EULER-LIKE VECTOR FIELDS

Arthur Lei Qiu

April 28, 2021

- Recall: for a vector space V and $\xi \in V$, there is a canonical linear isomorphism $V \cong T_{\xi}V$ given by $u \mapsto \frac{d}{dt}|_{t=0}(\xi + tu)$.
- When $V = T_x M$, this is called the **vertical lift** $vl_{\xi}: T_x M \to T_{\xi}(T_x M).$
- Identifying $T_{\xi}(T_x M)$ with a subspace of $T_{(x,\xi)}(TM)$, we obtain the **Euler vector field** $\mathcal{E} \in \mathfrak{X}(TM)$:

$$\mathcal{E}(x,\xi) = \mathrm{vl}_{\xi}(\xi) \in T_{(x,\xi)}(TM).$$

• In coordinates $(x^i, v^i = dx^i), \mathcal{E} = \sum_{i=1}^n v^i \frac{\partial}{\partial v^i}.$

(c.f. tautological one-form
$$\alpha = \sum_{i=1}^{n} p_i dx^i \in \Omega^1(T^*M)$$

in coordinates (x, p:=3)

For a vector bundle π: E → M, the Euler vector field E ∈ X(E) is defined for x ∈ M, ξ ∈ E_x := π⁻¹(x) by *La vector space*E(ξ) = vl_ξ(ξ) ∈ T_ξE, *V*_ξE, "vertical space of ξ"</sub>
where vl_ξ: E_x → T_ξ(E_x) → T_ξE.
In bundle coordinates (xⁱ, vⁱ), E = ∑ⁿ_{i=1} vⁱ ∂/∂vⁱ.

Euler-like vector fields on \mathbb{R}^n

• Take
$$M = \{*\}, E = \mathbb{R}^n, \mathcal{E} = \sum_{i=1}^n x^i \frac{\partial}{\partial x^i}$$
 (relabel $v^i \to x^i$).

Figure: The Euler vector field $\mathcal{E} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ on \mathbb{R}^2 .

• Idea: a vector field $X \in \mathfrak{X}(\mathbb{R}^n)$ (or in a neighbourhood of 0) is Euler-like if " $X = \mathcal{E}$ + higher order terms".

Euler-like vector fields on \mathbb{R}^n

• If X(0) = 0, the **linear approximation** of $X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$ is the vector field $X_{[0]} \in \mathfrak{X}(\mathbb{R}^{n})$ obtained by replacing each X^{i} with its first-order Taylor expansion at 0:

$$X_{[0]} = \sum_{i,j=1}^{n} a_j^i x^j \frac{\partial}{\partial x^i}, \qquad a_j^i = \frac{\partial X^i}{\partial x^j}(0).$$

• X is Euler-like if $X_{[0]} = \mathcal{E} \iff a_j^i = \delta_j^i$.

Euler-like vector fields on \mathbb{R}^n are linearizable

Lemma (Linearization)

If $X \in \mathfrak{X}(\mathbb{R}^n)$ is Euler-like, then there exists a germ at 0 of a diffeomorphism φ of \mathbb{R}^n such that $\varphi(0) = 0$, $D\varphi(0) = \mathrm{id}$, and $\varphi^* X = \mathcal{E}$.

Proof (Moser-type argument).

$$\begin{split} & \bigcup_{x \in \mathbb{Z}} X = \sum_{i} X_{i}^{i} \xrightarrow{2}_{\partial x_{i}} \quad \text{The TDVF } X_{i} = \sum_{i} \frac{1}{4} X_{i}^{i} (\pm x) \xrightarrow{2}_{\partial x_{i}} (\pm x) \text{ extends smoothly} \\ & t_{0} \pm 0 \quad b_{1} \times \sum_{i=0}^{n} \pm \varepsilon. \quad Computation \implies \frac{dX_{i}}{dt} = \frac{1}{4} [\varepsilon. X_{i}] \xrightarrow{2}_{i} \\ & X_{i} = \varepsilon + o(t) \text{ as } \pm \to 0 \implies U_{i} := \frac{1}{4} (X_{i} - \varepsilon) \text{ also extends smoothly to } \pm = 0. \\ & Z_{i} \neq 0 \implies U_{i} := \frac{1}{4} (X_{i} - \varepsilon) \text{ also extends smoothly to } \pm = 0. \\ & Z_{i} \neq 0 \implies U_{i} := \frac{1}{4} (X_{i} + C) = \overline{U}_{i} \times (U_{i}). \\ & \text{Mosen: } \frac{d}{dt} = \frac{1}{4} \times (X_{i} = \overline{\Phi}_{i}^{*} (\frac{dX_{i}}{dt} + \mathcal{L}_{U_{i}} \times (X_{i})) = 0 \implies \overline{\Phi}_{i}^{*} \times (x_{i} \text{ const.} \\ & (\frac{1}{4}) \quad [U_{i}, X_{i}] \\ & \int_{\mathcal{A}} f = \Psi_{i} \implies \Psi^{*} X = \overline{\Phi}_{i}^{*} X_{i} = \overline{\Phi}_{o}^{*} \times_{o} = \varepsilon. \\ & \forall t_{i} \quad U_{i} \quad vanishus \quad t_{0} \quad 2^{rd} \text{ order } af \quad x_{i} = 0 \implies \Psi(0) = 0, \quad D\Psi(0) = id. \end{split}$$

