topos with a geometric admissiblity structure X ad → X . Let
X corp be the full subcategory of X ad spanned by the X ad-corporeal objects. Then, X corp → X
is a fracture subcategory.

Proof. See [Lur18, Theorem 20.3.4.4].

Remark 2.28. Let X be an ∞-topos.

(i) Let X corp → X be a fracture subcategory as above. Then, it is closed under retracts in X
[Lur18, Theorem 20.3.4.4].

(ii) In fact, there is a bijective correspondence between geometric admissibility structures on
X and fracture subcategories that are closed under retracts [Lur18, Remark 20.3.4.6].
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Many ∞-topoi are described via Grothendieck topologies and we will now give conditions on a
site that will immediately produce fractured structures. This is similar to ∞-cohesive sites and,
as announed in that section, we will give more details for fractured ∞-topoi. The upshot is that
it will suffice to check conditions on a site before passing to the sheaf category.

Definition 2.29. Let C be an ∞-site with Grothendieck topology τ.

(i) An admissibility structure C ad → C is compatible with τ if for every X ∈ C and covering
sieve C (0)

/X → C/X there exists a τ-covering { fα : Uα → X}α such that fα is admissible and

belongs to C (0)
/X .

(ii) A geometric site is a triple (C , C ad, τ) where C is an essentially small ∞-category, C ad is
an admissibility structure on C and τ is a Grothendieck topology on C compatible with
C ad.

Let (C , C ad, τ) be a geometric site. Then, C ad admits pullbacks by definition and the inclusion
functor j : C ad → C preserves pullbacks by construction. Hence, we obtain a Grothendieck
topology τad = j∗τ by 1.46. Then, precomposition induces a functor j∗ : Shτ(C )→ Shτad(C ad)
(see 1.47).

Theorem 2.30. Let (C , C ad, τ) be a geometric site. Then, there is an adjunction

Shτad(C ad) Shτ(C )
j!

j∗
⊥

and j! induces an equivalence from Shτad(C ad) to a fracture subcategory Shτ(C )corp ⊆ Shτ(C ).

Proof. See [Lur18, Theorem 20.6.3.4].

Finally, here is the motivating example of the theory that accompanied us throughout but
besides that was of little relevance for our goals.

Example 2.31. Consider the site C = Schfp
/X of X-schemes of finite presentation with the étale

topology. Then, there is an admissibility structure Schét, fp
/X ⊆ Schfp

/X of étale X-schemes of finite
presentation. This defines a geometric site [Lur18, Section 20.6] and so we obtain an adjunction

Sh
Ä

Schét, fp
/X

ä
Sh
Ä

Schfp
/X

ä
⊥

which induces an equivalence onto a fracture subcategory (2.30). More variations of this
example can be found in [Lur18, Section 20.6.4].

Remark 2.32. Since ∞-sites do not induce all left-exact accessible localizations from presheaf
categories (1.53), it is also not plausible to expect that every fractured ∞-topos may be obtained
from a geometric site [Lur18, p. 1499]. On the other hand, every fractured ∞-topos can be
realized as the localization of a fracture subcategory of a presheaf category [Lur18, Theorem
20.5.3.4].

In that sense this allows us a similar viewpoint to the definition of ∞-topoi. Every ∞-topos is
realized as a localization of a presheaf category while every fractured ∞-topos is realized as a
localization of a fractured presheaf category.

We will construct a fractured structure on condensed anima and the main ingredient will be the
theory of geometric sites.
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3 Condensed Mathematics

It is a typical procedure in mathematics to endow additional structure to algebraic objects which
results in objects such as topological groups, Lie groups, algebraic groups, and so on. One
particularly useful enrichment is a topological enrichment partly because this allows us to fuse
our geometric intuition with our abstract algebraic intuition. However, it turns out that such
processes can lead to problems. For example, one may consider the category of topological
abelian groups TopAb but introducing topology conflicts with the algebraic properties of the
category! Indeed, the map

idR : (R, discrete topology)→ (R, euclidean topology)

has trivial kernel and cokernel but is not an isomorphism in TopAb. So TopAb cannot be an
abelian category making it impossible to perform homological algebra on this category.

A standard idea in mathematics is to enlarge this category to one with the desired properties. We
wish to embed TopAb into an abelian category. The Yoneda Embedding ensures an inclusion

よ : TopAb ↪→ Fun(Topop, Ab) = PShAb(Top)

which is an abelian category because Ab is. However, PShAb(Top) contains too many objects
but the virtue of condensed mathematics developed by Scholze-Clausen [Sch19] resp. pyknotic
mathematics developed by Barwick-Haine [BH19] is precisely about a finer distinction of this
idea.

3.1 Three equivalent definitions

Our main goal in this subsection is to introduce three different sites that yield the same notion of
sheaves which will be the condensed objects. The protagonist of this subsection is the 1-category
of compact Hausdorff spaces CHaus along with two full subcategories Stone and Stonean.

Definition 3.1.

(i) A profinite set is a pro-object in the category of finite sets FinSet. We write ProFin for
the category of profinite sets.

(ii) A Stone space is a topological space that is totally disconnected and compact Hausdorff.
We write Stone for the category of Stone spaces.

Lemma 3.2. There is an equivalence of categories ProFin ≃ Stone.

Proof. See [Joh86, VI.2.3].

By the explicit form of the equivalence any Stone space can be realized as the cofiltered limit of
finite discrete spaces.

Definition 3.3.

(i) An extremally disconnected set is a topological space in which the closure of any open
set is open again. We write ExtrDisc for the category of extremally disconnected sets.

(ii) A Stonean space is a extremally disconnected Stone space. We write Stonean for the
category of Stonean spaces.

Often Stonean spaces are called extremally disconnected spaces [Gle58] or extremally discon-
nected sets as e.g. in Clausen-Scholze’s notes on condensed mathematics [Sch19]. We try to
be a little more pedantic and make the precise distinction between (not necessarily compact
Hausdorff) extremally disconnected sets and Stonean spaces. Similarly, we try to make the
distinction between profinite sets and Stone spaces which are really only related by a non-trivial
(but tractable) equivalence of categories.
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Remark 3.4. Let S, S′ be Stonean spaces.

(i) If S, S′ are infinite, then S× S′ is not Stonean.

(ii) If a sequence (xn)n∈N in S converges, then it is eventually constant.

(iii) The Stonean spaces are precisely the projective objects in CHaus, so every surjection
T → S from a compact Hausdorff space T splits.

(iv) Every Hausdorff extremally disconnected set S′′ is totally disconnected. So Stonean is a
full subcategory of Stone.

Proof. See [Sch19, Warning 2.6] and [Gle58, Theorem 1.3, Theorem 2.5] for (i) – (iii).

