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Abstract

Introspective Theories and Geminal Categories

by

Sridhar Ramesh

Doctor of Philosophy in Logic and the Methodology of Science

University of California, Berkeley

Professor Thomas Scanlon, Chair

In provability logic, a key principle is Löb’s theorem, stating that if the provability of

P provably entails P , then P itself is provable (in modal logic notation, �P ` P has

as a consequence ` P ). This was first discovered in the follow-up work on Gödel’s

incompleteness theorems, with Gödel’s results viewable as following from Löb’s theorem.

Later, it was also seen that the same formal pattern of Löb’s theorem described certain

fixed point constructions studied under the name of “guarded recursion”.

The aim of these notes is to draw attention to a certain simple class of category-theoretic

structures which serve as an abstract environment for deriving Löb’s theorem and such

fixed point constructions, allowing for a vastly generalized and unified understanding of the

scope of applicability of such constructions. These are the structures we call “introspective

theories”.

This very minimal categorical definition nontrivially entails Löb’s theorem and guarded

recursion at both the term and type level. We also demonstrate how this abstraction offers

a clean unification of the interpretation of the Gödel-Löb incompleteness theorems in

traditional logic or via arithmetic universes a la Joyal, along with the interpretation by

Birkedal et al of guarded recursion in presheaves over well-founded orders, along with the

distinct classical interpretation of the GL modal logic in well-founded transitive Kripke

frames.

We also explore free instances of our structure, which turn out to admit a tractable

explicit description. The free introspective theory is what we call “the theory of geminal

categories”, and we explore also some further illuminating relationships between the

concepts of introspective theories and geminal categories.
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Chapter 0

Introduction

The aim of these notes is to identify and draw attention to a certain surprisingly simple

and category-theoretically natural mathematical structure which both serves as an abstract

environment for the reasoning used in establishing Gödel’s incompleteness theorems and

Löb’s theorem in their traditional instances (as in [Göd31] and [Löb55]), and furthermore

allows these and the further theorems and fixed-point results of the Gödel-Löb modal logic

of provability (as in [Boo95]) to be vastly generalized.

Some such Löb-style fixed point phenomena have been explored in the literature before,

but our abstraction is of note as a particularly simple and general one. This abstraction

for the first time formally unifies three distinct threads of work in the literature, having as

special cases the interpretation of the Gödel-Löb incompleteness theorems via the initial

arithmetic universe a la Joyal (as discussed in [DO20]), the interpretation of Löb’s theorem

as a guarded fixed point combinator and associated work on guarded (co)inductive types

via step-indexing in contexts such as the topos of trees (as in [Bir+11]), and the classical

interpretation of the GL modal logic in well-founded transitive Kripke frames.

Our interest is in a minimal categorical structure which naturally reflects the abstract

structure of the Gödelian argument. We emphasize that (as opposed to much of the

literature on categorical abstractions of guarded recursion), our abstraction does not have

Löb’s theorem built into it directly as an assumption, but rather allows Löb’s theorem

to be derived from much more basic presumptions. Our abstraction is indeed so simple

that it does not even make such common presumptions as cartesian closure, regularity,

or coproducts, all of which turn out not to be needed for the derivation of Löb’s theorem.

(Indeed, not presuming cartesian closure is vital for allowing our abstraction to cover the

initial arithmetic universe!)

The core idea is the identification of those essentially algebraic theories satisfying

the property that every model of these theories contains also, as part of its structure, a

homomorphism into an internal model of the same theory. We call these “introspective

theories”. This document is devoted to initiating the study of introspective theories.

We give two category-theoretic formalizations of the concept of an introspective theory

(one directly corresponding to the above description (Definition 2.7), the other less so
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(Definition 2.2)) and prove them equivalent (Theorem 2.5). We then derive a form of

Löb’s theorem, in terms of the existence of suitably guarded fixed points, for arbitrary

introspective theories (Löb’s Theorem for Introspective Theories (Theorem 4.19)). In this

demonstration of Löb’s theorem, the relationship between Löb’s theorem and presheaves

is also highlighted, including the applicability of Löb’s theorem to non-representable

presheaves, which has previously gone unremarked upon.

This derivation of Löb’s theorem for introspective theories is our most important key

result. The separate demonstrations of how each of the three traditional instances of Löb’s

theorem noted above correspond to certain constructions of introspective theories comprise

other key results.

(Specifically, these three traditional instances are seen as instantiations of our abstract

theory like so: An introspective theory corresponding to Joyal’s work with the initial

arithmetic universe is discussed in The initial arithmetic universe (Section 6.4). An intro-

spective theory corresponding to step-indexing in the topos of trees is discussed in Presheaf

example related to step-indexing in guarded recursion (Section 2.4.2.1). Introspective

theories corresponding to the classical interpretation of GL modal logic in well-founded

transitive Kripke frames are discussed in Presheaf examples related to Kripke frames

(Section 2.4.2.2). These last two constructions are themselves unified and generalized much

further in Models based on presheaf categories (Section 6.5).)

I believe this is the first formal demonstration of how traditional logical contexts such

as the syntactic category of Peano Arithmetic (discussed as an introspective theory at

Example based on a traditional logical theory (Section 2.4.1)) support guarded recursion

not just at the level of propositions (where this amounts to Löb’s theorem in its traditional

sense), but also for general terms of arbitrary type, and also for types themselves. Similarly

for contexts such as the initial arithmetic universe or the initial topos with natural numbers

object (discussed in Self-initializing and super-initializing theories (Section 6.3)).

In addition to such traditional finitary logical theories, we give a similar demonstration

of the initial topos with countable products as inducing another model of our formal

abstraction (in A self-initializing theory with uncountable and uncomputable flavor

(Section 6.3.3)). As this structure contains both uncomputable and uncountable data, yet

is constructed in a very similar way to the traditional logical incarnations of the Gödel-

Löb phenomenon, this should vividly dispel the oft-repeated canard that the Gödel-Löb

phenomenon in logic is fundamentally about or constrained to computability. (As amounts

to the same thing, this illustrates that the phenomenon is not constrained to structures

internalizable in the initial arithmetic universe).

The concept of an introspective theory is itself essentially algebraic in nature, and thus

admits free instances as well, and we give a tractable explicit description of the initial

introspective theory inGeminal categories (Chapter 5). This explicit description of the initial

introspective theory is another key result of ours. We also observe a remarkable surprising

relationship between the initial introspective theory and the theory of introspective theories

(Observation 5.21), and some dual co-free constructions of introspective theories (Co-free

introspective theories and geminal categories (Section 5.12)).
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Though introspective theories are our fundamental objects of interest, along the way,

we consider also relaxations of the definition of introspective theories to encompass more

general structures (in particular, the relaxation we call “locally introspective theories”,

defined at Definition 2.8) which, while not supporting the derivation of the Gödel-Löb

phenomena, allow us to state other theorems and constructions in their natural generality

and note broader connections with other mathematics.

0.1 Reading roadmap
The Preliminaries from Higher categorical terminology conventions (Section 1.1)

through Self-indexing and slice categories (Section 1.5) cover conventions and material

which are used throughout the entire document, which the reader will certainly want

to familiarize themselves with. The remainder of the Preliminaries can be read on an as

needed basis.

The first chapters Introspective theories (Chapter 2) and Modal logic (Chapter 3)

establish the basic concepts of introspective theories, which all later chapters depend on.

However, the later chapters Löb’s theorem (Chapter 4), Geminal categories (Chapter 5),

and Examples in the wild (Chapter 6) can be read essentially independently of each other,

in any order or fashion the reader likes. The only dependence between these is that the

concept of geminal categories from Geminal categories (Chapter 5) is invoked in one

isolated section of Examples in the wild (Chapter 6), at The initial model as a geminal

category (Section 6.3.1).
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Chapter 1

Category-theoretic preliminaries

In this chapter, we set out terminology, conventions, concepts, lemmas, etc, which

will be useful for us later on. We do not claim originality for any of the material in this

Preliminaries chapter, though perhaps our choices for how to present this material may at

times be idiosyncratic.

The Preliminaries from Higher categorical terminology conventions (Section 1.1)

through Self-indexing and slice categories (Section 1.5) cover conventions and material

which are used throughout the entire document, which the reader will certainly want

to familiarize themselves with. The remainder of the Preliminaries can be read on an as

needed basis.

1.1 Higher categorical terminology conventions
We assume familiarity with categories, functors, natural transformations, limits,

presheaves, Set, Cat, all in the ordinary sense. At times, we may also call upon some

comfort with concepts such as 2-categories, and abstract Kan extensions and comma objects

within these. It will also be very useful to have some familiarity with functorial semantics

and internal algebraic structures such as internal categories.

We will take all categories we work with to be locally set-sized (which is to say, we will

take Set to be large enough to include the hom-set between any two objects of any category

we work with). Generally speaking, we are interested in the categories we work with being

overall set-sized as well, except for those particular large categories such as Set, SetX , Cat,
etc. Wherever paying explicit attention to such size issues is important, we will make some

explicit note. Otherwise, we do not.

In particular, we do not bother explicitly stating size restrictions on an arbitrary category

C before using the Yoneda embedding of C into SetC
op

. Only in situations where there is

some risk that it would not be possible to simply interpret Set as suitably large relative to

C do we bother making explicit comment on size issues.



CHAPTER 1. CATEGORY-THEORETIC PRELIMINARIES 5

We write m ◦ n or just mn for composition of morphisms n : X → Y , m : Y → Z in a

category. We occasionally write n;m to meanm ◦ n. We write idX or just id for the identity

morphism on an objectX . We also use parallel lines without arrowheads to denote identity

morphisms (or canonical isomorphisms) in diagrams, like so:

A B

When C is a category, we occasionally write c ∈ C to mean that c is an object of C. We

usually write HomC(a, b) to mean the morphisms from a to b in C, but we sometimes write

C(a, b) instead, especially when C is a 2-category so that C(a, b) is not merely a set but a

1-category.

We use the term lexcategory for a category with finite limits. We use the term

lexfunctor for a functor preserving finite limits, whose domain and codomain are both

lexcategories. By LexCat, we mean the 2-category of lexcategories, lexfunctors, and natural

transformations. We will not generally make distinctions between f(a× b) and f(a)× f(b),
etc, when f is a lexfunctor, but shall instead write with the ordinary fluency for working

with limit-preserving functors. (Similarly, we use FinProdCat for the 2-category of finite

product categories (i.e., categories with finite products), functors preserving finite products,

and natural transformations.)

We will speak frequently of category-valued presheaves (i.e., contravariant functors into

the category of categories) and natural transformations between these. Technically, what

we mean by these are not “functors” and “natural transformations” in the traditional sense,

but what some call "pseudofunctors" and “pseudonatural transformations”, or “2-functors”

and “2-natural transformations”, as the category of categories should be viewed as a

2-category (by which we mean the non-strict concept some call “bicategory”), lacking a

notion of equality between its 1-cells and only having a notion of isomorphism between

them instead. That is, wherever one might traditionally ask for an (automatically coherent)

system of equalities, this is replaced by a coherent system of isomorphisms. We take the

convention that this is what terminology such as “functor” and “natural transformation”

already means, in such a context. But we will try our best to construct arguments in such a

way as that this is not a bother that needs to be explicitly worried about.

Similarly, we do not worry about distinguishing between terms like “isomorphic” and

“equivalent” in statements like “category C is isomorphic/equivalent to category D”,

always meaning by such a statement an adjoint equivalence. Everything always means

the weakest thing it could mean, unless we explicitly say we are dealing with something

stricter.

Similarly, if we ever describe diagrams involving functors between categories as

commuting, we really mean that these diagrams commute up to natural isomorphism. If

we make claims about uniqueness in such a context, we mean the space of choices with

the relevant isomorphisms is contractible. And so on. Again, our convention is that this

is what such terminology already means, in any categorical context where one has such

concepts of isomorphism around, unless we have taken care to say we are working with
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stricter notions instead (see more on strictness below). Unless we have said we are talking

about strict notions, we never distinguish between equivalent categorical structures.

(That all said, nothing we do is higher-dimensional than 2-categorical, so everything

could in theory be strictified in some fashion, if so desired.)

1.2 Indexed sets and representability
We will now give a series of related definitions, concerning what are called indexed

structures. The notions being described in this section are all old hat, none of them are

newly invented by us, but we wish to pin them down with particular names to establish

a language for easily talking about the things we wish to talk about in the rest of this

document.

As we give these definitions, we will also observe a basic stock of theorems about them.

Again, we make no claim to originality with these preliminaries. They simply may be

useful to remind the reader of, or to give labels to in order to reference as we use them.

The reader who is already very familiar with these notions and just unfamiliar with our

conventions of vocabulary is advised to just skim these preliminaries on initial read and

then return as needed when faced with unfamiliar vocabulary. Frankly, the reader who is

not very familiar with these notions is also given similar advice. No need to spend all one’s

time reading proofs and details of lemmas up front. It is probably best to read a bit of the

preliminaries to get the lay of the land, then go off and read the actual content and come

back as needed. But who knows? To each reader, their own reading style may be best.

The key notion upon which everything else builds is the following:

Definition 1.1 Let T be an arbitrary category. By a T -indexed set, we mean a presheaf on

T ; that is, a contravariant functor from T to Set. By a function ormap or any such thing

between T -indexed sets, we mean a natural transformation between the corresponding

presheaves.

The category of T -indexed sets and maps between them is thus the presheaf category

SetT
op

. We may also refer to this as Psh(T ).
We may refer to the data of an indexed set at any object t of the category over which it

is indexed as its data defined over t, or which is t-indexed, or as its t-aspect.1 We can refer

to the t-aspect of an indexed set P as the set P (t) or Pt.
Note that data defined over t is automatically transferred to corresponding data defined

over s by any morphism from s to t in T , by the action of the presheaf. More explicitly,

given morphismm : s→ t in T , we may write P (m) : P (t)→ P (s) for the corresponding
function in Set, or Pm.

In contexts where it is clear what presheaf P we have in mind, we may also writem∗

for P (m). Also, in contexts where it would cause no confusion to speak in this way, given

1
Those who prefer to talk in terms of fibered structures rather than indexed structures would call this the

“fiber” at t.



CHAPTER 1. CATEGORY-THEORETIC PRELIMINARIES 7

some t-indexed datum d ∈ P (t) and a morphismm : s→ t, we use the same name d also to

refer to the corresponding s-indexed datumwhich more explicitly would be called P (m)(d)
orm∗d. It will be especially common for us to abuse language in this name-reusing way

when t is a terminal object.

In the particular case where t is a terminal object, we may refer to the aspect at t of an
indexed set as its global aspect. By the Yoneda lemma, this global aspect data P (1) of a
presheaf P on category T is the same as the data of a map from the terminal object 1 to P ,
which is the same as the data of a map from the constantly 1 presheaf to P . This is also the

same as the data of the limit of P , thought of a T op
-indexed diagram. In this way, even if T

does not have a terminal object, we may still speak of the global aspect of T -indexed sets.

We sometimes use the notation Glob(P ) to refer to the global aspect of an indexed set P .

Definition 1.2 We say an indexed set is representable (or T -representable, when we wish

to emphasize which indexing category we are talking about) if the corresponding presheaf

is representable.

Remark This notion is also sometimes referred to with the word “small” in the literature

on indexed or fibered categories (especially in derived senses like describing an indexed

category as “small” or “locally small”). Cf. Definition 7.3.3 in [Jac99], which uses the word

“small” in essentially this way. When the indexing category T has finite limits (or even

just splittings of idempotents), note that representability is equivalent also to the standard

notion “tiny”; see [nLa23].

But it is perhaps a bit misleading to use “small”-derived terminology here, as this

notion is not closed under subobjects. Indeed, what might be considered the smallest

indexed set, the one which constantly takes the value of the empty set, is never “small” in

the sense of being representable!

The analogy of representability to the familiar distinction between “small” sets and

non-“small” proper classes is often a fruitful one, motivating this terminology. However,

to avoid confusion, we stick with only referring to this notion as “representable” for now.

When we wish to refer to the distinction between set-sized and proper-class-sized, we

will say “set-sized”, rather than saying “small”. We will shy away from using the word

“small” altogether.

Convention 1.3 Via the Yoneda embedding (which we denote yoneda), we identify T itself

as the full subcategory of representable T -indexed sets within the category of all T -indexed
sets. In this way, we may speak, for example, of functions from objects of T to T -indexed
sets. That is, when t is an object of T , we will readily write t also to mean the Yoneda

embedding of t, when we wish to treat it as a representable T -indexed set; we will usually

not explicitly write yoneda(t). And conversely, given a representable T -indexed set P , we

freely write also P to name an object in T representing P , rather than explicitly writing

yoneda−1(P ).
Via the Yoneda lemma, we frequently also identify P (t) with Hom(t, P ).
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Theorem 1.4 Note that representable sets, construed as objects of Psh(T ), are closed under

any limits which exist in T . In particular, if T is a lexcategory, representable sets are

closed under finite limits. (This is essentially the observation that the Yoneda embedding

preserves limits.)

Definition 1.5 Note that given an arbitrary functor f : S → T , this induces by composition

a functor f ∗ : Psh(T )→ Psh(S).2
That is, from a T -indexed set P , we may construct the following S-indexed set f ∗P :

Sop T op Set
fop

P

Theorem 1.6 Given f : S → T and an object s in S and a T -indexed set P , we have that

Hom(s, f ∗P ) = Hom(f(s), P ), with this correspondence being natural in both s and P .

Proof. Keep in mind that in these Hom-expressions, s and f(s) have implicitly been

construed as S-indexed sets via the Yoneda embedding. That is, more explicitly, our claim

is Hom(yoneda(s), f ∗P ) = Hom(yoneda(f(s)), P ). To establish this claim, we can apply the

Yoneda lemma to both sides of the equation to reduce it to (f ∗P )(s) = P (f(s)), which is

the definition of f ∗.
This completes the proof. (In fancy categorical jargon, we have demonstrated that

yoneda ◦ f : S → Psh(T ) is the relative left adjoint of f ∗ : Psh(T )→ Psh(S), relative to the

Yoneda embedding yoneda : S → Psh(S).) �

Lemma 1.7 Given f , s, and P as in Theorem 1.6, we have that every morphismm : s→ f ∗P
factors throughamorphism in the range of f ∗. That is,m = f ∗(m′)◦η for somem′ : f(s)→ P
and η : s→ f ∗(f(s)).

Proof. This is corollary to Theorem 1.6 by the general yoga of relative adjoints.

Specifically, consider the following naturality diagram for the correspondence in

Theorem 1.6, wherem′ is themorphism in Hom(f(s), P ) corresponding tom ∈ Hom(s, f ∗P )
and η is the morphism in Hom(s, f ∗f(s)) corresponding to idf(s) ∈ Hom(f(s), f(s)).

2
I apologize for re-using this f∗

notation both for the action of a presheaf on a morphism f , and for

composition of a presheaf with a functor f , but this re-use of notation seems to be relatively standard. We can

think of the second use of this notation as a kind of instance of the first, for the category-valued Hom(−,Set)
presheaf on Cat.
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Hom(f(s), f(s)) Hom(f(s), P )

idf(s) m′

η f ∗(m′) ◦ η = m

Hom(s, f ∗f(s)) Hom(s, f ∗P )

m′◦−

f∗(m′)◦−

�

Theorem 1.8 Let Σ be the forgetful functor from a slice category T/t to its ambient category

T . Then the t-aspect of a T -indexed set P is in correspondence with the global aspect of

Σ∗P .

Proof. This is corollary to Theorem 1.6, which tells us HomPsh(T/t)(1T/t,Σ
∗P ) is in correspon-

dence with HomPsh(T )(Σ1T/t, P ), where 1T/t is the terminal object in T/t. As this terminal

object is given by the identity morphism into t, we have that Σ1T/t = t. Thus, this equation
is telling us that the global aspect of Σ∗P corresponds to the t-aspect of P , as desired. �

Theorem 1.9 If f a g, then f ∗ a g∗. Thus f ∗ = Langop , while g∗ = Ranfop .

Proof. This is simply the fact that adjunction is preserved by 2-functors, and reversed (in

the sense of swapping left and right adjoints) by each of co and op. Thus, adjunction is

preserved by Hom(−op, C) for any fixed C. In particular, adjunction is preserved by Set−
op

within Cat. �

Theorem 1.10 If f : S → T has a right adjoint g : T → S, then f ∗ : Psh(T )→ Psh(S) takes
representable sets to representable sets. Specifically, f ∗(t) = g(t).

Proof. f ∗ takes any representable presheaf with representing object t in T to the repre-

sentable presheaf HomT (f(−), t) = HomS(−, g(t)). �

Theorem 1.11 Any functor of the form f ∗ preserves finite limits.

Proof. This can be seen in several ways. Perhaps most familiarly, this can be seen from the

fact that (co)limits in a a functor category are computed pointwise where the pointwise

(co)limits exist, and of course set-sized (co)limits all exist in Set. Secondly, when the domain

of f is a set-sized category, it can be seen from the fact that f ∗ has left and right adjoints

(the left and right Kan extensions along f op
), so that f ∗ in fact preserves ALL (co)limits

that happen to exist, regardless of size. We can also note that f ∗(P ) = Hom(f(−), P ),
which is manifestly limit preserving (though this argument does not generalize as easily to

colimit-preservation). �
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We also define more generally the concept of a function between indexed sets having

representable fibers:

Definition 1.12 A function f : A → B between T -indexed sets has representable fibers
if the pullback of f along any map into B from a representable set is itself representable

(thus, lives within a slice category of T ). That is, we say f has representable fibers just in

case for every pullback diagram of the following sort within the category of T -indexed
sets, if t is representable, then so is s:

s A

t B

f
y

(Beware that when T does not have finite limits, this definition does not have all the

properties which might be expected. For example, we might expect that any morphism

between T -representable sets should have T -representable fibers, which would not be true

if T itself did not have pullbacks. If T does not have binary products, it will not even be

true that a map into the terminal object 1 has representable fibers whenever its domain is

representable.)

Theorem 1.13 If f : A → B has representable fibers and B is representable, then A is

representable too.

Proof. Apply the definition of representable fibers to the trivial case of pulling f back along

idB. �

The following two theorems follow from the composition of pullback squares into

larger pullback squares (or pullback rectangles, one might say):

Theorem 1.14 Maps with representable fibers are closed under composition.

Proof.
s A

t B

u C

f
y

g
y

When we presume g to have representable fibers, we find that t is representable. Then
when we presume f to have representable fibers, we find that s is representable. The

composition of the individual pullback squares yields a pullback rectangle, which allows

us to conclude that the composition g ◦ f has representable fibers.
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The above illustrates the argument for binary composition, by simply composing

pullbacks. The argument for n-ary composition for any finite nworks inductively in the

same way (note that the base 0-ary case works in the same way as well; the pullback of an

identity morphism is an identity morphism, and an identity morphism with representable

codomain has representable domain). �

Theorem 1.15 Maps with representable fibers are closed under pullback along arbitrary

maps.

Proof.
s D A

t C B

ff ′
yy

Any pullback of f ′ (along some arbitrarymap) is a pullback of f itself (along an extended

map with the same domain). Thus, if f has yields representable objects whenever pulled

back along a map with representable domain, so does its pullback f ′. �

Theorem 1.16 If L : Q → T is a functor with a right adjoint, on a category Q with

pullbacks, and f is a map between T -indexed sets with T -representable fibers, then L∗f
has Q-representable fibers.

Proof. Let us say f : A→ B, and let an arbitrary mapm : q → L∗(B) be given, where q is
an object of Q. We must show that the pullback of L∗f alongm also lies within Q. For sake

of a name, let us call the domain of this pullback P .

P L∗A

q L∗B

L∗f

m

y

First, observe via Lemma 1.7 thatm factors as L∗(m′) ◦ η for somem′ : L(q)→ B and

η : q → L∗L(q).

q L∗L(q) L∗B
L∗m′η

m

Thus, the pullback yielding P we are interested in can be decomposed as follows:

P L∗(A×B L(q)) L∗A

q L∗L(q) L∗B

L∗f

L∗m′η

m

y y



CHAPTER 1. CATEGORY-THEORETIC PRELIMINARIES 12

The right half of the above diagram is L∗ (known to preserve pullbacks by Theorem 1.11)

applied to the following pullback diagram in Psh(T ):

A×B L(q) A

L(q) B

f

m′

y

Note that, as f has T -representable fibers andL(q) is an object of T (i.e., T -representable),
we find that A×B L(q) is also T -representable.

By Theorem 1.10, it follows that L∗(A×B L(q)) is Q-representable, as is L∗L(q).
Thus, the left half of our above diagram is a pullback of morphisms within Q:

P L∗(A×B L(q))

q L∗L(q)η

y

As Q is closed under pullbacks, it follows that P is Q-representable, completing our

proof. �

Definition 1.17 We can talk about any kind of T -indexed structure or T -indexed maps

between such structures, as the appropriate diagram of T -indexed sets and functions. For

example, we can talk about T -indexed groups and group homomorphisms between them.

When the T -indexed sets involved (the sorts within the structure, including the domains

and codomains of all the maps defining the structure) are all representable, we say the

entire structure is representable, or equivalently, we say it is internal to T 3. By the Yoneda

lemma, this amounts to a diagram of objects and morphisms within T itself.

Observe that, as f ∗ for an arbitrary functor f : S → T preserves finite limits (by

Theorem 1.11), it not only takes T -indexed sets to S-indexed sets but also acts as a

functor from T -indexed structures to S-indexed structures more generally, for any notion

of structure definable using finite limits. For example, f ∗ takes T -indexed groups to

S-indexed groups, and so on. Furthermore, by Theorem 1.10, if f has a right adjoint, then

f ∗ will take representable structures to representable structures.

3
This “T -internal gadgets” terminology makes most sense when T is thought of as a kind of structure

such that structure-preserving maps from T to S take T -internal gadgets to S-internal gadgets. Thus, if
the definition of gadgets invokes maps whose domains are defined using finite limits, we will use this

terminology of T -internal gadgets only in contexts where we are taking T as a category with finite limits (for

example, when speaking of internal categories). If the definiton of gadgets invokes maps whose domains are

defined using finite products, we will use this terminology of T -internal gadgets only in contexts where

we are taking T as a category with finite products (for example, when speaking of internal groups). If the

definition of gadgets invokes maps whose domains are defined using countably infinite products, then to

speak of T -internal gadgets, T must be carrying countably infinite product structure, etc.
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Observe also that any T -indexed structure S has a global aspect Glob(S) which is an

ordinary (that is, non-indexed) structure of the same sort (as well as aspects at each object

of T ).

1.3 Indexed categories
Definition 1.18 In the same vein as all this, by a T -indexed category, we mean a category-

valued presheaf on T ; that is, a contravariant functor from T to Cat, and by an indexed
functor (or simply functor) between T -indexed categories, we mean a natural transfor-

mation between such presheaves.4. (In keeping with our general convention, note that

“functor to Cat” and “natural transformation between functors to Cat” here really refer to

pseudofunctors and pseudonatural transformations, respectively, as Cat is a 2-category).
We say this indexed category is an indexed lexcategory (aka, has finite limits) if this
presheaf factors through the inclusion of LexCat into Cat; that is, if it takes every object to

a lexcategory and every morphism to a lexfunctor. We say an indexed functor between

indexed lexcategories preserves finite limits if it arises from a natural transformation

between the corresponding LexCat-valued presheaves. And in the same way as all this,

we can speak of natural transformations between functors between indexed categories, or

any other familiar categorical structure or property.

One might have thought our definition of T -indexed category-like structures would

simply be a special case of our previous definition of T -indexed set-like structures as

suitable diagrams within Psh(T ) (that is, as suitable diagrams of Set-valued functors). That

is indeed the essence of this definition. However, the fact that we take indexed categories to

be given by pseudofunctors into the 2-category Cat, instead of treating Cat as a 1-category,

provides a subtle but technically convenient generalization beyond directly demanding

mere diagrams of Set-valued functors.

Still, all the same notational conventions apply to indexed categories. E.g., given

a T -indexed category C, we write C(t) (or Ct, or even Yoneda-style Hom(t, C)) for the
category which is the t-aspect of C at an object t of T , we write C(m) : C(t)→ C(s) (or Cm)
for the functor induced by a morphismm : s→ t in T , we may writem∗ instead of C(m) in
contexts where it is clear that we are referring to the action of C, etc.

We now might like to speak about an indexed category being representable, in the

sense that its collection of objects and its collection of morphisms are both representable.

This is the essence of the definition we will indeed adopt (at Definition 1.24) but there is

one pitfall to be aware of here, related to the just mentioned subtlety. We generally speak

4
The machinery of indexed categories is equivalent to the machinery of fibered categories, a presentation

some prefer, but we refrain from that presentation for now. Many of the features which make fibered

categories most useful do not strongly apply to our ultimate interest largely in internal structures, while

adding distracting complexity to the exposition. The current choice of presentation seemed the simpler

one for our purposes, but the reader who disagrees may translate everything into the language of fibered

categories if they prefer.
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about categories in such a way as that they do not come with a particular notion of their

set of objects, as such. That is, two categories may be equivalent (in the technical sense of

“equivalent” within the 2-category Cat) though presented with different ostensible sets

of objects. For example, a category presented as comprised of one terminal object, and

a category presented as comprised of two isomorphic terminal objects, are equivalent

categories; there is no pseudofunctor from the 2-category of categories, functors, and

natural isomorphisms to Set which would send the first of these to a one-element set and

the second to a two-element set. We are to treat them as the “same” category. So to speak

about a category as having a particular set of objects, we must imagine it as carrying more

fine-grained equality structure on its objects than we normally do.

Though a category does not have a well-defined set of objects, it does have a well-defined

set of morphisms between any two given objects. Thus, there is no such difficulty in

defining when an indexed category is locally representable.

Definition 1.19 Given a T -indexed category C, an object t of T and any two objects a
and b in C(t), we can define a T -indexed set whose aspect at objects r of T is the set

{(m,n) | m ∈ HomT (r, t), n ∈ HomC(r)(m
∗a,m∗b)}, with the obvious corresponding action

on morphisms of T . If the T -indexed set defined in this way is representable for every

object t of T and objects a and b in C(t), then we say C is locally representable.

Note that this is the same as saying that 〈cod, dom〉 : Mor(C) → Ob(C) × Ob(C) has
representable fibers in the sense of Definition 1.12, except for that we do not need to think

of Ob(C) as carrying an equality relation as such.

In particular, we have the following result:

Theorem 1.20 If L : Q→ T is a functor with a right adjoint, on a categoryQwith pullbacks,

and C is a T -indexed locally representable category, then the composition of C with L to

yield a Q-indexed category is also locally representable.

Proof. By the reasoning of Theorem 1.16, as applied to the map 〈cod, dom〉 : Mor(C) →
Ob(C) × Ob(C), although Ob(C) need not itself be thought of as carrying an equality

relation as such. �

1.4 Strict categories and internal categories
These bothers around the ill-defined set of objects of a general indexed category shall

take us down some technical digressions for a bit, before we return to our big picture ideas.

(Please keep in mind, the nuances of this section mostly do not matter for a big picture

understanding. The main part of this document where such details might matter is in

being rigorous in Geminal categories (Chapter 5). We recommend that on a first read, the

reader ignore all discussion of strictification or distinction between strict and non-strict

concepts, in order to pick up the big picture ideas. The reader can then pay attention to

these details on later more scrupulous re-reads as desired.)
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Definition 1.21 Specifically, let us say a strict category is a set of objects (including

the ability to speak about equality of objects in a potentially finer-grained sense than

isomorphism) and a set of morphisms, with the usual operations and satisfying the usual

equations. We may also speak of a strict functor, meaning a homomorphism of such

structure that preserves all of it on-the-nose. Strict categories and the strict functors

between them comprise the 1-category StrictCat.
We can speak straightforwardly of natural transformations between strict functors, and

with those in mind we can also create a 2-category StrictCat2 of strict categories, strict

functors, and natural transformations.

But when we speak of equality of parallel strict functors, we will always mean equality

in the 1-category StrictCat, not merely isomorphism in the 2-category StrictCat2.

Every strict category [or functor or etc], gives rise to a category [or functor or etc] in

whatever ordinary sense one would like to think of these. Wemay say the strict category [or

etc] presents the category [or etc] which results. Beware, non-isomorphic strict categories

can both present the same (up to equivalence) category!

Just as every strict category presents a non-strict category, conversely, one would

ordinarily say every category is presented by at least one strict category.5 One might, if

one likes, say that the only distinction between categories and strict categories is that we

gather categories up into a 2-category and speak of categories up to equivalence in such,

while we gather strict categories up into a 1-category and speak of strict categories up to

isomorphism in such.

Definition 1.22 We now go further in defining a strict lexcategory. Here, we mean more

than just a strict category for which finite limits exist. We also mean that, when taking

special “basic limits”, the relevant limit is not merely defined up to isomorphism, but is

given as a particular object (in keeping with the fact that objects can be distinguished more

finely-grained than up to isomorphism, within a strict category). A strict lexfunctor is
accordingly one which preserves these chosen basic limits not merely up to isomorphism,

but on-the-nose. Strict lexcategories and the strict lexfunctors between them comprise the

1-category StrictLexCat. Strict lexcategories, the strict lexfunctors between them, and the

natural transformations between those comprise the 2-category StrictLexCat2.

In the same way, we can also speak of a strict category with finite products, or any
similar such categorical structure.

It is important for us tomake this demandof chosen basic limits and their preservation on

the nose in order to ensure that StrictLexCat is the category ofmodels and homomorphisms

5
In certain non-traditional foundations, this may not be true. For example, in Homotopy Type Theory, a

groupoid may come primitively with no particular discrete set of objects. If said groupoid was found in the

wild instead of constructed by hand and there is furthermore no presumption of an Axiom of Choice, there

may be no way to turn it into a strict category. But for our purposes, this sort of thing does not matter. Even

in set-theoretic foundations without the Axiom of Choice, the situation becomes more nuanced for turning

functors between arbitrary categories equivalent to given strict categories into strict functors between the

given strict categories, but again, that will not concern us for now.
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of an essentially algebraic theory (a fact we will make use of in Geminal categories

(Chapter 5)).

This business of basic limits will require more explanation, another technical subtlety.

What I mean by this is like so: Consider for example the concept of a category with a

terminal object. And now consider the concept of a category with a pair of terminal objects,

a terminal object A and a terminal object B. Ordinarily, we would like to say these are

equivalent concepts or equivalent theories. They give rise to equivalent 2-categories (of

categories with terminal objects, functors taking terminal objects to terminal objects, and

natural transformations between these). However, the concept of a strict category with a

single chosen terminal object, and the concept of a strict category with two chosen terminal

objects A and B, are not equivalent concepts. We can ask questions in the one case that we

cannot in the other; for example, in the latter case, we can distinguish between those models

in which A and B are equal objects and those models in which A and B are not equal objects,

merely isomorphic. This is reflected also in these giving rise to non-equivalent 1-categories

of models (in which the objects are strict categories with the designated terminal objects,

and the morphisms are functors preserving designated terminal objects on the nose). So

when we seek to strictify the concept of a category with a terminal object, we really must

make a choice as to how we choose to designate the terminal object; once or multiply.

This issue was illustrated above for terminal objects, but arises again, perhaps even

more perniciously, for categories with finite products or finite limits or the like. Here, we

find that the essentially algebraic theory of “A strict category with a chosen terminal object

and a binary operation sending any pair of objects to a chosen product” is not precisely the

same as the essentially algebraic theory of “A strict category with an n-ary operation on

objects assigning chosen n-ary products, for each finite n”. Or the essentially algebraic

theory of “A strict category with a chosen terminal object and chosen (binary) pullbacks” is

not precisely the same as the essentially algebraic theory of “A strict category with a chosen

terminal object, chosen binary products, and chosen (binary) equalizers”, particularly

when we ask for homomorphisms between such structures which preserve their operations

on-the-nose.

So in general, when we wish to talk about the appropriate notion of “strict lexcategory”

(or “strict category with finite products” or “strict cartesian closed category” or any such

thing), we must make some decision as to how exactly to formalize this. We must make

some choice of a basic stock of limit operations (or representing object operations more

generally) of the desired sort, such that all the other desired limits (or representing objects)

can be constructed from these basic operations. Different choices will yield slightly different

strict concepts, albeit equivalent for all non-strict purposes.