$$\begin{aligned} &\mathcal{H}_{adamonds} \mathcal{L}_{adamonds}^{adamonds} \\ &f \in C^{\infty}(\mathbb{R}^{n}) \Rightarrow \exists g_{1}, \dots, g_{n} \in C^{\infty}(\mathbb{R}^{n}) \underset{\omega/}{g_{1}(\omega)} = \underbrace{\partial f}_{\partial x^{i}}(\omega), \quad f(x) = f(\omega) + \underbrace{\hat{\mathcal{L}}}_{i=1}^{\infty} \underbrace{x^{i}}_{g_{1}(x)}, \end{aligned}$$

Lemma (Morse)

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function with f(0) = 0. If f has a non-degenerate critical point at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* f$ is a homogeneous quadratic polynomial.

Theorem (Darboux)

Let $\omega \in \Omega^2(\mathbb{R}^n)$ be a closed 2-form. If ω is non-degenerate at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* \omega$ is constant. We will use two facts about the Euler vector field $\mathcal{E} \in \mathfrak{X}(\mathbb{R}^n)$:

- A smooth function $f \in C^{\infty}(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}f = kf$ if and only if f is a homogeneous polynomial of degree k.
- 2 A smooth k-form $\omega \in \Omega^k(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}\omega = k\omega$ if and only if ω has constant coefficients.

Lemma (Morse)

Let $f \in C^{\infty}(\mathbb{R}^n)$ be a smooth function with f(0) = 0. If f has a non-degenerate critical point at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* f$ is a homogeneous quadratic polynomial.

Fact: $f \in C^{\infty}(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}f = kf$ if and only if f is a homogeneous polynomial of degree k. (Relevant: k = 2.)

Proof.

$$\begin{aligned} & \text{Jaylor expand } f(x) = \frac{1}{2} \sum_{i,j} A_{ij}(x) x^{i} x^{j} w | x \mapsto A(x) = (A_{ij}(x)) \text{ mosth, symmetric, } A(0) = \text{Hess } f(0). \\ & \text{Computation} \Rightarrow \frac{\partial f}{\partial x^{j}} = \sum_{k} B_{jk}(x) x^{k}, \text{ where } B_{jk} = A_{jk} + \frac{1}{2} \sum_{k} \frac{\partial A_{k\ell}}{\partial x^{j}} x^{\ell}. \\ & B(0) = A(0) \text{ non-obsgenerate} \Rightarrow B(x) \text{ non-obsgenerate for } x \text{ near } 0. \\ & \text{Thus } X := \sum_{i,j} (A(x)B(x)^{-1})_{ij} x^{i} \frac{\partial}{\partial x^{j}} \text{ is well-obsfd, } E - L \text{ near } 0. \\ & = \mathbf{I} + h.o.t. \\ & \text{Linearization lemma} \Rightarrow \exists \Psi w | \Psi^{*} X = E. \\ & \text{Computation} \Rightarrow \mathcal{L}_{x} f = 2f \Rightarrow \mathcal{L}_{\ell} \Psi^{*} f = \Psi^{*} \mathcal{L}_{x} f = 2\Psi^{*} f. \end{aligned}$$

Theorem (Darboux)

Let $\omega \in \Omega^2(\mathbb{R}^n)$ be a closed 2-form. If ω is non-degenerate at 0, then there exists a diffeomorphism φ of two neighbourhoods of 0 such that $\varphi(0) = 0$ and $\varphi^* \omega$ is constant.

Fact: $\omega \in \Omega^k(\mathbb{R}^n)$ (or in a neighbourhood of 0) satisfies $\mathcal{L}_{\mathcal{E}}\omega = k\omega$ if and only if ω has constant coefficients. (Relevant: k = 2.)

