EULER-LIKE VECTOR FIELDS

Arthur Lei Qiu

April 28, 2021

- Recall: for a vector space *V* and $\xi \in V$, there is a canonical linear isomorphism $V \cong T_{\xi}V$ given by $u \mapsto \frac{d}{dt}$ $\overline{}$ $\big|_{t=0}(\xi + tu).$
- When $V = T_x M$, this is called the **vertical lift** $\mathrm{vl}_{\varepsilon}: T_xM \to T_{\varepsilon}(T_xM).$
- Identifying $T_{\xi}(T_xM)$ with a subspace of $T_{(x,\xi)}(TM)$, we obtain the Euler vector field $\mathcal{E} \in \mathfrak{X}(TM)$:

$$
\mathcal{E}(x,\xi) = \mathrm{vl}_{\xi}(\xi) \in T_{(x,\xi)}(TM).
$$

In coordinates $(x^i, v^i = dx^i)$, $\mathcal{E} = \sum_{i=1}^n v^i \frac{\partial}{\partial v^i}$.

(c.f. tautological one-form
$$
\alpha = \sum_{i=1}^{n} p_i dx^i \in \Omega^1(T^*M)
$$
)
in coordinate (x, p:= $\frac{3}{2}$)

• For a vector bundle $\pi: E \to M$, the Euler vector field $\mathcal{E} \in \mathfrak{X}(E)$ is defined for $x \in M$, $\xi \in E_x := \pi^{-1}(x)$ by La vector space $\mathcal{E}(\xi) = \text{vl}_{\xi}(\xi) \in T_{\xi}E,$ / VE, "vertical space of 5" E_{x} = $T_{k}(E_{x}) \rightarrow T_{k}E$ where $\mathrm{vl}_{\xi}: E_x \longrightarrow T_{\xi}(E_x) \hookrightarrow T_{\xi}E.$ • In bundle coordinates (x^i, v^i) , $\mathcal{E} = \sum_{i=1}^n v^i \frac{\partial}{\partial x^i}$.

Euler-like vector fields on R*ⁿ*

• Take
$$
M = \{ * \}, E = \mathbb{R}^n, \mathcal{E} = \sum_{i=1}^n x^i \frac{\partial}{\partial x^i}
$$
 (relabel $v^i \to x^i$).

Figure: The Euler vector field $\mathcal{E} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbb{R}^2 .

• Idea: a vector field $X \in \mathfrak{X}(\mathbb{R}^n)$ (or in a neighbourhood of 0) is Euler-like if " $X = \mathcal{E}$ + higher order terms".

Euler-like vector fields on R*ⁿ*

If $X(0) = 0$, the **linear approximation** of $X = \sum_{i=1}^{n} X^i \frac{\partial}{\partial x^i}$ is the vector field $X_{[0]} \in \mathfrak{X}(\mathbb{R}^n)$ obtained by replacing each X^i with its first-order Taylor expansion at 0:

$$
X_{[0]} = \sum_{i,j=1}^n a_j^i x^j \frac{\partial}{\partial x^i}, \qquad a_j^i = \frac{\partial X^i}{\partial x^j}(0).
$$

X is **Euler-like** if $X_{[0]} = \mathcal{E} \ (\Leftrightarrow a_j^i = \delta_j^i).$

 $-\frac{1}{2}$ **UNIVERSITY VIOLENCE** λ , λ 111111 111 (b) The Euler-like vector field $X = \sin(x)\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$.

Euler-like vector fields on \mathbb{R}^n are linearizable

Lemma (Linearization)

 X_{LQ} If $X \in \mathfrak{X}(\mathbb{R}^n)$ is Euler-like, then there exists a germ at 0 of a diffeomorphism φ of \mathbb{R}^n such that $\varphi(0) = 0$, $D\varphi(0) = id$, and $\varphi^* X \to \mathcal{E}$.

Proof (Moser-type argument).