None of the results in this work are ever particularly sensitive to what choice of basic

such operations we take in strictifying a categorical concept. We shall simply suppose some

such choice has been made whenever needed, and refer to its operations as our basic limits

(or basic representing object operations more generally). The one notable presumption we

will make is that there are only finitely many basic limit operations involved in defining a

strict lexcategory (or any such finitely axiomatizable thing); beyond that, any choice is fine.
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If the reader insists that we commit to a specific choice, let us for harmony with [PV07] say

a strict lexcategory is defined by having a chosen terminal object and a chosen (binary)

pullback operator.

Definition 1.23 Of course, we can speak of indexed strict categories now (or indexed strict

lexcategories, indexed strict categories with finite products, etc), straightforwardly via

Definition 1.17, as the appropriate diagram of indexed sets and functions between them.

And we can speak of such indexed strict categories as being representable, just in case their

indexed sets of objects and of morphisms are both representable.

Definition 1.24 We will now say an indexed category is representable if it is equivalent to

some indexed strict category which is representable. Note that we do not demand that, as

part of its structure, any particular such strict category is selected; merely, that it is possible

to do so. However, we may use the terminology internal category, to mean the selection

of a specific representable indexed strict category; similarly, an internal lexcategorywill

mean the selection of a specific representable indexed strict lexcategory (including chosen

basic limits), and so on for any such notion.

In this way, the terminology of internality always comes with the presumption of

strictness. (In particular, an internal lexfunctor between internal lexcategories means an

indexed strict lexfunctor between them, preserving basic limits on the nose). As T -internal
structures are both strict and representable, they can not only be viewed as living within

Psh(T ) but can also be viewed as just suitable diagrams within T .

Definition 1.25 We also say an indexed strict category is locally representable if the map

〈dom, cod〉 from its set of morphisms to its set of pairs of objects has representable fibers

(in other words, though its set of objects may not be representable, everything that exists

between any two particular objects is representable).

We can repeat in this language the observationmade at the end of Definition 1.19. Given

an indexed category C which is equivalent to some indexed strict category C ′, we have

that C is locally representable just in case C ′ is locally representable. Note that, although

an indexed category may be equivalent to non-isomorphic indexed strict categories, they

will all agree on whether they are locally representable.

Note that a representable strict category indexed over a category with finite limits

is a fortiori locally representable, as expected, as the collection of morphisms between

any particular pair of objects is given by an equalizer between sets already presumed

representable in a representable strict category.

In the same way as all the above, we adopt the following convention even for non-

indexed categories, which can be thought of as categories indexed by the terminal category

1.

Definition 1.26 We say representable category to mean a category which is presented

by some (set-sized) strict category. And we say representable lexcategory to mean a
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lexcategory which is presented by some (set-sized) strict lexcategory. In particular, it is for

us true by definition that all representable lexcategories admit presentations with chosen

basic limits.

Note that all the ordinary constructions of category theory which produce set-sized

categories or lexcategories from other such data in fact furthermore produce representable

categories or representable lexcategories from analogous inputs. So this convention does

not change very much, except it saves us some pedantry in the scope of some claims

we make which might otherwise fail in contexts without the Axiom of Choice (where a

random category found in the wild, instead of constructed by hand, could conceivably

have finite limits without admitting any presentation with chosen basic limits, or some

such pathology).

We note without detailed proof some strictification results which will be useful to us

later.

Theorem 1.27 Given any lexcategory T , there is a strict lexcategory Tstrict which presents

T , such that furthermore, for any lexfunctor f : T → L into a strict lexcategory L, there is a
strict lexfunctor fstrict : Tstrict → Lwhich presents f .

Theorem 1.28 Any indexed category is presented by some indexed strict category.

Theorem 1.29 Any indexed lexcategory is presented by some indexed strict lexcategory.

Theorem 1.30 Any internal category which has finite limits (qua indexed category) can

be further equipped as an internal lexcategory (without modifying the internal category

structure).

Proof. Let the internal category C, internal to T , be given, and suppose its t-aspect has
finite limits for each object t of T . That is, the category whose objects are Hom(t,Ob(t))
and whose morphisms are Hom(t,Mor(t)), with suitable composition structure from the

diagram internal to T defining C, has finite limits.

Then in particular, for each basis finite limit shape, we can consider the case where t is
taken to be the set of diagrams of such shape within C (for example, for binary products,

we can consider t = Ob(C)×Ob(C), or for binary equalizers, we can consider t taken to be

the kernel pair (that is, pullback along itself) of 〈cod, dom〉 : Mor(C) → Ob(C)× Ob(C)).
There will then be, within the t-aspect of C, a corresponding generic diagram of this shape,

which will have some limit within C as C has finite limits. The selection of any particular

such limit (that is, a particular value in Hom(t,Ob(C)) to serve as the apex of the limit cone,

and particular further values in Hom(t,Mor(C)) to serve as the projection morphisms of

the limit cone) gives us the morphisms within T which serve as a limit-assigning operation

onC for this particular shape of basic limit. After making such a choice for each of the basic

limit operations (of which we can presume there are only finitely many), we ultimately

have equipped C as an internal lexcategory. �



CHAPTER 1. CATEGORY-THEORETIC PRELIMINARIES 19

Note that it is NOT true that any indexed strict category which has finite limits (qua

indexed category) can furthermore be equipped as an indexed strict lexcategory (without

modification to the indexed strict category structure)! The former has reindexing functors

which need only preserve finite limits in a non-strict-sense, while the latter’s chosen basic

limits must be such that all reindexing functors preserve basic limits on-the-nose. So it is

rather remarkable that we get this for free once our indexed strict category is furthermore

representable.

1.5 Self-indexing and slice categories
Definition 1.31 Note that, from any lexcategory T (or even just a category with pullbacks),

we obtain a T -indexed lexcategory by considering the functor T/−which assigns to each

object t of T the slice category T/t, and whose action on morphisms is given by pullback.

We refer to this as the self-indexing of T .

Note in the above that our flexibility in considering an indexed category as a pseudo-

functor into Cat, rather than a strict functor into StrictCat, pays off in letting us not worry

about how to choose specific pullbacks in a strictly functorial way.

The self-indexing T/− of a lexcategory T is not in general representable, nor even locally

representable. Given two globally defined objects A and B of the self-indexed category,

their corresponding hom-set HomT/−(A,B) amounts to the presheaf HomT (A×−, B) on
T , which is to say, the exponential BA

within Psh(T ). This indexed set is representable just

in case an exponential object BA
already exists within T . This extends in the same way to

non-globally-defined objects of the self-indexed category (considered as globally defined

over some slice category of T instead, a la Theorem 1.8), and so we have the following:

Theorem 1.32 The self-indexing of a lexcategory T is locally representable just in case T is

locally cartesian closed.

Even when we do not have local cartesian closure in full, note that when A = 1, the
exponential BA

always is given by B itself, so that hom-sets whose domain is 1 are always

representable within the self-indexed category, with HomT/−(1, B) being the same as B
itself.

Definition 1.33 In the same way, we can also speak of an indexed category with finite
products, and indeed, from any category with finite products T (or even just a category

with binary products), we obtain a T -indexed category with finite products by considering

the functor T//− which assigns to each object t of T the full subcategory of T/t consisting
of projections (slice category objects given by the projection : t× s→ t for some object s of
T ), and whose action on morphisms is again given by pullback (the pullback of a projection

being another projection in a canonical way). We refer to this as the simple self-indexing
of T . Note that T//t can also be thought of as the Kleisli category for the t×− comonad;
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that is, the objects of T//t are the same as the objects of T , while a morphism : s1 → s2 in

T//t is the same as a morphism : t× s1 → s2 in T , with suitable composition structure.

For a category with finite limits (or just pullbacks and binary products), the simple

self-indexing can be thought of as a full subcategory of the self-indexing; specifically, the

full subcategory whose objects in each aspect are restricted to those of T itself.

By analogous reasoning to before, the simple self-indexing T//− of a category with

finite products T is locally representable just in case T is cartesian closed.

Observation 1.34 Given any functor f : A→ B between arbitrary categories A and B, we

get an induced functor f ′ : A/a→ B/f(a) between slice categories for any object a of A. If
f is a lexfunctor between lexcategories, then this induced functor f ′ is also a lexfunctor

between lexcategories.

In the same way, there is also an induced functor f ′′ : A//a→ B//f(a) between slice

categories restricted to projections, and if f is a finite product preserving functor between

categories with finite products, then so is this f ′′.

Observation 1.35 For any category T with a terminal object 1, we have an equivalence

between T and its slice category T/1.

Lemma 1.36 If Y is a category with initial object 0 and X is a (2-)category, then to any

functor f : Y → X , we can associate a corresponding functor f ′ from Y to the slice category

f(0)/X .

Furthermore, ifD andC are parallel functors from Y toX , then a natural transformation

from D to C amounts to the same thing as a map S from D(0) to C(0) along with a natural

transformation from D′ to S∗ ◦ C ′, where S∗ : C(0)/X → D(0)/X is the functor between

these slice categories given by composition with S.
(Dually, for contravariant functors f : Y op → X (such as with indexed structures),

acting on a category Y with a terminal object 1, we obtain a corresponding contravarint

functor f ′ from Y to the co-slice categoryX/f(1). And then the dual further result as well.)

Proof. The first half of the lemma is just the combination of Observation 1.34 and Observa-

tion 1.35.

The second half is also straightforward to mechanically verify when X is a 1-category.

This lemma should be understood as a triviality. But we will take some care to write

out in detail an abstract demonstration that works just as well when X is a 2-category

(or indeed, when all categories involved are of whatever higher dimension), such that

(in keeping with our linguistic convention) the functors involved are pseudofunctors, the

natural transformations are pseudonatural transformations, etc, without having to get our

hands dirty manually fussing about higher-dimensional coherence data.

Throughout the remainder of this proof, all references to “category”, “functor”, etc, are

in the sense of whatever dimension of higher-categories encapsulates both Y and X .

Let Z be the category obtained by augmenting Y with a new object 0Z and unique maps

from 0Z to each object of Y . We have an inclusion functor i : Y → Z, and this inclusion is
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fully faithful, in the sense that the induced map HomY (y1, y2) → HomZ(i(y1), i(y2)) is an
equivalence for all y1, y2 ∈ Ob(Y ).

The unique maps from 0Z to each object in the range of i constitute a diagram of this

form:

1

Y Z

! 0Z

i

What’s more, because of how Z was constructed by freely augmenting Y with a new

object and cone from it to the inclusion of Y , this diagram satisfies the universal property

that for any other similar diagram

1

Y Z ′

!

there is a unique functor from Z to Z ′ commutatively relating the two diagrams. In jargon,

this universal property is summarized by saying Z (along with the data of 0Z and i) is the
co-comma of the unique functor from Y to 1 and the identity functor from Y to Y .

Now, observe that i has a left adjoint, the functor q : Z → Y such that q ◦ i is the identity
on Y and such that q of the initiality co-cone for 0Z in Z is the initiality co-cone for 0 in

Y . That is, q is the functor obtained by the co-comma property for Z as applied to this

diagram expressing the initiality co-cone of 0 in Y :

1

Y Y

! 0

id

It is straightforward to verify that this q is indeed left adjoint to i, as any data in Z
is either from the fully faithful inclusion of Y or from the initiality co-cone for 0Z , and
HomY (q(i(y1)), y2) ' HomY (y1, y2) ' HomZ(i(y1), i(y2)) naturally in y1, y2 from Y , and
HomY (q(0Z), y) = HomY (0, y) ' 1 ' HomZ(0Z , i(y)) naturally in y from Y .

Now consider any two parallel functors D,C : Y → X . Because q ◦ i is the identity

on Y , we have that Nat(D,C) ' Nat(D ◦ q ◦ i, C), where Nat denotes the space of

natural transformations between these functors. But because q a i, we in turn have that

Nat(D ◦ q ◦ i, C) ' Nat(D ◦ q, C ◦ q).
Finally, let us consider what a natural transformation between D ◦ q and C ◦ q amounts

to. This is the same as a functor from Z to the arrow category of X whose domain and

codomain projections to X yield D ◦ q and C ◦ q. But by the co-comma property of Z, this
functor out of Z corresponds to data of the following form:
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1

Y Arrow(X)

!

such that the rightmost arrow of this diagram corresponds to some arrow S inX whose

domain is (D ◦ q)(0Z) = D(0) and whose codomain is (C ◦ q)(0Z) = C(0), and such that the

bottom arrow of this diagram corresponds to a natural transformation from D ◦ q ◦ i ' D
to C ◦ q ◦ i ' C. The 2-cell in the above diagram then corresponds to the remaining

data necessary for us to construe this natural transformation from D to C as simply the

codomain projection of a natural transformation betweenD′ and S∗ ◦C ′, the functors from
Y to D(0)/X as mentioned in the statement of this lemma. �

In order to state the next theorem, some terminology:

Definition 1.37 If T is a lexcategory, then for each object of t, we can construct the free

lexcategory extending T with a global element of t. Call this T [1 → t]. Also, for any

f : s→ t in T , we can get a map from T [1→ t] to T [1→ s] by sending the generic global

element of t in T [1 → t] to the result of applying f to the generic global element of s in
T [1→ s]. This action is clearly functorial. Thus, T [1→ −] comprises a T -indexed object of

T/LexCat.
We can replace all references to finite limit structure above with finite product struc-

ture. In this case, let us use the name T [[1 → −]] for the resulting T -indexed object of

T/FiniteProductCat.

By Lemma 1.36, we can see T/− as a contravariant functor from a lexcategory T to

LexCat/T . And similarly for T//− in terms of finite product structure.

Theorem 1.38 T [1→ −] is equivalent to T/−, when the latter is viewed as a contravariant

functor from a lexcategory T to T/LexCat via Lemma 1.36.

(And in just the same way, for a category with finite products T , we have that T [[1→ −]]
is equivalent to T//−.)

Proof. This is a standard observation (see 1.10.15 of [Jac99], although this claims it without

proof).

It is also simple enough to show, so we will write out the argument:

Applying T/− : T op → LexCat to the unique functor from object t in T to 1, we get a

lexfunctor R from T = T/1 to T/t given by pullback along the unique map t to 1; more

explicitly, R(x) is the projection slice from t× x to t, which projects out the first component.

We also have a left adjoint to this, the forgetful functor L : T/t→ T .
Breaking down what our proposed theorem says, the claim we must show is that

there is a morphism g : R(1) → R(t) in T/t such that, for any lexcategory X , lexfunctor

F : T → X , and morphism h : F (1)→ F (t) inX , there is a unique lexfunctor E : T/t→ X



CHAPTER 1. CATEGORY-THEORETIC PRELIMINARIES 23

such that E ◦ R = F and E(g) = h. (More precisely, there is a contractible space of such

lexfunctors such that E ◦ R is naturally isomorphic to F , and the induced action of that

isomorphism as a map from HomX(E(R(1)), E(R(t))) to HomX(F (1), F (t)) takes E(g) to
h. By a contractible space, we mean that such a lexfunctor E exists, and for any two

such lexfunctors E1 and E2, there is a unique natural isomorphism between them which,

when whiskered along R and then composed with the given isomorphism from E2 ◦ R
to F , yields the given isomorphism from E1 ◦R to F .) Furthermore, we must show that

reindexing within T [1→ −] corresponds to reindexing within T/− (i.e., to pullback).

Wewill take our g to be themap fromR(1) toR(t) given by the diagonalmap∆ : t→ t×t
(that is, such that L(g) = ∆).

As for the existence aspect of the claim, suppose given an arbitrary lexfunctorF : T → X
and also a morphism h : 1X → F (t), where 1X is any terminal object of X . This F induces

a lexfunctor F ′ : T/t→ X/F (t) via Observation 1.34. Composing this with the pullback

action h∗ : X/F (t) → X/1X and the equivalence of X/1X with X , we get a lexfunctor

E : T/t→ X such that E ◦R = F and E(g) = h.
As for uniqueness, it will suffice to show that every diagram in T/t is the pullback

along g of some diagram in the range of R (thus, every diagram in T/t has its image under

a lexfunctor determined by the lexfunctor’s behavior on g and on the range of R). We show

this now.

By the observation of Observation 1.34, our R induces also a lexfunctor R′ from T/t to
(T/t)/R(t).

Observe also that iterated slice categories can be reduced to slice categories. That is for

any object x of T/t, we have that the iterated slice category (T/t)/x is equivalent to the slice

category T/L(x). In particular, (T/t)/R(t) = T/L(R(t)) = T/(t× t). Thus, the observation
of our last paragraph is that the action of R induces a lexfunctor R′ : T/t→ T/(t× t).

Let π2 : t× t → t be the projection of the second component. Note that the pullback

action π∗2 : T/t→ T/(t× t) is the same as R′. These both send objects f of T/t to objects

t× f of T/(t× t), as in the following diagram (and act accordingly on morphisms as well):

t× s s

t× t tπ2

ft×f
y

Finally, recall that L(g) = ∆ : t→ t× t is the diagonal map. Observe that π2 ◦∆ = idt.
Therefore, the pullback action (π2 ◦∆)∗ = ∆∗ ◦ π∗2 = ∆∗ ◦ R′ : T/t→ T/t is equivalent to
the identity.

Thus, every object or morphism in T/t is given (as a diagram in T ) by ∆∗ applied to

some object or morphism in the range of R′. Which is to say, every diagram in T/t is given
by g∗ applied to some diagram in the range of R, as desired.

Thus, we have the uniqueness to complement existence, and have established that T/t
is the free augmentation of T with a global element of t.
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Finally, it is easy to verify that the pullback actions from T/t to T/s for arbitrary

morphismsm : s→ t correspond to the reindexings from T [1→ t] to T [1→ s] alongm.

This completes the proof that T/− is the same as T [1 → −]. Note that the same

argument, restricted to only those slice category objects which are projections, also shows

that when T is a category with finite products, the simple self-indexing T//− is the same

as T [[1→ −]]. �

Observation 1.39 The analogues of Theorem 1.38 automatically also follow for T [1→ −]
for any categorical structure extending the structure of a lexcategory which is automatically

transferred to slice categories and preserved by pullback; that is, any structure which

automatically transfers from an instance of that structure also to its self-indexing (e.g.,

for the concepts of locally cartesian closed categories, or for elementary toposes, or for

categories with finite and countably infinite limits).

And in just the same way also for T [[1→ −]] for any categorical structure extending the

structure of a category with finite products which automatically transfers from an instance

of that structure to its simple self-indexing (e.g., for cartesian closed categories).

1.6 Double or multiple indexing
At this point, for any algebraic-categorical notion S (e.g., the notion of a commutative

ring, or the notion of a lexcategory), we also have a definition of the notion of a pair of a

category and an instance of notion S indexed over that category.

We can thus iterate this process. In particular, we can speak of a T -indexed (category C
and C-indexed set P ). We can call this also a (T,C)-indexed set P . Let us observe in more

detail what this amounts to.

What this means is that, in addition to having a category T and a T -indexed category C,

we also have for every object t in T , some corresponding C(t)-indexed set. Thus, we obtain

for each t-indexed object c of C a corresponding set we may denote P (t)(c) or P (t, c) or
Pt(c) (the t-defined c-defined elements of P ). And for each morphism n : c→ d in C(t), we

have a reindexing function P (t, n) : P (t, d)→ P (t, c). These reindexings act functorially in

that P (t, n1 ◦ . . . ◦ nk) = P (t, nk) ◦ . . . ◦P (t, n1) for any sequence of composable morphisms

n1, . . . , nk in C(t).
But furthermore, we must have functorial reindexing maps for P along morphisms

of T . This means, for any map m : s → t in T , we must have for every t-defined
object c of C a reindexing function P (m, c) : P (t, c) → P (s, C(m)(c)). We may just

write P (m) to refer generically to any P (m, c). These reindexings act functorially in

that P (m1 ◦ . . . ◦mk) = P (mk) ◦ . . . ◦ P (m1) for any sequence of composable morphisms

m1, . . . ,mk in T .
Finally, the reindexings along morphisms of T must preserve in a suitable sense the

reindexings along morphisms of C. This means the following square of reindexings

commutes, for any morphismsm : s→ t in T and n : c→ d in C(t):
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P (t, d) P (s, C(m)(d))

P (t, c) P (s, C(m)(c))

P (t,n)

P (m)

P (m)

P (s,C(m)(n))

Using this coherence condition, any reindexing in C followed by a reindexing in T
(the left-bottom path) can be turned into an equivalent reindexing in T followed by a

reindexing in C (the top-right path). Thus, for any string of reindexings (alternating

between reindexings in C and reindexings in T ), there is a unique reindexing in T followed

by a reindexing in C which it is forced equivalent to by the coherence condition and

functoriality.

Thus, we can resummarize all of these conditions like so: We create a category denoted∫
T
C (or just

∫
C) whose objects are pairs (t, c) where t is an object in T and c is an

object in C(t). A morphism in

∫
C from (s, c) to (t, d) is given by a pair (m,n) where

m : s → t in T and n : c → C(m)(d) in C(s). This represents a reindexing along m
followed by a reindexing along n, and so by consideration of the previous paragraph,

we get also the appropriate composition rule validating our desired coherence condition

and automatically ensuring associativity. Specifically, the appropriate composition rule is

that (a, n) ◦ (m, b) = ((a ◦m), (C(m)(n) ◦ b)), as can be visualized from our above-noted

coherence condition like so:

• P (t, d) P (s, C(m)(d))

P (t, c) P (s, C(m)(c))

•

P (t,n)

P (m)

P (m)

P (s,C(m)(n))

P (a)

P (s,b)

Then, a (T,C)-indexed set is just the same as as a (
∫
T
C)-indexed set. This also gives us

easily the right notion of maps between (T,C)-indexed sets. They are just maps between

the corresponding (
∫
T
C)-indexed sets (i.e., natural transformations between presheaves

on

∫
T
C). In this way, we can speak about (T,C)-indexed structures in general.

Given a (T,C)-indexed set P , and a globally defined object c of C, it will often be

convenient for us to speak of P (c), meaning the T -indexed set which takes t to P (t, c).
[More generally, given any t-defined object c of C, we can in the same way consider P (c)
as a (T/t)-indexed set.]. This might be seen as conflicting with the natural notation P (t)
for objects t of T to denote the t-aspect of P (a presheaf on the t-aspect of C). Generally

this will not cause ambiguity, except if there is some existing ambiguity where objects of T
and globally defined objects of C have been given the same name (as could happen with

terminal objects named 1). If there is ever any such ambiguity, it should be cleared up by

context.
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We say a (T,C)-indexed structure P is T -representable if, for any t-defined object c
of C, the corresponding (T/t)-indexed structure P (c) is (T/t)-representable. When C is

presented by a strict category Cstrict, this is equivalent to saying that the corresponding

map into Ob(Cstrict) has T -representable fibers. Put yet another way, a T -representable
(T,C)-indexed set amounts to a T -indexed functor from Cop

to the self-indexing T/−.

Definition 1.40 (Presheaves over Indexed Categories) More generally we have a T -indexed
category Psh(C), acting as the category of T -representable (T,C)-indexed sets.

In more detail, the T -indexed category C gives rise in an obvious way, by reversing

arrows, to another T -indexed categoryCop
. We then have that the two T -indexed categories

Cop
and T/− are objects of CatT

op

. But CatT
op

is a cartesian closed 2-category (in much the

same way that SetT
op

is a cartesian closed category, at least when Set or Cat are interpreted
expansively enough to include sets or categories of comparable size to T ), and thus we

can form within it the exponential object given by T/− raised to the power Cop
. This

exponential object is the T -indexed category we call Psh(C).
The objects of the global aspect of this Psh(C) correspond to the T -representable

(T,C)-indexed sets.

We will only rarely need to consider any of this multi-indexing, and to the extent we do,

almost always will really only care about (T,C)-indexed structures P in cases where C is in

fact T -representable and P is also T -representable, thus simply given by a suitable diagram

in T . However, there is one important instance in which we will need to explicitly consider

a doubly-indexed set without any presumed representability properties (in Bootstrapping

to Löb’s theorem for introspective theories (Section 4.5)).

Further discussion
The construction

∫
T
C is called the Grothendieck construction. By projecting out first

coordinates, we get a functor from

∫
T
C to T ; functors which arise in this way are called

Grothendieck fibrations, or just fibrations. It turns out, given merely the data of a fibration

as a functor between categories, one can recover the indexed category which gave rise to it.

Thus, the data of an indexed category is equivalent to the data of a fibration. The

entire machinery of indexed categories can therefore equivalently be presented in terms

of fibrations. For this reason, fibrations are also called fibered categories. In particular,

one can give a more intrinsic account of the conditions under which an arbitrary functor

is a fibration. Furthermore, any natural transformation between T -indexed categories

induces a corresponding map between the corresponding fibrations in Cat/T , and again

the natural transformation can be recovered from this map, and again a more intrinsic

account can be given of which maps arise in this way. Some things are easier to describe in

a fibration-based presentation. Other things are more difficult. For our purposes (using the

general language of indexed structures ultimately for the goal of understanding specifically

representable or internal structures), we felt the indexed category presentation was the
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most apt. Thus, we will not describe the theory of fibered categories further. We use the

Grothendieck construction only for the correspondence between (
∫
T
C)-indexed sets and

(T,C)-indexed sets.

Of course, this construction can be iterated further now. A (T,C)-indexed categoryD is

a (
∫
T
C)-indexed category (i.e., a contravariant functor from

∫
T
C to Cat), and thus gives rise

to another category

∫∫
T C

D. Structures indexed over

∫∫
T C

D can be called (T,C,D)-indexed

structures. And so on ad infinitum. But do not worry, we will not need to explicitly

consider any further depth of indexing than double-indexing.

Note also that any structure singly-indexed over T can automatically be thought of as

doubly-indexed over T and C, where the indexing over C is trivial. This is basically by

the fact that

∫
T
C comes with a projection functor to T , so that each T -indexed structure

thus induces, via this functor, a (T,C)-indexed structure. Thus, we can readily speak of

maps between T -indexed structures and (T,C)-indexed structures, by treating the former

as implicitly (T,C)-indexed themselves.

Indeed, more generally in themultiply indexed context, any structure indexed over some

prefix of a string of categories is automatically indexed over the full string of categories.

And in the same way, this allows us to speak of maps between structures indexed by

different strings of categories. This is perhaps the main reason for us to bring all this up,

just so that we can speak of maps between structures at different levels of indexing.

(Keep in mind also that an honest-to-goodness actual structure, living in Set, is like the
zero-ary case of indexing; it’s indexed by the empty string of categories (), but can be seen

in a trivial way as T -indexed for any category T ).
Note that a map from a T -indexed structure A to a (T,C)-indexed structure B thus

amounts to a map from A to HomC(1, B), whenever C has a terminal object. So all this

high-faluting multiply indexed stuff just amounts to another way of thinking about maps

into global aspects.

1.7 Arithmetic universes, toposes, and other special kinds
of category

In addition to categories simpliciter and lexcategories, we have various other augmenta-

tions of the basic notion of category which are occasionally of interest. All of the following

notions are standard in the literature. We note them here simply for reference (particularly

the notion of “arithmetic universe”, which is perhaps less well known than the others).

Definition 1.41 A regular category is a lexcategorywith pullback-stable image factorization.

If furthermore every congruence is a kernel pair, we call it exact (this is called “effective

regular” by some authors).
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Definition 1.42 An extensive category is a category C with finite coproducts, on which

the coproduct operation induces an equivalence between C/a× C/b and C/(a× b) for all
objects a, b ∈ C.

Definition 1.43 Anatural numbers object (abbreviatedNNO) in a categorywith a terminal

object is an object N along with maps z : 1→ N and s : N → N , which is initial among all

objects with such structure, in the sense that for any other object N ′ with maps z′ : 1→ N ′

and s : N ′ → N ′, there is a uniquemapm : N → N ′ satisfyingm◦z = z′ andm◦s = s′ ◦m.

More generally, a category with finite products is said to have “list objects” if for every

object X , there is an object L with maps z : 1 → L and s : X × L → L, which is initial

among all objects with such structure, in the sense that for any other object L′ with maps

z′ : 1 → L′ and s′ : X × L′ → L′, there is a unique map m : L → L′ satisfying m ◦ z = z′

and such thatm ◦ s = s′ ◦ (idX ×m).

Definition 1.44 An arithmetic universe is a category which is exact and extensive with

pullback-stable list objects (see [Mai10]). An arithmetic functor is one which preserves all

this structure.

We denote the initial arithmetic universe as IAU.

Observation 1.45 Structures internal to IAU can be thought of as codes for computably

enumerable structures. Any computer program describing some computably enumerable

structure induces a structure of that sort internal to IAU. (That said, be cautioned that

non-isomorphic structures in IAU can become isomorphic after applying the unique

arithmetic functor to Set, non-equal morphisms in IAU can become equal in Set, etc! This is
like how the same function can be computed by different computer programs, sometimes

so different that there is no proof (in whatever fixed proof system) that they compute the

same function.)

There are many alternative characterizations of IAU. For example, [Mai10] observes

that IAU is also the initial exact and extensive category with a pullback-stable NNO (thus,

without presuming list objects in general). I believe the argument given in that paper

actually shows furthermore that IAU is also the initial exact category with a pullback-stable

NNO (thus, without presuming coproducts).

Definition 1.46 A topos is a cartesian closed lexcategory with a subobject classifier. (This

is sometimes called an “elementary topos” in the literature, to distinguish from the notion

of a “Grothendieck topos”). If a topos has an NNO, we call it an an NNO-topos.

1.8 Comma objects and their interaction with Kan
extensions

Theorem 1.47 (The Comma-Kan Lemma) Suppose, within some 2-category, we have the

following comma object and left Kan extensions:
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B

A

(fX/fY ) X

Y ω

fX

fY

πY

πX

γ

s

q

Lanq(s;πX)

Lanq(s;πY )

εX

εY

Furthermore, suppose fX preserves the Kan extension Lanq(s; πX). (We notably do

NOT make any such assumption on fY ).
Then Lanq s : B → (fX/fY ) exists and furthermore is preserved by both πX and πY .
(Dually, we can turn all 2-cells around in this theorem, replacing the left Kan extensions

with right Kan extensions and moving the preservation condition so that the functor on the

codomain side of our comma category must preserve the corresponding Kan extension.)

Proof. Wemay compute as follows: By the universal property of the comma object (fX/fY ),
the set of 1-cells from B to this comma object whose projections match our two Kan

extensions is given by the set of 2-cells between the top and bottom path from B to ω in the

above diagram. Since fX preserves the top Kan extension, the top path is itself a left Kan

extension, and using its universal property, we find that the 2-cells from the top path to the

bottom path are the same as 2-cells between two different paths from A to ω; specifically,
from s; πX ; fX to q; Lanq(s; πY ); fY . Such a 2-cell is given by the composition of γ and εY .

Thus, we do indeed get a 1-cell m : B → (fX/fY ) whose composition with each

projection π matches Lanq(s; π). What remains is only to show thatm is indeed Lanq s.
Let an arbitrary k : B → (fX/fY ) be given. By the universal property of the comma

category again, we have that 2-cells from m to k are in correspondence with choices of

2-cells from m; π to k; π for each projection π, such that both resulting composite 2-cells

fromm; πX ; fX to k; πy; fY are equal. But eachm; π = Lanq(s; π), so a 2-cell from this to k; π
amounts to a 2-cell from s; π to q; k; π. A choice of such 2-cells satisfying the coherence

condition is, again by the universal property of the comma category (fX/fY ), the same

thing as a 2-cell from s to q; k. Thus, we have shown Hom(m, k) = Hom(s, (q; k)), which

establishes m as satisfying the universal property defining Lanq s. This completes the

proof.

(The dualized result of course follows automatically.) �

Note 1.48 The Comma-Kan Lemma (Theorem 1.47) is perhaps best understood more mod-

ularly as the combination of two results concerning Kan extensions: One on the interaction

of Kan extensions with products, and another on the interaction of Kan extensions with
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inserters. Comma objects can then be understood as a particular combination of products

and inserters. However, as nearly all the use we will make of this idea is specifically

concerning comma categories, we have written the lemma in this combined way, instead of

breaking it down into those two steps.

Corollary 1.49 Given a cospan of functors fX , fY from respective categories X and Y , if
X and Y both have colimits of a particular shape and fX preserves colimits of that shape,

then the two projections out of (fX/fY ) jointly create colimits of that shape.

That is, (fX/fY ) has colimits of that shape, both projections out of this comma category

preserve colimits of that shape, and these projections jointly reflect colimits of that shape

(i.e., a functor into the comma category preserves colimits of that shape whenever its

compositions with both projections preserve colimits of that shape).

(Dually, we have the corresponding statements where all instances of “colimit” are

turned into “limit” and the first statement’s limit preservation condition is put on fY rather

than fX .)

Proof. The existence of such colimits in (fX/fY ), along with their preservation by both

projections, follows from The Comma-Kan Lemma (Theorem 1.47) within Cat by taking A
to be the generic category of the indicated shape and taking B to be the terminal category,

considering how colimits correspond to left Kan extensions along functors to the terminal

category.

The final claim (the joint reflection of such colimits) then follows from the fact that

the forgetful functor from (fX/fY ) into X × Y , like any forgetful functor from a comma

category to the corresponding product category, is conservative (that is, if the image of

a morphism under this functor is invertible, the morphism was already invertible in the

comma category). A conservative functor which preserves colimits, on a category which

has those colimits, automatically also reflects colimits. �

Corollary 1.50 Comma objects exist in LexCat, constructed in the same way as in Cat
(thus, preserved by the forgetful functor into Cat).

(This corollary is so ubiquitously useful for us that we will not explicitly cite it each

time we implicitly invoke it, but rather trust the reader to have absorbed it.)

Proof. From Corollary 1.49, we see that when fX , fY are a co-span of finite limit preserving

functors between categories which have finite limits, then the comma category (fX/fY )
(the comma object in Cat) is also a lexcategory and its projections are lexfunctors. Thus,

this (fX/fY ) and its projections exist within LexCat. That these continue to comprise a

comma object span within LexCat follows immediately from the fact that the forgetful

functor | − | from LexCat to Cat induces bĳections between the sets of 2-cells Hom(f, g)
and Hom(|f |, |g|) for any parallel 1-cells f and g in LexCat (that is, the 2-cells in LexCat
between lexfunctors are just ordinary natural transformations, with no further property or

structure). �
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The above is paradigmatic of a situation which comes up often, for which it will be

convenient to have terminology:

Definition 1.51 LetD be a 2-category and let Special be a sub-2-category ofD. We will say

a cell ofD is special if it lies in Special. We presume any invertible cell inD whose domain

or codomain is special is itself special (thus, membership in Special is invariant under
isomorphism in D), and we also presume that any 2-cell between special 1-cells is special.

Suppose furthermore that D has comma objects. And suppose for any comma object

(fX/fY ) in D where fX is special and the domain of fY is special, the comma object has

special structure jointly created by its two projections. That is, (fX/fY ) is special, its two

projections are special, and for any 1-cell in D from a special object to (fX/fY ), we have

that this 1-cell is special whenever both of its compositions with the projections out of

(fX/fY ) are special.
In this case, we say that the restriction of D to Special is left comma-stable, or that

Special is left comma-stable within D. (Dually, if this property holds when we instead

demand fY to be special while allowing fX to be an arbitrary morphism of D with special

domain, then we say Special is right comma-stablewithin D.)

In this language, Corollary 1.49 shows that the restriction of Cat to categories having,

and functors preserving, finite colimits is left comma-stable within Cat. And dually, LexCat
is right comma-stable within Cat.

We note here a number of left comma-stable sub-2-categories of LexCat, all similarly

demonstrable as corollaries of The Comma-Kan Lemma (Theorem 1.47):

Corollary 1.52 If X , Y , and ω are lexcategories with finite coproducts, fX : X → ω
is a lexfunctor which preserves finite coproducts, and fY : Y → ω is a lexfunctor (not

necessarily preserving coproducts), then the projections out of the comma category (fX/fY )
jointly create finite coproducts.

If furthermore, finite coproducts are pullback-stable in X and Y , then finite coproducts

are pullback-stable in (fX/fY ).
If furthermore finite coproducts are disjoint in X and Y (i.e., these are extensive

categories), then this is the case in (fX/fY ) as well.

In other words, the restriction of LexCat to lexcategories with finite coproducts, and

lexfunctors preserving finite coproducts, is left comma-stable. And the further restriction

of LexCat to extensive categories and such functors is also left comma-stable.

Proof. The joint creation of finite coproducts is just a special case of Corollary 1.49. What

remains to be shown are the inheritance of exactness properties by the comma objects.