For (iv) suppose that there exists a connected component U ⊆ S′′ with at least two elements. As
S′′ is Hausdorff, we can separate these two elements with open neighbourhoods V, W ⊆ S′′.
Now V is clopen and V ⊆ U \W, i.e. ∅ ̸= V ̸= U. This contradicts the connectedness of U.

Remark 3.5 (Warning). Extremally disconnected sets need not be totally disconnected despite
the terminology. Indeed, indiscrete spaces are extremally disconnected and connected.

We write (−)disc : Top→ Top for the composition

Top Set TopU Disc

and β : Top→ CHaus for the Stone-Čech compactification.

Recall that β is a left adjoint of the forgetful functor CHaus→ Top and is characterized by a
natural map iX : X → βX for X ∈ Top such that there is a unique factorization

X βX

K

iX

f
∃!

for every compact Hausdorff space K.

This construction is invaluable to get a handle on Stonean spaces.

Lemma 3.6. Let S be a compact Hausdorff space. Then, there is a surjection βSdisc → S from a
Stonean space.

Proof. We first find a surjection βSdisc → S. Consider the map i : Sdisc → S given by the identity
function on underlying sets, then the universal property of the Stone–Čech compactification
yields a factorization

Sdisc βSdisc

S
i

and so βSdisc → S is surjective since already i : Sdisc → S is surjective.

Now, we prove that βSdisc is extremally disconnected. Let T → βSdisc be a surjection from
a compact Hausdorff space. So we can find a continuous function Sdisc → T such that the
composition Sdisc → T → βSdisc is the natural inclusion. The universal property of β yields a
factorization
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Sdisc βSdisc

T

and this is indeed a section because in the larger diagram

Sdisc βSdisc

T

βSdisc

the map idβSdisc : βSdisc → βSdisc works since Sdisc → T → βSdisc is the inclusion. Hence, the
dotted composition must be idβSdisc by uniqueness from the universal property.

Remark 3.7. Our entire argument was purely formal but we believe that it’s nice to have an
explicit description of the map βSdisc → S for a compact Hausdorff space S. We imagine
that there are many possibilities for this since there are multiple convenient descriptions of
Stone-Čech compactifications but here is one approach.

Let S be a compact Hausdorff space. As a set, we may put

βSdisc =
¶

p ∈ 2S : p is an ultrafilter on S
©

which we may topologize as follows: For A ⊆ S we write “A = {p ∈ βS : A ∈ p}. Then,
{“A : A ⊆ S} forms a basis for a topology βSdisc [HS12, Theorem 3.27]. Since S is compact
Hausdorff, every ultrafilter p in S has a unique limit [BBT20, Corollary 3.12.1]. It’s another
point-set topology argument [Tsa, Theorem 3.3] that the map

βSdisc → S, p 7→ lim p

is continuous and it is surjective because the map

Sdisc → βSdisc, s 7→ (s) = {A ⊆ S : s ∈ A}

sending a point to its principal ultrafilter is evidently a section.

Remark 3.8. In fact, Stonean space is a retract of a Stone–Čech compactification [Sch19, Warn-
ing 2.6]. So understanding Stonean spaces really boils down to understanding Stone–Čech
compactifications!

Lemma 3.9. Let S be a Stonean space and U ⊆ S be a clopen subspace. Then, U is also Stonean.

Proof. First, U is compact Hausdorff because U ⊆ S is closed inside a compact Hausdorff space.
We check that it is also extremally disconnected. Let V ⊆ U be open, so there exists some open
W ⊆ S such that V = U ∩W. But U ∩W is open in S as the intersection of two open subsets, so
also clsS(U ∩W) ⊆ S is open because S is extremally disconnected. Hence,

clsU(U ∩W) =
⋂

U∩W⊆A⊆U
A⊆U closed

A =
⋂

U∩W⊆B⊆S
B⊆S closed

(B ∩U) =

Ö ⋂
U∩W⊆B⊆S
B⊆S closed

B

è
∩U = clsS(U ∩W)∩U

is also open. Therefore, U is extremally disconnected.
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Example 3.10. In 3.4 we have convinced ourselves of full subcategories

Stonean Stone CHaus.

These are the basic building blocks of condensed mathematics but let us first give examples that
those are non-trivial subcategories. In other words, we want to demonstrate that the functors
are not essentially surjective.

Indeed, [0, 1] is compact Hausdorff as a bounded closed subspace of R but it is not a Stone
space since it is not totally disconnected. The p-adic integers Zp = limn∈N Z/pnZ form a Stone
space as a cofiltered limit of discrete spaces but it is not Stonean since there are convergent
sequences which are not eventually constant (3.4(ii)). Alternatively, one can also construct such
examples with products of infinite Stonean spaces (3.20(i)).

Example 3.11. The finitely jointly surjective families of maps form a Grothendieck topology on
CHaus. By virtue of the surjection provided by Stone–Čech compactification (3.6) the inclusions

Stonean Stone CHaus

form bases. In particular, the finitely jointly surjective families of maps restrict to Grothendieck
topologies on Stone and Stonean (see 1.73). We denote the topology by τcoh on each of these
sites.

This is a special case of coherent topologies [Lur19, Appendix B.5], hence our (ad hoc) terminol-
ogy. Whenever we write Stonean, Stone or CHaus and want to view it as a site, then τcoh is
tacitly meant.

Finally, we are ready to state the characterization of condensed objects.

Proposition 3.12. The restriction functors induce equivalences of categories

Sh(CHaus)hyp Sh(Stone)hyp Sh(Stonean).≃ ≃

Proof. Since Stonean ↪→ Stone ↪→ CHaus form bases (3.11) we deduce equivalences of
categories

Sh(CHaus)hyp Sh(Stone)hyp Sh(Stonean)hyp≃ ≃

by the Comparison Lemma (1.74). Moreover, we will show that Sh(Stonean) is already hyper-
complete (3.18), so there is an equivalence Sh(Stonean)hyp ≃ Sh(Stonean).

Definition 3.13. Let D be an ∞-category. An object in ShD (Stonean) is a condensed object in
D . We write Cond(D) = ShD (Stonean) for the ∞-category of condensed objects in D .

In particular, objects in Cond(An) are called condensed anima.

Remark 3.14. Since Stonean, Stone and CHaus are not small, there are set-theoretic issues to
take sheaves of sites that need to be addressed.

Barwick-Haine [BH19, 0.3] deals with this via ’universe-hopping’. They assume the existence of
a strongly inaccessible cardinal δ and select the smallest strongly inaccessible cardinal δ+ over
δ. Then, a condensed anima in the universe Vδ+ of sets of cardinality < δ+ is a sheaf on the
site CHausδ of δ-small compact Hausdorff spaces valued in Setδ+ of δ+-small sets. These are
coined pyknotic spaces.