Write
$$
X = \sum_i X^i \frac{\partial}{\partial x^i}
$$
, the TDVF $X_i := \sum_i \frac{1}{i}X^i(\frac{1}{i}x) \frac{\partial}{\partial x^i}$ (1+0) extends *smoothly*
to $t=0$ by $X_a = X_{[a]} = \mathcal{E}$. Computation $\Rightarrow \frac{dX_i}{dt} = \frac{1}{i} [\mathcal{E}, X_i] (\frac{a}{i})$
 $X_+ = \mathcal{E} + o(1)$ as $1 \rightarrow 0 \Rightarrow W_i := \frac{1}{i}(X_+ - \mathcal{E})$ also extends *smoothly* to $t=0$.
Let $1 \rightarrow \overline{\Phi}$, $det\ f \circ \Phi$ of the TDF (W_i) .
Most: $\frac{d}{dt} \Phi_i^* X_i = \overline{\Phi}_i^* (\frac{dX_i}{dt} + \mathcal{L}_{U_i} X_i) = \Phi_i^* (f^* [X_i, X_i]) = 0 \Rightarrow \Phi_i^* X_i$ const.
 $(\frac{d}{t}) [\omega_i^*, X_i]$
 $det\ \varphi := \Phi_i \Rightarrow \varphi^* X = \Phi_i^* X_i = \Phi_i^* X_i = \mathcal{E}$.
 $\forall \psi$, ω_i vanishes to 2^{ω_i} order of $x = 0 \Rightarrow \varphi(\omega) = 0$, $D\varphi(\omega) = id$.

Hadamend's lemma. $\begin{array}{l} -\epsilon C^{\infty}(\mathbb{R}^{n}) \rightarrow \mathbb{E}_{\alpha} \rightarrow \epsilon C^{\infty}(\mathbb{R}^{n}) \rightarrow \\ g_{i}(\omega) = \frac{\partial f}{\partial x^{i}}(\omega) \quad f(x) = f(\omega) + \frac{\rho^{2}}{n^{2}}x^{i}g_{i}(x) \end{array}$

 \Box

Lemma (Morse)

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function with $f(0) = 0$. If *f* has a non-degenerate critical point at 0, then there exists a diffeomorphism φ *of two neighbourhoods of* 0 *such that* $\varphi(0) = 0$ *and* $\varphi^* f$ *is a homogeneous quadratic polynomial.*

Theorem (Darboux)

Let $\omega \in \Omega^2(\mathbb{R}^n)$ be a closed 2-form. If ω is non-degenerate at 0, then *there exists a diffeomorphism* φ *of two neighbourhoods of* 0 *such that* $\varphi(0) = 0$ and $\varphi^* \omega$ is constant.

We will use two facts about the Euler vector field $\mathcal{E} \in \mathfrak{X}(\mathbb{R}^n)$:

- **1** A smooth function $f \in C^{\infty}(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}} f = kf$ if and only if f is a homogeneous polynomial of degree *k*.
- 2 A smooth *k*-form $\omega \in \Omega^k(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}\omega = k\omega$ if and only if ω has constant coefficients.

Lemma (Morse)

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function with $f(0) = 0$. If f has a non-degenerate critical point at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* f$ is a homogeneous quadratic polynomial.

Fact: $f \in C^{\infty}(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}} f = kf$ if and only if f is a homogeneous polynomial of degree k. (Relevant: $k = 2$.)

Proof.

Output
$$
expand \quad f(x) = \frac{1}{2} \sum_{i,j} A_{ij}(x) x^i x^j \omega / x \mapsto A(x) = (A_{ij}(x))
$$
 smooth, $symutixi$, $A(0) = \text{Hess } f(0)$.

\nComputation $\Rightarrow \frac{\partial f}{\partial x^j} = \sum_{k} \sum_{j} \sum_{k} (x) x^k$, where $E_{jk} = A_{jk} + \frac{1}{2} \sum_{k} \frac{\partial A_{kj}}{\partial x^j} x^k$.

\nBCo) = A(o) $non-digenvalue \Rightarrow B(x)$ $non-digenvalue$ for x *near* O .

\nThus $X := \sum_{i,j} (A(x)B(x)^{-1})_{ij} x^i \frac{\partial}{\partial x^j} x^j \omega$ *well-dufd*, $E-1$ *max* O .

\nImaginization l_{k} $lim_{x \to \infty} \Rightarrow \exists \varphi \omega / \varphi * x = \varphi$.

\nComputation $\Rightarrow L_x f = 2f \Rightarrow L_x \varphi * f = \varphi * x$ $f = 2\varphi * f$.