Let Q be the initial lexcategory-with-finite-coproducts generated by morphisms

A1, . . . , An into an object A, along with another morphism f into A. To say that n-
ary coproducts are pullback stable in a lexcategory C with finite coproducts is to say that

every lexfunctor preserving finite coproducts from Q to C sends a particular morphism

in Q (the comparison morphism between the coproduct of the pullback and the pullback
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of the coproduct, for the generic objects A1, . . . , An of Q/A as pulled back along f into

Q/ dom(f)) to an isomorphism. Since the projections out of our comma category jointly

preserve and reflect finite limit structure, finite coproduct structure, and invertibility, this

property will hold in the comma category just in case it holds in both X and Y .

Disjointness is characterized by a similar invertibility condition and thus can be proven

to hold in the comma category once it holds in both X and Y in the same way. �

Corollary 1.53 The restriction of LexCat to regular categories and regular functors is left

comma-stable. Furthermore, the restriction of LexCat to effective regular categories and

regular functors is left comma-stable.

Corollary 1.54 The restriction of LexCat to lexcategories with pullback-stable natural

numbers objects, and lexfunctors preserving NNOs, is left comma-stable.

Similarly, the restriction of LexCat to lexcategories with pullback-stable list objects, and

lexfunctors preserving list objects, is left comma-stable.

Putting these all together, we have:

Corollary 1.55 The restriction of LexCat to arithmetic universes and arithmetic functors

is left comma-stable.

Left comma-stability is of interest to us because of the following abstract theorem,

which will be useful to us later in establishing Construction 6.1:

Theorem 1.56 Let D be a 2-category and let Special be a left comma-stable sub-2-category

of D. We will say a cell of D is special if it lies in Special.
Furthermore, suppose Special has an initial object 0.
Then for any special object ω, we have that the unique special map from 0 to ω is

furthermore initial within D(0, ω). In particular, it follows that the identity on 0 is initial

within D(0, 0).

Proof. Let fY : 0→ ω be an arbitrary map in D. Let fX : A→ ω be any special map into ω
(two choices always available are the identity from ω to itself, or the unique special map

from 0 to ω). Consider the following diagram, illustrating the comma object (fX/fY ) of D,

as well as unique special maps from 0:

0

(fX/fY ) A

0 ω

fX

fY

!=id=b

! !=a
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Here, we use solid arrows to denote special 1-cells. The dashed arrow fY is a 1-cell of D,

not presumed special. The bottom right square is of course the one corresponding to the

comma object. Special 1-cells out of 0 are denoted ! to indicate their uniqueness.

Because the comma object is special (by left comma-stability), it has a unique special

map from 0. By the universal property of a comma object, along with our presumption

that the projections jointly create special structure, this means there is a unique triple of

special a : 0→ A, special b : 0→ 0, and 2-cell : fX ◦ a→ fY ◦ b. Because of the initiality of

0, we know that amust be the unique special map from 0 to A, while bmust be the identity

on 0. Thus, we conclude there is a unique 2-cell from this fX ◦ a to fY . As fX ◦ amust be

the unique special map from 0 to ω, while fY was an arbitrary map in D, we can conclude

that the unique special map from 0 to ω is initial within D(0, ω). �

1.9 Initial models
Definition 1.57 Given a lexfunctor F : T → S, we may sometimes call this a model or
internal model of T in S. If F is initial within the category LexCat(T, S), then we naturally

call this an initial model of T in S. Of course, as with any initial objects, if there is any

initial model of T in S, then there is a unique one up to unique isomorphism.

If S1 has an initial model of T given by F : T → S1, and H : S1 → S2 is a lexfunctor

such that H ◦ F is an initial model of T in S2, then we say H preserves initial models of T .

Lemma 1.58 For any lexcategory T , its global sections lexfunctor HomT (1,−) : T → Set is
an initial model of T in Set.

Proof. By the Yoneda lemma, for any functor f : T → Set, the natural transformations from

HomT (1,−) to f are in correspondence with the elements of f(1). But if f is a lexfunctor,

then f(1) has a unique element. �

Observation 1.59 Let 0 be the initial lexcategory (i.e., the terminal category), and let T and

S be arbitrary lexcategories. Then an initial model of T in S is the same thing as a left Kan

extension of the unique lexfunctor : 0→ S along the unique lexfunctor : 0→ T .

Proof. This is immediate upon unraveling definitions. �

Theorem 1.60 Let T be a fixed lexcategory, and throughout the following, take “initial

model” to mean specifically “initial model of T”.
If X , Y , and ω are lexcategories with initial models, fX : X → ω is a lexfunctor

preserving the initial model, and fY : Y → ω is an arbitrary lexfunctor, then the comma

lexcategory (fX/fY ) has an initial model, jointly created by its two projections. (That is,

for any lexcategory Z with an initial model, a lexfunctor from Z to (fX/fY ) preserves the
initial model if and only if both of its compositions with these projections preserve the

initial model.)
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In other words, the restriction of LexCat to lexcategories having, and lexfunctors

preserving, initial models of T is left comma-stable.

Proof. Thanks to Observation 1.59, this is the instance of The Comma-Kan Lemma (Theo-

rem 1.47) within LexCat where A is taken to be the initial lexcategory and B is taken to be

T . �

Definition 1.61 A finitely axiomatized lex theory is a lexcategory T which is generated

from the initial lexcategory by finitely many operations of freely adjoining a new object,

freely adjoining a new morphism between existing objects, or freely making two existing

parallel morphisms equal (all these free constructions are meant in the sense of free

lexcategories, of course).

Theorem 1.62 Any NNO-topos has an initial internal model of any finitely axiomatized

lex theory. Such initial internal models are furthermore preserved by functors preserving

NNO-topos structure.

Proof. This is a standard result, shown by carrying out in the internal logic of anNNO-topos

the ordinarymathematical construction of an initial model of an essentially algebraic theory.

The finite sets of defining sorts, operations, equations, etc, of the finitely axiomatized lex

theory are given by finite coproducts of the terminal object. Beyond this, the key ingredient

in the construction is the existence in the internal logic of an NNO-topos of suitable sets of

well-founded branching trees (so-called W-types).

In particular, we use such trees whose nodes are labelled by operations of the theory,

and whose edges out of a node are labelled in correspondence with the arity of this

operation, to represent the terms of the free model. Such trees can be represented in

an NNO-topos by suitable partial functions from finite sequences of edge labels to node

labels (finite sequences in turn can be represented by suitable partial functions on the

natural numbers object). By impredicative quantification over powersets as is available

in the internal logic of a topos, we may also restrict to the well-founded such trees, and

subquotient these to give the well-defined terms of the algebraic theory modulo provable

equality. Using similar techniques, we may build up the appropriate homomorphisms and

uniqueness proofs to establish this as an initial model of the essentially algebraic theory.

As all of this is standard, we omit the details. �

There is a stronger generalization of the above available to us, though it takes rather

more care to prove:

Theorem 1.63 Any arithmetic universe has an initial internal model of any finitely axiom-

atized lex theory. Such initial internal models are furthermore preserved by arithmetic

functors.

Proof. This standard result is the motivation for most of the interest in arithmetic universes.

Details for the special case of finite product theories are given in [Mai05], which notes
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also that the same argument can be extended to lex theories. This is also implicit in the

constructions of [Mai03] and [Mai10], and is noted explicitly in [Vic20]. �

There is also a variant of Theorem 1.62 of note:

Definition 1.64 By countable products, wemean products of collections of objects indexed

by the natural numbers. Afinitely axiomatized countably lex theory is, a laDefinition 1.61,

a lexcategory with countable products which is generated from the initial lexcategory with

countable products by finitely many operations of freely adjoining a new object, freely

adjoining a new morphism between two existing objects, or freely making two existing

parallel morphisms equal (all these free constructions are meant in the sense of free within

the context of lexcategories with countable products and lexfunctors preserving countable

products, of course).

Theorem 1.65 If S is a topos with countable products, and T is a finitely axiomatized

countably lex theory, there is an initial lexfunctor preserving countable products from T
to S. Such initial internal models are furthermore preserved by functors preserving the

structure of a topos with countable products.

Proof. This is by the same techniques as in the proof of Theorem 1.62. The key observations

are the following:

We can carry out in the internal logic of any NNO-topos S the standard mathematical

construction of the initial model of any internal finitely axiomatized countably lex theory.

Thiswill be initial in an internal sense of structures having, andhomomorphismspreserving,

operations of countable arity; that is, operations of countable arity are interpreted by using

the slice category S/N where N is the natural numbers object of S. (Note that this is

potentially distinct from the category SN
which is the product of countably many copies of

S. Thus, this is not strong enough to guarantee initiality in the “external” sense of having

an initial lexfunctor preserving countable products from T to S, as there may be such

lexfunctors from T to S which are not “visible” internally.)

Next, we note that a topos with countable products also has countable coproducts (by

Paré’s theorem on the construction of colimits from similarly shaped limits in a topos), and

thus also has a natural numbers object given as the coproduct of countably many terminal

objects. For such a topos with countable products S, we actually will have that S/N and

SN
coincide. Thus, in such a context, the construction from the above paragraph yields an

initial model of T in the same sense as required to establish the noted theorem. �

We make also the following observations:

Observation 1.66 The theory of (strict) NNO-toposes and the theory of (strict) arithmetic

universes are finitely axiomatized lex theories.

Observation 1.67 The theory of (strict) toposes with countable products is a finitely

axiomatized countably lex theory.
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1.10 Quasi-equational theories
The significance of lexcategories with respect to logic is that they capture, in a

presentation-independent way (a la Lawvere’s functorial semantics), those logical theories

given by various sorts, partially defined finitary operations on those sorts (whose domain

of definition is given by the constraint that some finitely many other compositions of oper-

ations are simultaneously equal), and universal entailments between equations between

compositions of such operations (more precisely, entailments from finite conjunctions of

equations to equations).

One can often make different choices of primitive sorts, operations, and laws for

presenting ultimately the same essentially algebraic theory, in the broad sense of theory

equivalence we are most ultimately interested in (having the same composite operations

and derived laws, thus the same models, etc). The presentation-freeness of lexcategories

means that lexcategories up to categorical equivalence are the same concept as such theories

up to this broad sense of theory equivalence.

However, sometimes it is useful to draw finer distinctions between different presenta-

tions of such a theory, or at any rate to be able to talk about compact syntactic presentations

of these theories more directly.

Many slightly different formalizations of such theory presentations have been given, but

one of the cleaner approaches seems to be the notion of quasi-equational theory proposed

in [PV07]. (The interested reader can find comparison to several other approaches spelled

out in this paper.) We shall not here spell out the definition of quasi-equational theories

but simply refer the reader to [PV07]. We shall note in this subsection our notational

conventions and the useful constructions or theorems we will need for the uses we will

make of quasi-equational theories. Essentially all concepts and results in this subsection

are taken from [PV07], although rephrased into the language of our own conventions

around strict and non-strict categories.

In [PV07], the concept of a model of a quasi-equational theory T within a lexcategory

or strict lexcategory S is defined, as well as the notion of homomorphism between such

models.

These are given by suitable diagrams within S; specifically, a model is given by the

selection of an object in S for each sort in T, along with the selection of morphisms in

S with appropriate domain and codomain for each operation in T, required to satisfy

a corresponding condition on such morphisms for each law of T. A homomorphism

between two such models is given by the selection of a morphism in S with appropriate

domain and codomain for every sort in T, required to satisfy an appropriate condition

for each operation of T. In particular, if T is finitely specified, then specifying a model

or homomorphism only involves specifying finitely much data subject to finitely many

conditions. (And similarly if “finite” is replaced by “less than κ” for some infinite cardinal

κ.)
The collection of models of T within lexcategory S, along with homomorphisms

between them, comprises a category, which we will call T−Mod(S). When S is a strict
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lexcategory, then in the same way we get a strict category T−Mod(S). (Indeed, if strict
lexcategory S presents the non-strict lexcategory S ′, then the strict category T−Mod(S)
will present the non-strict category T−Mod(S ′). That is, any model of T in non-strict S ′

can be presented by some model of T in strict S, regardless of what choices S makes for

how to impose or refrain from imposing equations on its objects.)

This is all suitably functorial. Any lexfunctor F : S1 → S2 takes models M of T in

S1 to models F (M) of T in S2, and similarly for actions of F upon homomorphisms

between such models. Furthermore, natural transformations between lexfunctors also

induce homomorphisms between the corresponding models. In this way, T−Mod(−) acts
as a 2-endofunctor on LexCat, as well as a 1-endofunctor on StrictLexCat, as well as a

2-endofunctor on StrictLexCat2.

It is shown in [PV07] how there is a quasi-equational theory (which they call Tcart but

which we shall call Tlex) such that models of Tlex in S correspond to internal lexcategories

in S, and homomorphisms between these correpond to internal lexfunctors.

More generally, they show how to associate to any quasi-equational T another corre-

sponding quasi-equational theory (which they call Cart$T but which we shall call Lex$T)
such that a model of Lex$T in S corresponds to an S-internal lexcategory L along with a

model of T in the global aspect of L.
It is shown in [PV07] how to associate to any quasi-equational theory T a corresponding

strict lexcategory CT called its classifying category. We may also use the name CT again for

the non-strict lexcategory this presents.

This has the property that there is a natural correspondence between LexCat(CT,−)
and T−Mod(−). There is also a natural correspondence between StrictLexCat2(CT,−) and
T−Mod(−) (this now meaning the strict version of T−Mod(−)). And finally, this last

correspondence respects strict equality as well, in that there is a natural bĳection between

the sets StrictLexCat(CT,−) and Ob(T−Mod(−)).
As noted above, whenever strict lexcategory S presents non-strict lexcategory S ′, we

have that T−Mod(S) presents T−Mod(S ′). In conjunction with the correspondences of

the last paragraph, this means StrictLexCat2(CT, S) will present LexCat(CT, S ′). That is,

any functor out of CT which preserves limits but not necessarily on-the-nose is naturally

isomorphic to some functor which preserves limits on-the-nose.

Warning 1.68 Note that this last property does not hold when CT is replaced by an arbitrary

strict lexcategory C! For an arbitrary strict lexcategory C may impose equations on its

objects (e.g., it may demand equality of 1 = 1× 1 for the canonical terminal object 1 and

not mere isomorphism) which highly constrain the existence of strict lexfunctors out of C,
while not so constraining functors whose limit preservation needn’t be on the nose.

Finally, we note that [PV07] shows us how to take any strict lexcategory T which

presents a lexcategory T ′ to some quasi-equational theory Th(T ) such that LexCat(T ′,−)
is in natural correspondence with Th(T )−Mod(−).

More generally, given an arbitrary lexcategoryT ′, if wemake a choice of strict lexcategory

T which presents T ′, then we may for convenience use the name Th(T ′) to refer to Th(T ),
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even though this strictly speaking depends on the choice of T and not merely on T ′.
Regardless of the exact quasi-equational theory produced, we will in any case still have the

property that LexCat(T ′,−) and Th(T ′)−Mod(−) are in correspondence.

Observation 1.69 All of the concepts and results in this subsection generalize completely

smoothly to theories in correspondence with categories which not only have finite limits

but furthermore have k-ary products, for all k drawn from some fixed set of infinite

cardinalities K. (Such categories in fact have all limits of diagrams whose object and

morphism cardinalities are in K or finite, by the usual reduction to products and binary

equalizers.)

1.11 Localization
The reader is advised that we only ultimately make one use of the results in this section

(at Theorem 6.14 calling upon Construction 6.13). Thus, the reader may skip this section

unless and until interested in the details of that particular result.

Definition 1.70 For any category C, and any set of morphismsM of C, we may consider

freely adjoining inverses to the morphisms in M . This process is called localization,
and the resulting category is denoted C[M−1]. Thus, we have a localization functor

f : C → C[M−1] such that f sends every morphism inM to an isomorphism, and for any

g : C → D which also sends every morphism inM to an isomorphism, there is a unique

functor h : C[M−1]→ D such that h ◦ f = g.

Lemma 1.71 Any localization functor is essentially surjective on objects (eso).

Lemma 1.72 Let C be a category, letM be some set of morphisms of C, and let f : C →
C[M−1] be the corresponding localization. Then given any categoryD and parallel functors

g1, g2 : C[M−1]→ D, we have that each natural transformation from g1 ◦ f to g2 ◦ f is the

whiskering along f of a unique natural transformation from g1 to g2. Thus, Cat(C[M−1], D)
comprises a full subcategory of Cat(C,D).

Proof. Consider the comma category (idD/idD). A functor k : C → (idD/idD) corresponds
(via its composition with the two projections out of the comma category) to two functors

h1, h2 : C → D, along with a natural transformation from h1 to h2. As a morphism in a

comma category is invertible just in case both of its projections are, we find that such k sends
all ofM to isomorphisms just in case each of h1 and h2 do. In this case, k factors uniquely

through f , providing us with a unique corresponding functor k′ : C[M−1] → (idD/idD)
such that k = k′ ◦ f . But such a k′ corresponds to any natural transformation between the

unique factorizations of h1 and h2 through f , whose whiskering along f yields our original

natural transformation from h1 to h2. �
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Definition 1.73 LetC be a lexcategory. If there is some lexfunctor onC (with any codomain),

such thatM is the set of morphisms taken to isomorphisms by this lexfunctor, then we say

C[M−1] is a lex localization.

Lex localizations admit a tractable explicit construction using the “calculus of right

fractions”, which in particular decomposes each morphism in C[M−1] as the inverse of a
morphism fromM followed by a morphism from C. The details of this calculus of fractions

construction are given in [GZ67], among other references (see also [Bor94] and [KS06]).

This calculus of fractions construction immediately gives us the following result:

Lemma 1.74 If f : C → C[M−1] is a lex localization, then for each object c ∈ C, the induced
functor from C/c to C[M−1]/f(c) is essentially surjective on objects.

We also have the following result:

Lemma 1.75 Lex localizations are not just localizations qua category but also qua lexcategory,

in that if f : C → C[M−1] is a lex localization, then C[M−1] is a lexcategory, f is a lexfunctor,

and any lexfunctor out of C which factors through f (necessarily uniquely) is such that

this factorization is itself a lexfunctor.

(There is of course a precisely dual result for categories with, and functors preserving,

finite colimits.)

Proof. This is given by the combination of Propositions 3.1, 3.2, and 3.4 from [GZ67]. �

Lemma 1.76 If a lexfunctor is conservative (i.e., any morphism it sends to an isomorphism

is already an isomorphism), then it is faithful.

Proof. Let lexfunctor f : C → D andm1,m2 : c1 → c2 inC be given such that f(m1) = f(m2).
The equalizer of f(m1) and f(m2) is therefore an isomorphism. But this is the same as f
applied to the equalizer ofm1 andm2, which therefore (by the conservativity of f ) must

already be an isomorphism. Thusm1 andm2 equal. �

Lemma 1.77 Let h : C → D be a lexfunctor, let M be the set of morphisms sent to

isomorphisms by h, let f : C → C[M−1] be the corresponding lex localization, and let

g : C[M−1]→ D be the uniquely determined lexfunctor such that h = g ◦ f .
Then g is conservative (and thus faithful, by Lemma 1.76). Furthermore, g is an

equivalence of categories whenever, for every object c ∈ C, every object in D/h(c) is

isomorphic to h applied to some object in C/c (i.e., the action of h between slice categories

is eso).

Proof. First, we show that g is conservative. By the calculus of right fractions construction,

each morphism x in C[M−1] is of the form f(m)−1; f(y), where m ∈ M and thus f(m)
is an isomorphism. So if g(x) is an isomorphism, so is g(f(m)); g(x) = g(f(m);x) =
g(f(m); f(m)−1; f(y)) = g(f(y)) = h(y). Thus, y ∈ M as well, and thus f(y) is an
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isomorphism as well, so that f(m)−1; f(y) = x is an isomorphism as well. This completes

the proof that g is conservative (and thus faithful).

Now, suppose h is such that its action between slice categories is eso. We already know

that g is faithful, so in order to show that g is an equivalence, we must show that g is eso
and full.

That g is eso follows from the fact that h = g ◦ f is eso when acting on C/1.
Since f is eso and h = g ◦ f , to show that g is full, it suffices to show that for every

c1, c2 ∈ C, each m ∈ HomD(h(c1), h(c2)) is given by g applied to some morphism in

HomC[M−1](f(c1), f(c2)). Begin by considering 〈id,m〉 : h(c1) → h(c1) × h(c2), as in the

following commutative diagram:

h(c1)

h(c1) h(c1)× h(c2) = h(c1 × c2) h(c2)
h(πc1 ) h(πc2 )

〈id,m〉 m
id

Here, πc1 and πc2 are the projections out of c1 × c2, and we keep in mind that as a

lexfunctor, h preserves this product cone.

Next, by presumption, this 〈id,m〉 is isomorphic, as an object of D/h(c1 × c2), to h(n)
for some n ∈ C/(c1 × c2). Thus, we obtain the following commutative diagram, for some

isomorphism j:

h(dom(n)) h(c1)

h(c1)× h(c2) = h(c1 × c2)

〈id,m〉h(n)

j

j−1

Putting these together, we find that j = h(n);h(πc1) = h(n; πc1), as in the following

commutative diagram:

h(dom(n)) h(c1) h(c1)

h(c1)× h(c2) = h(c1 × c2)

〈id,m〉h(n)

j id

h(πc1 )

Thus, j is an isomorphism in the range of h. Our setup is such that whenever any

morphism of the form h(x) = g(f(x)) has an inverse, this is given by applying g to an

inverse of f(x). Thus, j−1 = g(y) where y : f(c1)→ f(dom(n)) is the inverse of f(n; πc1).
Finally, keeping in mind that h = g ◦ f , we have by the following commutative diagram

thatm is given by g applied to a morphism from f(c1) to f(c2):
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h(dom(n)) h(c1)

h(c1)× h(c2) = h(c1 × c2) h(c2)
h(πc2 )

〈id,m〉 m

j−1=g(y)

h(n)

Specifically,m is given by g applied to the following composition:

f(dom(n)) f(c1)

f(c1)× f(c2) = f(c1 × c2) f(c2)

y

f(n)

f(πc2 )

This completes the demonstration that g is full, and thus completes the proof that g is
an equivalence. �

Lemma 1.78 Let C be an arithmetic universe, let some arithmetic functor from C to

another arithmetic universe be given, and let M be the set of morphisms of C which

are sent to isomorphisms by said arithmetic functor. Then letting f : C → C[M−1] be
the corresponding localization (an arithmetic localization), we have that this is also the

localization qua arithmetic universe, in that C[M−1] is an arithmetic universe, f is an

arithmetic functor, and any arithmetic functor out of C which factors (necessarily uniquely)

through f is such that this factorization is itself an arithmetic functor.

Proof. This is all straightforward by the general techniques of [GZ67]. We omit the details.

�

1.12 Miscellaneous
Here we collect various lemmas and definitions which we call upon at some point later

in the document, which did not seem to fit anywhere else.

Observation 1.79 In our metatheory, we have access to the following principle: If M is

the term model of some finitely axiomatized lex theory of “gadgets” (for example, the lex

theory of NNO-toposes), and Set is also a gadget (but a non-set-sized one), thenM not

only is initial with respect to set-sized gadgets but also there is a unique homomorphism

fromM to Set.

Proof. The proof is by the exact same proof that shows M ’s initiality with respect to

set-sized gadgets.

Alternatively, the proof can be carried out like so: Firstly, for existence of a map from

M to Set, we take the finitely many finitary operations of our theory and note that the hull

definable from these within Set describes a set-sized (indeed, countable) subgadget of Set.
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M will have by initiality a homomorphism into this subgadget, and thus into Set itself. As

for uniqueness, consider any two homomorphisms fromM to Set. Again, their ranges will

be set-sized subgadgets of Set, and we can take the union of those ranges, close under the

operations of our theory, and find some other set-sized subgadget of Set containing them

both. M will have a unique homomorphism into this enveloping subgadget, and thus the

parallel homomorphisms ofM must have been equal. �

Be cautioned, however, that the reasoning above only works in our metatheory, with

typical principles available to us like the ability to reason about subcollections of Set.

Analogous reasoning can fail internally; e.g., every topos T with NNO is such that its

self-indexing T/− is an indexed topos with NNO, and such that it has an initial internal

topos with NNO T ′ constructed as a termmodel, and yet there need be no topos-with-NNO

homomorphism from T ′ to T/−. (Indeed, in the initial topos-with-NNO, there will not

be such a homomorphism, by Gödel’s second incompleteness theorem considerations).

Similarly for “arithmetic universe” in place of “topos with NNO”.

Theorem 1.80 The global sections functor HomIAU(1,−) is the unique arithmetic functor

from the initial arithmetic universe IAU to Set.

Proof. Aunique arithmetic functor ! from IAU to Set is known to exist by the initiality of IAU

(keeping in mind Observation 1.79). What remains is only to show that this ! is the same

as the global sections functor. By Lemma 1.58, we know that the global sections functor

is initial among lexfunctors from IAU to Set. But by Theorem 1.56 with Corollary 1.55,

we know that ! is also initial among these. Thus, ! and the global sections functor are

isomorphic (indeed, uniquely isomorphic), completing the proof. �

With this last theorem, wemust be careful. As it invoked Observation 1.79, its reasoning

does not internalize. In particular, we do NOT have internal to IAU that the global sections

functor from its internal initial arithmetic universe IAU′ to the self-indexing IAU/− is

arithmetic, or even that this preserves the initial object.6

Definition 1.81 Given an endofunctor F on a category, we say a morphism of the form

M : F (m)→ m is an F -algebra, and dually, a morphism of the formW : w → F (w) is an
F -coalgebra.

More generally, we say an F -algebra map fromM1 toM2 is a commutative square of

the following form:

F (m1) F (m2)

m1 m2

M1

F (x)

M2

x

6
That this does not preserve the initial object can be seen from the combination of Löb’s Theorem for

Introspective Theories (Theorem 4.19) and the construction observed in Observation 6.12. Essentially, this

would violate Gödel’s second incompleteness theorem.
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These compose in the obvious way, giving rise to a category of F -algebras, and in the

obvious dual fashion, we also obtain a category of F -coalgebras.

Definition 1.82 Given an endofunctor F , we say that a map y : w → m is an F -
hylomorphism from a coalgebra W : w → F (w) to an algebra M : F (m) → m just

in case the following square commutes:

F (w) F (m)

w m

W

F (x)

M

x

In other words, just in case x is a fixed point of x 7→M ◦ F (x) ◦W .

Lemma 1.83 (Coalgebras As Strict Lexcategory) Let F be an arbitrary (not presumed strict)

endolexfunctor on a strict lexcategoryC. The category ofF -coalgebras is a lexcategory, with

its forgetful functor to C creating finite limits (by the analogous reasoning to Corollary 1.49

for inserters rather than comma categories; indeed, this category of coalgebras can be

seen as a (non-full) sublexcategory of the comma category (id/F )). As C is in fact a

strict lexcategory, we can thus equip the category of F -coalgebras as a strict lexcategory,
with its forgetful functor to C creating basic limits (note that it is fine here if F does not

preserve basic limits on the nose; all that mattered was that it preserves finite limits in the

non-strict-sense).

Theorem 1.84 Let C be any set-sized category, and let P in Psh(Psh(C)) be given. This P is

Psh(C)-representable just in case P turns set-sized colimits in Psh(C) (i.e., set-sized limits

in Psh(C)op
) into set-sized limits in Set.

Proof. The necessity of this condition is clear, from the fact that any representable functor

preserves limits. As for its sufficiency, we may consider the map P (yoneda(−)) : Cop →
Set. This is an object X of Psh(C), and thus also represents a presheaf yoneda(X) =
HomPsh(C)(−, X) on Psh(C). By the Yoneda lemma, this yoneda(X) agrees with P on those

objects of Psh(C) which are C-representable. As all objects in Psh(C) are set-sized colimits

of such objects (by the so-called co-Yoneda lemma), and both P and any representable

presheaf turn set-sized colimits into limits, it follows that this yoneda(X) agrees with P in

general. �

Construction 1.85 Given any pullback-preserving functor f : A → B between lexcate-

gories, we have that the action of f on slice categories ofA also acts as an indexed lexfunctor

between the A-indexed lexcategories A/− and B/f(−). We may refer to this indexed

lexfunctor also by the same name f , in slight abuse of language. Thus, we obtain a diagram

of the following sort:
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A B LexCat
B/−f

A/−

f

That is, given any object or morphism of a slice category A/a, we may apply f to it

(considered as a morphism or commutative triangle in A) to get an object or morphism of

the slice category B/f(a). And because finite limits in slice categories are computed via

pullbacks, this action preserves those finite limits.
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Chapter 2

Introspective theories

2.1 Preview
In this chapter, we introduce the central object of our interest, the notion of an

“introspective theory”1.

An introspective theory is an essentially algebraic theory such that every model of

the theory includes a lexcategory with an internal model of the same theory, as well as a

homomorphism from the overall model into the global aspect of the internal model.

Wewill give two formal definitions of an introspective theory, andprove themequivalent.

The second formal definition we give will directly correspond to the previous paragraph.

The first formal definition we give will be a bit more compact, but framed in the language

of indexed categories.

En route to discussing introspective theories, we also discuss somemore general notions

we call “pre-introspective theories”, “locally introspective theories”, and so on, which will

be of some use to us as well.

2.2 First definition (indexed style)
Definition 2.1 A pre-introspective theory is a lexcategory T , a T -indexed lexcategory C,
and a lexfunctor F from the self-indexing of T to C, like so:

T op LexCat
T/−

C

F

We write out the triple 〈T,C,F〉 to refer to a pre-introspective theory when we wish to

be fully explicit about its structure. But in typical abuse of language, we also often refer

to it simply by the name of its underlying lexcategory T or of the pair 〈T,C〉, when this

1
It was alternatively suggested by Alex Kruckman to use for this notion the name “SR-category”, with

the initials SR standing for... self-reference.
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would not cause confusion. We will frequently use the same name F as though it applies

to all introspective theories simultaneously, in the same way that notation like + or × is

overloaded as applying over all rings simultaneously.

Definition 2.2 An introspective theory is a pre-introspective theory 〈T,C〉 in which C is

representable2.

We shall show in later chapters how this simple concept of an introspective theory

already suffices to exhibit and capture all the fundamental phenomena of Gödel codes,

diagonalization, the Gödel incompleteness theorems, and Löb’s theorem. And we shall

show that all the traditional instances of Gödel’s incompleteness phenomena arise from

special cases of this purely algebraic structure. We will also demonstrate functorial fixed

point results for this structure, and show some interesting applications of these.

We shall also introduce some further generalizations of this concept, in order to be

able to state results along the way in their natural generality or point out connections to

related work or interesting structures that are not quite introspective theories per se but are

closely related. But throughout these notes, if at any time the abstractions seem daunting

or distracting, remember that the concrete concept which matters most is the concept of an

introspective theory as defined above.

The example-oriented reader may immediately demand some example of a pre-

introspective theory, to orient themselves. Here is the simplest example (or class of

examples) of a pre-introspective theory:

Example 2.3 Let T be any lexcategory. Then we have a pre-introspective theory 〈T, T/−, id〉.
That is, a pre-introspective theory in which C is taken to be the self-indexing itself, with F
as the identity.

Alas, this simple example of a pre-introspective theory is almost never an introspective

theory. That is to say, a lexcategory’s self-indexing is almost never representable3.

Here, then, is a simple example of an introspective theory:

Example 2.4 Let T be any lexcategory, and letC be any representable T -indexed lexcategory.

Then we have an introspective theory 〈T,C,F〉 where each aspect of F sends all objects to

the terminal object.

This is indeed an introspective theory. But alas, although this last example can be as

nontrivial as one likes in terms of the structure of T and C, it is of course trivial in all its

further structure.

Nontrivial introspective theories do exist and we will give some archetypal examples of

them soon enough. But in order to do so, it will be convenient to first develop some further

machinery on how (pre-)introspective theories may be presented.

2
We reminder the reader that this means C is presented by an internal category in T .

3
Indeed, the only case in which this happens is the trivial one where T is the terminal category! We will

ultimately establish this result at Theorem 4.23.
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2.3 Second definition (non-indexed style)
We shall now make an observation about an alternative but equivalent way to specify

the data of a pre-introspective theory.

Theorem 2.5 Given a lexcategory T and a T -indexed lexcategory C, specifying a pre-

introspective theory 〈T,C,F〉 (i.e., specifying a T -indexed lexfunctor from the self-indexing

T/− to C) is equivalent to specifying a (non-indexed) lexfunctor S : T → Glob(C), along
with specifying maps Nt from each t ∈ T to HomC(1,S(t)), naturally in t.

That is, keeping in mind that HomC(1,S(−)) : T → Psh(T ), and recalling that we also

identify T with a full subcategory of Psh(T ) via the Yoneda embedding yoneda : T →
Psh(T ), the last part of the above is asking for a natural transformation N : yoneda →
HomC(1,S(−)).

Proof. Let T be a lexcategory, and let C be some T -indexed lexcategory. By Lemma 1.36

(keeping in mind the contravariance of the functors defining indexed structures), a map

from the self-indexing T/− to C as T -indexed lexcategories is the same as a lexfunctor S
from T to the global aspect of C, along with a map from T/− to C as T -indexed objects of

T/LexCat (where the map S is used to treat C as a T -indexed object of T/LexCat).
Next we apply Theorem 1.38. The map from T/− to C as T -indexed objects of

T/LexCat is the same as choosing, in a natural way over all t in T , some t-defined value in

HomC(1,S(t)). That is, maps from each t ∈ Ob(T ) to HomC(1,S(t)), comprising a natural

transformation. �

Remark It wasn’t fundamentally important that we were dealing with lexcategories here.

The use of Lemma 1.36 as applied to Cop
only required a terminal object in C. And

for the invocation of Theorem 1.38, we only needed that there is some free construction

of adjoining global elements. (Even the role terminality plays here is to some degree

eliminable, though we have no interest for now in eliminating it). In particular, we get a

completely analogous result when lexcategories are replaced throughout by any of the

structures noted in Observation 1.39, including for categories with finite products using

the simple self-indexing.

As a result of Theorem 2.5, we can give an alternative definition equivalent to Defini-

tion 2.1:

Definition 2.6 A pre-introspective theory is a lexcategory T , a T -indexed lexcategory C,
a lexfunctor S from T to the global aspect of C, and a natural transformation N from each

t ∈ Ob(T ) to HomC(1,S(t)). (That is, N : yoneda → HomC(1,S(−)), where yoneda and

HomC(1,S(−)) are parallel functors from T to Psh(T ).)

Much as before, we may write out 〈T,C,S,N〉 to be fully explicit, but in typical abuse

of language, will refer to a pre-introspective theory by simply naming T or the pair 〈T,C〉.
We will frequently use the same names S and N as though they apply simultaneously to
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all such structures (in the same way that notation like + and × is overloaded as applicable

to separate rings simultaneously).

The definition of an introspective theory remains exactly as before (Definition 2.2)

regardless of how one thinks of pre-introspective theories, but for reminder’s sake:

Definition 2.7 An introspective theory is a pre-introspective theory 〈T,C〉 in which C is

representable.

While itmay sometimes be easier to prove theorems about (pre-)introspective theories by

using Definition 2.1, it will often be easier to show structures actually are (pre-)introspective

theories by using Definition 2.6. But this is not the only benefit of Definition 2.6. The

reduction of the full indexed lexfunctor F to just its global aspect (S) and a natural

transformation between 1-functors means much less data around to explicitly fuss about.

In particular, when wewish to strictify this into a lex definition eventually at Definition 5.10,

we will find the appropriate coherence conditions much easier to manage. It will also be

easier to define the appropriate notion of homomorphisms between (pre-)introspective

theories by thinking about Definition 2.6.

Definition 2.6 also allows us to quickly appreciate the significance of introspective

theories from a functorial semantics point of view. An introspective theory is precisely

an essentially algebraic theory (this is the role of T ) extending the theory of lexcategories

(this is the role of C), such that every model of the theory (which thus has an underlying

lexcategory as its interpretation of C) is equipped with a designated homomorphism (this

is the role of N ) into an internal model of that same theory in its underlying lexcategory

(this is the role of S). In short, every model has a homomorphism into a further internal

model.

It will be useful for us also to consider sometimes the following concept, intermediate

between pre-introspective theories and introspective theories:

Definition 2.8 A locally introspective theory is a pre-introspective theory 〈T,C〉 in which

C is locally representable.

Almost all the results we discuss for introspective theories admit straightforward

generalization to locally introspective theories. The sole major exception is the derivation

of Löb’s theorem for introspective theories in Löb’s Theorem for Introspective Theories

(Theorem 4.19). However, because that one result is so important to us, our main interest

in this document is in discussing introspective theories, rather than locally introspective

theories more generally.