Clausen-Scholze [Sch19, Lecture I, II] solves this by considering uncountable strong limit
cardinals κ and κ-condensed objects which restricts the site to spaces of cardinality < κ. They
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yield the ∞-category Condκ(D). If D is an ∞-category with all (relevant) filtered colimits, then
we put

Cond(D) = colim
κ

Condκ(D)

where the colimit goes over the filtered poset of all uncountable strong limit cardinals κ. This
construction does not yield an ∞-topos but is still relatively well-behaved [BH19, Section 0.3].

The difference is merely in set theory and will not play a role in this thesis. We will ignore this
technicality in the following but shall mention that actual differences can show up depending
on the chosen set-theoretic approach [Sch19, Warning 2.14] but this will play a role for us.

In particular, we shall choose Barwick-Haine’s formulation, so for us Cond(An) does form an
∞-topos while this would not be the case in Clausen-Scholze’s formulation. Pedantic people
might object and demand these to be called pyknotic anima but we will not defer to this
terminology here. It seems appropriate since even Peter Haine has used the name condensed
anima while using their set-theory convention of pyknotic anima [Hai22].

Lemma 3.15. Let C ∈ {CHaus, Stone} and let D be an ∞-category. A functor F : C op → D is
a D-valued sheaf if and only if the following conditions are satisfied:

(i) The functor F preserves finite products.

(ii) For every surjection p : S′ ↠ S in C the diagram

F(S) F(S′) F(S′ ×S S′) · · ·p∗

obtained by applying F to the Čech nerve Č(p) : N(∆+)op → C of p is a limit diagram
with limit F(S).

Proof. See [Lur18, Proposition A.3.3.1].

Remark 3.16. For a 1-category D this reduces to the classical formulation of Clausen-Scholze
[Sch19]. Moreover, hypercompletion is redundant for 1-categories (1.70), so that a functor
F : C op → D starting in C ∈ {CHaus, Stone} is a condensed object in D if and only if it
satisfies the following two conditions:

(i) The functor F preserves finite products,

(ii) For every surjection p : S′ ↠ S in C the diagram

F(S) F(S′) F(S′ ×S S′)

is an equalizer diagram.

Formally, this is a consequence for coherent topologies [Lur19, Proposition B.5.5].

Lemma 3.17. Let D be an ∞-category. A functor Stoneanop → D is a condensed object in D if
and only if it preserves finite products.

Proof. See [BH19, 2.2.9].

Lemma 3.18. Let D be a hypercomplete ∞-category. Then, ShD (Stonean) is hypercomplete.
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Proof. Consider an ∞-connected morphism α : F → F′ in Sh(Stonean), i.e. the morphism
τ≤n(α) : τ≤n(F) → τ≤n(F′) is an equivalence for all n ≥ −2. Since the truncation functor
τ≤n : Stonean → τ≤nStonean preserves finite products [Lur09, Lemma 6.5.1.2], it preserves
condensed objects (3.17), so there is an equivalence τ≤nCond(D) ≃ Cond(τ≤nD). Now, let
S ∈ Stonean. Then, the equivalence(τ≤n(α))(S) turns into an equivalence

τ≤n(α(S)) : τ≤n(F(S))→ τ≤n(F′(S)).

Because D is hypercomplete, we deduce that α(S) is an equivalence for all S ∈ Stonean. Hence,
α is an equivalence. This completes our proof that Sh(Stonean) is hypercomplete.

Since An is hypercomplete, this finishes the proof of our characterization for Cond(An) (see
3.12).

Remark 3.19. In fact, the even stronger condition that Cond(An) is Postnikov-complete is true
[BH19, Lemma 2.4.10].

Remark 3.20. This is the place for another obligatory comment about anima as promised in 1.9.

The setting of condensed anima is supposed to cover two directions: a topological one and
a homotopical one. The topological direction is dealt with by the condensed part while the
homotopical one comes from the anima part.

As the classical notation for An is the ∞-category of spaces S , one could instead use the name
condensed space Cond(S). However, particularly in this setting of condensed mathematics this
is misleading since the word space is topologically connotated while we actually want to mean
homotopy theory here.

For example, if F is a condensed anima, then we may truncate to π0F = π0 ◦ F which is a
condensed set since π0 preserves products (3.17). So π0F forgets the anima direction and
indeed, π0F could correspond to an interesting topological space. We only dismissed the
homotopical information, not the topological space information.

So we write anima as proposed by Clausen-Scholze to make this distinction clear.

3.2 Combination of Algebra with Topology through Condensed Mathematics

The motivating problem for condensed mathematics was the inability to endow algebraic
structures with a topology while keeping nice categorical properties from an algebraic viewpoint.
More concretely, TopAb is not an abelian category! Condensed mathematics is the framework
for resolving this issue. For simplicity, let us work in the 1-categorical setting in this section, as
is also commonly done to fix the aforementioned problems.

Example 3.21. Let X be any topological space. For C ∈ {CHaus, Stone, Stonean} the functor

X : C op → Set, S 7→ HomTop(S, X)

is a condensed set.

Proof. As the restriction of a contravariant Hom-functor it preserves (finite) products. So this
already shows that X : Stoneanop → Set is a condensed set.

For C ∈ {CHaus, Stone} we still need to check the equalizer property. Let π : S′ ↠ S be
a surjection in C . Since this is in particular a surjection of compact Hausdorff spaces, it is a
quotient map. We denote the projection maps by p1, p2 : S′×S S′ → S′. Written out the equalizer
condition set-theoretically, we must check that the map

g∗ : HomTop(S, X)→ { f ∈ HomTop(S′, X) : f ◦ p1 = f ◦ p2 ∈ HomTop(S′ ×S S′, X)}

is an isomorphism. The condition f ◦ p1 = f ◦ p2 is equivalent to s′, s̃′ with g(s′) = g(s̃′) implying
f (s′) = f (s̃′). So the universal property of quotient maps yields a unique factorization
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S′ S

X

g

f
∃!

which is precisely the required bijection.

Alternatively, one can check that every surjection in C ∈ {CHaus, Stone, Stonean} is an
effective epimorphism, so that the (truncated part) of the Čech nerve is already a colimit
diagram. We can then apply that representables preserve limits.

We proved the following.

Corollary 3.22. The coherent topology τcoh on CHaus, Stone, Stonean is subcanonical.

Lemma 3.23. The functor
Top→ Cond(Set), X 7→ X

is faithful, and fully faithful when restricted to the compactly generated spaces.

Proof. See [Sch19, Proposition 1.7].

Remark 3.24. The same statement is true e.g. for

TopAb→ Cond(Ab), X 7→ X

where the functor is fully faithful again after restricting it to the topological abelian groups with
underlying spaces the compactly generated spaces. See [Sch19, Proposition 1.7].

In other words, we obtain a subcategory Top→ Cond(Set) which allows us to work with Top
in the larger category Cond(Set) that is categorically much better behaved!