Theorem (Darboux)

Let $\omega \in \Omega^2(\mathbb{R}^n)$ be a closed 2-form. If ω is non-degenerate at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* \omega$ is constant.

Fact: $\omega \in \Omega^k(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\varepsilon}\omega = k\omega$ if and only if ω has constant coefficients. (Relevant: $k = 2$.)

Proof.

Taylor Expand
$$
\omega = \frac{S}{i(j)}(c_{ij} + O(|x|)) dx i \, dx^j
$$
. Poincaré lemma $\Rightarrow \exists \alpha \in \Omega^1(\mathbb{R}^2) \text{ s.t. } da = \omega$.

\nCorodinate expression $\Rightarrow \alpha$ can be chosen of the form $\alpha = \frac{S}{i(j)}(c_{ij}x^i + O(|x|^2)) dx^j$.

\nSo no longer-dependence at $O \Rightarrow non-slegen$ mean $O \Rightarrow can$ solve $i_x \omega = 2\alpha$ for X near O .

\nContain $\Rightarrow L_x \omega = d_{1x} \omega + i_x d\omega = 2d\omega = 2\omega$

\n $\Rightarrow L_c \varphi^*_{\omega} = \varphi^* L_x \omega = 2\varphi^*_{\omega}$.

Euler-like vector fields for submanifolds: setting up

• The category Man:

- objects: smooth manifolds
- morphisms from *M* to *M*^{\prime}: smooth maps $\varphi: M \to M'$

- \bullet The category Man²:
	- objects: pairs (M, N) with *M* a smooth manifold and $N \subseteq M$ a closed submanifold
	- morphisms from (M, N) to (M', N') : smooth maps $\varphi \colon M \to M'$ with $\varphi(N) \subset N'$

Euler-like vector fields for submanifolds: setting up

- The *tangent bundle functor* $T:$ Man \rightarrow Man:
	- objects *M* sent to *TM*
	- morphisms $\varphi: M \to M'$ sent to $D\varphi: TM \to TM'$
- The *normal bundle functor* ν : Man² \rightarrow Man:
	- objects (M, N) sent to $\nu(M, N) := TM|_N/TN$ (vector bundle over *N*)
	- morphisms $\varphi: (M, N) \to (M', N')$ sent to $\nu(\varphi) \colon \nu(M,N) \to \nu(M',N')$ $\mathcal{C}(N) \subseteq N' \Rightarrow D\mathcal{C}$: TMI_N \rightarrow TM'I_{N'} $\forall x \in N$, $D\mathscr{C}(x)[T_xN] \subseteq T_{\mathscr{C}(x)}N'$ (chain rule) $v(\varphi)(x): \frac{T_x M}{T_x N} \rightarrow \frac{1 \varphi_{(x)} M'}{T_{\varphi_{(x)}} N'}$

• Compatibility: $\nu(TM,TN) \cong T\nu(M,N)$

Euler-like vector fields for submanifolds: definitions

Vector field $X \in \mathfrak{X}(M)$ tangent to submanifold N $(\forall x \in N, X(x) \in T_xN)$ » $\operatorname{Morphism} \ X \colon (M,N) \to (TM,TN) \ \text{in Man}^2$ $\downarrow \nu$ $\nu(X): \nu(M,N) \to \nu(TM,TN) \cong T\nu(M,N)$ \downarrow $\textbf{Linear approximation } X_{[0]} := \nu(X) \in \mathfrak{X}(\nu(M,N))$ \downarrow **Euler-like** if $X_{[0]} = \mathcal{E}$ (of $\nu(M, N)$).

• Previous definition: when $(M, N) =$ (open neighbourhood of $0 \in \mathbb{R}^n$, $\{0\}$).

Theorem (Bursztyn, Lima, Meinrenken)

An Euler-like vector field X for (*M,N*) *determines a unique maximal tubular neighbourhood embedding* $\varphi: O \to M$ *of a star-shaped open neighbourhood* $O \subseteq \nu(M,N)$ *of the zero section of* $\nu(M,N)$ *such that Ï*ú*X* = *E.* Functoriality

Corollaries:

- Weinstein's Lagrangian neighbourhood theorem
- Morse–Bott lemma
- Grabowski–Rodkievicz theorem
- Linearization of proper Lie groupoids
- Linearization of proper symplectic groupoids

+ G-equivariant versions!