
Math 231b
Lecture 30

G. Quick

30. Lecture 30: The e-invariant and the J-homomorphism

We are trying to detect interesting maps between spheres. Last time we defined
the e-invariant and showed that we should think of it as an element in some Ext
group of abelian groups with Adams operations. This group is finite and cyclic
and we saw a criterion for determining its order. But we still need to determine
this order. The reason why this is so interesting is that the order will tell us
something about the size of some of the stable homotopy groups of spheres.

Let us recall the setup. For m,n ≥ 1, let

f : S2n+2m−1 → S2n

be a pointed map,

X = Xf = S2n ∪f e2n+2m

be the mapping cone of f , i : S2n ↪→ X be the inclusion, and

π : X → X/S2n ∼= S2n+2m

the map that collapses S2n. This gives us a short exact sequence

(1) 0→ K̃(S2n+2m)
π∗
−→ K̃(S2n ∪f e2n+2m)

i∗−→ K̃(S2n)→ 0.

Let i2n be a generator of K̃(S2n) and i2n+2m be a generator of K̃(S2n+2m).
Choose an element

a ∈ K̃(S2n∪fe2n+2m) such that i∗(a) = i2n and let b = π∗(i2n+2m) ∈ K̃(S2n∪fe2n+2m).

Then for any k, we have

ψk(a) = kn · a+ µk · b.
Since the Adams operations commute, we must have

kn(km − 1)µ` = `n(`m − 1)µk

for any k and `. This shows us that the rational number

e(f) :=
µk

kn(km − 1)
∈ Q.

is independent of k. But it might depend on our choice of a. If we change a by
a multiple of b, then e(f) is changed by an integer. Thus e(f) is well-defined as
an element of Q/Z.
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The e-invariant defines a map

e : π2n+2m−1(S
2n)→ Q/Z.

An alternative description of the e-invariant can be given using the Chern
character. The Chern character gives us a commutative diagram

(2) 0 // K̃(S2n+2m)
π∗

//

ch
��

K̃(Xf )
i∗ //

ch
��

K̃(S2n) //

ch
��

0

0 // H̃∗(S2n+2m;Q)
π∗

// H̃∗(Xf ;Q)
i∗
// H̃∗(S2n;Q) // 0

whose rows are exact.

Let y = π∗(ch(i2n+2m)) ∈ H̃2n+2m(Xf ;Q) and x be an element in H̃2n(Xf ;Q)
that maps to the generator ch(i2n). Then we have ch(b) = y. Let r(f) ∈ Q be
such that

ch(a) = x+ r(f) · y ∈ H̃2n(Xf ;Q)⊕ H̃2n+2m(Xf ;Q).

Lemma 30.1. r(f) = e(f) ∈ Q/Z.

Proof. We calculate

ch(ψk(a)) = ch(kn ·a+µk · b) = kn · ch(a) +µk · ch(b) = kn ·x+ (kn · r(f) +µk) · y.

On the other hand, we have seen above that ψk acts on H̃2n by multiplication by
kn. Hence

ψk(ch(a)) = knchn(a) + kn+mchn+m(a) = kn · x+ kn+m · r(f) · y.

Comparing the coefficients of y in both formulas gives

µk = r(f) · (kn(km − 1)).

�

Lemma 30.2. The map e is a group homomorphism.

Proof. Let Xf,g be obtained from S2n by attaching two 2n+ 2m-cells by f and g,
so Xf,g contains both Xf and Xg. There is a quotient map

Q : Xf+g → Xf,g

collapsing a sphere S2n+2m−1 that separates the 2n+2m-cell of Xf,g into a pair of
2n+2m-cells. (This is also called the “pinching map”.) It induces a commutative
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diagram

K̃(Xf,g)
Q∗

//

ch
��

K̃(Xf+g)

ch
��

H̃∗(Xf,g;Q)
Q∗
// H̃∗(Xf+g;Q).

In the upper row, the generators bf and bg are mapped to bf+g and af,g is mapped
to af+g. Similarly, in the lower row, the generators yf and yg are mapped to yf+g
and xf,g is mapped to xf+g. Using the previous lemma it now suffices to work
with r and to look at

ch(af,g) = xf,g + r(f)yf + r(g)yg

and hence

ch(af+g) = xf+g + (r(f) + r(g))yf+g.