Remark 3.25. These two results extend to Cond(An), as the fully faithful embedding Set ↪→ An
induces a fully faithful embedding Cond(Set) ↪→ Cond(An) by postcomposition (3.17). In
particular, a topological space X yields a condensed anima X. Therefore, this yields a functor
Top→ Cond(An).

For 1-categories there is one natural functor Top→ Cond(Set) given by the restricted Yoneda
embedding (3.21) but in the ∞-world there is an ambiguity concerning such natural functors
Top→ Cond(An). More precisely, there are two natural composites

Cond(Set) Cond(An)

Top

An Cond(An)

(−)

よ

where Top→ An is given by

Top = Nhc(const Top)→ Nhc(Kan) = An

is induced by Sing with the suggestive sSet-enrichments. The functor Top→ An is not faithful
but every other functor in the diagram is (3.23), so these composites do not agree. When we
write Top→ Cond(An), X 7→ X, then we mean the top composition. This composite retains
more information, as it also remembers the underlying homotopy type of a topological space.
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Proposition 3.26. The category Cond(Ab) is an abelian category which satisfies Grothendieck’s
axioms (AB3), (AB4), (AB5), (AB6), (AB3*), (AB4*).

Proof. See [Sch19, Theorem 2.2].

So we have managed to embed TopAb into a category that behaves much more nicely from an
algebraic viewpoint!

Example 3.27. We write Reucl for R endowed with the euclidean topology. We were faced with
the problem of considering idR : Rdisc → Reucl which has trivial kernel and cokernel but is
not an isomorphism in TopAb so that TopAb cannot be an abelian category. Such a problem
cannot arise in the condensed setting since Cond(Ab) is an abelian category! Consider the
condensed abelian groups Rdisc, Reucl : Stoneop → Ab. The map

idR∗ : Rdisc → Reucl

is pointwise given by

HomTop(S, Rdisc) HomTop(S, Reucl)

{locally constant functions S→ R} {continuous functions S→ Reucl}

which is generally non-trivial with cokernel coker idR∗ that is pointwise given by

(coker idR∗)(S) = HomTop(S, Rdisc)/HomTop(S, Reucl)

for S ∈ Stone.

Note that there is a subtlety here. A priori, it is not clear that the cokernel is given by pointwise
taking cokernels, as colimits of sheaves are typically not computed pointwise but can require
sheafification. However, it turns out that in this particular scenario sheafification is not needed.
The short exact sequence of condensed abelian groups

0 Rdisc Reucl Q 0

induces a long exact sequence by taking right derived functors

0 Rdisc(S) Reucl(S) Q(S)

H1
cond(S, Rdisc) H1

cond(S, Reucl) · · ·

for S ∈ Stone but H1
cond(S, Rdisc) = 0, as the argument in the proof of [Sch19, Theorem 3.2]

works for all discrete abelian groups. Here, it is important that we work with the characterization
Cond(Ab) ∼= ShAb(Stone) and not ShAb(CHaus) where the analogous statement fails since
it’s not evident that H1

cond(S, Rdisc) vanishes for all S ∈ CHaus.

An upshot of this example is that we have constructed a condensed abelian group Q which is not
representable by a topological space! It would have to come from the cokernel of Rdisc → Reucl

but that cokernel is trivial.

In fact, Cond(Ab) enjoys numerous additional pleasantries, e.g. one can endow a symmetric
monoidal structure on it and it has enough projectives [Sch19, p. 13]. So it is truly an adequate
replacement for TopAb in which we can work algebraically.
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3.3 Condensed Mathematics and Homotopy Theory*

The virtue of the ∞-categorical version of condensed sets, i.e. condensed anima, is that it allows
us to step into the world of homotopy theory. In Cond(An) the Cond part captures a notion of
topology while the An part captures a notion of homotopy theory. In this subsection, we will
cite a notion of homotopy (pro-)groups for condensed anima as was presented in Catrin Mair’s
master’s thesis Animated Condensed Sets and Their Homotopy Groups [Mai21].

We will see that the functor Disc : An → Cond(An) does not admit a left adjoint (4.3). Our
fix is as in the virtue of this section, we embed our smaller category in a larger one where it
works! Indeed, after enlarging the ∞-category An, we will be able to construct a suitable left
adjoint. For an ∞-category C we write Pro(C ) = Funlexacc(C , An)op for the opposite of the full
∞-subcategory of Fun(C , An) spanned by the left-exact accessible functors, also known as the
∞-category of pro-objects of C .

Then, there is a unique functor RAn : Pro(An) → Cond(An) that preserves small cofiltered
limits and that extends Disc : An → Cond(An) [Mai21, Lemma 7.2.1]. One can show that it
admits a left adjoint

LAn : Cond(An)→ Pro(An), F 7→ HomCond(An)(F, Disc(−))

which also extends to a functor (LAn)∗ : Cond(An)∗ → Pro(An)∗ between pointed categories
[Mai21, Proposition 7.2.2, Corollary 7.2.4].

Let n ≥ 2. Homotopy groups of Kan complexes realized as functors

π0 : An→ Set,
π1 : An∗ → Grp,
πn : An∗ → Ab

then uniquely extend [Mai21, Proposition 7.2.7] to small cofiltered-limit-preserving functors

Pro(π0) : Pro(An)→ Pro(Set),
Pro(π1) : Pro(An)∗ → Pro(Grp),
Pro(πn) : Pro(An)∗ → Pro(Ab).

This will now allow us to generalize the notion of homotopy groups to the condensed world!

Definition 3.28 ([Mai21, Definition 7.2.8]). Let n ≥ 1 and let F ∈ Cond(An) with basepoint
f : ∗Cond(An) → X. The pro-set of path components and the n-th homotopy pro-group of F are
given by

π̃0(F) = Pro(π0)(LAn(F)) and π̃n(F, f ) = Pro(πn)((LAn)∗(F, f )).

Example 3.29. Let n ≥ 1.

(i) Let X be a CW complex, then the homotopy pro-groups of X ∈ Cond(An) coincide with
the usual homotopy groups.

(ii) Let S ∈ Stone. Then,
π̃0(S) ∼= S and π̃n(S, s) ∼= 0

for any basepoint s.

Proof. See [Mai21, Proposition 7.2.9] and [Mai21, Corollary 7.3.3].
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Alternatively, one can formally obtain homotopy sheaves in arbitrary ∞-topoi [Lur09, Definition
6.5.1.1], so a condensed anima F ∈ Cond(An) can be truncated to its homotopy sheaves
π0(F), π1(F), π2(F), · · · where π0(F) can be interpreted as a condensed set, π1(F) as a condensed
group and πi(F) as a condensed abelian group for i ≥ 2 [Lur09, Section 6.5.1].

This is an alternative approach to extract homotopical information for condensed anima and
was not discussed in Mair’s thesis. The difference lies in the targets of the functors: This
alternative has sheaf-valued homotopy objects while in Mair’s setting, we obtain homotopy
objects valued in certain categories of pro-objects.