2.4 Archetypal examples
Let us now finally give the example-oriented reader a nontrivial example of an intro-

spective theory by which to orient themselves. (On the other hand, the reader who prefers

to consider abstract definitions without immediately diving into worked out examples of a
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highly concrete flavor may skip any or all of this section at this introductory time if they

find its details a distraction. To each reader at their own taste!).

2.4.1 Example based on a traditional logical theory
In this subsection, we will give two closely related examples. The first example we

present is somewhat atypical of general introspective theories, but important nonetheless.

It is very similar to the arithmetic universe constructions considered by Joyal in his account

of Gödel’s incompleteness theorem and by others following up on this (Joyal himself never

published this work, but a detailed account has been given in [DO20], building off the

formalization of the initial arithmetic universe given in [Mai10]).

Although very similar, the category we use in this first example is not exactly the same

as the initial arithmetic universe considered in [DO20] and [Mai10]. The variant and

presentation we give is intended to feel natural to an audience of traditional logicians. The

connection of this construction to the initial arithmetic universe will be discussed in more

detail later at Theorem 6.14.

After having given this first example, we will then tweak it slightly into another

introspective theory which provides much better intuition for the general nature of

introspective theories.

Construction 2.9 Let us start with the first-order logical theory ZF-Finite: This is the

theory ZF but with the axiom of infinity replaced by its negation4. The universe this theory

describes is the hereditarily finite sets Vω. Throughout this construction, whenever we

speak of formulae, we mean formulae in the language of ZF-Finite, and whenever we speak

of provability, we mean provable within ZF-Finite.

Certain formulae are Σ1. These are the formulae which consist of an initial string

of unbounded existential quantifiers (ranging over the entire universe), after which all

other quantifiers are bounded (ranging only over the elements of some particular already

introduced hereditarily finite set).

Put another way, which may be more comfortable for some readers, the Σ1 formulas

φ are precisely those for which there is a computer program P outputting a (possibly

empty, possibly finite, possibly infinite) stream of tuples of hereditarily finite sets such that

ZF-Finite proves that the tuples which φ holds of are precisely the ones output by P . That
is, the Σ1 formulas describe the computably enumerable relations.

(The equivalence between these two accounts of the Σ1 formulas of ZF-Finite is well

known, and we will not go over its details. At any rate, the reader may pick whichever

account they like with which to think about the following.)

4
This theory happens to be bi-interpretable with Peano Arithmetic, but it will be more convenient for us

to speak in terms of ZF-Finite so as not to fret about codings of a sort every modern mathematician readily

takes for granted in a ZF-style context. Pedantically, we must also make sure to take the Axiom of Foundation

in the definition of ZF-Finite to be suitably phrased, e.g. in terms of ∈-induction, or else we will not have this

bi-interpretability.
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Now let us define a category whose objects are the Σ1 formulae with one free variable.

Such formulae amount to certain definable subsets of the universe Vω; that is, they describe

classes of hereditarily finite sets. (Note that the classes these formulae describe may

themselves be infinite! For example, the tautologically true formula describes the class of

all hereditarily finite sets.)

Given two such objects φ(n) and ψ(m), we take as morphisms between these any Σ1

formula F (n,m) which provably acts as the graph of a function between the corresponding

classes. That is, such that both ∀n,m.F (n,m)⇒ (φ(n)∧ψ(m)) and ∀n.φ(n)⇒ ∃!m.F (n,m)
are provable.

Two such morphisms F (n,m) and G(n,m) are considered equal just in case the bi-

implication ∀n,m.F (n,m) ⇐⇒ G(n,m) is provable.
Finally, morphisms compose in the expected way for graphs of functions; that is, the

composition of F (n, p) with G(p,m) is given by (G ◦ F )(n,m) = ∃p(F (n, p) ∧G(p,m)).
We omit here the straightforward details of verifying that this structure we have just

described does indeed satisfy the rules to be a category. Indeed, it is furthermore a regular

category (that is, it has finite limits and pullback-stable image factorization; it has finite

products because of the definability of ordered pairs in ZF-Finite, and it furthermore has

equalizers and image factorization using suitable instances of Separation in ZF-Finite).

However, it is not an exact category (that is, not every equivalence relation in this category

admits a corresponding quotient). Let ZΣ1 be its ex/reg completion.

(There is not in general any need for the categories involved in an introspective theory

to be exact, or even regular. They need only have finite limits. However, for the particular

construction we are outlining now, this ex/reg completion is the ZΣ1 we need to look at.)

More explicitly, we can describe ZΣ1 like so:

Its objects are the Σ1 binary relations φ(n,m) which can be proven to be partial equiva-

lence relations (i.e., symmetric and transitive), thus corresponding to certain subquotients

of the universe of all hereditarily finite sets.

Given any two such formulae φ(n1, n2) and ψ(m1,m2), a morphism in ZΣ1 from φ to ψ
is a Σ1 formula F (n,m) which provably corresponds to the graph of a function between

the corresponding subquotients of the universe. That is, such that the universal closures of

all the following are provable:

F (n,m)⇒ φ(n, n) ∧ ψ(m,m)
φ(n1, n2) ∧ ψ(m1,m2) ∧ F (n1,m1)⇒ F (n2,m2)
φ(n, n)⇒ ∃m[F (n,m)]
F (n,m1) ∧ F (n,m2)⇒ ψ(m1,m2).
Two such formulae F (n,m) and F ′(n,m) are considered to be equal as morphisms

from φ to ψ if they are provably equivalent (that is, if both ∀n,m.F (n,m)⇒ F ′(n,m) and
∀n,m.F ′(n,m)⇒ F (n,m) are provable).

Given morphisms F : φ → ψ and G : ψ → χ of this sort, we again define their

composition in the usual way of composing functions represented as graphs, as (G ◦
F )(n,m) = ∃p[F (n, p) ∧G(p,m)].
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This all describes the category ZΣ1 , which one can verify is indeed a category and

moreso, an exact category.

Note that our construction of ZΣ1 is such that the objects of ZΣ1 , the morphisms of ZΣ1 ,

the equality relation on morphisms of ZΣ1 , the composition structure of ZΣ1 , the finite

limit structure of ZΣ1 , etc, are all definable within the language of ZF-Finite; indeed, all

definable by Σ1 formulae. (In particular, keep in mind that provability in ZF-Finite is itself

a Σ1 property). Thus, there is a lexcategory Z′Σ1
internal to ZΣ1 which corresponds to this

very same construction of ZΣ1 we have just described. And we have a lexfunctor S from

ZΣ1 to the global aspect of Z′Σ1
which sends each piece of the construction of ZΣ1 to the

corresponding piece of the construction of Z′Σ1
. This is all straightforward.

As the last bit of introspective theory structure, we must build a natural transformation

N from the identity endofunctor to the endofunctor HomZ′Σ1
(1,S(−)) on ZΣ1 . The core

idea behind this N is simple. Essentially, to every hereditarily finite set x, we can assign it

a code pxq, which is an explicit term in the language of ZF-Finite denoting that set. The

easy way to do this is to recursively assign to each set {a, b, c, . . .} the term describing a

finite set whose members are explicitly enumerated by the terms assigned to a, b, c, . . .. We

thus send a set such as {{}, {{}}} to the term in the language of ZF-Finite which might be

called “{{}, {{}}}” within quotation marks, and so on.

This gives us a function p−q from hereditarily finite sets to terms in the language of

ZF-Finite which describe hereditarily finite sets. This function p−q is definable by a Σ1

formula and thus gives a morphism in ZΣ1 . This serves as the component ofN at the object

of ZΣ1 describing the collection of ALL hereditarily finite sets.

(The categorically oriented reader may think of this recursive definition of p−q as a
catamorphism, where the collection of all hereditarily finite sets is understood as the initial

algebra for the covariant finite powerset functor.)

All the other objects of ZΣ1 are subquotients of that object (and similarly for the objects

of Z′Σ1
), and therefore the components of the natural transformation N at these other

objects can now be obtained uniquely so long as certain factorizations exist. That is to say,

the component of N at any object φ of ZΣ1 (that is, an object corresponding to a partial

equivalence relation φ(n1, n2)) will also be given by the action of p−q, but for this to indeed

work to map φ into HomZ′Σ1
(1,S(φ)), we need to know that p−qwhen acting on individuals

which are related by the partial equivalence relation φ produces terms which provably

describe individuals related by φ.
This is where the Σ1-ness of φ plays a vital role. We can prove that, for any Σ1 property

φ, for all x, whenever φ holds of x, it furthermore provably holds of x (in the sense that the

particular term pxq, when substituted into the argument of the particular formula defining

φ, yields a sentence which is derivable in the formal system ZF-Finite).

Finally, let us observe the naturality of thisN . Consider the general form of its naturality

squares:
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φ ψ

HomZ′Σ1
(1,S(φ)) HomZ′Σ1

(1,S(ψ))

p−q

m

p−q

S(m)◦−

This says that, for any definable functionm, it is provably the case that for every x, we

have that applying the functionm to x and then constructing the term encoding the result

(pm(x)q) is a provably equivalent term to taking the term representing x and substituting

it into the argument of the formula definingm (what might be calledm(pxq) or perhaps
pmq(pxq) or at any rate S(m)(pxq)). To be clear, by the provable equivalence of terms

here, we do not mean syntactic identity as symbol-strings; rather, we mean that there is a

provable equality sentence whose left and right sides are comprised of these terms. That is,

whatever the actual result of the functionm on the input x is, we must have that this is also

provably the same as applyingm to the input x. Here, again, the Σ1-ness of the formula

definingm comes to our rescue, telling us that truth entails provability in the appropriate

way.

Thus, we obtain an introspective theory 〈ZΣ1 ,Z
′
Σ1
,S,N〉. This concludes our first

nontrivial example of an instrospective theory!

However, 〈ZΣ1 ,Z
′
Σ1
,S,N〉 is not actually the most typical introspective theory! It has

special properties which we should not expect of a general introspective theory. Its internal

Z′Σ1
acts as a perfect mirror image of ZΣ1 , and can thus itself be equipped as an internal

introspective theory. The internal Z′Σ1
has in some informal sense no further objects

(or morphisms, or equations) beyond the range of S. All of this is not typical for an

introspective theory.

Construction 2.10 Let us describe now a more archetypal introspective theory, to guide

the reader’s intuitions better for how general introspective theories act.

Throughout the construction of ZΣ1 , we have imposed a Σ1 constraint on formulae (both

on the formulae defining objects and on the formulae defining morphisms). If we drop

all such Σ1 constraints and allow arbitrary formulae, we get by the same construction an

analogous category Z. ZΣ1 sits inside Z as a subcategory (but not a full subcategory! The

inclusion from ZΣ1 into Z is faithful, but not full).

Just as the construction of ZΣ1 could itself be carried out in ZF-Finite to get a Z′Σ1
internal

to ZΣ1 , so too can the construction of Z can be carried out in ZF-Finite, to get a Z′ internal
to ZΣ1 . Yes, this Z′ is internal to ZΣ1 , not just internal to Z! Even though Z includes as

its objects and morphisms formulae which are not Σ1, the description of Z (as a category

whose objects are symbol-strings for which certain other symbol-strings exist, and whose

morphisms are symbol-strings for which certain other symbol-strings exist, and so on) is

Σ1.
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Finally, the inclusion of ZΣ1 into Z yields, analogously, an inclusion from Z′Σ1
into Z′,

internal to ZΣ1 . This means the functor S from ZΣ1 into the global aspect of Z′Σ1
can just as

well be thought of as having Z′ for its codomain, and similarly the natural transformation

N can just be well as thought of in this context. (This way of making one introspective

theory from another is an instance of the general construction Construction 2.17.)

Summarizing, we get an introspective theory 〈ZΣ1 ,Z
′,S,N〉, whereZΣ1 is the lexcategory

of Σ1-definable hereditarily finite sets and Σ1-definable functions between them up to

provable equivalence in ZF-Finite, Z′ is the lexcategory internal to ZΣ1 of arbitrary definable

sets and arbitrary definable functions between themup to provable equivalence in ZF-Finite,

S assigns to each piece of ZΣ1 the corresponding (globally defined) piece of Z′, and N is

the Σ1-definable function which sends any hereditarily finite set to the canonical term

describing it, as well as witnessing the provable entailment from truth to provability for Σ1

formulae.

Phew! What a long walk it was to get to describing that example! All the better, then,

that we have formalized introspective theories so abstractly, and can work with them

without having to fuss about such concrete details as in that example. But this is indeed

the archetypal example it will be best to keep in mind to guide the reader’s intuition

throughout all further discussion.

Warning 2.11 While we have above constructed introspective theories 〈ZΣ1 ,Z
′
Σ1
〉 and

〈ZΣ1 ,Z
′〉, the reader should be cautioned that there is no natural introspective theory 〈Z,Z′〉.

As a check of their understanding, the reader is encouraged to think about why this is.

Later on, we will characterize the kind of structure which 〈Z,Z′〉 has, which is that of a

“geminal category” as defined in Geminal categories (Chapter 5).

2.4.2 Examples based on presheaf categories
In this subsection, we will give some other instructive examples of introspective theories

based on presheaf categories. These examples are of a very different flavor from those

based on logical theories as in the previous section, thus helping to illustrate the generality

of the notion of introspective theory.

The examples in the first half of this section are based on the topos of trees and the

“later” modality, as used in much work on step-indexing and guarded recursion. This

may also be useful to build up intuition as we work towards the more complicated final

examples in the latter half of this section.

The examples in the latter half of this section are closely related to the use of Kripke

frames to interpret the K4 and GL modal logics.

In both examples in this section, we first construct a locally introspective theory using

an unrestricted presheaf category. We then impose some cardinality constraints to cut

these down into introspective theories.

All the constructions in this section are unified and vastly generalized in Construc-

tion 6.16 and Construction 6.21.
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2.4.2.1 Presheaf example related to step-indexing in guarded recursion

We present this example in terms of presheaves over the natural numbers (which

comprise the so-called topos of trees), but analogous examples may be constructed

for presheaves over arbitrary categories; see the generalization at Models based on

presheaf categories (Section 6.5). We focus on presheaves over the natural numbers in this

introductory example as it is perhaps the simplest nontrivial presheaf category to consider,

and also as the “later” modality on the topos of trees which is at the core of this example is

much studied in the literature on guarded recursion (e.g., as in [Bir+11]).

Construction 2.12 Let ω be the poset of natural numbers with their usual ordering, and

consider the category of presheaves Psh(ω) (often called the topos of trees). We will equip

this as a locally introspective theory.

The functor Successor given by n : ω 7→ n + 1 : ω induces correspondingly a functor

Successor∗ : Psh(ω) → Psh(ω). For convenience, we will use the name Prior rather than
Successor∗ to refer to this endofunctor on Psh(ω). Thus, Prior(P )(n) = P (n+ 1) for n ∈ ω.

The map n ≤ n + 1 from identity to Successor as endofunctors on ω induces a corre-

sponding map from Prior to identity as endofunctors on Psh(ω) (keeping in mind the

contravariance of presheaves). We shall write prior : Prior→ id for this map.

Also, as with any functor between presheaf categories given by composition in this

manner, Prior has a right adjoint, given by right Kan extension. [The right adjoint of Prior
may be called Later, or is often calledI in guarded recursion literature. It can be described

by Later(P )(0) = 1 and Later(P )(n+ 1) = P (n) for n ∈ ω, with the obvious corresponding

actions on restriction maps and on morphisms between presheaves. Note that we may pull

the map prior : Prior→ id through the adjunction Prior a Later to obtain a corresponding

map next : id→ Later.]
LetC be thePsh(ω)-indexed lexcategory given byC(−) = Psh(ω)/Prior(−). That is,C is

given by applying Prior∗ to the self-indexing Psh(ω)/−. Note that C is locally representable

by Theorem 1.20, as Prior has a right adjoint and the self-indexing Psh(ω)/− is locally

representable (because Psh(ω) is locally cartesian closed, as it is a presheaf topos).

What remains to equip 〈Psh(ω), C〉 as a locally introspective theory is to choose a

suitable F from Psh(ω)/− to C. We do this via whiskering prior as in the following

diagram:

Psh(ω)op Psh(ω)op LexCat
Psh(ω)/−id

Priorop

priorop

[Pedantically, in this diagram, LexCat must be understood as including lexcategories of

comparable size to Psh(ω), so that the self-indexing of Psh(ω) is valued in LexCat.]
Again, keep in mind the contravariance of indexed structures here, so that prior :

Prior → id does indeed act as a map from any Psh(ω)-indexed structure X into the

corresponding Prior∗(X).
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Thus, we have constructed a locally introspective theory 〈Psh(ω), C,F〉.
It may be illustrative to alternatively describe this F in terms of its corresponding S

and N .

For S, let us first observe that Prior(1) = 1; that is, Prior preserves the terminal

object5. Accordingly, Glob(C) = Psh(ω)/Prior(1) = Psh(ω). And as the component prior1 :
Prior(1) → 1 must be the identity on the terminal object, the map S : Psh(ω) → Glob(C)
corresponding to our choice of F becomes the identity under this identification.

Furthermore, the map HomC(1,S(−)) : Psh(ω) → Psh(ω) can be seen to be the right

adjoint to Prior; thus, it is Later. Finally, as for the N corresponding to our F , this will

be the map next : id → Later given by pulling prior : Prior → id through the adjunction

Prior a Later.

This way of equipping Psh(ω) as a locally introspective theory is illustrative. Unfor-

tunately, this is not an introspective theory, as our C = Psh(ω)/Prior(−) is merely locally

representable, not representable simpliciter.

We do not have that Ob(C) is itself an object of Psh(ω). Essentially, the obstruction

is that C(yoneda(n)) = Psh(ω)/Prior(yoneda(n)) = Psh(ω)/yoneda(n− 1) (for n ≥ 1) has a
proper class of objects, but the presheaves in Psh(ω) are set-valued.

We might naively try to ameliorate this problem by replacing Psh(ω) = Setω by (Set′)
ω

where Set′ is some full subcategory of Set, such as sets of cardinality below some particular

cardinal. But it is soon seen that such a uniform cardinality constraint across all n ∈ ω will

not be workable for fixing the issue.

Rather, what will fix the issue is to impose a varying cardinality constraint: We shall

consider those presheaveswhose values at each n come from a particular full sublexcategory

Setn of Set, where these restrictions get looser as n gets larger.

Construction 2.13 Let Setn for each n ∈ ω be a set-sized full sublexcategory of Set. We

shall think of each Setn as a strict category. By Psh′(ω), we mean the full sublexcategory of

Psh(ω) comprising presheaves P such that P (m) ∈ Setm for allm ∈ ω.
By ω<n, we mean the sub-poset of ω restricted to those naturals which are less than n.

By Psh′(ω<n), we mean the full sublexcategory of Psh(ω<n) comprising presheaves such

that P (m) ∈ Setm for eachm < n.
Observe that each Psh′(ω<n) is a set-sized strict lexcategory. Its collection of objects and

its collection of morphisms are readily seen to comprise bona fide sets.

We also have obvious restriction maps from Psh′(ω<n) to Psh′(ω<m) form ≤ n induced

by the inclusion of ω<m into ω<n, and any composition of such restriction maps yields the

appropriate such restriction map.

Thus, we have an ω-indexed set-sized strict lexcategory C ′(n) = Psh′(ω<n). In other

words, this C ′ is a lexcategory internal to Psh(ω).

5
This is closely related to the fact that ω has no maximal element, and would need modification were we

carrying out the analogous construction for a poset which had maximal elements.
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Also note that once Set0, Set1, . . . , Setn−1 are determined, we have already determined

what Psh′(ω<n) is. That is, Psh′(ω<n) does not depend on the choices of Setm form ≥ n.
Thus, we may inductively choose Setn for each n such that both Ob(Psh′(ω<n)) and

Mor(Psh′(ω<n)) are among the objects of Setn.
[For example, we may satisfy this condition by choosing Setn for each n to be the von

Neumann universe V(n+1)×ω of sets of rank less than (n+ 1)× ω. Many other possibilities

are available, this is only one suggestion.]

When we choose Setn satisfying this inductive condition, we have that C ′ is not only
internal to Psh(ω), but indeed is internal to its full subcategory Psh′(ω).

We now flesh 〈Psh′(ω), C ′〉 out into an introspective theory, by defining an appropriate

S andN . Much like before, Glob(C ′) is readily identified with Psh′(ω) and we take S to be

this identification. As just as before, we find that under this identification, HomC(1,−) acts
as Later, so we may take N to be next : id→ Later.

This completes the description of 〈Psh′(ω), C ′〉 as an introspective theory (relative to

any suitable choice of the {Setn}n∈ω).
(Furthermore, the {Setn}n∈ω clearly may be chosen so as that each particular Setn

contains any set-sized number of particular desired sets, so that Psh′(ω) contains any

set-sized number of particular desired objects of Psh(ω).)

2.4.2.2 Presheaf examples related to Kripke frames

Here, we consider examples of locally introspective and introspective theories based on

Kripke frames. Of note, our first construction of a locally introspective theory works for any

transitive Kripke frame (corresponding to the K4 modal logic). When we attempt to make

an introspective theory of this by imposing cardinality constraints, we will find we are only

able to do this if the transitive Kripke frame is furthermore well-founded (corresponding

to the GL modal logic).

Construction 2.14 Let < be a transitive relation on a discrete set |P |. The reflexive closure
≤ of < equips |P | as a preorder P . Let Q be P augmented with one further element∞
which is greater than every element from P .

There is an inclusion functor i : |P | → Q, and this induces correspondingly a functor

i∗ : Psh(Q)→ Psh(|P |).
By |P |<q (where q is any value in Q), we mean the discrete subset of |P | comprising

those values which, within Q, are less than q. Note that when p ≤ q, there is a forgetful

functor from Psh(|P |<q) to Psh(|P |<p) induced by the inclusion of |P |<p into |P |<q. Any

composition of such forgetful functors is another forgetful functor of the same form.

Thus, we obtain a Q-indexed lexcategory C(q) = Psh(|P |<q). It is straightforward

to observe this is locally representable. We will now equip 〈Psh(Q), C〉 as a locally

introspective theory by providing a suitable S and N .

Note that Glob(C) = Psh(|P |<∞) = Psh(|P |). (Here, the addition of∞ into Q plays an

important role when P contains maximal elements. If we took C to be merely a P -indexed
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category, then we would find that Glob(C) ignored any maximal elements in P . This is the
only reason for our introduction of∞.)

Thus, i∗ : Psh(Q)→ Glob(C). We may refer to this also as S.
Furthermore, note that for X ∈ Psh(Q), we have that HomC(1,S(X)) is the presheaf on

Qwhich assigns to q ∈ Q the product ofX(p) over all p < q, with restriction maps given by

forgetting components as appropriate. .

Thus, we have a map N : idPsh(Q) → HomC(1,S(−)), such that NX(q) : X(q) →
HomC(1,S(X))(q) is given by the product of all the restriction maps out of X(q) (these
restriction maps being part of the structure of the presheaf X itself).

Observation 2.15 The reader is advised to keep in mind that this last construction is very

different from Construction 2.12, even if P is chosen to be the poset ω of natural numbers.

This distinction is emphasized again in the later discussion at Kripke frame example

(Section 3.4.2) and Step-indexing example (Section 3.4.3).

This is an important archetypal example of a locally introspective theory. It corresponds

closely to the interpretation of K4 modal logic using a transitive Kripke frame (as we will

discuss in Kripke frame example (Section 3.4.2)). However, just as at the beginning of our

previous example, we have the issue that this is only a locally introspective theory and not

an introspective theory. Once again, the various aspects of C comprise a proper class of

objects, too many for Ob(C) to be given by a set-valued presheaf, preventing C from being

representable. And as in our previous example, we will again address this by imposing

variable cardinality constraints on our presheaves.

Construction 2.16 We will from hereon out assume that the preorder P is in fact well-

founded (and thus so is Q). Suppose given set-sized full sublexcategories Setq of Set for
each q ∈ Q. (It’s not actually necessary that we restrict to such a subcategory at q =∞, but

for uniformity’s sake, we do this for now.). We shall think of each Setq as a strict category.

We define Psh′(Q) to be the full sublexcategory of Psh(Q) comprising presheaves X
for which X(q) ∈ Setq for each q ∈ Q. And we analogously define Psh′(|P |<q) to be the

full sublexcategory of Psh(|P |<q) comprising presheaves X for which X(p) ∈ Setp for each
p < q.

There are restriction maps from Psh′(|P |<q) to Psh′(|P |<p) for p ≤ q induced by the

inclusion of |P |<p into |P |<q, and any composition of such restriction maps is such a

restriction map. As a result, we have a Psh(Q)-internal lexcategory C ′ whose component

at q ∈ Q is given by Psh′(|P |<q).
The set-sized category Psh′(|P |<q) only depends on the values of Setp for p < q,

and thus we may inductively choose Setq in such a way that Ob(Psh′(|P |<q)) as well as

Mor(Psh′(|P |<q)) are both objects of Setq for each q ∈ Q. When we have done so, it follows

that C ′ is not merely internal to Psh(Q) but furthermore lives within Psh′(Q).
We observe that there is a forgetful lexfunctor S : Psh′(Q)→ Glob(C ′) = Psh′(|P |<∞),

induced by the inclusion of |P |<∞ = |P | into Q.
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We observe as above that for X ∈ Psh′(Q), we have that HomC′(1,S(X)) is the presheaf
onQwhich assigns to q ∈ Q the product ofX(p) over all p < q, with restriction maps given

by forgetting components as appropriate.

Finally, we defineN in the same way as above, withNX(q) : X(q)→ HomC′(1,S(X))(q)
given by the product of all the restriction maps : X(q)→ X(p) for p < q.

In this way, we have constructed an introspective theory 〈Psh′(Q), C ′〉 (relative to any

suitable choice of the {Setq}q∈Q).
(Furthermore, the {Setq}q∈Q clearly may be chosen so as that each particular Setq

contains any set-sized number of particular desired sets, so that Psh′(Q) contains any

set-sized number of particular desired objects of Psh(Q).)

This is an important archetypal example of an introspective theory. It corresponds

closely to the interpretation of GL modal logic using a well-founded Kripke frame (as we

will discuss in Kripke frame example (Section 3.4.2)).

2.5 Basic constructions
Now let us discuss some general constructions for building new (pre-)introspective

theories from old ones or from other data.

Construction 2.17 If 〈T,C,F〉 is a pre-introspective theory, andany lexfunctorG : C → D is

given for some other T -indexed lexcategoryD, then 〈T,D,G◦F〉 is itself a pre-introspective
theory, like so:

T op LexCatC

T/−

D

F

G

Of course, this yields an introspective or locally introspective theory just in case D is

representable or locally representable, respectively.

Construction 2.18 If 〈T,C,F〉 is a pre-introspective theory, U is any lexcategory, and

Σ : U → T is any functor which preserves pullbacks (we do not require Σ to preserve the

terminal object), then 〈U,Σ∗C〉 can naturally be equipped as a pre-introspective theory, like

so:

Details.

Uop T op LexCat
T/−

C

Σop

U/−

F

Σ
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The 2-cell labelled Σ above indicates the action of Σ when acting as a lexfunctor from

U/u to T/(Σu) for each object u in U . (Note that, as finite limits in slice categories are given

by pullbacks in the underlying category, and as Σ preserves pullbacks, we do indeed have

that this functor from U/u to T/(Σu) preserves finite limits.)

By Theorem 1.10 or Theorem 1.20, if Σ has a right adjoint, we can further observe that if

C is representable or locally representable, then so respectively will be Σ∗C. �

A particular special case of the above which is often of importance is the following:

Construction 2.19 (Slice (Pre-)Introspective Theories) If 〈T,C,F〉 is a pre-introspective
theory, and t is any object in T , then the slice category T/t can be equipped in a natural

way as a pre-introspective theory as well. If we start from an introspective or locally

introspective theory, then so respectively will be the result of this construction.

Details. By the previous construction (Construction 2.18), using the forgetful functor

Σ : T/t→ T , which preserves pullbacks and has a right adjoint (given by pullback).

(Note that in this case, the corresponding 2-cell from (T/t)/− to T/Σ(−) is an equiva-

lence, by how iterated slice categories amount to slice categories simpliciter.) �

When we abuse language and speak of T/t as an introspective theory, the above

construction is what we mean.

Construction 2.20 If 〈T,C,F〉 is a pre-introspective theory, and S is a full sub-lexcategory

of T (thus, with a full and faithful inclusion lexfunctor i : S → T ), then 〈S, i∗C〉 can be

equipped in a natural way as a pre-introspective theory as well.

Details. By Construction 2.18 again, taking Σ to be the inclusion functor i. �

Construction 2.21 If 〈T,C,F〉 is a pre-introspective theory, and D is a T -indexed full

sub-lexcategory of C containing the range of F (thus, such that F = i ◦ F ′ for a uniquely
determined F ′ : T/− → D, where i : D → C is the inclusion), then 〈T,D,F ′〉 is a

pre-introspective theory.

[In this case, conversely, 〈T,C,F〉 is obtained from 〈T,D,F ′〉 and i : D → C via

Construction 2.17.]

The last two constructions are often fruitfully combined: Given a pre-introspective

theory 〈T,C,F〉, we may first pass from T to a sub-lexcategory S of T and then, after

having done so, find that F when restricted to S factors through a sub-lexcategory D of C.
In particular, the following scenario will be of note to us:

Construction 2.22 Let 〈T,C,F〉 be a pre-introspective theory, let S be a full sublexcategory

of T (with inclusion i : S → T ), and let D be a T -indexed full sub-lexcategory of C (with

inclusion j : D → C). Suppose furthermore that this D is of the form i[D′] for some

representable S-indexed lexcategory D′. (It follows that this D′ is identified with i∗D.)
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Finally, suppose also that F restricted to S has range restricted to D, in that there is a

(uniquely determined) F ′ making the following composite 2-cells equal:

Sop T op LexCat

Sop T op LexCat

iop

T/−

C

S/−

iop

D

S/−

C

F

i

j

F ′

Then 〈S,D′,F ′〉 is an introspective theory, which we refer to as a sub-introspection of

〈T,C,F〉.

Observe that our constructions Construction 2.13 and Construction 2.16 were given as

sub-introspections of Construction 2.12 and Construction 2.14, respectively.

The concepts of pre-introspective, locally introspective, or introspective theories are

all nearly essentially algebraic concepts (“nearly”, in that these involve categories up

to equivalence rather than strict categories up to isomorphism). Thus these concepts

automatically have available all the same properties as for any such nearly essentially

algebraic concept. For example, we have free constructions, as are the subject of of our

later chapter Geminal categories (Chapter 5). And we have Cartesian products in the

straightforward way:

Construction 2.23 LetK be any set, and suppose for each k ∈ K we are given some pre-

introspective theory 〈Tk, Ck〉. Then we may define the product of these pre-introspective

theories in the obvious way. That is, we take the lexcategory T =
∏

k∈K Tk, and we

define also a T -indexed lexcategory C, such that C(t) for any object t = {tk}k∈K in T
is the product of Ck(tk) over each k ∈ K. Similarly, we define the reindexing functors

in C componentwise using the reindexing functors the various Ck, and we also define

F : T/− → C componentwise using theF for the various pre-introspective theories 〈Tk, Ck〉.
It is readily seen that the result is furthermore locally introspective or introspective if each

〈Tk, Ck〉 is locally introspective or introspective, respectively.

2.6 The interaction of S and N
We gather here two small but useful lemmas for reasoning about (pre-)introspective

theories, concerning the interaction of S and N .

Lemma 2.24 (S With N ) Within a pre-introspective theory 〈T,C〉, let F : X → t be a

morphism of T , and let x be any generalized element of X . We have that Nt(F (x)) =
S(F ) ◦C NX(x).
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Proof. This is just the naturality square for N with respect to F .

X t

HomC(1,S(X)) HomC(1,S(t))

NX

S(F )◦C−

F

Nt

�

Lemma 2.25 (S Matches N ) Within a pre-introspective theory 〈T,C〉, let t be some object

of T and let ε : 1 → t in T be taken as defining a global element e of t. Then the global

element S(ε) of HomC(S(1),S(t)) is equal to the the global element Nt(e) of HomC(1,S(t))
under the canonical isomorphism identifying HomC(S(1),S(t)) with HomC(1,S(t)).

In short, S and N take global elements in T to equal global elements of C(1).

Proof. Consider the following commutative diagram in Psh(T ).

1 t

HomC(1,S(1)) HomC(1,S(t))

1 HomC(S(1),S(1)) HomC(S(1),S(t))

N1

S(ε)◦−

Nt

∗7→e

−◦!−◦!

S(ε)◦−∗7→idS(1)

∗7→S(ε)

The top arrow is ε : 1→ t, thought of as sending the unique element of 1 to e. The top
rectangle is the naturality square for N with respect to ε.

The bottom rectangle is the associativity square for composition in C (specifically, on

one side composing with S(ε) : S(1) → S(t) and on the other side composing with the

unique morphism ! : S(1)→ 1). Note that the right arrow of this associativity rectangle is

the canonical isomorphism given by S(1) being a terminal object of C.
The bottom wedge is the identity law for composition in C (specifically, composing

after the identity on S(1)).
Finally, the left wedge commutes because, as S(1) is a terminal object of C, we have

that HomC(S(1),S(1)) is a terminal object of Psh(T ); thus, any two parallel maps into it are

equal. (Indeed, all arrows in the left wedge are unique isomorphisms between terminal

objects.)

Nowconsider the composites around this commutativediagramalong the twooutermost

paths. Along the bottom, the unique element of 1 is sent to S(ε). Along the top and right,

it is sent to Nt(e) and then along the canonical isomorphism. This completes the proof.

(We would not ordinarily bother to distinguish between 1 and S(1) or in general

explicitly write out the coherence isomorphisms for a product preserving functor, but
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in this one example it may be illuminating to see these distinctions and isomorphisms

explicitly.) �

2.7 Recap
We have defined the central notion of our interest, the concept of an introspective theory.

We have proven that two different definitions of this concept are equivalent. We have also

discussed some slight relaxations of this concept (pre-introspective theories and locally

introspective theories). We have seen three archetypal examples of introspective theories

(one constructed by considering Σ1 formulae in familiar theories such as ZF-Finite, another

constructed by considering step-indexing in the topos of trees, and another constructed

from well-founded transitive Kripke frames). Finally, we have discussed a number of

constructions which generate new introspective theories from existing ones.
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Chapter 3

Modal logic

3.1 Preview
In this chapter, we will show how to interpret the � operator of traditional modal

logic in the context of introspective theories (or their generalizations). In particular, after

defining the � operator in this context, we observe in this chapter how it satisfies the rules

of the modal logic K4.

3.2 The box operator
The following notationwill be very convenient for us going forward. It is also suggestive

of connections with modal logic we will eventually explore:

Let 〈T,C〉 be a locally introspective theory.

Recall fromPresheaves over IndexedCategories (Definition 1.40) the T -indexed category

Psh(C) (the appropriate notion of the category of presheaves on C when C is an indexed

category rather than a category simpliciter).

Thus, we have three T -indexed lexcategories of note: T itself (considered as a T -indexed
category through the self-indexing T/−), C, and Psh(C).

Between these, we also have a cycle of T -indexed lexfunctors, like so:

T/−

C Psh(C)

F

c 7→HomC(−,c)

P 7→P (1)

Here, the bottom arrow is the Yoneda embedding, sending each object of C to the

corresponding representable presheaf. The right arrow takes a presheaf on C to its
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evaluation at the terminal object of C; that is, to its global elements. The left arrow is the F
which is part of the structure of an introspective theory.

Observation 3.1 Via Theorem 1.8, we have the t-aspect of the above triangle of indexed
lexfunctors is the same as the global aspect of the same triangle of indexed lexfunctors

relative to the slice locally introspective theory T/t given by Slice (Pre-)Introspective

Theories (Construction 2.19).

Definition 3.2 In general, we will write � for a roundtrip around this diagram, starting

from any of its three nodes.

Thus, we will write � for the T -indexed lexfunctor from T to itself given by t 7→
HomC(1,F(t)).

We will ALSO write � for the T -indexed lexfunctor from C to itself given by c 7→
F(HomC(1, c)).

And we will ALSO write � for the T -indexed lexfunctor from Psh(C) to Psh(C), which

sends the presheaf P to the presheaf represented by F(P (1)).
When we want to clarify precisely the domain we are operating on, we will write names

such as �T/−, �C , or �Psh(C), as appropriate.

As the Yoneda embedding is naturally thought of as the inclusion of a full sub-

lexcategory, identifying C with the corresponding representable presheaves within Psh(C),
we may also think of �Psh(C) as a T -indexed lexfunctor from Psh(C) to C. That is, as the
composition of merely the top two arrows above.