�

Remark 30.3. The e-invariant is in fact a stable invariant. We know that the
mapping cone satisfies XS2∧f = S2∧Xf and we noticed in the proof of Proposition
28.5 of Lecture 28 that ch commutes with double suspension. This shows that
we have a commutative diagram

π2n+2m−1(S
2n)

S2∧− //

e
&&

π2n+2+2m−1(S
2n+2)

e
ww

Q/Z

Hence we can view e also as a homomorphism

e : πs2m−1(S
0)→ Q/Z

from the (2m− 1)-stable homotopy group of the sphere spectrum.

Now we should start to calculate the e-invariant. The maps for which we get
the most important results are in the image of the J-homomorphism.

30.1. The J-homomorphism. The J-homomorphism is a natural way to con-
struct maps between spheres. Let us first look at the idea of the construction.

Let O(n) be the group of orthogonal n× n-matrices. It acts on the Euclidean
n-space Rn by linear isometries. A linear isometry of Rn extends to the one-point
compactification Sn. Hence there is a natural map

J : O(n)→ LinIso(Rn,Rn)→ Map∗(S
n, Sn) = ΩnSn
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where Map∗(−,−) denotes the space of basepoint preserving continuous maps
(with the compact-open topology). This induces a homomorphism

J : πk(O(n))→ πk(Ω
nSn) = πk+n(Sn).

Remark 30.4. There is a little subtlety concerning the above construction of
J . For the basepoint of ΩnSn is the constant map at the basepoint. The space
ΩnSn has many path components, one for each degree. The image of O(n) lies
in the path components Ωn

1S
n and Ωn

−1S
n of paths of degree ±1 (remembering

that O(n) has two components). The basepoint of O(n), the identity map, goes
to the identity map of Sn. Hence the map O(n)→ ΩnSn, as described above, is
not basepoint preserving. So we should modify the map by “subtracting off” (in
some group model for ΩnSn) the identity map. Hence we should use

J : O(n)→ Ωn
1S

n −1−→ Ωn
0S

n.

Here is a more concrete way to define the J-homomorphism. Let k ≥ 1. An
element [f ] ∈ πk(O(n)) is represented by a family of isometries

fx ∈ O(n), x ∈ Sk with fx = id when x is the basepoint of Sk.

Writing

Sn+k = ∂(Dk+1 ×Dn) = Sk ×Dn ∪Dk+1 × Sn−1 and Sn = Dn/∂Dn,

let

Jf(x,y) = fx(y) for (x,y) ∈ Sk ×Dn and Jf(Dk+1 × Sn−1) = ∂Dn,

where we think of the latter ∂Dn as the basepoint of Dn/∂Dn.

It is easy to see that if f ' g then Jf ' Jg. Hence we obtain a map

J : πk(O(n))→ πk+n(Sn).

Lemma 30.5. J is a homomorphism.

Proof. Exercise. �

It is easy to check that if we embed O(n) into O(n + 1) this corresponds to
taking suspension. Since both groups πk(O(n)) and πk+n(Sn) are independent of
n for n−1 > k, we can pass to the limit in n and get the stable J-homomorphism

J : πk(O)→ πsk(S
0) = πk(S

0).

The image of the J-homomorphism in πk(S
0) is the main part of the stable

homotopy groups which is accessible to direct computations.
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30.2. The complex J-homomorphism. In our computations we will focus on
the following complex version of J . We can compose J with the map

πk(U)→ πk(O) induced by the natural inclusions U(n) ⊂ O(2n).

This defines the stable complex J-homomorphism

JC : πk(U)→ πk(S
0).

On the groups πk(S
0) we have defined the e-invariant. Our goal now is to com-

pute the e-invariant on the image of JC, i.e., we want to compute the composition

e ◦ JC : πk(U)→ Q/Z.

There is the following great result.

Theorem 30.6. Let f : S2k−1 → U(n) represent a generator in π2k−1(U). Then

e(JCf) = ±βk/k
where βk is defined by the power series

x

ex − 1
=

∑
k

βkx
k

k!
.

Hence the image of J in π2k−1(S
0) has order divisible by the denominator of βk/k

(that is the denominator when we take βk/k in reduced form).
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