4 Cohesion and Fractured Structures in Condensed Mathematics

We have discussed two possibilities of axiomatizing and generalizing topological notions,
namely via condensed mathematics and cohesive resp. fractured ∞-topoi. A natural task is to
compare these ideas. More specifically, we want to investigate whether there is any sensible
way of viewing Cond(An) as a cohesive or fractured ∞-topos.

The answer is negative for cohesion and positive for fractured structures. The section culmi-
nates in the main theorem of this thesis, namely a suitably constructed fractured structure on
condensed anima.

4.1 Incompatibility with Cohesion

There is a triple adjunction

Cond(An) AnΓ

Disc

CoDisc

⊥

⊥

where Disc ⊣ Γ is the canonical geometric morphism for ∞-topoi in this context (2.3). We now
seek to define CoDisc : An→ Cond(An). The global sections functor

Γ′ = HomPSh(Stonean)(∗,−) : PSh(Stonean)→ An

induces an adjunction

PSh(Stonean) An
Γ′

CoDisc′
⊥

via right Kan extension since Γ′ ≃ ev∗Stonean by Yoneda. We write | − | : Stonean→ An for the
composition

Stonean Set An.U const

For X ∈ An and K ∈ Stonean we then perform some Yoneda yoga to compute

(CoDisc′ X)(K) ≃ HomPSh(Stonean)(よ(K), CoDisc′ X)
≃ HomAn(Γ′(よ(K)), X)
≃ HomAn(HomPSh(Stonean)(∗,よ(K)), X)
≃ HomAn(HomStonean(∗, K), X)
≃ HomAn(|K|, X).

This explicit description allows us to show that CoDisc′ X is a condensed anima for X ∈ An
since HomAn(| − |, X) : Stoneanop → An preserves finite products (3.17). So the adjunction
Γ′ ⊣ CoDisc′ restricts to an adjunction
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Cond(An) An
Γ

CoDisc
⊥

as desired.

By the explicit description of CoDisc we can check objectwise that the counit Γ ◦CoDisc⇒ idAn
is an equivalence. Hence, CoDisc is fully faithful with which we have shown the following.

Lemma 4.1. The ∞-topos Cond(An) is a local ∞-topos.

Hence, the natural first hope is that it might be a cohesive ∞-topos. Unfortunately, it turns out
that this is not the case as we will now show. We write (−)disc for the discrete topology on a set.

Lemma 4.2. Let C ∈ {CHaus, Stone, Stonean} and let A be a finite set viewed as an anima.
There is a natural equivalence

Disc(A) ≃よ(Adisc) = Adisc.

Proof. Let F ∈ Cond(An). Via Yoneda we compute

HomCond(An)

Ä
よ(Adisc), F

ä
≃ F(Adisc)

≃ ∏
a∈A

F(∗)

≃ HomAn

Ç
⨿
a∈A
∗, F(∗)

å
≃ HomAn(A, F(∗))
≃ HomCond(An)(Disc(A), F)

where we crucially used that F is a condensed anima in the second line so that it commutes
with finite products. By the Yoneda Lemma we conclude Disc(A) ≃よ(Adisc).

Recall that we write U : Top→ Set for the forgetful functor. Moreover, we tacitly view sets as
anima.

Proposition 4.3. The ∞-topos Cond(An) is not a cohesive ∞-topos.

Proof. We want to show that Disc does not preserve all limits whence it cannot admit a left
adjoint. Let S = limn Sdisc

n be any Stone space constructed with finite sets Sn. We consider the
natural map

Disc(US) = Disc
(

lim
n

Sn

)
→ lim

n
Disc(Sn)

4.2≃ lim
n
よ(Sdisc

n ) ≃よ(S) = S

where Stone spaces are tacitly viewed as anima. We wish to show that this is not an equivalence.
Suppose otherwise.
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Consider any T ∈ Top. Then, also the composition

HomSet(S, T) ∼−→ HomAn(US, UT)

∼−→ HomAn

Ç
⨿
s∈S

U∗, UT

å
∼−→∏

s∈S
HomAn (∗An, UT)

∼−→∏
s∈S

HomCond(An)(よ(∗),よ(UT))

∼←− HomCond(An)

Ç
⨿
s∈S
よ(∗),よ(UT)

å
≃ HomCond(An)

Ç
⨿
s∈S

Disc(U∗),よ(UT)

å
∼←− HomCond(An)

Ç
Disc

Ç
⨿
s∈S

U∗
å

,よ(UT)

å
≃ HomCond(An)(Disc(US),よ(UT))
∼←− HomCond(An)(S, Tdisc)
∼←− HomTop(S, Tdisc)

is an equivalence. We used that Disc and U as left adjoints preserve coproducts. The assumption
that Disc(US)→ S is an equivalence was implemented in the second-to-last map. By explicitly
tracing all of the maps we see that the composition

HomTop(S, Tdisc)→ HomSet(US, UT)

is induced by the forgetful functor U : Top→ Set. We show that this map is not surjective.

Let p be a prime number. We set S = Zp and T = {0, 1}disc. Then, the function

f : Zp → {0, 1}disc, z 7→
®

0 z = 0,
1 z ∈ Zp \ {0}

is not continuous because the sequence (pn)n∈N converges to 0 but the sequence ( f (pn))n∈N

does not converge.

Remark 4.4. Our proof shows that the functor Disc : An → Cond(An) does not admit a left
adjoint Cond(An) → An. However, if we expand the ∞-category An, then it turns out that
such an adjoint exists. Indeed, one can extend Disc to a functor Disc′ : Pro(An)→ Cond(An)
which preserves small filtered limits [Lur18, Proposition A.8.1.6] and this admits a left adjoint
through abstract nonsense [BGH20, 0.11.9].

All of this is essentially [Mai21, Lemma 7.2.1, Proposition 7.2.2] which we have already discussed
in the starred section 3.3.

This is a first indication that cohesion might not be compatible with condensed mathematics.
We have introduced fractured structures precisely for this purpose.

4.2 Compatibility with Fractured Structure

We write Stoneanopen for the site consisting of the wide subcategory of Stonean with mor-
phisms the open embeddings and coverings the finitely jointly surjective families of open
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embeddings. Correspondingly, we put Condopen(An) = Sh(Stoneanopen).

We choose open embeddings because they have good categorical properties with respect to
pullbacks (3.9). This will be useful in making Stoneanopen into an admissibility structure on
Stonean which is the first step towards a fractured structure on Cond(An).

Finally, we may present the eponymous result of the thesis.

Theorem 4.5. The restriction functor i∗ : Cond(An)→ Condopen(An) induces a triple adjunc-
tion

Cond(An) Condopen(An)i∗

i!

i∗

⊥

⊥

which is a fractured structure on condensed anima.