The above was all discussed for T , C, and Psh(C) considered as T -indexed lexcategories,

but this all (and the rest of this chapter as well) descends to corresponding structure on

their global aspects as well. In particular, we may write �T to denote the global aspect of

�T/−. Keep in mind, the global aspect of F is S , so wherever in the above we discussed F ,
this may be rewritten as S when considering just the global aspect.

Remark The reason we restricted attention here to T -representable (T,C)-indexed sets

(these being the objects of Psh(C) as we’ve defined it), rather than arbitrary (T,C)-indexed
sets, is so that the map P 7→ P (1) can indeed be taken as always landing back within T ,
and not within Psh(T ) more generally.

Similarly, the reason we restricted attention to locally introspective theories (i.e., the case

where C is locally T -representable), and not to pre-introspective theories more generally,

is so that the Yoneda embedding c 7→ HomC(−, c) does indeed yield T -representable
(T,C)-indexed sets.

3.3 Modal logic and axiom 4
The choice of this � notation for these purposes is meant to convey an analogy with the

� operator of modal logic, and in particular, with the provability operator of provability

logic. We will explore this more in later remarks.
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The key point here is that the rules of the � operator in a Kripke normal modal logic

are essentially the rules of a lex endofunctor on a lexcategory, and any of our � operators

is certainly lex as a composite of lex functors.

Furthermore, each of our � operators comes with a natural transformation from � to

�� corresponding to the so-called 4 axiom �A ` ��A in modal logic.

For the � operator on T this is clear, as the natural transformationN from identity to �
encodes the even stronger property t ` �t. The 4 axiom is the special case where t here is
of the form �A.

T

Glob(C) Glob(Psh(C))

S

c 7→HomC(−,c)

P 7→P (1)

N :idT→�T

Keeping in mind Observation 3.1, this extends automatically to an indexed endofunctor

on T/−, which we may call�T/−, whose aspect at each t ∈ T is given by the above diagram

relative to the slice locally introspective theory T/t. (We abuse notation slightly in the

following diagram and write N for the map from identity to �T/− whose each aspect is

given by the appropriate instance of the previous diagram.)

T/−

C Psh(C)

F

c 7→HomC(−,c)

P 7→P (1)

N :idT/−→�T/−

We do not have such a strong natural transformation from identity to� as acting on the

other corners of the triangle (C or Psh(C)). However, by taking the natural transformation

from t to �T t and whiskering it on both sides along the trips from any other corner of the

triangle into and out of T , we get a natural transformation from � to �� at each other

corner of the triangle as well.

(The general principle here is that, given morphisms f and g between the same pair

of objects in opposite directions, composing with f on one side and g on the other

turns (gf)n into (fg)n+1
, and thus whiskering in this way turns a natural transformation

: (gf)n → (gf)m into a natural transformation : (fg)n+1 → (fg)m+1
)
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C Psh(C) T/− T/− C

C Psh(C)

idT

�C

�C

�C

N

Psh(C) T/− T/− C

C Psh(C)

idT

�Psh(C)

�Psh(C)

�Psh(C)

N

(In the above two diagrams, all parallel paths commute except where an explicit natural

transformation is noted, and all unmarked edges are the corresponding of the three edges

along our triangle. In the diagram illustrating axiom 4 for �Psh(C), we note that we can

think of the codomain of �Psh(C) as either Psh(C) or more narrowly its full subcategory C.)

Thus, our � follows all the rules of the modal logic K4, in each of these contexts.

Shortly, we shall see that the general logic followed by �C in a locally introspective theory

is conversely no stronger than K4, while in an introspective theory, it is the modal logic GL.

Indeed, in the very next chapter we will see how in an introspective theory we get the last

ingredient for the modal logic GL, Löb’s theorem.

3.4 As applied to our archetypal examples

3.4.1 ZF-Finite examples
Recall from Construction 2.10 the introspective theory 〈ZΣ1 ,Z

′,S,N〉, where ZΣ1 is the

lexcategory of Σ1-definable hereditarily finite sets and Σ1-definable functions between them

up to provable equivalence in ZF-Finite, Z′ is the lexcategory internal to ZΣ1 of arbitrary

definable sets and arbitrary definable functions between them up to provable equivalence

in ZF-Finite, S assigns to each piece of ZΣ1 the corresponding (globally defined) piece of Z′,
and N is the Σ1-definable function which sends any hereditarily finite set to the canonical

term describing it, as well as witnessing the provable entailment from truth to provability

for Σ1 formulae.

Let us now consider the behavior of our� operators here. For convenience of discussion,

we will discuss just their global aspects.

First, observe that we have �ZΣ1
: ZΣ1 → ZΣ1 , defined by HomZ′(1,S(−)). This takes

any object in ZΣ1 and sends it to the object of global sections of the corresponding object in
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ZΣ1 ’s internal view of itself via Z′. This is like sending “the object of Xes” to “the object of

definitions of Xes within ZF-Finite”. In the particular case where the object in question is

subterminal (thus representing a proposition), this is like sending the proposition X to

the proposition “There is a proof in ZF-Finite of X”. Thus, this operator acts just as the

traditional provability operator in this context.

Next, we turn our attention to the ZΣ1-internal endolexfunctor � : Z′ → Z′. Again, we

shall just look at its global aspect. Presuming the soundness of ZF-Finite in our metatheory

for further convenience, we have that Glob(Z′) is identified with Z, the lexcategory of

arbitrary definable sets and arbitrary definable functions between them up to provable

equivalence in ZF-Finite. Thus, we are considering � : Z→ Z, defined by S(HomZ(1,−)).
This again takes any object in Z and sends it to the object of global sections of the

corresponding object in Z ′ (the internal view Z has of itself). So again, in the same way,

this is like sending “the object of Xes” to “the object of Xes which are definable within

ZF-Finite”, and in the particular case where the object in question is subterminal and thus

represents a proposition, this is like sending the propositionX to the proposition “There is

a proof in ZF-Finite of X”. So again, this operator acts just as the traditional provability

operator in this context.

3.4.2 Kripke frame example
Recall the locally introspective theory 〈Psh(Q), C〉 from Construction 2.14, constructed

from a transitive relation < on a set P , with Q being P augmented with a new maximum

element∞ and construed as a preorder category using the < relation. Our definition of C
was such that Glob(C) = Psh(|P |) = Set|P |. Our definition of S : Psh(Q)→ Psh(|P |) was

the forgetful functor which ignores the < relation and∞ element in Q. Our definition of

C also ensures that HomC(1,−) : Psh(|P |)→ Psh(Q) sent f ∈ Psh(|P |) to the presheaf F
on Q such that F (q) is the product of f(p) over all p < q, with restriction maps given by

projection.

Thus, �Psh(|P |) acts like so: For F ∈ Psh(|P |) and x ∈ P , we have that �Psh(|P |)(F )(x) =
S(HomC(1, F )) is the product of F (y) over all y < x.

Similarly, �Psh(Q) acts like so: For F ∈ Psh(Q) and x ∈ Q, we have that �Psh(Q)(F )(x)
is the product of F (y) over all y < x. (This �Psh(Q)(F ) furthermore is equipped with

restriction maps given by projection.)

In particular, we may consider the special case of subterminal presheaves, amounting to

propositions which may be true in some places while not in others. Subterminal presheaves

in Psh(|P |) are simply subsets of P . Given such a subset F ⊆ P , the above tells us that

�Psh(|P |)(F ) is identified with the (downwards closed) subset of P containing precisely

those x such that all y < x are contained in F .
Similarly, subterminal presheaves in Psh(Q) are simply downwards closed subsets of

Q. Given such a downwards closed subset F ⊆ Q, the above tells us that �Psh(Q)(F ) is
identified with the downwards closed subset of Q containing precisely those x such that

all y < x are contained in F .
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Thus, our notion of � acts on these subterminal presheaves in precisely the manner of

the traditional interpretation of the � operator in Kripke frames.

In this way, we may note that any identity which holds of the �C operator in all

locally introspective theories 〈T,C〉must be an identity which holds of the � operator on

propositions in Kripke frames constructed from a transitive < relation. This in turn is

well known to entail holding of the � operator in the modal logic K4 . Thus, in this sense

(which we refrain from stating formally for now, though it clearly could be turned into

various formal statements), the logic of the � operator in locally introspective theories is

no stronger than the modal logic K4. We’ve also already seen in Modal logic and axiom 4

(Section 3.3) that it is at least as strong as the modal logic K4, and thus the logic of the �
operator in general locally introspective theories can be identified with K4.

In the above, we discussed the locally introspective theory constructed by Construc-

tion 2.14 from a transitive relation <. Recall that, in the particular case where < is

furthermore well-founded, we may impose cardinality constraints in a suitable fashion to

turn this into an introspective theory (this being Construction 2.16). The nature of the �
operators on the introspective theory Construction 2.16 will be essentially the same as for

Construction 2.14, as the former is a sub-introspection of the latter. Thus, again, these �
operators will match the traditional interpretation of the box operator in Kripke frames. In

this way, we find that the logic of the �C operators in introspective theories 〈T,C〉 is no
stronger than that of the � operator in well-founded transitive Kripke frames, which is

well known to correspond to the modal logic GL (given by K4 + Löb’s theorem). In the

next chapter, we will prove the remarkable fact that Löb’s theorem (and thus all of GL) is

validated in all introspective theories, so that the logic of the �C operator in introspective

theories can be said to be precisely that of the modal logic GL.

3.4.3 Step-indexing example
Recall the locally introspective theory 〈Psh(ω), C〉 from Construction 2.12, in which

S : Psh(ω)→ Glob(C) acts as an equivalence. It was also observed in that construction that

HomC(1,S(−)) : Psh(ω) → Psh(ω) acts as the operator Later, such that Later(P )(0) = 1
and Later(P )(n+ 1) = P (n), for P ∈ Psh(ω) and n ∈ ω.

Thus, the operator �Psh(ω) here is precisely this operator Later.
Note that this is quite distinct from the � operator obtained for Construction 2.14 as

discussed above, even when considering the poset ω. The distinction is that Later(P )(n),
for positive n, is not the product of P (m) at allm < n but rather simply their limit, P (n− 1).

However, this distinction is not visible when considering only subterminal presheaves

in Psh(ω). These amount to downwards closed subsets of ω, and for such a downwards

closed subset F ⊆ ω, we will have that �Psh(ω) is the downwards closed subset of ω which

includes n just in case either n = 0 or n − 1 ∈ F , which in turn happens just in case all

m < n are contained in F . This again is the same behavior as the traditional � operator on

a Kripke frame corresponding to ω. Note however that in this locally introspective theory,

we do not have the ability to discuss propositions which are not downwards closed.
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The � operators on the introspective theory Construction 2.13 are again essentially

the same as those on the locally introspective theory Construction 2.12, as the former is a

sub-introspection of the latter.

3.5 Recap
We have defined the � operator in the context of locally introspective theories 〈T,C〉,

acting on each of T , C, and Psh(C).
We have furthermore shown how each of these � operators satisfies the rules of K4

modal logic.

We have also seen that the traditional interpretation of K4 modal logic in transitive

Kripke frames is a special case of our � operator for locally introspective theories (thus

letting us conclude a tight correspondence between locally introspective theories and K4

modal logic).

The traditional provability operator on ZF-Finite (or just as well, on Peano Arithmetic)

was also seen as a special case of our � operator on an introspective theory. And the

step-indexing operator considered in guarded recursion on the topos of trees was also seen

as a special case of our � operator on locally introspective or introspective theories.

In the next chapter, we will show that in any introspective theory, the � furthermore

satisfies the Löb property of the modal logic GL (aka, “provability logic”). Thus, the corre-

spondence between locally introspective theories and the modal logic K4 is complemented

by a correspondence between introspective theories and the modal logic GL.
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Chapter 4

Löb’s theorem

4.1 Preview
In this chapter, we prove our most important theorem, justifying the significance of

the simple concept of introspective theories. We show how every introspective theory

automatically satisfies a general version of Löb’s theorem, acting as the construction of

general fixed points. We will also see how Löb’s theorem is in full generality a phenomenon

linked to presheaves, and not only constrained to representable presheaves.

The key results of this chapter are those covered in Presheaf diagonalization for pre-

introspective theories (Section 4.4) and Bootstrapping to Löb’s theorem for introspective

theories (Section 4.5), culminating in Löb’s Theorem for Introspective Theories (Theo-

rem 4.19), our most important theorem. All material in those sections is original to this

work.

The material on the Löb property in general categories in The Löb property in abstract

(Section 4.2) includes some observations which can also be found (either explicitly or

implicitly) in existing literature. We give our own exposition of this material, which felt

important to include in a clean and complete exposition of the significance of our key results.

In particular, we confirm how these general Löb property results continue to be applicable

in our particular introspective theory context, even without common presumptions such

as cartesian closure, and even with care taken to distinguish the roles of T , C, and Psh(C)
in a general introspective theory 〈T,C〉.

The discussion in Lawvere’s fixed point theorem (Section 4.3) concerns Lawvere’s fixed

point theorem, which of course is not original to us, but we also include some reframing

and generalization of this which is due to us rather than Lawvere. The discussion in

Relating variations on Lawvere’s fixed point theorem (Section 4.8) compares our reframing

to some other reframings of Lawvere’s fixed point theorem in the existing literature.

The sole theorem in The self-indexing cannot be representable, except trivially (Sec-

tion 4.6) is the same theorem as proven in [PT89]. We re-note it here simply to observe that

it follows as a special case of our more general Löb’s Theorem for Introspective Theories
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(Theorem 4.19).

4.2 The Löb property in abstract
Definition 4.1 Let D be any category with a terminal object and let � : D → D be a

terminal-object-preserving endofunctor on D. We say � has the Löb property if, for every

object Ω ofD and every morphism g : �Ω→ Ω, there exists a morphism ω : 1→ Ω making

the following square commute:

�1 �Ω

1 Ω

g

ω

�ω

In other words, for every Ω ∈ D and g : �Ω→ Ω, there is a fixed point of ω 7→ g ◦ (�ω) :
HomD(1,Ω)→ HomD(1,Ω).

If such fixed points are furthermore always unique, we say � has the Löb property
with uniqueness. (Note that the Löb property with uniqueness is the same as saying that

the unique map : �1→ 1 is an initial �-algebra.)

Observation 4.2 For example, the identity endofunctor on the category of complete lattices

andmonotonicmaps between themhas the Löbproperty (this amounts to theKnaster-Tarski

fixed point theorem). However, this does not have the Löb property with uniqueness.

In this chapter, we will establish that for every introspective theory 〈T,C〉, each aspect

of each of �T/−, �C , and �Psh(C) has the Löb property with uniqueness. That such a strong

result follows from such a minimal and simple categorical structure motivates much of our

interest in the concept of introspective theories.

But before we establish this version of Löb’s theorem for introspective theories in

particular, we will develop the theory of the Löb property and its consequences a little

further in abstract.

Theorem 4.3 Let D and E be categories with terminal objects, and let M : D → E and

N : E → D be functors preserving terminal objects. Suppose NM : D → D has the Löb

property. Then so does MN : E → E. Furthermore, if NM has the Löb property with

uniqueness, then so doesMN .

Proof. This is by the general theorem that fixed points of a composition of functions are

in bĳection with fixed points of any cyclic rearrangement of that composition (as f and g
themselves restrict to inverse maps between fixed points of gf and fg). In particular, letting

compx(y) = x ◦ y, the fixed points of ωE 7→ compg(M(N(ωE))) are in bĳection with the fixed

points of ωD 7→ N(compg(M(ωD))), which is to say, of ωD 7→ compN(g)(N(M(ωD))).
The latter fixed points must exist (or exist uniquely) if NM : D → D has the Löb

property (or the Löb property with uniqueness, respectively), and thus in such cases so do

the former fixed points, establishing the corresponding property forMN : E → E. �
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Theorem 4.4 Let D be any lexcategory, and let � : D → D be a terminal-object-preserving

endofunctor on D. If � has the Löb property, then it furthermore has the Löb property

with uniqueness.

Proof. We must show that, given any two commutative squares as below (with the same g
on the right hand side of each), the morphisms ω and ψ are equal:

�1 �Ω �1 �Ω

1 Ω 1 Ω

g

ψ

�ψ�ω

g

ω

Let h : H → 1 be the equalizer of ω and ψ. We will have that ω = ψ just in case h is an

isomorphism. As this h is monic, making H a subobject of 1, we will have that h is an

isomorphism just in case there is any map from 1 to H .

Thanks to the Löb property, this in turn occurs just in case there is some map from �H
to H . And by the definition of H as an equalizer, this occurs just in case there is some map

from �H to 1 which gives equal results when composed with ω and with ψ.
But the map �h : �H → 1 does indeed have this property, as seen in the following

commutative diagram (where the top left square commutes because h;ω = h;ψ):

�H �1 1

�1 �Ω Ω

1 Ω

g

ψ

�ψ

�h

�h

�ω ω

g

This completes the proof. �

Remark Note that Theorem4.4makes essential use of the structure available in a lexcategory.

We can see this by considering the example from Observation 4.2, which has the Löb

property but not the Löb property with uniqueness. This is possible as the category of

complete lattices and arbitrary monotonic maps lacks equalizers.

The application of these abstract results to locally introspective theories in particular is

like so:

Theorem 4.5 If 〈T,C〉 is a locally introspective theory and t is an object of T such that at

least one of �T/−, �C , or �Psh(C) has the Löb property (without presumed uniqueness) at

its t-aspect, then all three have the Löb property with uniqueness at their t-aspect.
If this happens for every t ∈ T , we say this locally introspective theory itself has the

Löb property.
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Proof. By Theorem 4.3, when considering the definitions of the various � operators given

via the triangle at Definition 3.2, we find that if any of these � operators have the Löb

property at their t-aspect, then all three do. By Theorem 4.4, we can furthermore conclude

the Löb property with uniqueness. �

Theorem 4.4 is only a special case of a much broader and important theorem which we

now discuss.

Theorem 4.6 LetD be any lexcategory and let� : D → D be any terminal-object-preserving

functor. Let E be any representable D-indexed category. (Note that � acting on E induces

also another representable D-indexed category �E , as well as a functor from each d-
defined aspect of E to the (�d)-defined aspect of �E, for d ∈ D. In particular, as � is

terminal-object-preserving, � acts as a functor from the global aspect of E to the global

aspect of �E.)
Suppose also given a D-indexed functor f : �E → E, and let the endofunctor F on the

global aspect of E be given by first applying � to arrive in the global aspect of �E, then
applying f to arrive back in the global aspect of E.

If � has the Löb property, then there is an F -hylomorphism (as in Definition 1.82)

between any F -coalgebraW : w → F (w) and any F -algebraM : F (m)→ m in the global

aspect of E. And if � furthermore has the Löb property with uniqueness, then this

hylomorphism is unique.

Proof. A hylomorphism fromW toM is a fixed point of x 7→M ◦F (x)◦W : HomE(w,m)→
HomE(w,m). But as F (x) = f(�x), this is the same as a fixed point for x 7→ g(�x) where

g(−) is defined byM ◦ f(−) ◦W : �HomE(w,m)→ HomE(w,m).
The hylomorphisms fromW toM are thus the same as the fixed points given by the

Löb property with respect to this g. This completes the proof. �

We now demonstrate how Theorem 4.4 can be seen as a special case of Theorem 4.6:

Corollary 4.7 LetD be any lexcategory, and let� : D → D be a terminal-object-preserving

endofunctor on D. If � has the Löb property, then it furthermore has the Löb property

with uniqueness.

Proof. Let E be an arbitrary object of D (thus, a representable D-indexed set) and let us

construe this also as a representable D-indexed discrete category. Let f : �E → E be

an arbitrary map in D, and as above, let us take F : HomD(1, E) → HomD(1, E) to be

given as the composition of � : HomD(1, E)→ HomD(1,�E) with f ◦ − : HomD(1,�E)→
HomD(1, E).

As E is a discrete category, observe that any F -coalgebra or F -algebra in the global

aspect of E amounts to a fixed point of f ◦ �(−) : HomD(1, E) → HomD(1, E). The Löb

property tells us such fixed points exist, while Theorem 4.6 tells us there is a hylomorphism

between any such fixed points. But as E is a discrete category, such a hylomorphism
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amounts to just an equality between the two elements of HomD(1, E). Thus, any two such

fixed points are equal, which is to say, we have the Löb property with uniqueness. �

(It is perhaps easy to miss how the presumption of equalizers in D has been used in

the argument for Corollary 4.7. At one point within its invocation of Theorem 4.6, the

argument considers the object �HomE(w,m) for parallel w,m ∈ HomD(1, E). As such,

it depends upon the fact that HomE(w,m) is a representable D-indexed set. This object

HomE(w,m) of D is given by an equalizer between parallel maps from 1 to E in D; this is

where the fact that D is a lexcategory is essential.)

Corollary 4.8 Consider the same setup as of Theorem 4.6, and presume � has the Löb

property with uniqueness (as we now know follows automatically from the Löb property

on a lexcategory). Then any fixed point of F (in the sense of an object e of the global aspect
ofE along with an isomorphism between e and F (e)) is simultaneously an initial F -algebra
and a terminal F -coalgebra. In particular, any two such fixed points are isomorphic, via a

unique F -algebra isomorphism.

Proof. In that context, Theorem 4.6 says that every F -coalgebra has a unique hylomorphism

into every F -algebra. In the particular case that the coalgebra is invertible, this can be

read as a morphism between algebras, and establishes that the coalgebra’s inverse is an

initial algebra. Dually, for any invertible algebra, this establishes its inverse as a terminal

coalgebra. �

Remark The argument we have given for Theorem 4.6 and thus for Corollary 4.8 is

essentially the same as that given for Lemma 7.6 in [Bir+11]. For convenience for our

purposes, we have framed this in terms of internal categories, though in [Bir+11] it is more

properly framed as about enriched categories more generally. On the other hand, this

argument is given in [Bir+11] in a context where the uniqueness of the Löb property has

already been presumed, whereas we have noted that this argument can also be given in a

context where only the weaker Löb property without uniqueness has been presumed, and

then this argument can be used to in fact derive said uniqueness in a lexcategory.

Arguments establishing that the weaker Löb property entails the Löb property with

uniqueness in contexts with identity types have been noted in the literature on guarded

recursion. For example, as Theorem V.8 in [BM13] and as Theorem 9.5 in [Gra+21].

However, we are unaware of any prior observation in the literature that this uniqueness can

also be understood as a special case of the existence of coalgebra-to-algebra hylomorphisms,

unifying those arguments.

Theorem 4.9 The identity endofunctor on a cartesian closed category has the Löb property

with uniqueness just in case the category is the trivial terminal category.

Proof. Taking � to be this identity endofunctor and applying the Löb property with

uniqueness to the morphism idBA : �(BA)→ (BA), for arbitrary objects A and B, we find
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that each BA
has a unique global element, which is to say, there is a unique map between

any pair of objects. Thus all objects become isomorphic to the terminal object. �

Corollary 4.10 The identity endofunctor on a cartesian closed category with equalizers

has the Löb property just in case the category is the trivial terminal category.

Proof. By combining Theorem 4.9 and Theorem 4.4. �

Observation 4.11 The example from Observation 4.2 shows that it is possible for the

identity endofunctor on a nontrivial cartesian closed category to have the Löb property, so

long as neither uniqueness nor equalizers are presumed.

4.3 Lawvere’s fixed point theorem
Let us refresh the reader on Lawvere’s fixed point theorem [Law69], which captures the

general structure of many diagonalization arguments and their relationship to cartesian

closed structure. We shall first review a proof of Lawvere’s fixed point theorem close in

spirit to Lawvere’s framing of his result.

Then we will note a slight generalization for which essentially the same argument

applies. Then in the next section we will turn this generalization into a result in the context

of general pre-introspective theories. Then we will specialize further down to introspective

theories, and observe a wonderful “bootstrapping” phenomenon which arises there, which

shall ultimately provide us with the Löb property in that context, which is our main result.

Theorem 4.12 (Lawvere’s Fixed Point Theorem) Let T be an arbitrary category. LetX be an

object of T and let Ω be any T -indexed set. Suppose also given some map App′ : X → ΩX

(equivalent to the data of a map App : X ×X → Ω).

Let ? be any object of T . By a “point” of a T -indexed set, we shall mean an element of

its aspect at ? (equivalent to the data of a map into it from ?).
Suppose App has the surjectivity-like property that, for every map F : X → Ω, there is

a point f of X , such that for every point x of X , we have that App(f, x) = F (x).
Then for any map g : Ω→ Ω, there exists a point ω of Ω such that ω = g(ω). That is to

say, g has a fixed point.

Proof. Let F : X → Ω be the following composition:

X X ×X Ω Ω
〈idX ,idX〉 App g

That is, for any generalized element x of X , we have that F (x) = g(App(x, x)).
We know there exists a point f of X which corresponds with F in the manner of our

surjectivity-like supposition on App. Now consider the instance of this surjectivity-like

supposition where x = f . This tells us that App(f, f) = F (f). But F (f) = g(App(f, f)).
Thus, taking ω = App(f, f), we have that ω = g(ω) as desired. �
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Let us make a few remarks on the scope of generality of this theorem.

Lawvere originally states this theorem specifically for the case where T is a cartesian

closed category, but later in [Law69] notes that this implies the theorem just as well for the

case where T is merely a category with finite products, as any category can be embedded

as a full subcategory of a cartesian closed category in a way which preserves any products

or exponentials already present (via the Yoneda embedding). [Law69] does not explicitly

consider examples where the original category of interest T lacks finite products, such that

X ×X is not an object of T , nor consider taking Ω to be merely a T -indexed set rather than

an object of T , but of course these are covered in the same way by the same insight that we

can work in Psh(T ) instead of T .
Having observed that we can just as well frame the theorem with any of its objects

drawn from Psh(T ) rather than T , the reader might then well wonder why in our framing

we have allowed some objects to be in Psh(T ) but still constrained others (such as X) to

come from T . We chose this particular framing partly as this is closest to the applications

we have in mind, and also partly for what amount to stylistic reasons. In particular, having

stated the theorem in this form, interpreting the surjectivity condition onApp only requires

quantification over the set of morphisms from object X to presheaf Ω (i.e., the set Ω(X)),
instead of requiring quantification over the class of natural transformations from a presheaf

X to another presheaf Ω (which is potentially a proper class, if T is proper-class-sized).

But this is not really of much importance, and again the more general form of the theorem

follows readily from the ostensibly less general one.

[Law69] also only states this theorem in the particular case where ? is a terminal object.

In general, we can always pass from T to a slice category T/?, and in so doing we will

turn what was ?-defined data in T into globally defined data in T/? (a la Theorem 1.8). So

constraining ? to be a terminal object does not constrain the theorem excessively. However,

it does constrain the theorem slightly, in that interpreting the surjectivity precondition in

T/? in this way results in a stronger (that is, less often satisfied) surjectivity precondition

than in the more flexible framing of the theorem we have given: The surjectivity condition

in T/?would amount to requiring that for every F : ?×X → Ω in Psh(T ), we could find a

corresponding f . However, we have only required surjectivity with respect to the more

constrained set of F : X → Ω in Psh(T ).
We do not actually need this extra flexibility for proving our main result. For our

purposes, just like Lawvere’s, it would suffice to always take ? to be a terminal object. But

we note the availability of this flexibility all the same (if only for the purpose of comparison

at the end of this chapter to other variants on Lawvere’s fixed point theorem recently noted

in the literature, such as Magmoidal Fixed Point Theorem (Theorem 4.25)).

Even this loosened surjectivity presumption is still far overkill as far as the needs of the

argument go. All that really matters is for one specific definable value to be in the range of

App′. But in general practice and for our particular purposes, this is always established

because of some such surjectivity condition anyway, so that seems the most useful framing

in which to give the theorem.

Having said all that about the wide applicability of Lawvere’s Fixed Point Theorem
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(Theorem 4.12), we actually will need to generalize it slightly further for our purposes.

Having given the above discussion of the traditional theorem to prime the reader’s intuitions

through familiarity, we now put forward the following simple generalization:

Theorem 4.13 (Self-Related Point Theorem) Let T be an arbitrary category. Let ? andX be

objects of T and let Ω be any T -indexed set. Suppose also given some map App′ : X → ΩX

(equivalent to the data of a map App : X ×X → Ω).

As before, we shall use “point of” as shorthand for “element of the ?-aspect of”.
Suppose also given a binary relation R on the points of Ω. (We needn’t presume R to

be symmetric or transitive or any such thing.). And suppose App has the surjectivity-like
property that, for every morphism F : X → Ω, there is a point f of X , such that for every

point x of X , we have R(App(f, x), F (x)).
Then there exists a point ω of Ω such that R(ω, ω). That is to say, R has a self-related

point.

Proof. Let F : X → Ω be the following composition:

X X ×X Ω
〈idX ,idX〉 App

That is, for any generalized element x of X , we have that F (x) = App(x, x).
We know there exists a point f ofX in accordance with our surjectivity-like supposition

on App′. Now consider the instance of the surjectivity-like supposition where x = f . This
tells us that R(App(f, f), F (f)). But F (f) = App(f, f).

Thus, we have found a point of Ω which is related to itself by R, as desired. �

It may not be obvious that this generalizes Lawvere’s Fixed Point Theorem (Theo-

rem 4.12). The following shows how this is so:

Corollary 4.14 (Relatedly-Fixed Point Theorem) Consider the same setup as of Self-

Related Point Theorem (Theorem 4.13), and furthermore, suppose given g : Ω→ Ω.

Then there exists a point ω of Ω such that R(ω, g(ω)). We might describe this as “ω is an

R-fixed point of g”.

Proof. Consider the binary relation Rg on points of Ω given by Rg(ω1, ω2) = R(ω1, g(ω2)).
We have been given the supposition that, for every morphism F : X → Ω, there is a

point f of X , such that for every point x of X , we have R(App(f, x), F (x)).
As this holds for arbitrary F : X → Ω, this also holds when an arbitrary F is replaced

by g ◦ F : X → Ω. That is to say, for every F : X → Ω, there is a point f of X , such that for

every point x of X , we have R(App(f, x), (g ◦ F )(x)), which is to say, Rg(App(f, x), F (x)).
But this is precisely the surjectivity supposition we need in order to invoke Self-Related

Point Theorem (Theorem 4.13) with Rg in place of R. Doing so, we obtain a point ω of Ω
such that Rg(ω, ω), which is to say R(ω, g(ω)), as desired. �
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Now we can see that Lawvere’s Fixed Point Theorem (Theorem 4.12) is of course the

instance of Relatedly-Fixed Point Theorem (Corollary 4.14) where the relation R is taken to

be equality. But Relatedly-Fixed Point Theorem (Corollary 4.14) is strictly more general in

allowing the use of an arbitrary relation.

(As for the relation between Relatedly-Fixed Point Theorem (Corollary 4.14) and Self-

Related Point Theorem (Theorem 4.13), each is an instance of the other. We above obtained

Relatedly-Fixed Point Theorem (Corollary 4.14) as a corollary of Self-Related Point Theorem

(Theorem 4.13). But also conversely, Self-Related Point Theorem (Theorem 4.13) is the

special case of Relatedly-Fixed Point Theorem (Corollary 4.14) where g is taken to be idΩ.)

At any rate, we shall find the added flexibility of allowing a relation in place of equality

to be valuable in the next sections, as we begin to specialize towards our application in

introspective theories.

4.4 Presheaf diagonalization for pre-introspective theories
Theorem 4.15 (Pre-introspective Diagonalization) Let 〈T,C,S,N〉 be a pre-introspective
theory. Let ?T be the terminal object of T and let ?C be the terminal object ofC.1 Throughout

the following, we use “point of” as shorthand for “element of the ?T -aspect of”.
Furthermore, let P be a (T,C)-indexed set, in the sense of Double or multiple indexing

(Section 1.6). We will write in the following P (c) to mean the T -indexed set t 7→ P (t, c), for
globally defined objects c of C.

Suppose also given some object Ω ∈ T with a mapQ : Ω→ P (?C) such that the induced

function Q ◦ − : Hom(X ×X,Ω)→ Hom(X ×X,P (?C)) is surjective.
Suppose also given some object X ∈ T and map α : X → P (S(X)). We also make a

surjectivity-like assumption on α. Specifically, we suppose that for every global element p
of P (S(X)), there is a point x of X such that α(x) = p, as points of P (S(X)).

Finally, let g be a globally defined element of P (S(Ω)).
Then we obtain a point ω of Ω, such that Q(ω) = NΩ(ω)∗g.

Proof. We shall show how this is an instance of Self-Related Point Theorem (Theorem 4.13).

We defineApp : X×X → Ω like so: Consider the two projection maps π1, π2 : X×X →
X , as the two generic (X × X)-defined elements of X . We thus obtain also (X × X)-
defined elements α(π1) of P (S(X)) and NX(π2) of HomC(?C ,S(X)). Combining these

via the presheaf action of P , we get (NX(π2))∗(α(π1)) as an (X × X)-defined element

of P (?C). By the surjectivity presumption on Q, we find a preimage of this under

the action of Q : Ω → P (?C). We take this preimage to be our App : X × X → Ω.

1
We use this ? notation rather than 1 notation so that we can make the observation that this theorem’s

proof actually applies more generally, not depending on any limit structure. It would suffice to let T be any

category, let C be a T -indexed category, let S be a functor from T to the global aspect of C, let N be a map

from t to HomC(?C ,S(t)), natural in t ∈ T , let ?T be any object of T , and let ?C be any globally defined object

of C. Knowing that the proof makes no use of limit structure may make it easier to follow.



CHAPTER 4. LÖB’S THEOREM 79

Thus, for any generalized elements x1, x2 of X with the same domain, we have that

Q(App(x1, x2)) = (NX(x2))∗(α(x1)).
We must now establish an appropriate surjectivity supposition on App for invoking

Self-Related Point Theorem (Theorem 4.13).

Let an arbitrary F : X → Ω be given. We then have that S(F ) : S(X) → S(Ω) in the

global aspect of C. We can apply the action of P along this morphism to g (a global element

of P (S(Ω))), thus obtaining a global element S(F )∗g of P (S(X)). By the surjectivity-

like assumption on α we made, we now have a corresponding point f of X , such that

α(f) = S(F )∗g (the right side here having been reinterpreted from a global element into a

point).

It follows that for every point x of X , we have that NX(x)∗α(f) = NX(x)∗S(F )∗g.
Note that by the definition of App, we have that Q(App(f, x)) = (NX(x))∗α(f).
Also note that by S With N (Lemma 2.24), we have that S(F ) ◦C NX(x) = NΩ(F (x)).

Thus, by the functoriality of P , we have that NX(x)∗S(F )∗g = NΩ(F (x))∗g.
Combining these last three paragraphs, we have that Q(App(f, x)) = NΩ(F (x))∗g.
If we define the relation R(ω1, ω2) as the equation Q(ω1) = NΩ(ω2)∗g accordingly, we

have now established the surjectivity supposition required in order to invoke Self-Related

Point Theorem (Theorem 4.13). From this invocation, we get a point of Ω which is related

by R to itself, which is just what we desired, completing the proof. �

Corollary 4.16 In many cases we are interested in (though not all!), we furthermore take

P (?C) to be T -representable and take Ω to be P (?C), with Q : Ω → P (?C) as the identity
map between these. We then automatically have that the aspect ofQ atX ×X is surjective

as required.

Theorem 4.17 Suppose given a locally introspective theory 〈T,C,S,N〉 and an object P in

the global aspect of Psh(C).
If there is any object X of T with an isomorphism from X to P (S(X)), then, within

the global aspect of Psh(C), for every g : �P → P , we obtain an ω : 1 → P , such that

ω = g ◦ ω′, where ω′ = �Psh(C)(ω) : 1→ �P . In other words, we obtain the instance of the

Löb property constrained specifically to P .
We get the same result also if, within Glob(C), there is any object Y along with an

isomorphism from Y to S(P (Y )).

Proof. Any isomorphism α : X → P (S(X)) (or even just a retraction) will automati-

cally satisfy the surjectivity-like precondition allowing us to invoke Pre-introspective

Diagonalization (Theorem 4.15) via Corollary 4.16, which takes Ω as P (?C) and Q as

identity. Everything follows immediately from this, but has just been Yoneda-ized in its

phrasing.