Proof.

Taylor expand
$$\omega = \sum_{ij} (c_{ij} + O(lx_i)) dx^{i} dx^{j}$$
. Poincaré lemme $\Rightarrow \exists \alpha \in \Omega^{\prime}(\mathbb{R}^{n}) s.t. d\alpha = \omega$.
Coordinate expression $\Rightarrow \alpha$ can be chosen of the form $\alpha = \sum_{ij} (c_{ij} x^{i} + O(|x_i|^2)) dx^{j}$.
 ω non-degenerate at $0 \Rightarrow$ non-degen mean $0 \Rightarrow$ can rolue $\iota_{\chi}\omega = 2\alpha$ for χ near 0 .
Coordinate expressions $\Rightarrow \chi$ is $E-L \Rightarrow \exists \Psi$.
Contain $\Rightarrow L_{\chi}\omega = d\iota_{\chi}\omega + \iota_{\chi}d\omega = 2d\omega = 2\omega$
 $\Rightarrow L_{g}\Psi^{*}_{\omega} = \Psi^{*}L_{\chi}\omega = 2\Psi^{*}\omega$.

Euler-like vector fields for submanifolds: setting up

• The category Man:

- objects: smooth manifolds
- $\bullet\,$ morphisms from M to $M'\!\colon$ smooth maps $\varphi\colon M\to M'$

- The category Man²:
 - objects: pairs (M,N) with M a smooth manifold and $N\subseteq M$ a closed submanifold
 - morphisms from (M, N) to (M', N'): smooth maps $\varphi \colon M \to M'$ with $\varphi(N) \subseteq N'$

Euler-like vector fields for submanifolds: setting up

- The tangent bundle functor $T: \mathsf{Man} \to \mathsf{Man}$:
 - objects M sent to TM
 - morphisms $\varphi \colon M \to M'$ sent to $D\varphi \colon TM \to TM'$

• The normal bundle functor $\nu \colon Man^2 \to Man$:

• objects (M, N) sent to $\nu(M, N) := TM|_N/TN$ (vector bundle over N)

• morphisms
$$\varphi : (M, N) \to (M', N')$$
 sent to
 $\nu(\varphi) : \nu(M, N) \to \nu(M', N')$
 $\varphi(N) \subseteq N' \Rightarrow D\varphi : \mathsf{Trl}_N \to \mathsf{Trr'l}_{N'}$
 $\forall x \in \mathbb{N}, D\varphi(x)[\mathsf{T}_x \mathbb{N}] \subseteq \mathsf{T}_{\varphi(w)} \mathbb{N}'$ (chain sucle)
 $\nu(\varphi)(x) : \frac{\mathsf{T}_x \mathbb{M}}{\mathsf{T}_x \mathbb{N}} \to \frac{\mathsf{T}_{\varphi(w)} \mathbb{M}'}{\mathsf{T}_{\varphi(w)} \mathbb{N}'}$

• Compatibility: $\nu(TM, TN) \cong T\nu(M, N)$

Euler-like vector fields for submanifolds: definitions

Vector field $X \in \mathfrak{X}(M)$ tangent to submanifold N $(\forall x \in N, X(x) \in T_x N)$ Morphism $X: (M, N) \to (TM, TN)$ in Man^2 $\downarrow \nu$ $\nu(X) \colon \nu(M, N) \to \nu(TM, TN) \cong T\nu(M, N)$ Linear approximation $X_{[0]} := \nu(X) \in \mathfrak{X}(\nu(M, N))$ **Euler-like** if $X_{[0]} = \mathcal{E}$ (of $\nu(M, N)$).

• Previous definition: when $(M, N) = (\text{open neighbourhood of } 0 \in \mathbb{R}^n, \{0\}).$

Theorem (Bursztyn, Lima, Meinrenken)

An Euler-like vector field X for (M, N) determines a unique maximal tubular neighbourhood embedding $\varphi \colon O \to M$ of a star-shaped open neighbourhood $O \subseteq \nu(M, N)$ of the zero section of $\nu(M, N)$ such that $\varphi^*X = \mathcal{E}. + \operatorname{Temetoriality}!$

Corollaries:

- Weinstein's Lagrangian neighbourhood theorem
- Morse–Bott lemma
- Grabowski–Rodkievicz theorem
- Linearization of proper Lie groupoids
- Linearization of proper symplectic groupoids

+ G-equivariant versions!