Proof. We prove that (Stonean, Stoneanopen, τcoh) defines a geometric site. Let us begin by
showing that Stoneanopen defines an admissibility structure where we check each axiom step-
by-step.

(i) Isomorphisms in Stonean are homeomorphisms and in particular open embeddings.

(ii) We have to prove that for an open embedding f : S ↪→ T of Stonean spaces and any
g : T′ → T in Stonean there exists a pullback

S×T T′ S

T′ T

f ′
⌟

f

g

and f ′ is again an open embedding. Classically, the inclusion f ′ : g−1( f (S)) ↪→ T′ is a
model for the pullback in CHaus and this is still an open embedding. Since this is an open
embedding, g−1( f (S)) ⊆ T′ is open. On the other hand, S as a Stonean space is compact,
so f (S) is compact again, and thus f (S) ⊆ T is closed because T is Hausdorff. Hence, the
preimage g−1( f (S)) ⊆ T′ is also closed. To summarize, g−1( f (S)) as a clopen subspace of
the Stonean space T′ is Stonean again (3.9).

This square already satisfies the universal property of pullbacks if we test against all
compact Hausdorff spaces, so it also satisfies the universal property when we test against
Stonean spaces. Thus, this pullback really exists in Stonean and f ′ is an open embedding.

(iii) Consider the commutative triangle

S T

K

f

h g

in Stonean where g is an open embedding. If f is an open embedding, then the composi-
tion h is also an open embedding.

Conversely, let h be an open embedding. We need to show that f is an open embedding.
Since h is injective, also f is injective and thus as an injective map between compact
Hausdorff spaces already an embedding. The image of h is open, so also the image of f
must be open because g is an embedding. In other words, f is an open embedding.
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(iv) Let f : S ↪→ T be an open embedding of Stonean spaces with retract g : A→ B as depicted
in the following diagram:

A S A

B T B

φ1

g f

φ2

g

ψ1 ψ2

.

We need to show that g is also an open embedding. To do so we prove that the left square
is a pullback square, then we may conclude by (ii). Let K be a Stonean space with two
continuous maps κ1 : K → S and κ2 : K → B such that f ◦ κ1 = ψ1 ◦ κ2.

K

A S A

B T B

∃!Φ

κ1

κ2

φ1

g f

φ2

g

ψ1 ψ2

We need to show that there is a unique dashed arrow realizing a factorization. Uniqueness
comes for free because φ1 is injective. So we need to construct one such map. We claim
that Φ = φ2 ◦ κ1 works. So we need to prove φ1 ◦Φ = κ1 and g ◦Φ = κ2 for this choice of
Φ. This is a formal diagram chase which we will perform now.

We compute

f ◦ φ1 ◦Φ = f ◦ φ1 ◦ φ2 ◦ κ1

= ψ1 ◦ g ◦ φ2 ◦ κ1

= ψ1 ◦ ψ2 ◦ f ◦ κ1

= ψ1 ◦ ψ2 ◦ ψ1 ◦ κ2

= ψ1 ◦ κ2

= f ◦ κ1

and so by injectivity of f we deduce φ1 ◦Φ = κ1. Similarly, we compute

ψ1 ◦ g ◦Φ = ψ1 ◦ g ◦ φ2 ◦ κ1 = ψ1 ◦ ψ2 ◦ f ◦ κ1 = ψ1 ◦ ψ2 ◦ ψ1 ◦ κ2 = ψ1 ◦ κ2,

so g ◦Φ = κ2 by injectivity of ψ1.

Next, we verify that Stoneanopen is compatible with τcoh.

Let {gα : Sα → S}α∈J be a covering sieve in Stonean. So there exists a finite subset J′ ⊆ J
such that (gα)α∈J′ : ⨿α∈J′ Sα → S is surjective. Because S is Stonean, there exists a section
s : S→ ⨿α∈J′ Sα (see 3.4(iii)). For α ∈ J′ we write

sα = s|s−1(Sα) : s−1(Sα)→ Sα and iSα
: Sα → ⨿

α∈J′
Sα.

Then, the composition

gα ◦ iSα
◦ sα = (g ◦ s)|s−1(Sα) = (idS)|s−1(Sα) : s−1(Sα)→ S

50



Qi Zhu Fractured Structure on Condensed Anima

is the inclusion morphism s−1(Sα) ↪→ S. By construction, this is an open embedding and it
also lies in the covering sieve {gα}α∈J because it occurs via precomposing morphisms to gα.
Furthermore, s−1(Sα) ⊆ S is clopen and thus Stonean again (3.9). Moreover, {gα ◦ iSα

◦ sα}α∈J′

is a finite family of maps which are jointly surjective by construction. So {gα ◦ iSα
◦ sα}α∈J′ is a

τcoh-covering consisting of admissible morphisms which shows that the admissibility structure
is compatible with the Grothendieck topology.

Finally, Lurie’s machinery (2.30) induces a fractured structure

Cond(An) Condopen(An)i∗

i!

i∗

⊥

⊥

as desired.

This really is a non-trivial fracture subcategory!

Proposition 4.6. The functor i! : Condopen(An) → Cond(An) is not an equivalence of ∞-
categories.

Proof. We show that i! does not preserve the terminal object ∗Condopen(An).

As a right adjoint, i∗ preserves limits, so

∗Condopen(An) ≃ i∗∗Cond(An) : (Stoneanopen)op → An

which means that ∗Condopen(An) is the functor which assigns to each object the terminal anima.

Considered as a presheaf ∗Condopen(An) ∈ PSh(Stoneanopen) we may write

∗Condopen(An) = (Lanよよ)(∗Condopen(An))

≃ colim
(S,よ(S)→∗)∈よ/S

よ(S)

≃ colim
S∈Stoneanopen

よ(S).

= colimよ

where we use idPSh(Stoneanopen) ≃ Lanよよ by the Density Theorem [Lur09, Lemma 5.1.5.3]. In
the second line of this computation, we used that ∗Condopen(An) is objectwise the terminal object.
Since the Grothendieck topology on Stonean is subcanonical (3.25) and the restriction functor
i∗ : Cond(An)→ Condopen(An) preserves representables, we deduce that the essential image
ofよ : Stoneanopen → PSh(Stoneanopen) lies in Condopen(An).

So we get

i!∗Condopen(An) = i! colimよ

= i! colim
S∈Stoneanopen

HomStoneanopen(−, S)

≃ colim
S∈Stoneanopen

HomStonean(−, S)

≃ colim
S∈Stoneanopen

const HomStonean(−, S)

≃ const colim
S∈Stoneanopen

HomStonean(−, S).

In the first equivalence, we use that left adjoints commute with colimits and that left Kan
extensions commute with representables. Then, we use that the Hom-anima of 1-categories are
given by the constant simplicial sets of the respective Hom-sets of the 1-categories. Finally, the

51



Qi Zhu Fractured Structure on Condensed Anima

functor const : Set→ An is the left adjoint of τ≤0 : An→ Set and thus preserves colimits.