Specifically, keep in mind via the Yoneda lemma that the data of a map from c ∈ C to

P ∈ Psh(C) is the same as an element of P (c). In this way, our g : �P → P can be seen as

indeed an element of P (�P ) = P (S(P (?C))) = P (S(Ω)), as required.
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The invocation of Pre-introspective Diagonalization (Theorem 4.15) via Corollary 4.16

will give us a global element ω of Ω = P (?C) such that ω = ω′∗g, where ω′ = NΩ(ω) is a
global element of �P (?C). Again, by the Yoneda lemma, such an ω corresponds to a map

from 1 to P in the global aspect of Psh(C), such an ω′ corresponds to a map from 1 to �P
(specifically, ω′ = �ω, by S Matches N (Lemma 2.25)), and our equation relating ω and ω′

is that that ω = g ◦ ω′.
For the last remark about starting from a fixed point for S(P (−)) rather than a fixed

point for P (S(−)), observe that if we have a Y isomorphic to S(P (Y )), then by taking X to

be P (Y ), we obtain an X isomorphic to P (S(X)).2
�

4.5 Bootstrapping to Löb’s theorem for introspective
theories

This last theorem gives us an instance of the Löb property, but comes with the

precondition of a certain isomorphism.

Incredibly, we can bootstrap away this isomorphism precondition, in the context of

an introspective theory. That is, in the context of an introspective theory, we can use one

particular instance of Pre-introspective Diagonalization (Theorem 4.15) itself to provide the

very isomorphisms necessary in order to then re-invoke Pre-introspective Diagonalization

(Theorem 4.15) via Theorem 4.17.

Our plan is to consider the (T,C)-indexed setP such thatP (t, c) is the set of isomorphism

classes of C(t)/c, with the action of P on morphisms of C being given by pullback (while

the action of P on morphisms of T is given by the reindexing action of the T -indexed
category C).3

In more detail, for any fixed t and any morphism m : c1 → c2 of C(t), the action

P (t,m) : P (t, c2) → P (t, c1) is given by pullback in the lexcategory C(t) along m; that is,

this is given bym∗ : C(t)/c2 → C(t)/c1 considered as taking isomorphism classes of objects

to isomorphism classes of objects. Note that this reindexing along morphisms in C is

indeed strictly functorial, because we are working with isomorphism classes of objects

rather than with objects simpliciter.

We now choose any internal category Cstrict in T which presents C (by definition, such

an internal category exists in an introspective theory; theremay bemultiple non-isomorphic

such internal categories presenting C, but any will do for our purposes) and we take Ω
to be Ob(Cstrict), with Q : Ω → P (?C) sending each object of each aspect of Cstrict to its

isomorphism class within the corresponding aspect of C. Note that every component of Q
2
This is a special case of the bĳective correspondence between fixed points of cyclic rearrangements of

compositions, which we also observed within the proof of Theorem 4.3.

3
Note that this (T,C)-indexed set P is NOT presumed to be T -representable! Indeed, we cannot generally

hope for this, as we do not presume T to have any regularity or exactness properties such that we could carry

out internal to T such quotienting constructions as would yield the object of isomorphism classes of C.
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as a natural transformation between presheaves on T is surjective (because C is presented

by Cstrict, the isomorphism classes of C and of Cstrict are the same, and there is clearly a

surjection from the objects of Cstrict (at any aspect) onto the isomorphism classes of Cstrict
(at the same aspect)). Thus in particular the component of Q at the object X ×X of T is

surjective. .

We take X to be the subobject of Mor(Cstrict) comprising those morphisms whose

codomain is S(Mor(Cstrict)). That is, the object given by the following equalizer diagram.

X Mor(Cstrict) Ob(Cstrict)

1

i

cod

! S′(Mor(Cstrict))

In the above diagram, we have labelled an arrow with the name S ′(Mor(Cstrict)). By
this we mean some arbitrary globally defined object of Cstrict which presents the globally

defined object S(Mor(Cstrict)) of C. We pedantically caution that there may actually be

multiple non-equal global elements of Ob(Cstrict) which present objects isomorphic to

S(Mor(Cstrict)). But any arbitrary choice of some such element will be fine to use as the

arrow in this diagram for our purposes.4

Note that, by virtue of being an equalizer, the inclusion map i : X → Mor(Cstrict) in T is

monic, and thus (as S is a lexfunctor) so also is S(i) : S(X)→ S(Mor(Cstrict)) in C. From
this, we candefine ourα : X → P (S(X)) and establish its surjectivity condition. Specifically,

observe that pullback along S(i) gives us a functor S(i)∗ : C/S(Mor(Cstrict)) → C/S(X).
If we focus on the action of S(i)∗ on objects, consider its input object as presented by an

object of Cstrict/S ′(Mor(Cstrict)) (whose objects comprise X), and consider its output object

modulo isomorphism, this yields S(i)∗ : X → P (S(X)), which we take as our definition of

α.
As for the surjectivity condition, let F be an arbitrary global element of P (S(X)); that is,

an arbitrary isomorphism class of objects of C/S(X). The pushforward (i.e., composition)

action of S(i) gives us a functor from C/S(X)→ C/S(Mor(Cstrict)), taking F to S(i) ◦ F ,
an isomorphism class of objects of the global aspect of C/S(Mor(Cstrict)). This will be

presented by at least one globally defined element f of X (keeping in mind the definition

of X); there may be multiple non-equal such f but any will do. Observe that α(f) is the
isomorphism class of C/S(X) corresponding to S(i) ◦ F pulled back along S(i). This

isomorphism class is the same as that of F itself, because of the monicity of S(i), like so:

4
Indeed, it is readily seen that even two non-equal such choices will still lead to isomorphic Xes. Or

more precisely, isomorphic results as an object of T , though not isomorphic as a subobject of Mor(Cstrict), as
the specific choice of inclusion map i : X → Mor(Cstrict)will vary. But again, any so-arising choice will be

fine for our purposes.
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• •

S(X) S(X)

S(X) S(Mor(Cstrict))

S(i)

F

S(i)

id

id
y

F

id

y

Thus, α(f) = F as an element of P (S(X)), establishing the required surjectivity

condition on α.

Thus, all presumptions are satisfied for us to be able to apply Pre-introspective

Diagonalization (Theorem 4.15) with these definitions, for an arbitrary globally defined

element g of P (S(Ω)).
In particular, let G be an arbitrary globally defined object of Psh(C). (In fact, it suffices

for G merely to have reindexing along isomorphisms rather than arbitrary morphisms

of C; that is, for G to be an object of Psh(core(C)), where core(C) is the subcategory of C
containing just its invertible morphisms.)

This will be presented by an object of T/Ob(Cstrict) (the map into Ob(Cstrict) whose

fiber at any object cstrict of Cstrict is the set G(c), where c is the object of C presented by

cstrict). By applying S to this, we get a globally defined object of C/S(Ob(Cstrict)), which is

to say, a global element of P (S(Ω)). Take this to be our g.
Invoking Pre-introspective Diagonalization (Theorem 4.15) (on the introspective theory

〈T,C,S,N〉, with all other inputs (P , Ω, Q, X , α, and g) as described with the same

name above), we now get a globally defined element ω of Ω = Ob(Cstrict) such that

Q(ω) = NΩ(ω)∗g. This equation is saying precisely that ω presents an object Y of C such

that Y is isomorphic to S(G(Y )).
Thus, we have proven the following:

Theorem 4.18 For any introspective theory 〈T,C〉, and any globally defined object G
of Psh(C), or even of Psh(core(C)), there is some object Y ∈ Glob(C) along with an

isomorphism from Y to S(G(Y )).

Combining this with Theorem 4.17 to eliminate the latter’s isomorphism precondition,

we now reach the following conclusion:

Theorem 4.19 (Löb’s Theorem for Introspective Theories) Suppose given an introspective

theory 〈T,C,S,N〉.
Then, within Glob(Psh(C)), for every object P and morphism g : �P → P , we obtain

an ω : 1→ P , such that g ◦ (�ω) = ω.
In other words, the global aspect of �Psh(C) has the Löb property. Keeping in mind the

equivalences of Theorem 4.5, we may conclude that the global aspects of �T/−, �C , and
�Psh(C) all have the Löb property with uniqueness.
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Observation 4.20 We can consider the particular case where P is C-representable, just
as �P is. In other words, where P (−) = HomC(−, c) is the representable presheaf on C
represented by some object c of C. All traditional accounts of Löb’s theorem are along these

lines. But note that we can also just as well consider this Löb’s Theorem for Introspective

Theories (Theorem 4.19) for non-representable presheaves P , a significant generalization
of the traditional viewpoint.

Corollary 4.21 For any introspective theory 〈T,C〉, every aspect of �T , �C , and �Psh(C)

has the Löb property with uniqueness.

In other words, every introspective theory has the Löb property, in the terminology of

Theorem 4.5.

Proof. By Observation 3.1, each aspect of any of these � functors is the global aspect of the

corresponding � functor on the corresponding slice introspective theory. Thus, we simply

invoke Löb’s Theorem for Introspective Theories (Theorem 4.19) on this slice introspective

theory. �

The above is our key result. The fact that the simple definition of introspective theories

is enough to lead to their satisfying the Löb property with uniqueness motivates much of

our interest in the concept of introspective theories.

Observation 4.22 The fixed points produced by Theorem 4.18 are furthermore unique

up to canonical isomorphism, by combining Löb’s Theorem for Introspective Theories

(Theorem 4.19) with Corollary 4.8.

4.6 The self-indexing cannot be representable, except
trivially

We note an important corollary of the above:

Theorem 4.23 Let T be any lexcategory, and equip it as an introspective theory 〈T,C,F〉 =
〈T, T/−, id〉 by taking C to be T ’s self-indexing and F to be the identity (a la Example 2.3).

Recall from Theorem 1.32 that this will be locally introspective (that is, the self-indexing

will be locally representable) precisely when T is locally cartesian closed.

This will furthermore be introspective (that is, the self-indexing will be representable)

only when T is the trivial terminal category.

Proof. For a lexcategory T equipped as a pre-introspective theory in this way, the operation

�T acts as the identity.

And by Löb’s Theorem for Introspective Theories (Theorem 4.19), if T is an introspective

theory, then �T will have the Löb property with uniqueness.

But by Theorem 4.9, the identity endofunctor on a cartesian closed lexcategory has the

Löb property with uniqueness only when the category is the trivial terminal category. �
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This “no-go” result was demonstrated in [PT89] by an essentially identical argument to

the argument we have given, when the abstractions in our argument are unwound to this

special case.

But by generalizing to introspective theories, we are able to expand from this negative

result (there are no nontrivial lexcategories whose self-indexing is representable) to a

positive result (there are many nontrivial examples of introspective theories, which all end

up satisfying the Löb property with uniqueness and all the further corollaries of this noted

in The Löb property in abstract (Section 4.2)).

Observation 4.24 From the above, we see that, though the Löb property holds for all

introspective theories automatically, it does not hold automatically for merely locally

introspective theories (as there are many locally cartesian closed categories which are

nontrivial. Counterexamples could also be constructed from non-well-founded transitive

relations using Construction 2.14.). However, we have also seen there are some natural

examples of locally introspective but not fully introspective theories with the property that

arbitrarily loose sub-introspections of them can bemade into introspective theories, as in the

relationship between our archetypal examples Construction 2.14 and Construction 2.16, or

the relationship between our archetypal examples Construction 2.12 and Construction 2.13.

Such locally introspective theories will thus inherit the Löb property from their sub-

introspections.

4.7 As applied to our archetypal examples
Here we discuss the application of Löb’s Theorem for Introspective Theories (Theo-

rem 4.19) to our archetypal examples of introspective theories:

4.7.1 ZF-Finite examples
Recall from Construction 2.10 that we have a natural introspective theory 〈ZΣ1 ,Z

′〉,
where ZΣ1 is the lexcategory of Σ1-definable hereditarily finite sets and Σ1-definable

functions between them up to provable equivalence in ZF-Finite, and Z′ is the lexcategory
internal to ZΣ1 of arbitrary definable sets and arbitrary definable functions between them

up to provable equivalence in ZF-Finite.

Recall from the discussion at ZF-Finite examples (Section 3.4.1) that the global aspect of

Z′ can be identified with Z (the actual category of arbitrary definable sets and functions

between them in ZF-Finite) and that the� operator acts on this by sending each “the object

of Xes” to “the object of definitions of Xes within ZF-Finite”. In the particular case where

the object in question is subterminal (thus representing a proposition), this amounts to the

traditional provability operator sending the proposition X to the proposition “There is a

proof in ZF-Finite of X”.

Thus, as applied to these subterminal objects, our Löb property with uniqueness for

this introspective theory is indeed the namesake Löb property of traditional logic: It
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tells us that if there is a proof that the provability of X entails X , then there is in fact an

unconditional proof of X . Gödel’s second incompleteness theorem follows as the special

case of this where X is a manifest falsehood, and Gödel’s first incompleteness theorem

then readily follows from the second incompleteness theorem.

But we may consider non-subterminal objects as well, and here our Löb property with

uniqueness gives us a form of guarded recursion in the context of such logical theories

as ZF-Finite. Specifically, for any definable function from definitions of Xes to actual

Xes, there is a unique (up to provable equivalence) definition of an X which is provably

equivalent to the given function applied to its own definition.5

We are not aware of guarded recursion having been strongly investigated in this context

before. We aspire to explore working with this form of guarded recursion further in future

work. For now we simply observe it as a vast generalization of the traditional purely

propositional interpretation of Löb’s theorem in logic.

4.7.2 Kripke frame example
Recall the introspective theory 〈Psh′(Q), C ′〉 from Construction 2.16, constructed from

a well-founded transitive relation < on a set P , with Q being P augmented with a new

maximum element ∞ and construed as a preorder category using the < relation. The

Psh′(Q) here is a full sublexcategory of Psh(Q), defined by certain cardinality constraints,

but these cardinality constraints can be taken to be arbitrarily loose such that any set-sized

number of particular desired objects of Psh(Q) can be found within Psh′(Q).
The global aspect of C ′ here is a certain full sublexcategory of Set|P | (again defined by

cardinality constraints, which may again be taken to be arbitrarily loose such that any

set-sized number of particular desired objects can be found within this). Recall from the

discussion at Kripke frame example (Section 3.4.2) that the� operator acts on this such that

�F (x) is the product of F (y) over all y < x, where F ∈ Set|P | and x, y ∈ P . For subterminal

F acting as propositions, this corresponds to the traditional interpretation of the� operator

in a Kripke frame, such that �F is true at a world just in case F is true at all lower worlds.

In this context, the Löb property with uniqueness which we are given by Löb’s Theorem

for Introspective Theories (Theorem 4.19) tells us that wemay define functions by transfinite

recursion: Given at each x ∈ P a function g from
∏

y<x F (y) to F (x), we obtain a uniquely

determined function Gwhose domain is P such that each G(x) is given by g applied to the

values of G at y < x.
In the particular case where F is subterminal representing an proposition (that is, an

arbitrary subset of |P |), this amounts to the principle of transfinite induction or “strong

induction”: It tells us that a proposition holds of all of P so long as it holds of any particular

x ∈ P once it holds of all y < x.

5
Here, all mentions of definability and provability are with respect to the particular theory ZF-Finite,

though analogous constructions of introspective theories can be carried out for other logical theories as well,

such as any computably enumerable extension of ZF-Finite, as we later discuss at Observation 6.15.
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Of course, these principles of transfinite recursion/induction over well-founded tran-

sitive relations are well-known and easy to establish directly, without all the machinery

of introspective theories. (The induction principle here is after all the very defining

characteristic of well-foundedness.) But it is remarkable to observe how these phenomena

are in this way unified with the phenomena of Löb’s theorem in traditional logic (as

discussed at ZF-Finite examples (Section 4.7.1)), not just in the form of the Löb property

result but in the particular derivation of it as well.

4.7.3 Step-indexing example
The application of our Löb’s theoremwith uniqueness results to the introspective theory

Construction 2.13 corresponding to step-indexing in the topos of trees is similar to the one

just discussed. Recall from the discussion at Step-indexing example (Section 3.4.3) that

we here have a � operator on (an arbitrarily loose full sublexcategory of) Psh(ω), where ω
is the poset of natural numbers, such that �F (0) = 1 and �F (n + 1) = n, for n ∈ ω and

F ∈ Psh(ω).
Our Löb property with uniqueness thus tells us that we may define functions on the

natural numbers by the most familiar kind of recursion: Given any specified value at 0,
and any specified way to transform a value at n into a value at n+ 1 for each n ∈ ω, there is
a unique function on the natural numbers taking on the specified value at 0 and whose

value at each n+ 1 is derived from its value at n in the specified way.

In the particular special case where we are dealing with subterminal objects of Psh(ω),
these amount to downwards closed subsets of ω, and the above specializes to the principle

of ordinary induction for these: Given a downwards closed subset of ω, if it contains 0 and

is closed under successor, then it contains all of ω.
Again, all of this is quite familiar and easy to demonstrate directlywithout any invocation

of the machinery of introspective theories (these amount to the characteristic properties of

the natural numbers as a natural numbers object within Set). But again, it is remarkable

that we can in this way see these as strongly unified with the analogous properties and

the derivation of those properties for our other archetypal examples, including the case of

ZF-Finite examples (Section 4.7.1) which has no direct relationship to presheaves over a

well-founded structure.

4.8 Relating variations on Lawvere’s fixed point theorem
Although not important for our main narrative, we note here some further comments

on the relation of Lawvere’s fixed point theorem to generalizations of ours or others.

First, we observe that Lawvere’s Fixed Point Theorem (Theorem 4.12) can be straightfor-

wardly re-obtained as a special case of our Pre-introspectiveDiagonalization (Theorem 4.15).

Proof. First, we handle the special case of Lawvere’s Fixed Point Theorem (Theorem 4.12)

where T has finite limits and Ω is an object of T .
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This is a special case of Pre-introspective Diagonalization (Theorem 4.15) where we

take the pre-introspective theory 〈T,C,F〉 to be the trivial one where C is the self-indexing

T/− and F is the identity.

Furthermore, P is taken to be the (T,C)-indexed set represented by Ω; that is, such that

P (t, c) = HomT (t × c,Ω). Note that P (S(t)) for objects t of T is therefore the T -indexed
set Ωt

. In particular, P (1) is thus isomorphic to Ω. As in Corollary 4.16, we can take Q
to be this isomorphism (one can think of it as an identity if one likes), and this will then

automatically be surjective on its X ×X aspect.

We take α : X → P (S(X)) = ΩX
to be given by the map App′ : X → ΩX

presumed

in Lawvere’s Fixed Point Theorem (Theorem 4.12). The surjectivity presumption from

Lawvere’s Fixed Point Theorem (Theorem 4.12) then becomes the surjectivity presumption

of Pre-introspective Diagonalization (Theorem 4.15).

And to give a g in the global aspect of P (S(Ω)) = ΩΩ
is precisely the data presumed by

the name g in Lawvere’s Fixed Point Theorem (Theorem 4.12).

This matches all the presumptions of Pre-introspective Diagonalization (Theorem 4.15)

up with corresponding presumptions from Lawvere’s Fixed Point Theorem (Theorem 4.12),

and the conclusion we then obtain from Pre-introspective Diagonalization (Theorem 4.15)

is readily seen to be the same as the conclusion from Lawvere’s Fixed Point Theorem

(Theorem 4.12).

The above shows how to obtain Lawvere’s Fixed Point Theorem (Theorem 4.12) as an

instance of Pre-introspective Diagonalization (Theorem 4.15) when T is a lexcategory and

Ω is an object of T . We then obtain Lawvere’s Fixed Point Theorem (Theorem 4.12) in

full (that is, for arbitrary categories T and T -indexed sets Ω) from this special case, by

first replacing T with Psh(T ), as noted in our discussion following our presentation of

Lawvere’s Fixed Point Theorem (Theorem 4.12). �

We also note in passing that another interesting generalization of Lawvere’s Fixed Point

Theorem (Theorem 4.12) was recently remarked upon in [Rob21]. The following (or rather,

its contrapositive) was given as Theorem 11 there. We shall present our own proof.

Theorem 4.25 (Magmoidal Fixed Point Theorem) Let T be an arbitrary categorywith objects

? and Ω, and let B : T × T → T be a bifunctor on T such that we have a transformation

δt : t→ B(t, t) natural in t from T . As ever, use “point of” to mean “element of the ?-aspect
of”.

Suppose given an objectX of T and an α : B(X,X)→ Ω with the pointwise surjectivity

property that for every F : X → Ω, there is a point f of X , such that for every point x of X ,

we have that the following diagram commutes:

? B(?, ?) B(X,X) Ω

X

δ? B(f,x) α

x F
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Then for every g : Ω→ Ω, there is a point ω of Ω such that ω = g(ω). That is to say, a

fixed point of g.

Proof. Take App : X ×X → Ω to be defined like so: For each object t of T , we define Appt :
Hom(t,X)× Hom(t,X)→ Hom(t,Ω) by giving Appt(m,n) as the following composition:

t B(t, t) B(X,X) Ω
δt B(m,n) α

That this definition of Appt is natural in t follows from the naturality of δ and the

functoriality of B. Specifically, naturality with respect to h : s→ t is seen as follows:

t B(t, t) B(X,X) Ω

s B(s, s)

δt B(m,n) α

δs

h B(h,h)
B(mh,nh)

The desired result now follows by Lawvere’s Fixed Point Theorem (Theorem 4.12). �

Lawvere’s FixedPoint Theorem (Theorem4.12) is of course the special case ofMagmoidal

Fixed Point Theorem (Theorem 4.25) where B is the familiar cartesian product and δ is
the familiar diagonal transformation. Thus, in [Rob21], Magmoidal Fixed Point Theorem

(Theorem 4.25) is considered as a generalization of Lawvere’s fixed point theorem. But as

we’ve just seen, Magmoidal Fixed Point Theorem (Theorem 4.25) is also a special case of

Lawvere’s fixed point theorem, appropriately construed (as in our formulation of Lawvere’s

Fixed Point Theorem (Theorem 4.12) which removes the ? = 1 constraint), despite the

seeming mismatch between general bifunctors and specifically cartesian products. As

noted before, there is no need for X ×X to be T -representable, and if such closure of our

underlying category is insisted upon, we can just as well always pass to Psh(T ) first.
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Chapter 5

Geminal categories

5.1 Preview
In this chapter, we build the machinery to give an explicit yet tractably compact

description of the initial introspective theory (which we call the theory of “geminal

categories”). This is the key result of this chapter.

We also show the remarkable result that any strict introspective theory can itself be

equipped in a natural way as a model of this initial introspective theory; that is, any strict

introspective theory can be seen as a geminal category.

(This last statement is easy to misinterpret, so let me be a bit more clear as to what I

mean by this. I do not mean the trivial statement that every introspective theory extends

the initial introspective theory. Rather, I mean that the theory of strict introspective theories

extends the initial introspective theory (even though the theory of strict introspective

theories is not itself an introspective theory).)

We will also discuss a partial converse of sorts, a way to extract an introspective

theory from a geminal category, with the extracted introspective theory having a certain

terminality property (that is, we construct a sort of co-free introspective theory induced by

the given geminal category).

This chapter requires some preliminary concepts to be established in Multiply internal

structures (Section 5.2) and Strict introspective theories (Section 5.3). The basic definitions

concerning geminal categories are then given in Defining geminal categories (Section 5.4)

through Compactly defined geminal categories (Section 5.6). After all this machinery

has been built, the key result that the theory of geminal categories is in fact the initial

introspective theory is ultimately demonstrated in The free introspective theory (Section 5.8).

We then discuss co-free constructions in Co-free introspective theories and geminal

categories (Section 5.12).
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5.2 Multiply internal structures
Before we get to the main material of this chapter, it will be helpful to introduce the

concept of “multiply internal” structures, which are used heavily throughout this chapter.

First, a small remark on notation: Recall that if we have a lexfunctor F : C → D and a

structure S internal to C, then we obtain a structure F (S) of the same sort internal to D.

Often, we shall write F [S] for this instead of F (S), to emphasize this particular operation

as visually distinct from all the other ways in which parentheses can be used.

Definition 5.1 Let C0 be a lexcategory, and let C1 be the global aspect of a lexcategory

internal to C0. Now suppose given some structure S internal to C1. We may say that this

structure S is doubly internal to C0.

Wemay iterate this process. Suppose now thatC2 is the global aspect of some lexcategory

internal to C1, which in turn remains the global aspect of some lexcategory internal to C0.

We can now speak of structures internal to C2 as being triply internal to C0.

And in general, given a sequence C0, C1, C2, . . . , Cn where each Ci+1 is the global aspect

of a lexcategory internal to Ci, we may speak of structures internal to Cn as being (n+ 1)-
tuply internal to C0 (and in the same way n-tuply internal to C1, (n − 1)-tuply internal

to C2, and so on). That is, we recursively define an (n + 1)-tuply internal structure as a

structure internal to the global aspect of an n-tuply internal lexcategory, with the base case

being that the only 0-tuply internal lexcategory of some C is C itself.

(Multiply internal structures can equivalently be thought of as multiply indexed

structures (in the sense of Double or multiple indexing (Section 1.6)) satisfying suitable rep-

resentability conditions, but they are probably more easily understood in the presentation

just given.)

Definition 5.2 Observe that whenever C is a lexcategory and D is a C-indexed locally

representable lexcategory, the global sections functor HomD(1,−) can be seen as an indexed

lexfunctor from D to the self-indexing C/−; in particular, the global aspect of this lets

us see HomD(1,−) as a lexfunctor from the global aspect of D to C itself. Let us write

ΓD : Glob(D)→ C to refer to this last lexfunctor, or drop the subscript and write simply Γ
where there is no need to disambiguate which D we are referencing. (In particular, when

writing Γ[S] with no subscript on the Γ, we always mean ΓX [S] where S is singly internal

to X , though X may in turn be internal or multiply internal to some other category.)

Thus, if S is some structure internal to the global aspect of D, we find that ΓD[S] is a
structure of the same sort internal to C. In this way, any doubly-internal structure S yields

a singly-internal structure Γ[S], and more generally, any (n+ 1)-tuply internal structure S
yields an n-tuply internal structure Γ[S].

Note that any lexcategory C can also be thought of as a lexcategory internal to Set, and
thus ΓC in this instance is the same as Glob(−) : C → Set. In this case, we may write GlobC
for this map, to emphasize that we are specifically dealing with a global sections lexfunctor

whose domain is C and whose codomain is Set.
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Definition 5.3 Recall Lemma 1.58, which tells us that, for any lexcategory B, the global
sections functorGlobB is initial among all lexfunctors fromB to Set. Thus, for any lexfunctor
F : B → C, we obtain a unique natural transformation as in the following diagram:

B Set

C

GlobB

F GlobC

!

In this way, for any B-internal structure S, we obtain a homomorphism from GlobB(S)
to GlobC(F [S]). We refer to this homomorphism as Induced(F, S).

More explicitly, Induced(F, S) is the action of the functor F taking each x ∈ HomB(1, s)
to F (x) ∈ HomC(F (1), F (s)) = HomC(1, F (s)), where s is any object of the diagram in B
corresponding to the structure S.

This process can be carried out in the internal logic of a lexcategory as well. That is,

if F : B → C is an internal lexfunctor between V -internal lexcategories, and S is some

structure internal to the global aspect of B (thus doubly internal to V ), we get a V -internal

homomorphism Induced(F, S) : ΓB[S]→ ΓC [F [S]] in the same way. (Note that F [S] here,
the application of an internal lexfunctor F : B → C to a structure in the global aspect of B,

is the same as what could also be called Glob(F )[S] where Glob(F ) : Glob(B)→ Glob(C).)

Observation 5.4 If C is a lexcategory and B is the global aspect of some C-indexed locally

representable lexcategoryB′, then GlobB(−) = HomGlobC(B′)(1,−) = HomC(1,HomB′(1,−))
= GlobC(ΓB′(−)). Thus, GlobB and GlobC ◦ ΓB′ are isomorphic. As the former is initial

among lexfunctors from B to Set, so is the latter, and thus in this case the natural

transformation described in Definition 5.3 becomes an isomorphism:

B = Glob(B′) Set

C

GlobB

ΓB′
GlobC

!

That is to say, Induced(ΓB′ , S) : Glob(S)→ Glob(ΓB′ [S]) is always an isomorphism.

Lemma 5.5 If F : C → D is a strict lexfunctor, and Q is a C-internal lexcategory, then
F ◦ ΓQ = ΓF (Q) ◦ Induced(F,Q). That is to say, the following outer diagram commutes, as

evidenced by the inner chase of an arbitrary datumm in Glob(Q):
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Glob(Q) Glob(F (Q))

m F (m)

HomQ(1,m) F (HomQ(1,m)) = HomF (Q)(1, F (m))

C D

Induced(F,Q)

ΓQ ΓF (Q)

F

Definition 5.6 Note that any structure S which is n-tuply internal to a lexcategory C (for

n ≥ 1) is ultimately described by some kind of diagram within C, and thus taken by a

lexfunctor F : C → D to a structure of the same sort n-tuply internal to D as well. It is

natural to refer to this as F [S] in the same way as for singly internal S.
This operation F [S] for multiply internal S can be inductively understood like so: The

base case is when S is singly internal to the domain of F , in which case F [S] is just the
ordinary application of F to yield a structure singly internal to the codomain of F . On the

other hand, if S is n-tuply internal to dom(F ) for n ≥ 2, then there is some dom(F )-internal
lexcategoryB′ such that S is (n−1)-tuply internal to Glob(B′). In this case, we have also the

lexfunctor Induced(F,B′) : Glob(B′)→ Glob(F [B′]), and thus we can understand F [S] as
meaning Induced(F,B′)[S], reducing us from the n-tuply internal case to the (n− 1)-tuply
internal case.

Note 5.7 Our notation for dealing with switching internality levels can sometimes cause

expressions simultaneously involving structures at different levels of internality to get

pretty cluttered. We recommend that readers first read such expressions and diagrams

treating all instances of Γ[X] or Glob(X) as simply saying X , and treating all instances

of Induced(F, S) as simplying saying F , to understand the gists of these expressions. A

formal account of how to rigorously reason using this less verbose shorthand can be given,

but we save such an account of terser notation for future work.

Itmay be helpful to keep inmind thatwhenF : A→ B is amap, thenΓ[F ] : Γ[A]→ Γ[B],
Glob(F ) : Glob(A) → Glob(B), or Induced(F, S) : Glob(S) → Glob(F [S]) do not change

the action of the map F , per se, but rather merely restrict its domain and then restrict its

codomain accordingly (Γ[F ] or Glob(F ) restrict F to just its action on global elements rather

than elements in arbitrary aspects of its domain, while Induced(F, S) restricts a lexfunctor

F to just its action on global elements of the objects used in S, rather than the action of F
on elements in arbitrary aspects of arbitrary objects in its domain).
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5.3 Strict introspective theories
It will be technically convenient for us to work in this chapter with a slightly less

“presentation-free” variant of our notion of introspective theories.

Definition 5.8 A strict introspective theory is a strict lexcategory T , a lexcategory C
internal to T , a strict lexfunctor S from T to the global aspect of C, and a natural

transformation N from idT to HomC(1,S(−)).

As usual, to name a strict introspective theory, we can enumerate the entire ordered

tuple 〈T,C,S,N〉, or sometimes we just note 〈T,C〉 or T explicitly and leave the rest

implicit.

The definition of a strict introspective theory differs from the definition of an ordinary

introspective theory (Definition 2.7) in the following ways: T is made strict (thus, its

internal structures can be considered up to equality instead of mere isomorphism), we

demand the selection of C as a particular T -internal lexcategory up to equality (instead of

simply up to presenting equivalent indexed categories), and we take S as a strict lexfunctor

(thus, S preserves chosen basis limits on-the-nose).

Clearly, any strict introspective theory presents some introspective theory. Conversely,

we have the following:

Theorem 5.9 Any introspective theory 〈T,C,S,N〉 is presented by some strict introspective

theory.

Proof. Suppose given an introspective theory 〈T,C,S,N〉. By definition of the repre-

sentability of C, we can choose some lexcategory Cint internal to T which presents the

T -indexed category C. (That is, even though C itself is only specified up to equivalence of

indexed categories, we can choose a specific presentation of it by a representable indexed

strict category Cint which is specified more fine-grainedly up to isomorphism of indexed

strict categories.)

Now using Theorem 1.27, let Tstrict be some strict lexcategory which presents T and

which has the freeness property that any lexfunctor from T to a strict lexcategory L is

presented by some strict lexfunctor from Tstrict to L. Because Tstrict presents T , we can

choose some specific internal lexcategory Cstrict in Tstrict (this Cstrict being specified up to

equality!) which presents Cint. Because Cstrict presents Cint which in turn presents C, S
can be viewed as a (non-strict) lexfunctor from T to the global aspect of Cstrict. Now using

the freeness property of Tstrict, we obtain a strict lexfunctor Sstrict from Tstrict to the global

aspect of Cstrict, such that Sstrict presents S.
Finally, we deal withN . Natural transformations are essentially unaffected by strictness

considerations. That is, given parallel strict functors Astrict and Bstrict, natural transforma-

tions between these are in bĳection with natural transformations between the non-strict

functors these present. So our original N corresponds to a unique natural transformation

between the identity on Tstrict and HomCstrict
(1,Sstrict(−)).
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Thus, we have obtained a strict introspective theory 〈Tstrict, Cstrict,Sstrict,N〉 presenting
the introspective theory 〈T,C,S,N〉. �

Strict introspective theories are slightly more convenient than introspective theories for

phrasing the results of this chapter, because strict introspective theories are themselves an

essentially algebraic notion. That is, there is an essentially algebraic theory such that the

models of this theory are the strict introspective theories. (This is in precisely the same way

that the theory of strict categories is essentially algebraic, while the theory of categories

construed up to equivalence is not quite essentially algebraic.)

As with any essentially algebraic theory, we get automatically a corresponding notion

of homomorphism.

Definition 5.10 A homomorphism between strict introspective theories 〈T1, C1,S,N〉 and
〈T2, C2,S,N〉 is a strict lexfunctor H : T1 → T2 such that H[C1] = C2, and Induced(H,C1) ◦
S = S ◦H , and H[Nt] = NH(t) for each object t of T1.

The condition relating H to S is illustrated like so:

T1 T2

Glob(C1) Glob(H[C1]) = Glob(C2)

H

S

Induced(H,C1)

S

The condition relating H to N is that the following two natural transformations are

equal:

T1 T1 T2

Glob(C1)

T1 T2 T2

Glob(C2)

H

id

S HomC1
(1,−)

H

id

S HomC2
(1,−)

N

N

That the codomains of these two natural transformations are equal follows from the

previous conditions.

Such homomorphisms are closed under composition and thus we obtain the category

of strict introspective theories.

As the category of models of an essentially algebraic theory, this category must have an

initial object. That is, there is a strict introspective theory with a unique homomorphism
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into any other strict introspective theory. In this chapter, we will find a tractable explicit

description of this initial strict introspective theory.

5.4 Defining geminal categories
We will give two different presentations of the definition of “geminal categories”.

First, in this section, we give a definition using several infinite sequences of data and

of equations. These infinite sequences will be highly redundant in that their first few

entries suffice to derive all their later entries, but the advantage of this verbose definition

is that it is made manifest how the definition contains a nested copy of itself.1 Later,

at Geminal category, compact presentation (Definition 5.15), we will see a much more

compact definition eliminating these redundancies.

Definition 5.11 (Geminal category) Ageminal category2 internal to lexcategoryC0 consists

of several ingredients:

• The first ingredient is an infinite sequence C1, C2, C3, . . ., in which each Ci (for i ≥ 1)
is the global aspect of a lexcategory C ′i internal to Ci−1.

Thus, each C ′i+n is n-tuply internal to Ci.
(Throughout the following, it will be useful to keep in mind that we are using these

general naming habits: Primed names are used for internal structures, while unprimed

names certain corresponding global structures. Furthermore, names subscripted with

index i arise from structure internal to Ci−1.)

• The second ingredient comprising a geminal category is an infinite sequence of

internal lexfunctors F ′1, F
′
2, F

′
3, . . ., where each F ′i : C ′i → Γ[C ′i+1] is internal to Ci−1

(for i ≥ 1).

Pictorially, this can be envisioned like so:

C0 : C ′1 Γ1[C ′2]

C1 : C ′2 Γ2[C ′3]

C2 : C ′3 Γ3[C ′4]

. . . . . .

F ′1

F ′2

F ′3

Γ1

Γ2

Γ3

1
In the manner which is sometimes outside of mathematics called “the Droste effect”.

2
Another evocative name for this concept might be “nesting doll category”.
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Here, the first row is structure internal to C0, the second row is structure internal to C1

(thus, doubly internal to the ambient C0), the third row is structure internal to C2 (thus,

triply internal to the ambient C0), and so on. We also for convenience use the abbreviation

Γi for ΓC′i : Ci → Ci−1 for i ≥ 1, illustrating these in the vertical line on the left of the

picture.