In particular, it suffices to compute a 1-categorical colimit. Consider [1] = {0, 1} with the
discrete topology as a Stonean space. Then, we claim(

i!∗Condopen(An)
)

([1]) ̸≃ ∗.
For this we show that the representatives of id[1], const0 ∈ HomStonean([1], [1]) define different
classes in

colim
S∈Stoneanopen

HomStonean([1], S).

We first observe that in this colimit system [const0] is identified with the representative of the
unique map [1]→ ∗ since const0 lies in the image of the map

HomStonean([1], ∗)→ HomStonean([1], [1])

induced by 0 : ∗ → [1], ∗ 7→ 0.

Hence, in every HomStonean([1], S) with S ∈ Stonean the map [const0] is represented by any
constant map. We now prove that [id[1]] does not have any constant maps as a representative.

The only maps in the colimit system with target HomStonean([1], [1]) are the two maps

HomStonean([1], ∗) HomStonean([1], [1])

induced by the two constant maps ∗ → [1]. So no map into HomStonean([1], [1]) hits id[1].
Therefore, all representatives are constructed via zig-zags of the form

HomStonean([1], [1]) HomStonean([1], S1) HomStonean([1], S2) · · · ,

for S1, S2, · · · ∈ Stonean, i.e. zig-zags starting in HomStonean([1], [1]). On the other hand, any
starting zig-zag as above is induced by a diagram

[1] S2

S1

and S2 ↪→ S1 as an injective map of compact Hausdorff spaces is an embedding. Thus, the
diagram factors, i.e. a dashed arrow as in the diagram exists. This means that in the zig-zag we
also obtain a factorization

HomStonean([1], [1]) HomStonean([1], S2)

HomStonean([1], S1)

which means that the left-handed maps in the zig-zags are redundant since there is always also
a right-handed map obtained by the above factorizations. In other words, all representatives of
[id[1]] are represented by images of id[1] through a map

HomStonean([1], [1])→ HomStonean([1], S)

induced by an injective map [1] ↪→ S into a Stonean S. By injectivity of [1] ↪→ S the image
cannot be a constant map. So we have verified [const0] ̸= [id[1]] as desired.

Corollary 4.7. The ∞-topos Cond(An) is not cohesive over Condopen(An) via i∗.

Proof. We have shown in the proof of 4.6 that i! does not preserve limits and hence cannot admit
another left adjoint.

Alternatively, we may recall that the only setting where a fractured structure also gives cohesion
is when the fractured structure is trivial (2.22) and we have seen that this is not the case (4.6).
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5 Application of Fractured Structures to Condensed Cohomology

Classically, deriving the global sections functor yields sheaf cohomology. In the ∞-categorical
sense, this information can be formulated more succinctly: (derived) global sections are given
by Hom(∗,−). In particular, it is our vision to apply a fully faithful functor which preserves
terminal objects to preserve cohomology. Our technology of fractured structures allows us
to obtain natural functors of this kind which motivates us to think about cohomology in the
context of fractured ∞-topoi.

We consider a cohomology result which was already known in 1976 by Dyckhoff [Dyc76,
Theorem 3.11] but was reformulated in the modern language of condensed mathematics by
Clausen-Scholze.

Theorem 5.1. Let S ∈ CHaus and let M be a discrete abelian group. Then,

H•sheaf(S, M) ∼= H•cond(S, M)

naturally.

Proof. See [Sch19, Theorem 3.2].

This is precisely the comparison between two cohomology theories internal to different topoi
and hence seems approachable by our vision via fractured structures.

Recall that there are faithful functor

(−) : Top→ Cond(Set)→ Cond(An) and i! : Condopen(An)→ Cond(An)

where faithfulness of i! drops out of the fractured structure (4.5).

Definition 5.2. We define corporeal spaces as the objects in the intersection of the essential
images of Top and Condopen(An) in Cond(An). We write CorpTop ↪→ Cond(An) for the full
subcategory spanned by the corporeal spaces.

We chose this name because objects in Top are spaces and objects in (the image of) Condopen(An)
are corporeal. Another plus for us to use the terminology ’anima’ instead of ’spaces’!

We restrict to the corporeal spaces because we have results on the corporeal objects by our
fractured structure on condensed anima and because a priori we only know how to define sheaf
cohomology on actual spaces.

Proposition 5.3. Let F ∈ Condopen(An) such that i!F is a corporeal space given by i!F = S for
S ∈ Top. Then, there is an equivalence of categories

Condopen(An)/F ≃ Sh(S).

Proof. Let ClopenS denote the poset category of clopen subsets of S. An outline of the proof is
the following chain of equivalences:

Condopen(An)/F = Sh(Stoneanopen)/F

(1)
≃ Sh

Ä
Stoneanopen

/S

ä
(2)
≃ Sh(ClopenS, finite coverings)
(3)
= Sh(ClopenS, arbitrary coverings)
(4)
≃ Sh(OpenS)
= Sh(S).

Let us verify each of these three equivalences with more care.
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(1) This is a version of the fundamental theorem of topos theory [AGV71, Exercise 9.8.3].

(2) Morphisms in Stoneanopen are the open embeddings. An injective morphism of compact
Hausdorff spaces is already an embedding. Moreover, Stonean subspaces of S are compact
Hausdorff and hence also closed. So open embeddings of Stonean spaces to S correspond
to clopen subsets of S.

(3) This follows from compactness.

(4) Since every totally disconnected locally compact Hausdorff space has a clopen basis [AT08,
Proposition 3.1.7], the subcategory ClopenS ↪→ OpenS is a basis. We conclude by the
Comparison Lemma (1.74(ii)).

Theorem 5.4. Let S ∈ Top with S ∈ CorpTop and let M be a discrete abelian group. Then,

H•sheaf(S, M) ∼= H•cond(S, M)

naturally.

Proof. Suppose F ∈ Condopen(An) such that i!F = S. Cohomology is given by the derived
global sections. In particular, we may compute

HomSh(S)(∗Sh(S), M) ≃ HomCondopen(An)/F
(∗Condopen(An)/F

, M)

≃ HomCond(An)/S
(∗Cond(An)/S

, M)

where the first line uses the previous result (5.3) and the second line is via the fully faithfulness
given by the fractured structure (2.18, 4.5). Now, the left side computes H•sheaf(S, M) while the
right side computes H•cond(S, M), so these cohomologies agree.

Peter Haine discussed similar questions in his recent paper Descent for sheaves on compact
Hausdorff spaces [Hai22] with an analogous approach from which we learned. He manages to
give the following generalization of the cohomology result:

Theorem 5.5 ([Hai22, Corollary 4.12]). Let S be a locally compact Hausdorff space, let R be a
connective E1-ring spectrum, and let M be a bounded-above left R-module spectrum. Then,
the natural map

RΓsheaf(S; M)→ RΓcond(S; M)

is an equivalence in the ∞-category RMod of left R-module spectra.

However, Haine did not use the technology of fractured structure. That is a novel approach
probed in this thesis.

6 Outlook

Fractured structures on condensed anima seem like a fruitful endeavor that can lead to numer-
ous additional interesting questions. While one could try thinking of additional applications
of the fractured structure, we will give several ideas on how condensed cohomology can be
further investigated.

Condensed cohomology itself is an interesting invariant that is not yet completely understood.
For example, to our knowledge, even the groups H•(Q, Z) are not known. In that regard, it is
also not known in what generality there is an isomorphism

H•sheaf(S, Z) ∼= H•cond(S, Z).

54



Qi Zhu Fractured Structure on Condensed Anima

It seems hard to give a complete characterization but our hope is that this thesis gives another
approach to attack this problem. We have shown the isomorphism for S ∈ CorpTop.

So, naturally, the fundamental question remains:

Problem 6.1. What is CorpTop?

This question also seems to be too hard to be answered completely.

Instead of fully classifying this category, one could attempt to formally construct classes of
spaces included in CorpTop. For example, we know that Stonean ↪→ CorpTop since the
topology on Stonean is subcanonical (3.25). One could now attempt to investigate formal
categorical constructions that are stable in CorpTop and hope to construct classes of spaces in
CorpTop.

On the other hand, a choice of a fracture subcategory of Cond(An) is certainly not unique.
Instead of using i! : Condopen(An)→ Cond(An) induced by the geometric site

(Stonean, Stoneanopen, τcoh)

one could try to find other feasible fractured structures especially if Condopen(An)→ Cond(An)
appears too complicated to understand.

Recall: On CHaus, there is an admissibility structure CHausinj given by the injective maps (2.25)
by an analogous but easier argument as in (4.5). The natural hope is that (CHaus, CHausinj, τcoh)
defines a geometric site. We had to make the unfortunate discovery that this is not the case.

Lemma 6.2. The triple (CHaus, CHausinj, τcoh) does not define a geometric site.

Proof. We show that the admissibility structure CHausinj is not compatible with τcoh in the
sense of 2.29.

Compatibility means that for any covering sieve S = {gα : Vα → X}α there exists a τcoh-covering
of admissible morphisms inside S. So if there was compatibility, then we would want to find a
finite jointly surjective family of injective maps inside S. We demonstrate that this is not always
possible.

Consider the surjective map

e : [0, 1]N → (S1)N, (x0, x1, · · · ) 7→
Ä

e2πix0 , e2πix1 , · · ·
ä

.

It generates a covering sieve. We claim that it is not possible to find a finite family of maps
h1, · · · , hn with target [0, 1]N such that

(1) e ◦ hi is injective for i = 1, · · · , n,

(2) (e ◦ hi)i=1,··· ,n is jointly surjective

which is what we would need for compatibility. Suppose it was possible.

Choose such h1, · · · , hn. For i = 1, · · · , n the e ◦ hi are injective, so also the hi are injective.
Injections of compact Hausdorff spaces are embeddings. Therefore, our task can be reformulated
to finding a finite number of closed subspaces A1, · · · , An ⊆ [0, 1]N such that

(1’) e|Ai is injective for i = 1, · · · , n,

(2’) (S1)N = e(A1)∪ · · · ∪ e(An).
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Let k ∈N and let prk : [0, 1]N → [0, 1] be the projection onto the k-th component. Then,∣∣∣prk(Ai)∩ {0, 1}
∣∣∣ ≤ 1

for i = 1, · · · , n by injectivity of e|Ai since e2πi0 = e2πi1.

Since there are infinitely many elements in {0, 1}N, there exists some sequence (tk)k∈N ∈ [0, 1]N

such that (tk)k∈N ̸∈ A1 ∪ · · · ∪ An. As a finite union A1 ∪ · · · ∪ An is still closed, so there exists
some open neighbourhood U ⊆ [0, 1]N of (tk)k∈N such that U ⊆ [0, 1]N \ (A1 ∪ · · · ∪ An). Thus,
there exists some (uk)k∈N ∈ U such that uk ̸∈ {0, 1} for every k ∈N. But e|(0,1)N is injective, so

e((uk)k∈N) ̸∈ e(A1 ∪ · · · ∪ An) = e(A1)∪ · · · e(An),

contradicting condition (1’).

This was the first site we considered and the failure is unfortunate because (CHaus, CHausinj, τcoh)
could possibly have led to a flexible fractured structure but it was probably too much to ask for.

Instead, we tried to salvage this idea and tried to slightly adjust the construction. One could
try to take open embeddings instead of injective morphisms as admissible morphisms but this
does not seem like a good idea: Open embeddings in CHaus are the same thing as clopen
embeddings. Then, for example the only clopen subsets in [0, 1] are ∅, [0, 1] by connectedness
of [0, 1].

On the other hand, restricting to open embeddings on Stonean to obtain Stoneanopen does
not seem to be too restrictive: By definition, the closures of open subsets of Stonean spaces are
open again, so Stonean spaces seem to have plenty of clopen subsets. This is the origin of the
fractured structure on condensed anima that we have constructed (4.5).

The reason that we restricted to Stoneanopen with only open embeddings instead of Stoneaninj

with injective maps is that pullbacks along open embeddings exist in Stonean as shown in the
proof of 4.5. This is condition 2.24(ii) for admissibility structures. On the other hand, we are not
certain that Stoneaninj does not define an admissibility structure.

Problem 6.3. Let f : S→ T be an injective map of Stonean spaces and let g : T′ → T be a map
in Stonean. Does a pullback

S×T T′ S

T′ T

f ′ f

g

exist?

Here is a natural subproblem suggested by Dustin Clausen:2

Problem 6.4. Do fibers exist in Stonean?

We suspect that the answer is negative but have not yet managed to find a proof.

For open embeddings f we have seen that pullbacks exist (3.9) but this remains the only class
of morphisms that we can handle. Throughout this work we have seen the usefulness of the
existence of these pullbacks, as they allowed us to obtain an admissibility structure Stoneanopen

which ultimately landed us a fractured structure on Cond(An). So an investigation of these
problems (6.3, 6.4) may lead to further fractured structures on condensed anima.

2...from a conversation with my supervisor Nima Rasekh. Nima also asked Peter Scholze about problem 6.3 who
did not know an answer off the top of his head.
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The task of finding a suitable fractured structure on condensed anima to understand condensed
cohomology seems more fruitful and complex than even originally expected. Further explo-
rations of this problem will hopefully lead to results about condensed cohomology. More
generally, further investigations should not only lead to questions about a fractured structure
on condensed anima but should also motivate various questions about fractured structures and
about condensed anima.
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