From the internal lexfunctor F ′i : C ′i → Γi[C
′
i+1], we shall also define a lexfunctor

Fi : Ci → Ci+1 like so: As Observation 5.4 tells us that Induced(Γi, C
′
i+1) : Glob(C ′i+1) →

Glob(Γi[C
′
i+1]) is an isomorphism, we take Fi : Ci → Ci+1 to be the unique map making the

following diagram commute:

Ci = Glob(C ′i) Glob(Γi[C
′
i+1])

Ci+1 = Glob(C ′i+1)

Glob(F ′i )

Induced(Γi,C
′
i+1)

Fi

These Fi are convenient as they line up straightforwardly:

C1 C2 C3 . . .
F1 F2 F3

Finally, the last ingredients we require are some equations:

• We require that Fi[C
′
j] = C ′j+1 and Fi[F

′
j ] = F ′j+1 for j > i ≥ 1.

(We are using Definition 5.6 here to apply Fi to structures multiply internal to its

domain Ci.)

• Furthermore, we require that the following diagram of lexfunctors internal to Ci−1

commutes, for each i ≥ 1. We call this equation Ei.

C ′i Γi[C
′
i+1]

Γi[C
′
i+1] ΓΓi[C′i+1][Glob(F ′i )[C

′
i+1]] Γi[Γi+1[C ′i+2]]

F ′i

F ′i

Induced(F ′i ,C
′
i+1)

Γi[F
′
i+1]

That is, we require that Induced(F ′i , C
′
i+1) ◦ F ′i = Γi[F

′
i+1] ◦ F ′i . This could be glossed

as “F ′i ◦ F ′i = F ′i+1 ◦ F ′i”, in abuse of notation a la Note 5.7.

(To derive the identity in the bottom-right of the above diagram, first note that

Glob(F ′i )[C
′
i+1] = Induced(Γi, C

′
i+1)[Fi[C

′
i+1]] = Induced(Γi, C

′
i+1)[C ′i+2].

Thus, ΓΓi[C′i+1][F
′
i [C
′
i+1]] = ΓΓi[C′i+1][Induced(Γi, C

′
i+1)[C ′i+2]] = Γi[Γi+1[C ′i+2]], where the

last step is by Lemma 5.5.)
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This concludes the definition of a geminal category internal to C0.

By a geminal category simpliciter, we mean of course the case where C0 = Set. (Note

that in this case, C ′1 can be identified with its global aspect C1, in the same way that any

structure internal to Set can be identified with its global aspect, as the global elements

functor from Set to Set is the identity.). We wrote out here the definition for general

C0, instead of specifically for C0 = Set, in order to emphasize certain symmetries in this

definition.

When being fully explicit, we reference a geminal category by enumerating its compo-

nents 〈C ′1, C ′2, C ′3, . . . ;F ′1, F ′2, F ′3, . . .〉. Given such a geminal categoryK, we may write |K|
to refer to its underlying lexcategory C ′1.

All aforementioned structure apart from C0 itself has been given as i-tuply internal to

C0 for some i > 0. Thus, all of this structure is indeed given by diagrams within C0.

Indeed, this definition of geminal category is manifestly essentially algebraic. That is,

there is an essentially algebraic theory such that models of that theory internal to C0 are

the same thing as geminal categories internal to C0.

Our ultimate goal will be to show that this theory of geminal categories is the initial

introspective theory. This is the whole motivation for our study of geminal categories. But

to show this result, we must develop some other machinery first.

5.5 Geminal category homomorphisms
As geminal categories are defined by an essentially algebraic theory, we automatically

get a notion of homomorphism between geminal categories. It amounts to the following:

Definition 5.12 Given two geminal categories 〈C ′1, C ′2, C ′3, . . . ;F ′1, F ′2, F ′3, . . .〉 and 〈D′1, D′2,
D′3, . . . ;φ

′
1, φ
′
2, φ
′
3, . . .〉, a homomorphism from the former to the latter consists of a strict

lexfunctor H : C ′1 → D′1 such that H[C ′i] = D′i and H[F ′i ] = φ′i for each i > 1, while also the

following diagram commutes:

C ′1 D′1

Glob(C ′2) Glob(H[C ′2]) = Glob(D′2)

H

F ′1

Induced(H,C′2)

φ′1

(In the above, H[C ′i] and H[F ′i ] make use of Definition 5.6 to denote the application of

H to multiply internal structures.)

Theorem 5.13 Given any geminal category K = 〈C ′1, C ′2, C ′3, . . . ;F ′1, F ′2, F ′3, . . .〉, we have

also that 〈C ′2, C ′3, C ′4, . . . ;F ′2, F ′3, F ′4 . . .〉 comprises a geminal category internal to |K| = C ′1.
We refer to this internal geminal category as InteriorGeminal(K).
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We furthermore have that F ′1 acts as a geminal category homomorphism from K to

the global aspect of InteriorGeminal(K). We refer to this homomorphism as IntoSelf(K) :
K → Γ[InteriorGeminal(K)].

Proof. This is all direct by definition.

For the first part, each condition imposed upon each C ′i or F
′
i in the definition of a

geminal category comes with an analogous condition imposed upon C ′i+1 or F
′
i+1. Thus,

it is immediate that the given InteriorGeminal(K) satisfies the conditions to be a geminal

category internal to |K|.
For the second part, the definition of a geminal category directly imposes upon F ′1

precisely the conditions which are necessary for F ′1 to comprise a geminal category

homomorphism fromK to the global aspect of InteriorGeminal(K). In particular, equation

E1 from Geminal category (Definition 5.11) is identical to the commutative diagram from

Definition 5.12, in this context. �

Via the yoga of functorial semantics, Theorem 5.13 states how the theory of geminal

categories can be equipped as an introspective theory. In detail, this is given like so:

Construction 5.14 Let Th(GC) be the free strict lexcategory with an internal geminal

category (that is, in the terminology of Quasi-equational theories (Section 1.10), we take

Th(GC) to be the classifying strict lexcategory CT, where T is the theory of geminal

categories).

Thus, strict lexfunctors from Th(GC) to any other strict lexcategory D correspond to

geminal categories internal to D, while natural transformations between such lexfunctors

correspond to homomorphisms between these D-internal geminal categories.

Let K denote the Th(GC)-internal geminal category corresponding to the identity

functor on Th(GC).
By Theorem 5.13 in the internal logic of Th(GC), we obtain also a geminal category

InteriorGeminal(K) internal to |K|, as well as a homomorphism IntoSelf(K) : K →
Γ[InteriorGeminal(K)].

Thus, there is some strict lexfunctor S from Th(GC) to the global aspect of |K|,
corresponding to InteriorGeminal(K). Furthermore, there is some natural transformation

N from the identity functor on Th(GC) to Hom|K|(1,S(−)), corresponding to IntoSelf(K).
Putting this together, we have a strict introspective theory 〈Th(GC), |K|,S,N〉.

5.6 Compactly defined geminal categories
The above all amounts to an infinitary presentation of the theory of geminal categories.

For this reason, we call it the “verbose presentation” of geminal categories. However, it

turns out this same theory can be finitely axiomatized as well.
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Definition 5.15 (Geminal category, compact presentation) A compactly presented gemi-
nal category internal to lexcategory C0 consists of the structure C

′
i, F

′
i , and equations Ei of

the verbose presentation, but only for i ∈ {1, 2}.
(Here, in interpreting the codomain of F ′2, we take C ′3 to be F1[C ′2], and in interpreting

the equation E2, we take F ′3 to be F1[F ′2], where F1 is defined from F ′1 just as in Geminal

category (Definition 5.11).)

That is, a compactly presented geminal category internal to C0 consists of the following

six pieces of data:

• A lexcategory C ′1 internal to C0. We refer to its global aspect as C1, and we refer to

ΓC′1 : C1 → C0 as Γ1.

• A lexcategory C ′2 internal to C1. We refer to its global aspect as C2, and we refer to

ΓC′2 : C2 → C1 as Γ2.

• A lexfunctor F ′1 : C ′1 → Γ1[C ′2], internal to C0. We define F1 : C1 → C2 from this just

as in Geminal category (Definition 5.11).

• A lexfunctor F ′2 : C ′2 → Γ2[C ′3], internal to C1.

(Here, C ′3 is defined as F1[C ′2].)

• The equation Induced(F ′1, C
′
2) ◦ F ′1 = Γ1[F ′2] ◦ F ′1, internal to C0. We call this equation

E1.

• The equation Induced(F ′2, C
′
3) ◦ F ′2 = Γ2[F ′3] ◦ F ′2, internal to C1. We call this equation

E2.

(Here, F ′3 is defined as F1[F ′2].)

As usual, we reference a compactly presented geminal category by enumerating the

ordered tuple 〈C ′1, C ′2;F ′1, F
′
2〉.

Clearly, the structure defining a compactly presented geminal category is part of the

structure in our verbose definition of a geminal category. But in fact, these are equivalent

definitions.

Theorem 5.16 The structure of a compactlypresentedgeminal categoryuniquelydetermines

the further structure of a geminal category (as originally defined in Geminal category

(Definition 5.11))).

Proof. Throughout the following, as before, we define each Fi from the corresponding F ′i
just as in Geminal category (Definition 5.11).

By definition, in a geminal category, we must have that C ′j = F1[C ′j−1] and F ′j = F1[F ′j−1]
for each j > 2.

Accordingly, if we are given the structure in Geminal category, compact presentation

(Definition 5.15), and we are to extend it to all the further structure in Geminal category
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(Definition 5.11), we may use the above particular recurrences to inductively define C ′j and
F ′j for each j > 2, ultimately in terms of the base cases of j ∈ {1, 2} which we have been

given. Adopt these definitions throughout the following accordingly.

The equations given to us directly in the compact presentation are the equations E1

and E2 of the verbose presentation. Furthermore, we again obtain the equation Ei for each
i > 2 inductively by applying F1 to Ei−1.

What remains is only to see that each Fi takes C
′
j to C

′
j+1 and takes F ′j to F

′
j+1, for

j > i ≥ 1.
We prove this by induction on i. For the base case of i = 1, we have ensured this by

construction. As for the inductive step, suppose we know this already holds for i. Then for

j > i + 1 we have Fi+1[C ′j] = Fi+1[Fi[C
′
j−1]] = Induced(Fi, C

′
i+1)[Fi[C

′
j−1]] = Fi[Fi[C

′
j−1]] =

Fi[C
′
j] = C ′j+1, where the second step is by the global aspect of Ei (along with some

applications of Observation 5.4), the third step is by Definition 5.6, and the other steps are

by our induction hypothesis. And similarly with F ′ in place of C ′ throughout as well. �

Corollary 5.17 In Definition 5.12, the conditionsH[C ′i] = D′i andH[F ′i ] = φ′i automatically

follow for all i > 2 once they hold for i = 2.

Thus, we can go back and forth between thinking of geminal categories in either the

verbose or compact presentation as we please, whichever is most convenient at anymoment.

5.7 Geminal categories from introspective theories
Construction 5.18 From a strict introspective theory 〈T,C,S,N〉, we obtain a geminal

category 〈T,C;S,NC〉, whose underlying lexcategory is T . This is the canonical way to

view an introspective theory as a geminal category.

Proof. It is immediate in the definition of a strict introspective theory that C is a lexcategory

internal to T , and S is a lexfunctor from T to Glob(C). This gives us the first three out of
the six ingredients of Geminal category, compact presentation (Definition 5.15).

As for NC (meaning the components of the natural transformation N at the objects of

the diagramwithin T which defines the T -internal lexcategoryC), this gives us a T -internal
lexfunctor from C to HomC(1,S[C]) = Γ[S[C]]. This is the fourth ingredient of Geminal

category, compact presentation (Definition 5.15).

What remains are to verify equations E1 and E2. In this context, E1 is a special case of

S Matches N (Lemma 2.25), while E2 is given by the naturality of N with respect to the

components of NC themselves.

This completes the construction. We observe furthermore that strict introspective

theory homomorphisms are automatically geminal category homomorphisms between the

geminal categories obtained by this construction. �

There is another closely related construction which is of even more importance:
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Construction 5.19 From a strict introspective theory 〈T,C,S,N〉, we obtain a T -internal
geminal category 〈C,S[C];NC ,S[NC ]〉, whose underlying lexcategory is C.

Proof. This is the result of first obtaining the geminal category γ = 〈T,C,S,NC〉 from
Construction 5.18, and then forming InteriorGeminal(γ). �

5.8 The free introspective theory
We now are ready to prove our main result about geminal categories.

Theorem 5.20 The strict introspective theory given in Construction 5.14 is the initial strict

introspective theory.

Proof. Wemust show there is a unique homomorphism from the strict introspective theory

〈Th(GC), K〉 of Construction 5.14 to any other strict introspective theory 〈T,D〉.
Such a homomorphism is comprised of a strict lexfunctor H : Th(GC) → T satisfy-

ing certain conditions. By the nature of Th(GC), this amounts to a geminal category

〈D′1, D′2, D′3, . . . ;F ′1, F ′2, F ′3, . . .〉 internal to T satisfying certain conditions.

One particular geminal category internal to T is the one that is given by γ =
〈D,S[D];ND,S[ND]〉, as noted at Construction 5.19. In verbose terms, this geminal category

is 〈D,S[D],S[S[D]], . . . ; ND,S[ND],S[S[ND]], . . .〉, with each successive component being

S applied to the previous component.

What remains is to show that the lexfunctor H : Th(GC)→ T corresponding to this γ
uniquely satisfies the conditions of Definition 5.10.

The condition “H[C1] = C2” in Definition 5.10 says in this context that we must use a

geminal category whose underlying lexcategory is D.

The condition concerning N in Definition 5.10, along with the definition of N in

Construction 5.14, says that we must use a geminal category whose first lexfunctor

component is ND.
Finally, the commutative diagram concerning S in Definition 5.10, along with the

definition of S in Construction 5.14, says we must use a geminal category such that each

successive component of this geminal category is S applied to the previous component.

The conjunction of these conditions clearly is uniquely satisfied by γ. This completes

the proof. �

Observation 5.21 Given the result of Theorem 5.20, we can rephrase Construction 5.18 as

telling us that every strict introspective theory is a model of the initial introspective theory,

so to speak. In other words, there is a lexfunctor interpreting the initial introspective theory

into the theory of strict introspective theories. This is quite remarkable!
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5.9 Geminal gadgets
We have now successfully described the initial introspective theory. But we can also

take our free construction results a bit further than this.

Specifically, every introspective theory is, among other things, an essentially algebraic

theory extending the theory of strict lexcategories. That is, we have a functor from

the category of strict introspective theories to the category of strict lexcategories with a

designated internal lexcategory (this functor takes 〈T,C,S,N〉 to 〈T,C〉). This functor has
a left adjoint.

Put in other words, for any essentially algebraic theory Th such that models of Th come

with an underlying strict lexcategory, there is a free strict introspective theory 〈T,C,S,N〉
with a designated T -internal model of Thwith underlying lexcategory C.

For simplicity as a first introduction, everything done previously was the special case

where Thwas simply the theory of strict lexcategories itself. But now we describe the more

general results, which follow by almost exactly the same reasoning as used before:

Specifically, let models of Th be called “gadgets”, and maps between them called

“gadget homomorphisms”. Then the free introspective theory extending Th is the theory

of “geminal gadgets”, with the definition of a “geminal gadget” being exactly as in either

definition of a “geminal category”, but with all instances of lexcategories and lexfunctors

replaced by gadgets and gadget homomorphisms.

This is by exactly the same arguments as we have just given. All the results and argu-

ments given earlier in this chapter apply just as well mutatis mutandis when lexcategories

and lexfunctors are replaced by gadgets and gadget homomorphisms, except for Construc-

tion 5.18 (it will not be the case that an arbitrary strict introspective theory can be viewed as

a geminal gadget). However, the analogue of the construction Construction 5.19 still holds

(i.e., given an introspective theory 〈T,C〉 such that C is the underlying lexcategory of a

gadget, then the geminal category structure which C is equipped with by Construction 5.19

furthermore underlies geminal gadget structure).

5.10 Archetypal examples of geminal categories
Given any introspective theory 〈T,C〉 and any lexfunctor f : T → Set, we obtain

automatically a geminal category f [InteriorGeminal(〈T,C〉)] = f [〈C,S[C];NC ,S[NC ]〉].
Thus we have archetypal geminal categories corresponding to each of our archetypal

introspective theories:

5.10.1 ZF-Finite example
Recall the introspective theory 〈ZΣ1 , Z

′〉 of Construction 2.10, in which ZΣ1 was the

category of Σ1-definable sets and functions modulo provable equality in ZF-Finite, while Z ′
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was the internal construction of the category Z of Σ1-definable sets and functions modulo

provable equality in ZF-Finite

There is a lexfunctor f : ZΣ1 → Set which sends each definition in ZF-Finite to

the set or function it actually defines (in particular, f [Z ′] = Z). We thus obtain a

geminal category f [InteriorGeminal(〈ZΣ1 , Z
′〉)] = 〈Z,Z ′;F1, F

′
2〉 in which Z is the category

of arbitrary definable sets and functions modulo provable equality in ZF-Finite, while Z ′ is
the analogous construction internal to Z. F1 : Z → Glob(Z ′) straightforwardly sends each

definable set or function in Z to the corresponding construction in Glob(Z ′), and F ′2 is the
Z-internal lexfunctor constructed exactly analogously to F1.

Notably, this example of a geminal category does not require us to incorporate Σ1

constraints anywhere. In this sense, it is a more familiar object for study than ZΣ1 itself

was. We had noted in Warning 2.11 that this structure 〈Z,Z ′〉 is not an introspective theory,

but we see here that the natural structure it has is as a geminal category instead.

5.10.2 Kripke frame example
In Construction 2.16, we constructed from any well-founded pre-order P (and a suitable

choice of set-sized full sublexcategories Setq of Set for each q ∈ P ), an introspective

theory T . As the global aspect of InteriorGeminal(T ) for this introspective theory, we get

a geminal category 〈C1, C
′
2;F1, F

′
2〉 where C1 is the full subcategory of Set|P | comprising

those presheaves X for which X(p) ∈ Setp for each p ∈ P . The C-internal lexcategory
C ′2 is the |P |-indexed category such that for each p ∈ P , we have C ′2(p) =

∏
q<p Setq.

Thus, Glob(C ′2) =
∏

p∈P
∏

q<p Setq. The functor F1 : C → Glob(C ′2) is then defined by

F1(X)(p)(q) = X(q), and then ΓC′2 ◦ F1 : C → C is the map X 7→ p 7→
∏

q<pX(q).
Accordingly, ΓC′2 [F1[C ′2]] is the |P |-indexed category given by p 7→

∏
q<p

∏
r<q Setr. And the

map F ′2 : C ′2 → ΓC′2 [F1[C ′2]] is given by the obvious projections (that is, its aspect at pmaps∏
r<p Setr to

∏
q<p

∏
r<q Setr in the obvious way, taking advantage of the transitivity of <).

5.10.3 Step-indexing example
Our last archetypal example of a geminal category would be Glob(InteriorGeminal(T )),

where T is our archetypal example of an introspective theory constructed in Construc-

tion 2.13. However, with this particular introspective theory, we have the property that

the geminal category homomorphism IntoSelf(T ) : T → Glob(InteriorGeminal(T )) is an
isomorphism3. Thus, this Glob(InteriorGeminal(T )) is not very illustrative of the distinctive

nature of geminal categories as differentiated from introspective theories in general. But it

is useful as a reminder that every example of an introspective theory is also an example of

a geminal category (via Construction 5.18)!

3
Pedantically, we should say that there is a choice of strict introspective theory presenting T for which

this is an isomorphism
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5.11 Modal logic in geminal categories
Recall from The box operator (Section 3.2) and Modal logic and axiom 4 (Section 3.3)

that every introspective theory 〈T,C〉 comes with an internal endolexfunctor �C =
F(HomC(1,−)) : C → C which interprets the modal logic GL, in that we have a canonical

natural transformation 4 : �C → �C�C induced by the natural transformation N .

As the theory of geminal categories is itself an introspective theory, we thus obtain

on the underlying lexcategory of any geminal category an endolexfunctor with the same

properties. However, it may be tricky to see what this box operator directly amounts to for

geminal categories (as a geminal category does not contain such structure as F , which we

used when defining the box operators of an introspective theory). The following lemma

will help us see how the box operator for geminal categories can be more directly defined

in terms of geminal category structure.

Lemma 5.22 Let 〈T,C〉 be an introspective theory. Then the T -internal endolexfunctor
�C : C → C as described in Definition 3.2 matches the composition of the T -internal
lexfunctors NC : C → �TC and HomS[C](1,−) : �TC → C.

In other words, the following diagram of T -indexed lexcategories and lexfunctors

commutes:

C �TC = ΓC [S[C]]

T/− C

HomC(1,−)

F

NC

HomS[C](1,−)

Proof. Via Slice (Pre-)Introspective Theories (Construction 2.19) and Theorem 1.8, it suffices

to show that the global aspects of such diagrams commute, as arbitrary aspects can be seen

as global aspects of slice introspective theories.

The global aspect of the above diagram amounts to the following (keeping in mind S
Matches N (Lemma 2.25) for the top arrow):

Glob(C) Glob(S[C])

T Glob(C)

ΓC

S

Induced(S,C)

ΓS[C]

Finally, we observe that this last diagram commutes as an instance of Lemma 5.5. �

Corollary 5.23 InterpretingLemma5.22 in theparticular context of the introspective theory

〈Th(GC), |K|〉 of Construction 5.14, we find that any geminal category C ′1 = 〈C ′1, C ′2;F ′1, F
′
2〉



CHAPTER 5. GEMINAL CATEGORIES 105

comeswith an endolexfunctor�C′1 = ΓC′2◦F
′
1 : C ′1 → C ′1, alongwith anatural transformation

4 : �C′1 → �C′1�C′1 corresponding to the action of F ′2.

Observation 5.24 For any geminal category 〈C ′1, C ′2;F ′1, F
′
2〉, the operator �C′1 = ΓC′2 ◦ F

′
1 :

C ′1 → C ′1 defined above has the Löb property with uniqueness (as defined at Definition 4.1).

This follows from the fact that, by Corollary 4.21, every aspect of every box operator on

every introspective theory has the Löb property with uniqueness, and thus in particular, in

the internal logic of the introspective theory 〈Th(GC), |K|〉 of Construction 5.14, we have

that�K has the Löb property with uniqueness (in more detail, the Löb property is satisfied

with respect to the generic morphism of |K| in its Mor(|K|)-aspect, thus establishing that it

holds for all geminal categories with respect to all of their morphisms; uniqueness follows

by a similar argument, or just by invoking Theorem 4.4).

5.12 Co-free introspective theories and geminal categories
We have above discussed how to create free introspective theories, which can be thought

of as produced by a certain left adjoint functor4. In this section, we discuss some right

adjoint constructions, which can be thought of as “co-free”.

Construction 5.25 Construing strict introspective theories as geminal categories via

Construction 5.18 gives us a functor from the category of strict introspective theories to the

category of geminal categories (or more generally, a functor from the category of V -internal

strict introspective theories to the category of V -internal geminal categories, for any fixed

lexcategory V ). This functor has a right adjoint.

As this works for arbitrary lexcategories V , this right adjoint admits an explicit

description, as a purely lex construction.

For linguistic convenience, we shall in the following take V as Set, but it will be clear

that the same explicit construction works for any ambient lexcategory V .

We are tasked with showing that, for any geminal category C ′1, there is a suitably

terminal strict introspective theory with a geminal category homomorphism to C ′1.
We will first give the details of the construction, and then give the proof that it has the

terminality property.

Construction details. Let C ′1 = 〈C ′1, C ′2;F ′1, F
′
2〉 be an arbitrary geminal category. Via

Corollary 5.23, this comes with an endolexfunctor �C′1 = ΓC′2 ◦ F
′
1 : C ′1 → C ′1, along with a

natural transformation 4 : �C′1 → �C′1�C′1 corresponding to the action of F ′2.
We will in the following write �with no subscript to mean this �C′1 .
Via Coalgebras As Strict Lexcategory (Lemma 1.83), the category of �-coalgebras is a

strict lexcategory. Among these �-coalgebras, there are some coalgebrasm : c→ �cwith

the property that the following diagram commutes:

4
Specifically, left adjoint to the forgetful functor from strict introspective theories to strict lexcategories

with a designated internal lexcategory.
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c �c

�c ��c

m

m

�m

4c

Let Z be the full subcategory of those �-coalgebras with the specified property. It is

readily seen that this Z is closed under the finite limits of the category of �-coalgebras,
and thus is itself a strict lexcategory. (Indeed, Z can be defined as the equalizer of two

strict lexfunctors from the �-coalgebras to the ��-coalgebras.)
Note that we have the following commutative diagram of internal lexfunctors in C ′1:

C ′2 �C ′2

�C ′2 ��C ′2

F ′2

F ′2

�F ′2=ΓC′2
[F1[F ′2]]=ΓC′2

[F ′3]

4C′2
=Induced(F ′2,C

′
2)

This diagram commutes by equation E2. But this is also the commutative diagram

which establishes that the internal lexcategory F ′2 : C ′2 → �C ′2 within the category of

�-coalgebras is furthermore within its subcategory Z. When thinking of F ′2 as an internal

lexcategory within Z in this way, let us call it Z2.

Note that the strict lexfunctorF ′1 : C ′1 → Glob(C ′2) is such that for any object ormorphism

x of C ′1, if we interpret F ′1(x) as a morphism from 1 to Ob(C ′2) or Mor(C ′2), we obtain a

commutative diagram of the following form:

1 Ob(C ′2) or Mor(C ′2)

�1 = 1 � (Ob(C ′2) or Mor(C ′2))

F ′2

F ′1(x)

�(F ′1(x))=ΓC′2
[F ′1[F ′1(x)]]

!

That this diagram commutes is by equation E1 of C
′
1 being a geminal category. Thus

F ′1(x) amounts to a global element of Ob(Z2) or Mor(Z2), and thus F ′1 acts as a strict

lexfunctor from C ′1 to Glob(Z2). By composing this with the projection functor π : Z → C ′1,
we get a strict lexfunctor S : Z → Glob(Z2). (It may be surprising that this S will discard

all information lost in the projection from Z to C ′1, but this will indeed be the correct one

for our purposes!)
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Finally, for N , we observe by unwinding definitions that HomZ2(1,S(−)) : Z → Z is

the functor which takes a coalgebra on carrier object c to the coalgebra 4c : �c→ ��c and
which takes coalgebra morphisms to the corresponding naturality square for the natural

transformation 4 (thus, π ◦ HomZ2(1,S(−)) = � ◦ π : Z → C ′1). Thus, by the defining

condition ofZ, we get for eachm ∈ Ob(Z) a coalgebramorphism fromm to HomZ2(1,S(m))
whose underlying morphism in C ′1 ism itself, as described by the following commutative

diagram in C ′1:

c �c

�c ��c

m

m

�m

HomZ2
(1,S(m))=4c

In the above commutative diagram within C ′1, the top arrow is the coalgebram, while

the bottom arrow is the coalgebra HomZ2(1,S(m)).
These maps from each m to HomZ2(1,S(m)) comprise a natural transformation N

between idZ and HomZ2(1,S(−)) whose naturality is demonstrated like so: Consider any

two coalgebrasm1 andm2 in Z and a coalgebra map h : m1 → m2. The condition for h to

be a coalgebra map is the very same as the naturality square for this N , amounting to the

following commutative diagram in C ′1:

c d

�c �d

m1

π(h)

m2

�(π(h))=π(HomZ2
(1,S(h)))

Thus we have a strict introspective theory Z = 〈Z,Z2,S,N〉.
By construction, the projection functor π : Z → C ′1, is a strict lexfunctor which takes Z2

to C ′2 and takes NZ2 to F
′
2, while furthermore the following diagram commutes:

Z C ′1

Glob(Z2) Glob(π[Z2]) = Glob(C ′2)

π

S

Induced(π,Z2)

F ′1

Thus, we have π as a geminal category homomorphism from Z to C ′1.
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Having described the strict introspective theory Z and its geminal category homomor-

phism π to C ′1, we now prove their terminality among all strict introspective theories with

a designated geminal category homomorphism to C ′1:

Proof. Let T = 〈T,C〉 be an arbitrary strict introspective theory, and let H : T → C ′1 be a
geminal category homomorphism. We will show that there is a unique strict introspective

theory homomorphism β : T → Z such that π ◦ β = H .

The condition π ◦ β = H tells us right away what the carriers of the coalgebras and

coalgebra morphisms produced by β must be. Furthermore, our construction of Nz for
objects z of Z was such that π(Nz) in C ′1 is the very same as the coalgebra z itself. Thus,
for any object t ∈ T , the specific coalgebra β(t) will be the one given by π(Nβ(t)), which

by virtue of β being a strict introspective theory homomorphism must be the same as

π(β(Nt)) = H(Nt).
Thus, the uniqueness of β is assured and what remains is only to see that a β so-

constructed is indeed a strict introspective theory homomorphism. First, let us see that we

in fact do have such a β : T → Z as a strict lexfunctor:

By virtue ofH being a geminal category homomorphism, we have thatH ◦�T = �C′1 ◦H .

In detail, this is seen via the following commutative diagram:

T C ′1

Glob(C) Glob(C ′2)

T C ′1

F ′1

ΓC′2

�C′1

H

S

Induced(H,C)

ΓC

H

�T

In the above diagram, the left side is the definition of �T and the right side is the

definition of �C′1 . The top rectangle is one of the conditions in Definition 5.12 and the

bottom rectangle is by Lemma 5.5.

Thus, the whiskering of N : idT → �T along H yields a natural transformation from H
to H ◦�T = �C′1 ◦H . Illustrated like so:

T C ′1

Glob(C) Glob(C ′2)

T C ′1

F ′1

ΓC′2

�C′1

H

S

Induced(H,C)

ΓC

H

id
N
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This natural transformation fromH to�C′1 ◦H acts as a functor β from T to the category

of�C′1-coalgebras, such that π ◦ β = H . AsH is a strict lexfunctor and π creates basic limits

(a la Coalgebras As Strict Lexcategory (Lemma 1.83)), this β is also a strict lexfunctor.

Not only that, but for each t ∈ T , the �C′1-coalgebra β(t) = H(Nt) has the property that

the following diagram commutes, as this diagram is H applied to the naturality square in

T for N : idT → �T with respect to the morphism Nt:

H(t) H(�T t) = �C′1H(t)

H(�T t) = �C′1H(t) H(�T�T t) = �C′1H(�T t) = �C′1�C′1H(t)

H(Nt)

H(Nt)

H(�TNt)=�C′1
H(Nt)

H(N�T t)=4H(t)

The commuting of the above diagram is the condition for β(t) to be within the category

Z.
Thus, β is indeed a strict lexfunctor from T to Z, such that π ◦ β = H .

We have three more conditions to show to demonstrate that β is a strict introspective

theory homomorphism. We must show it interacts in the appropriate way with C, S , and
N .

The required condition on β with respect to C is that β[C] should equal Z2. Note that

β(C) is the lexcategory in Z corresponding to the internal lexfunctor H(NC) in C ′1. By

virtue of H : T → C ′1 being a geminal category homomorphism, this H(NC) is F ′2, which is

indeed our definition of the lexcategory Z2 in Z, as required.
The required condition on β with respect to S is that the following diagram should

commute:

T Z

Glob(C) Glob(β[C]) = Glob(Z2)

β

S

Induced(β,C)

S

By unwinding definitions and using the fact that H is a geminal category homomor-

phism, we find that both paths above yield the same result when applied to any object

t ∈ T ; specifically, this will be the global element of Ob(Z2) whose underlying global

element of Ob(C ′2) is given by F ′1 applied to H(t). For the above diagram to furthermore

commute as applied to any morphism in T , it suffices to know that following both paths

with the projection P : Glob(Z2) → Glob(C ′2) commutes. By unwinding definitions,

P ◦ S ◦ β = F ′1 ◦ H while P ◦ Induced(β, C) ◦ S = Induced(H,C) ◦ S. As H is a geminal

category homomorphism from T to C ′1, these are indeed the same.

Finally, the required condition on βwith respect toN is that β(Nt) = Nβ(t) for each t ∈ T .
Note that β(Nt) is the coalgebra morphism in Z given by applying H to the naturality
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square in T for N : idT → �T with respect to the morphism Nt. On the other hand,

Nβ(t) is the coalgebra morphism in Z from β(t) = H(Nt) to 4H(t) = F ′2 = H(N�T t) whose

underlying morphism in C ′1 is itself β(t). Thus, β(Nt) and Nβ(t) are both the same, both

being the following commuting diagram (which we had already considered above):

H(t) H(�T t) = �C′1H(t)

H(�T t) = �C′1H(t) H(�T�T t) = �C′1H(�T t) = �C′1�C′1H(t)

H(Nt)

H(Nt)

H(�TNt)=�C′1
H(Nt)

H(N�T t)=4H(t)

This completes the demonstration that β is a strict introspective theory homomorphism,

and thus completes the proof of the desired terminality property. �

Corollary 5.26 As left adjoints preserve initial objects, the above tells us that the initial

strict introspective theory (which we described in Theorem 5.20) is also the initial geminal

category. Thus, the underlying lexcategory of the initial geminal category is the initial

lexcategory with an internal geminal category!

Construction 5.27 Consider the functor from the category of geminal categories to the

category of strict lexcategories with a designated internal geminal category, given by

sending any geminal categoryG to the strict lexcategory |G|with internal geminal category

InteriorGeminal(G). This functor has a right adjoint.
In other words, for any strict lexcategory C0 with an internal geminal category γ,

there is a geminal category G equipped with a strict lexfunctor H : |G| → C0 satisfying

H[InteriorGeminal(G)] = γ, which is terminal among all so equipped geminal categories

(in the sense that for any other such geminal categoryK with strict lexfunctor J : |K| → C0

satisfying J [InteriorGeminal(K)] = γ, there is a unique geminal category homomorphism

M : K → G such that H ◦M = J).
This co-free G admits an explicit description. Indeed, just as before, this explicit

construction can be carried out internal to an arbitrary ambient lexcategory V (with C0 as a

V -internal lexcategory and γ as aGlob(C0)-internal geminal category, and constructing from

these a terminal V -internal geminal category G with a V -internal lexfunctor H : |G| → C0

such that H[InteriorGeminal(G)] = γ).

Construction details. For convenience, we will speak as though C0 is internal to Set,
but the following construction would work just as well were C0 internal to any ambient

lexcategory.

Let us use the names 〈C1, C2, C3, . . . ;F1, F2, F3, . . .〉 to refer to the components of the

C0-internal geminal category γ.
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Let G0 = C0 × Glob(C1). We have that γ × InteriorGeminal(γ) is a geminal category

〈G1, G2, G3, . . . ;φ1, φ2, φ3, . . .〉 internal toG0, with eachGn = Cn×Cn+1 and φn = Fn×Fn+1,

for n ≥ 1. The terminal geminal category G which we construct will have |G| = G0 and

InteriorGeminal(G) = γ × InteriorGeminal(γ).
Specifically, let strict lexfunctorφ0 : G0 → Glob(G1)bedefinedbyφ0(c0, c1) = (c1, F1(c1)).

It’s straightforward to then verify that G = 〈G0, G1, G2, . . . ;φ0, φ1, φ2, . . .〉 is a geminal

category. The only nontrivial condition to verify is the equation Induced(φ0, G1) ◦ φ0 =
Glob(φ1) ◦ φ0 : G0 → Glob(ΓG1 [G2]). Unwinding the definitions of φ0 and φ1, we find that

the first component of this equation amounts to the tautology F1 = F1, while the second

component of this equation amounts to the equation Induced(F1, C2) ◦ F1 = ΓC1 [F2] ◦ F1 of

the geminal category γ.
We also clearly have a projection strict lexfunctor H from |G| = C0 × C1 to C0, which

satisfies H[InteriorGeminal(G)] = γ. Having described the construction’s details, we now

prove that this construction has the stated terminality property:

Proof. Suppose given any geminal categoryK = 〈K0, K1, K2, . . . ;P0, P1, P2, . . .〉 and strict

lexfunctor J : K0 → C0 such that J [InteriorGeminal(K)] = γ.
A strict lexfunctorM from |K| = K0 to |G| = C0 ×Glob(C1) is given by a pair of strict

lexfunctors J0 : K0 → C0 and J1 : K0 → Glob(C1). Since H is simply projection of the C0

component, we will have that H ◦M = J precisely when J0 = J . Thus, specifying suchM
is determined by specifying J1 alone. We must show that there is a unique J1 making this

M into a geminal category homomorphism from K to G.
Keeping in mind Definition 5.12, we see the conditions for such M to be a geminal

category homomorphism. First of all, we must have that M [InteriorGeminal(K)] =
InteriorGeminal(G), which is to say, J [InteriorGeminal(K)] = γ (which has already been

presumed) and J1[InteriorGeminal(K)] = InteriorGeminal(γ). On top of this, the final

condition forM to be a geminal category homomorphism is that the following diagram

commutes:

K0 C0 ×Glob(C1)

Glob(K1) Glob(C1)×Glob(C2)

M=〈J,J1〉

P0

Induced(M,K1)

φ0 [which is (c0,c1) 7→(c1,F1(c1))]

This diagram commutes just in case both of the following diagrams commute, which

separately consider its Glob(C1) and Glob(C2) components:
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K0 C0 ×Glob(C1)

Glob(K1) Glob(C1)

M=〈J,J1〉

P0

Induced(J,K1)

(c0,c1)7→c1J1

K0 C0 ×Glob(C1)

Glob(C1)

Glob(ΓC1 [C2])

Glob(K1) Glob(C2)

M=〈J,J1〉

P0

Induced(J1,K1)

(c0,c1)7→F1(c1)

J1

Glob(F1)

(Induced(ΓC1
,C2))

−1

In each of the above diagrams, the top-right triangle trivially commutes, so the

commutativity condition for the overall square is equivalent to the commutativity of the

bottom-left triangle.

From the diagram for the Glob(C1) component, we see that J1 is uniquely determined

as Induced(J,K1) ◦P0. All that remains is to verify that this choice of J1 does indeed satisfy

the condition J1[InteriorGeminal(K)] = InteriorGeminal(γ), as well as the condition of the

commutative diagram for the Glob(C2) component.

For the former condition, we have the chain of equations

J1[InteriorGeminal(K)]
= Induced(J,K1)[P0[InteriorGeminal(K)]]
= Induced(J,K1)[InteriorGeminal(InteriorGeminal(K))]
= InteriorGeminal(J [InteriorGeminal(K)])
= InteriorGeminal(γ)

And as for the final commutativity condition, this follows like so:
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K0 Glob(K1) Glob(C1)

Glob(K1) Glob(ΓK1 [K2]) Glob(ΓC1 [C2])

P0 Glob(F1)

P0 Induced(J,K1)

J1

Induced(P0,K1) Induced(J,ΓK1
[K2])

Glob(P1)

Induced(J1,K1)

In the above commutative diagram, the top equation is our definition of J1 as

Induced(J,K1) ◦ P0, and the bottom equation follows from this definition as well. The

left square commutes as part of the definition of K being a geminal category, and the

right square commutes because J [P1] = F1 (which was part of our presumption that

J [InteriorGeminal(K)] = γ).
This completes the proof of the terminality property of G. �
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Chapter 6

Examples in the wild

6.1 Preview
In previous chapters, we have defined introspective theories and geminal categories.

That is, we have axiomatized the theory of introspective theories and the theory of geminal

categories. Now we look at some notable models of these axiomatic theories, which is to

say, at some notable specific examples of introspective theories and of geminal categories.

These examples are of a sort which might be considered to have been found “in the wild”,

instead of being freely syntactically constructed as the examples of the last chapter were.

There are two broad classes of models/examples of note in this chapter:

Firstly, there are those which are similar in flavor to the traditional instances of Gödelian

phenomena studied in logic. These are based on logical theories which have some internal

ability to discuss themselves, such as Peano Arithmetic, or higher-order intuitionistic

logic, or the like. Here, it has long been recognized that Gödelian phenomena arise at

the propositional level, but the full phenomenon of guarded recursion for types and

terms which we proved for introspective theories in Theorem 4.18 and Löb’s Theorem for

Introspective Theories (Theorem 4.19) has not been noted in these contexts before. We

also give an example of a model of this sort which goes well beyond computability or

even countability, thus beyond many traditional approaches to presenting the Gödelian

phenomena in logic.

The second class of models/examples we consider are based on presheaves over

categories with a suitably well-founded subset of morphisms. Here, the existence of

guarded recursion is straightforward, but it is the unification with our general theory

which is of note. Among these models are examples like step-indexing in the topos of trees,

the canonical model discussed in the literature on guarded recursion. Distinct from this are

also models which capture the traditional interpretation of GL modal logic in well-founded

transitive Kripke frames. We stress that we are able with these latter models to faithfully

interpret traditional Boolean GL modal logic, unlike step-indexing in the topos of trees,

whose non-Boolean logic validates such sentences as ¬¬�0 which are not theorems of GL.
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6.2 The main initiality-based construction
Construction 6.1 Let Special be a left comma-stable sub-2-category of LexCat, in the sense

of Definition 1.51. Furthermore, suppose Special has an initial object T , and that this T has

an internal lexcategory C such that Glob(C) is itself an object of Special.
Then we obtain a unique lexfunctor S ∈ Special(T,Glob(C)), by the initiality of T .
Furthermore, by Theorem 1.56, we have that idT is initial within LexCat(T, T ). Thus, in

particular, there is a unique natural transformation N : idT → HomC(1,S(−)). In this way,

we obtain an introspective theory 〈T,C,S,N〉.

Theorem 6.2 Let Special and 〈T,C,S,N〉 be given as in Construction 6.1 above.

Consider also any other introspective theory 〈T ′, C ′,S ′,N ′〉 such that S ′ : T ′ → Glob(C ′)
lives in Special. By the initiality of T within Special, we get a unique special lexfunctor

H : T → T ′. If this H is such that H[C] = C ′, then this H is also an introspective theory

homomorphism (in the sense of Definition 5.10, suitablymodified for the non-strict context).

The condition that H interacts appropriately with S and S ′ is automatic by the initiality of

T within Special. Furthermore, the condition that H interacts appropriately with N and

N ′ is automatic by the fact that H is initial within LexCat(T, T ′), thanks to Theorem 1.56.

6.3 Self-initializing and super-initializing theories

6.3.1 The initial model as a geminal category
Construction 6.3 Suppose given some lexcategory Th (the theory of “gadgets”), along

with a lexcategory C internal to Th (the underlying lexcategory of a gadget).

Furthermore, suppose given an initial gadget G1 with an initial internal gadget G2.

That is, suppose given some lexcategory V such that LexCat(Th, V ) has an initial object

(our G1) and such that LexCat(Th,Glob(G1[C])) has an initial object (our G2).

Because G1 is initial, we automatically get a unique homomorphism F1 : G1 → Γ[G2].
And because G2 is an initial G-internal gadget, we automatically get a unique G1-internal

homomorphism F2 : G2 → Γ[G3] where G3 = F1[G2].
This setup is thus a geminal gadget internal to V (with the equations E1 and E2 of

Geminal category, compact presentation (Definition 5.15) automatically satisfied by the

uniqueness observations in the previous paragraph).

Indeed, this is the unique way to equip 〈G1, G2〉 as a geminal gadget.

In practice, when an initial gadget has an initial internal gadget like above, this is

usually not just some accident (caused by a paucity of globally defined structures, say), but

rather, is due to the theory of gadgets itself encoding the construction of an internal initial

gadget:

Definition 6.4 Suppose, as above, given some lexcategory Th (the theory of “gadgets”),

along with a lexcategory C internal to Th (the underlying lexcategory of a gadget).
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If every gadget has an initial internal gadget, and every gadget homomorphismpreserves

these initial internal gadgets, then we say the theory of gadgets is self-initializing.
In other words, Th is self-initializing if LexCat(Th,Glob(C)) has an initial object, and

this initiality is preserved by Induced(f, C) for every lexfunctor f out of Th.

Thus, Construction 6.3 shows us how to equip the initial model of any self-initializing

theory as a geminal category.

The above all admits a generalization worth noting:

Construction 6.5 Suppose given some lexfunctor i : Th→ Th′, along with a lexcategory C
internal to Th. Call Th the theory of “gadgets”, and Th′ the theory of “supergadgets”. Via

i, every supergadget has an underlying gadget, and via C, every gadget has an underlying

lexcategory.

Furthermore, suppose given an initial gadgetG1 with an initial internal supergadgetG2.

That is, suppose given some lexcategory V such that LexCat(Th, V ) has an initial object

(our G1) and such that LexCat(Th′,Glob(G1[C])) has an initial object (our G2).

Because G1 is initial, we automatically get a unique gadget homomorphism F1 : G1 →
Γ[G2]. And because G2 is an initial G1-internal supergadget, we automatically get a unique

G1-internal supergadget homomorphism F2 : G2 → Γ[G3] where G3 = F1[G2].
This setup is thus a geminal gadget internal to V (with the equations E1 and E2 of

Geminal category, compact presentation (Definition 5.15) automatically satisfied by the

uniqueness observations in the previous paragraph).

Indeed, this is the unique way to equip 〈G1, G2〉 as a geminal gadget 〈G1, G2;F1, F2〉
such that F2 comes from a supergadget homomorphism.

And again, in practice, when an initial gadget has an initial internal supergadget like

above, this is usually not just some accident caused by a paucity of globally defined

structures, but rather, is due to the theory of gadgets itself encoding the construction of an

internal initial supergadget:

Definition 6.6 Suppose, as above, given some lexfunctor i : Th → Th′, along with a

lexcategory C internal to T . We call T the theory of “gadgets”, and Th′ the theory of

“supergadgets”. Via i, every supergadget has an underlying gadget, and via C, every
gadget has an underlying lexcategory.

If every gadget has an initial internal supergadget, and every gadget homomorphism

preserves these initial internal supergadgets, then we say the theory of gadgets (or

more precisely, the extension of the theory of gadgets by the theory of supergadgets) is

super-initializing.
In other words, this situation is super-initializing if LexCat(Th′,Glob(C)) has an initial

object, and this initiality is preserved by Induced(f, C) for every lexfunctor f out of Th.
Note in this case that Th′ will itself be self-initializing, as every supergadget is a

fortiori a gadget (thus having an initial internal supergadget), and every supergadget

homomorphism is a fortiori a gadget homomorphism (thus preserving initial internal

supergadgets).
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The self-initializing situation is of course the special case of the super-initializing

situation where Th′ = Th and i is the identity.
There are a number of self- and super-initializing theories in the wild, which thus

immediately give us examples of geminal categories in the wild.

For example: It is straightforward to show that every NNO-topos has internal ini-

tial models of every finitely axiomatizable lex theory, preserved by every NNO-topos

homomorphism. This was the observation of Theorem 1.62

It is a little more difficult, but also possible to show that more generally, every arithmetic

universe has internal initial models of every finitely axiomatizable lex theory, preserved by

every arithmetic functor. This was the observation of Theorem 1.63.

Thus, any finitely axiomatizable extension of the theory of arithmetic universes is self-

initializing. More generally, given any Th extending the theory of arithmetic universes, and

any finitely axiomatizable Th′ extending Th, the extension of Th to Th′ is super-initializing.
This immediately gives us many examples of geminal categories using the above

construction. For example, as one random example among myriad, we can obtain a

geminal category 〈G1, G2〉 where G1 is the initial cartesian closed arithmetic universe and

G2 is its internal initial NNO-topos satisfying the internal axiom of choice.

We have discussed all this just in the context of geminal categories, but this extends to

give analogous constructions of introspective theories as well. We discuss these next.

6.3.2 The theory of initial models as an introspective theory
Throughout the following, we say an initial object in a category of the form LexCat(T, S)

is an initial model of T internal to S. Given lexcategories S and S ′ both containing initial

internal models of T , we say a lexfunctor from S to S ′ preserves initial models of T if its

composition with the initial model of T in S is the initial model of T in S ′.
By the 2-category InitialModels(T ), we mean LexCat with its objects restricted to just

those lexcategories with initial internal models of T , and its 1-cells restricted to just those

lexfunctors which preserve initial models of T . (The 2-cells remain unchanged.)

Theorem 6.7 InitialModels(Th) has an initial object, whenever Th is a set-sized lexcategory.

Proof. This is in exactly the same way that we have familiar constructions such as of the

initial NNO-topos, the initial arithmetic universe, the initial lexcategory with countable

products, etc.

In more detail, the category of strict lexcategories with internal initial models of Th,
and strict lexfunctors strictly preserving these internal initial models, is the category of

models of an infinitary quasi-equational theory (whose infinitary operations have arity

bounded by a set-sized cardinal dependent on the size of Th), and thus has an initial object.

This initial strict structure furthermore is initial in the non-strict context, because all the

relevant operations (finite limits, initial models of Th) are given by universal properties, so

that any functor out of the initial strict structure preserving these in a non-strict sense is

canonically isomorphic to a functor preserving these strictly on the nose. �
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Construction 6.8 If Th is a self-initializing theory, then InitialModels(Th) is left comma-

stable within LexCat, via Theorem 1.60. Furthermore, it has an initial object T via

Theorem 6.7. This T by definition has an initial internal model of Th; that is, there is an
initial f ∈ LexCat(Th, T ). Furthermore, since Th is self-initializing, it contains an internal

category C such that Glob(f [C]) itself is an object of InitialModels(Th).
We can thus invoke Construction 6.1 to obtain a unique introspective theory 〈T, f [C],

S,N〉 such that S is a map in InitialModels(Th).

There is an extension of the above construction to super-initializing theories. However, it

is a bit trickier. The key issue is to construct, for a super-initializing lexfunctor i : Th→ Th′,
a lexcategory which captures simultaneously the properties which are shared by initial

models of Th and by initial models of Th′. We sketch out the construction as follows:

Construction 6.9 Let i : Th → Th′ be a lexfunctor, such that models of Th are called

gadgets, models of Th′ are called supergadgets, and via i every supergadget is thought of

as having an underlying gadget.

Given a lexcategory L, we will say that a “Th′-initial model of Th in L” is an internal

gadget α in L, along with, for every internal supergadget β in L, a chosen gadget

homomorphism from hβ : α→ β, such that furthermore, these chosen homomorphisms

are closed under postcomposition with supergadget homomorphisms (that is, for any

supergadget homomorphism f : β → β′ in L, we have that f ◦ hβ = hβ′ , as gadget

homomorphisms). Note that this structure is NOT given by a universal property! There

may be multiple non-equivalent ways to choose such structure within L. (In particular,

both an initial internal gadget and an initial internal supergadget could be taken to be α.)
We may define a 2-category Special whose objects are lexcategories along with a choice

of Th′-initial models of Th in these lexcategories. The 1-cells of Special will be lexfunctors

which preserve these Th′-initial models of Th, in the sense of taking designated gadgets

and homomorphisms to designated gadgets and homomorphisms. 2-cells between these

are just ordinary natural transformations. There is an obvious forgetful 2-functor from this

Special to LexCat.
This Special has an initial object A. This A contains a designated internal gadgetGwith

an underlying lexcategory C. Because of the super-initializing property of gadgets and

supergadgets, within Glob(C), there is an internal initial supergadget. Thus Glob(C) can
uniquely be equipped as an object of Special such that the designated gadget in Glob(C) is
its internal initial supergadget. And thus there is a unique lexfunctor S : A → Glob(C)
which takes G to the initial supergadget G′ in Glob(C).

Finally, we shall show that there is a unique natural transformation N : idA →
HomC(1,S(−)) such that action of this N restricted to G is a designated gadget homomor-

phism. The argument for this is completely analogous to Construction 6.1, with appropriate

modification for the fact that Th′-initial models of Th are not given by a universal property

and thus Special is not merely a subcategory of LexCat.
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Specifically, we will consider the comma category (idA/fY ) where fY = HomA(1,S(−)) :
A→ A. Note that this fY , when applied to the designated gadget inA, yields the underlying
gadget of a supergadget.

By a modification of The Comma-Kan Lemma (Theorem 1.47), we find a unique way to

equip (idA/fY ) as having a Th′-initial model of Th which is preserved by both projections,

such that the induced homomorphism on G is a designated homomorphism.

Then we may apply a modification of Theorem 1.56 to conclude that the identity on A
has a unique natural transformation into fY whose induced action on G is a designated

homomorphism.

6.3.3 A self-initializing theory with uncountable and uncomputable
flavor

Note that all our arguments concerning self-initializing theories immediately adapt

just as well when all instances of “lexcategory” are replaced by “lexcategory furthermore

having countable products” and all instances of “lexfunctor” are replaced by “lexfunctor

furthermore preserving countable products”. We thus obtain the concept of self-initializing

countably lex theories. The analogue of Construction 6.3 then shows us how to equip the

initial model of any self-initializing countably lex theory as a geminal category, while the

analogue of Construction 6.8 furthermore gives us a corresponding introspective theory.

In particular, the combination of Theorem 1.65 and Observation 1.67 tells us that the

theory of toposes with countable products is a self-initializing countably lex theory. Thus:

Construction 6.10 The initial topos with countable products is naturally equipped as a

geminal category. Indeed, there is a uniquely determined geminal category 〈G1, G2;F1, F2〉
in which G1 is the initial topos with countable products, G2 is the initial topos with

countable products internal to G1, F1 preserves the structure of a topos with countable

products, and F2 is in the internal logic of G1 a map preserving the structure of a topos

with countable products.

Note that this structure contains true arithmetic (in the sense of all true statements

in the language of first-order arithmetic; note that determining membership in this set

of statements is highly uncomputable), and has uncountable hom-sets (thus, too large to

admit Gödel coding by mere natural numbers), but like any geminal category is still subject

to Löb’s theorem and Gödel’s incompleteness theorems. There is no conflict between

this structure being subject to Gödel’s second incompleteness theorem and the fact that

this structure contains all of true arithmetic, as this structure’s consistency sentence isn’t

expressible in first-order arithmetic; that is, this structure is not definable in first-order

arithmetic. Thus, this example demonstrates quite vividly that theseGödel-Löb phenomena

are not constrained to having anything to do with computability or even countability.
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6.4 The initial arithmetic universe
Construction 6.11 Let IAU be the initial arithmetic universe, and let C be any arithmetic

universe internal to IAU. Then by the combination of Construction 6.1 and Corollary 1.55,

we obtain an introspective theory 〈IAU, C,S,N〉 in which S : IAU → Glob(C) is the

unique such arithmetic functor, and the natural transformation N : idT → HomC(1,S(−))
is uniquely determined.

Observation 6.12 Note that the above construction can be applied using ANY arithmetic

universe internal to IAU. One natural choice is where C is taken to be the initial arithmetic

universe IAU′ internal to IAU (which exists thanks to Theorem 1.63 and Observation 1.66).

In this case, the natural transformation N we obtain is the same as the one constructed in

Lemma 5.15 of [DO20].

Note in this case also that S : IAU→ Glob(IAU′) is an equivalence. This is because the

global sections functor HomIAU(1,−) : IAU→ Set is an arithmetic functor, by Theorem 1.80.

Thus, as arithmetic functors preserve the initial internal models obtained by Theorem 1.63,

we have that Glob(IAU′) = IAU. Thus, the unique arithmetic functor from IAU to

Glob(IAU′) [which we have taken as S] is an equivalence.

Note that little was uniquely special about the initial arithmetic universe IAU for being

able to be equipped as an introspective theory in this manner. It was just an invocation

of our general construction Construction 6.1. We could similarly construct introspective

theories using initial objects of any kind of structure left comma-stable over LexCat, given
any structure of the same kind internal to the initial one. What’s noteworthy about IAU
is just that it happens to actually contain interesting internal structures (such as internal

categories corresponding to Peano Arithmetic, to ZFC, to the initial arithmetic universe,

etc), whereas the initial lexcategory, or initial regular category, or initial lexcategory with

finite pullback-stable colimits, or such things, all have a paucity of interesting internal

structures.

We now use Construction 6.11 to give a fuller account of our original guiding example

of an introspective theory based on traditional logical theories, from Construction 2.10.

First, we must observe a lemmatic construction, on localizing introspective theories:

Construction 6.13 If 〈T,C,S,N〉 is an introspective theory, and f : T → T [M−1] is a

lex localization in the sense of Definition 1.73, and every morphism in M is sent to an

isomorphism by S , then f acts as an introspective theory homomorphism (in the sense of

the non-strict analogue of Definition 5.10) from T to a uniquely determined introspective

theory 〈T [M−1], f(C)〉.
Furthermore, given any introspective theory homomorphism h : 〈T,C〉 → 〈T2, C2〉 such

that h sends every morphism inM to an isomorphism, this h factors uniquely through f
by an introspective theory homomorphism from 〈T [M−1], f(C)〉 to 〈T2, C2〉. In this sense,

〈T [M−1], f(C)〉 is the localization qua introspective theory of 〈T,C〉 atM .
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In particular, for any introspective theory, we can apply the above takingM to be the

set of all morphisms sent to isomorphisms by S. We may call the result the maximal
localization of our original introspective theory.

Proof. If f : T → T [M−1] is to act as an introspective theory homomorphism, it must be to

some introspective theory 〈T [M−1], C ′,S ′,N ′〉. Wewill show that each of these components

are uniquely determined by the requirements of Definition 5.10.

The requirement on C ′ in Definition 5.10 directly determines it as f(C).
The requirement on S ′ is that S ′ ◦f = Induced(f, C)◦S . Note that the right hand side of

this equation sends all morphisms inM to isomorphisms (since S already does so). Thus,

by the defining property of the localization f : T → T [M−1], this uniquely determines S ′
as a functor, and indeed this S ′ will be a lexfunctor by Lemma 1.75.

Finally, the requirement on N ′ is that the whiskering N ′f is equal to the whiskering

fN . By Lemma 1.72, this uniquely determines N ′.
Next, we show the unique factorization property. Let h be a map as described.

As f : T → T [M−1] is a lex localization, we have that there is a unique lexfunctor

g : T [M−1] → T2 such that h = g ◦ f . All that remains is to show that this g is an

introspective theory homomorphism from 〈T [M−1, f(C),S ′,N ′〉 to 〈T2, C2,S2,N2〉, in that

it satisfies the conditions of Definition 5.10.

The introspective theory homomorphism condition h(C) = C2 gives us the correspond-

ing introspective theory homomorphism condition g(f(C)) = C2.

The next condition we must establish is that this diagram commutes:

T [M−1] T2

Glob(f(C)) Glob(g(f(C))) = Glob(C2)

g

S′

Induced(g,f(C))

S

Because of the uniqueness of factorizations through localizations, it suffices to establish

that both paths here become the same when preceded by the localization f : T → T [M−1].
And that can be seen via the following commuting diagram:

T [M−1] T2

T Glob(C) Glob(h(C) = g(f(C)) = C2)

T [M−1] Glob(f(C))

g

Induced(g,f(C))

S
f

S′

f

h

Induced(h,C)S

Induced(f,C)



CHAPTER 6. EXAMPLES IN THE WILD 122

Finally, the last condition we must establish is that the whiskerings N g and gN ′ are
equal. By Lemma 1.72, it suffices to establish that the whiskeringsN gf and gN ′f are equal.

This can be seen via the chain of equations N gf = Nh = hN = gfN = gN ′f . �

Theorem 6.14 The introspective theory described in Construction 2.10 is the maximal

localization, in the sense of Construction 6.13, of an introspective theory produced by

Construction 6.11.

Proof. Recall the categories Z and ZΣ1 from Construction 2.10. Here, Z is an exact category

whose objects and morphisms correspond to definable classes and graphs of functions

between these in the theory ZF-Finite, with morphisms taken modulo provable equality in

ZF-Finite. While ZΣ1 is the subcategory of Z where the definability conditions are further

restricted to Σ1-definability.

It is readily verified that Z is an arithmetic universe. Thus, there is a unique arithmetic

functor !Z : IAU → Z. Let M be the set of morphisms in IAU which are taken to

isomorphisms by this !Z. By Lemma 1.78, this !Z factors uniquely through the arithmetic

localization IAU[M−1]. Using Lemma 1.77, it is straightforwardly, if tediously, verified that

this IAU[M−1] is in fact ZΣ1 , with !Z thus being the unique arithmetic functor from IAU
to ZΣ1 followed by the inclusion from ZΣ1 to Z. That is to say, the role played by the Σ1

constraints in defining ZΣ1 is precisely to make ZΣ1 an arithmetic localization of IAU.

Note also that, as Z and ZΣ1 are both computably enumerable arithmetic universes

internal to Set, we find, in keeping with Observation 1.45, that these are the images in Set of
arithmetic universes internal to the initial arithmetic universe IAU. That is, letting GlobIAU

be the unique arithmetic functor from IAU to Set (which is the same as the global sections

functor HomIAU(1,−), thanks to Theorem 1.80), we have arithmetic universes Glob−1
IAU[Z]

and Glob−1
IAU[ZΣ1 ] such that the images of these under GlobIAU are Z and ZΣ1 , respectively.

Via Construction 6.1, we thus obtain an introspective theory 〈IAU,Glob−1
IAU[Z]〉, whose

S : IAU→ Glob(Glob−1
IAU[Z]) = Z is the unique arithmetic functor from IAU to Z. Thus the

set of morphisms in IAU sent to isomorphisms by this S is the same as the M defined

above.

Now let 〈ZΣ1 ,Z
′〉 be the introspective theory described in Construction 2.10.

It is readily verified that Z′ and Glob−1
IAU[Z] can be chosen so that the former is the image

of the latter under the unique arithmetic functor !ZΣ1
: IAU→ ZΣ1 . Furthermore, it is readily

verified that S : ZΣ1 → Glob(Z′) is an arithmetic functor. Thus by Construction 6.1, the

unique arithmetic functor !ZΣ1
: IAU→ ZΣ1 is in fact an introspective theoryhomomorphism

from 〈IAU,Glob−1
IAU[Z]〉 to 〈ZΣ1 ,Z

′〉.
Since !ZΣ1

: IAU → ZΣ1 was, as noted above, the same as the arithmetic localization

IAU → IAU[M−1], we may invoke Construction 6.13 to conclude that the introspective

theory homomorphism from 〈IAU,Glob−1
IAU[Z]〉 to 〈ZΣ1 ,Z

′〉 is the same as the localization of

the introspective theory 〈IAU,Glob−1
IAU[Z]〉 atM , which by the observation three paragraphs

ago is the maximal localization of this introspective theory.

This concludes the proof. �
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Observation 6.15 Clearly, there is nothing special about ZF-Finite in the above. From

any traditional computably enumerable logical theory extending, say, Peano Arithmetic

(though even this is much stronger than necessary), we get a computably enumerable

arithmetic universe in the style of Z′, which (a la Observation 1.45) is coded by some

arithmetic universe C internal to IAU. For example, we can do this with ZFC, or vNBG, or

ZFC + “ZFC is not consistent”, or any such thing. For each of these, we get correspondingly

an introspective theory 〈IAU, C〉 via Construction 6.11, whose maximal localization (in the

sense of Construction 6.13) is perfectly analogous to the introspective theory 〈ZΣ1 ,Z
′〉 from

Construction 2.10.

6.5 Models based on presheaf categories
In this section, we will develop an introspective theory construction which unifies and

vastly generalizes Construction 2.13 and Construction 2.16.

6.5.1 The general construction yielding locally introspective theories
Construction 6.16 Let i : D → S be an arbitrary functor between set-sized categories D
and S.

Furthermore, suppose given some subset of the morphisms of S which is closed

under composition on either side with arbitrary morphisms. That is, suppose given some

bifunctor SpecialHomS : Sop × S → Set along with an inclusion map from SpecialHomS to

HomS : Sop × S → Set.1
By currying, we may read this SpecialHomS as a functor from S to Psh(S) which is a

subfunctor of the Yoneda embedding. As the Yoneda embedding exhibits Psh(S) as the
free cocompletion of S under set-sized colimits, we can uniquely extend this subfunctor

of the Yoneda embedding to an endofunctor Prior on Psh(S) which is a subfunctor of the

identity and which preserves set-sized colimits. By the adjoint functor theorem, this Prior
is a left adjoint.

We may now define a locally introspective theory 〈Psh(S), C〉 like so:

Psh(S)op Psh(S)op LexCat

Psh(D)op

(i∗)op Psh(D)/−

Psh(S)/−id

Priorop

i∗

1
This construction would work just as well for any bifunctor SpecialHomS with a map to HomS . It is not

actually necessary that this map be monic. We use the language of “subfunctor” and “inclusion” here just for

linguistic convenience, and because our archetypal examples happen to be of this form.
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The unlabelled 2-cell on the left of the above diagram is the one given by the inclusion

of Prior into the identity (which is turned around when considered as endodunctors of

Psh(S)op
instead of Psh(S)).

Here, we take the Psh(S)-indexed lexcategory C to be the bottom composite path, and

of course our F is the composite 2-cell from top to bottom. The local representableness of

this C follows via Theorem 1.20 from the observations that Prior and i∗ both have right

adjoints and Psh(D)/− is locally representable (i.e., Psh(D) is locally cartesian closed).

(Pedantically, we note that in the above diagram, LexCat must be understood as

containing not just set-sized lexcategories but also large lexcategories, so that this LexCat
may serve as the target of the self-indexings of the large categories Psh(S) and Psh(D).)

This construction can be seen as Example 2.3 applied to Psh(D), followed by Con-

struction 2.18 using the pullback-preserving functor i∗ : Psh(S) → Psh(D), followed by

Construction 2.17 using a map derived from the inclusion of Prior into the identity on

Psh(S).

Observation 6.17 Our archetypal examples of locally introspective theories Construc-

tion 2.12 and Construction 2.14 were each instances of Construction 6.16.

Specifically, Construction 2.12 was the instance where i is the identity functor on the

poset ω of natural numbers, with SpecialHom(a, b) being uniquely inhabited when a < b
and otherwise empty.

And Construction 2.14 was the instance where i is the inclusion of |P | into Q (where P
is an arbitrary poset, |P | is its underlying discrete set, and Q is P augmented with a new

maximum element), and again SpecialHom(a, b) was taken to be uniquely inhabited when

a < b and otherwise empty.

Unfortunately, this Construction 6.16 does not in general yield a fully introspective

theory. We cannot expect this C to be representable.

But by passing to suitable full sublexcategories of Psh(S) and Psh(D)/− a la Construc-

tion 2.20 and Construction 2.21, we may hope to obtain an introspective theory, and indeed

we shall always be able to do so in a convenient way whenever SpecialHom satisfies a

certain well-foundedness condition. The details of this process are described in the next

sections.

6.5.2 Presheaves with varying cardinality constraints (aka, ramps)
The details in this section may seem like a lot. Bear with me! We are simply abstracting

the same kind of cardinality constraints used in Construction 2.13 and Construction 2.16.

Note that this amounts to a generalization of the construction from [HS99], to allow for

constraints which vary over the objects of the indexing category rather than remaining

constant.
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Let X be a category internal to Set, and let K be a function from Ob(X) to sets of sets2.

We call any choice of such K a ramp on X .

By a K-presheaf on X , we mean a presheaf E on X such that E(x) ∈ K(x) for each
x ∈ X . These comprise a full subcategory of Psh(X), which we may call PshK(X).

More generally, given an arbitrary presheaf P on X , we define the notion of a K-

decoration on P . This is a function f which assigns to each x ∈ X and p ∈ P (x) an element

f(x, p) ∈ K(x), along with a presheaf E on X and a map π : E → P in Psh(X) satisfying
the condition that E(x) =

∐
p∈P (x) f(x, p) with πx : E(x)→ P (x) being the corresponding

projection, for each x ∈ X . (Thus, all that is left to specify in E is its reindexing maps, in a

compatible fashion with the morphism structure of X and with the projection map to P .)
That is, a K-decoration of P is a presheaf over P whose fibers at each aspect P (x) of P

are each given by elements of the corresponding K(x). Note that the K-decorations of P
comprise a set (they can be compared for equality, and it is readily observed that in size

they comprise a set rather than a proper class).

Note that K-decorations of the terminal presheaf amount to the same thing as objects

of PshK(X).
Given a mapm : P1 → P2 in Psh(X), we straightforwardly can pull aK-decoration of

P2 back to a K-decoration of P1. This is strictly functorial, and thus we get a contravariant

map from Psh(X) to Set which assigns to any P ∈ Psh(X) the set of K-decorations of P ,
with reindexings as just described.

It is also straightforward to observe that this map takes set-sized colimits in Psh(X) to
set-sized limits in Set. Thus, by Theorem 1.84, this is in fact Psh(X)-representable. That is
to say, we have a particular objectK−Dec(X) in Psh(X) and aK-decoration ofK−Dec(X),
such that any K-decoration of any object in Psh(X) is the reindexing of this one along a

unique morphism. In particular, this gives us a map into K−Dec(X) such that every other

map with K-sized fibers, so to speak, is a pullback of this one.

Construction 6.18 We may now consider the full subcategory of the self-indexing

Psh(X)/− restricted to pullbacks of this generic map with K-sized fibers. Call this

RPshK(X). This Psh(X)-indexed category is locally representable (as it is a full subcate-

gory of Psh(X)/−, which is locally representable by the local cartesian closure of Psh(X)),
and it can also be taken as having a representable set of objects (given byK−Dec(X)). Thus,
it can be taken to be a Psh(X)-internal category, which is to say, an X-indexed set-sized

strict category.

Note that the global aspect of RPshK(X) is PshK(X), by our previous observation about

K-decorations of the terminal presheaf.

Observe that if each K(x) for x ∈ X is closed under finite products and subsets, then

each K(x) comprises the objects of a full sublexcategory of Set, and RPshK(X) is in fact

a full sublexcategory of the self-indexing Psh(X)/−, with PshK(X) accordingly being a

2
It might be better to say that the outputs ofK are set-indexed sets. At any rate, we shall think of each

K(x) as a genuine set, whose elements both can be compared for equality and have associated sets.
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full sublexcategory of Psh(X). From now on, we will always make this assumption on

our ramps K. [It would actually suffice for our purposes to make the slightly weaker

presumption that eachK(x) comprises the objects of a full sublexcategory of Set, but for
convenience, we go ahead and presume here closure under arbitrary subsets.]

When ramps are closed under finite limits in this way, observe that any map in PshK(X)
is in fact a K-decoration (or rather, isomorphic to one as an object of the corresponding

slice category). That is, given f : Q → P in PshK(X), we have for each x ∈ X and each

p ∈ P (x) that the fiber f−1(p) is in K(x) (as it can be defined as a pullback 1×P (x) Q(x)).
Thus, the self-indexing PshK(X)/− is an indexed full sublexcategory of RPshK(X).3

Observation 6.19 Observe that the conditions defining aK-decoration of P ∈ Psh(X) only
depend on the values ofK(x) at x ∈ X for which P (x) is inhabited. The values ofK at x
for which P (x) is empty play no role. In other words, the aspect of the Psh(X)-internal
category RPshK(X) at presheaf P only depends on the value ofK at x ∈ X for which P (x)
is inhabited.

When we consider RPshK(X) instead as an X-indexed structure, its aspect at x ∈ X is

the same as its aspect as a Psh(X)-internal structure at yoneda(x). By the above, this only

depends on the values of K at y for which yoneda(x)(y) = HomX(y, x) is inhabited.

6.5.3 Having ramps on two categories
Observe that if we are given an arbitrary functor i : D → S, along with rampsKS on S

andKD on D satisfying the compatibility condition thatKS(i(d)) ⊆ KD(d) for each d ∈ D,

then applying i∗ : Psh(S)→ Psh(D) to apresheaf inPshKS
(S)yields apresheaf inPshKD

(D).
We may refer to this restricted action by the same name i∗ : PshKS

(S)→ PshKD
(D). Given

our presumption of closure under finite limits on the ramps, this is a lexfunctor between

lexcategories.

Definition 6.20 For convenience, we may go ahead and even defineKD asKS ◦ i to ensure

the compatibility condition, though this is stronger than needed for our purposes. To

simplify our exposition, we will from now on presumeKD is defined fromKS in this way.

We thus have the following commutative square of lexfunctors, where the unlabelled

arrows are the inclusion lexfunctors:

3
This inclusion needn’t be an equivalence. There may be further K-decorations of P ∈ PshK(X) whose

domain (qua morphism into P ) is not in PshK(X), as we’ve made no presumption that each K(x) be closed
under sums indexed by any set in K(x). But we have this one direction of inclusion.
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PshKS
(S)op PshKD

(D)op

Psh(S)op Psh(D)op

(i∗)op

(i∗)op

Indeed, this commutative diagram sits within the following diagram of lexfunctors and

indexed lexfunctors:

PshKS
(S)op LexCat

PshKD
(D)op

Psh(S)op Psh(D)op

PshKS
(S)/−

(i∗)op

RPshKD
(D)

(i∗)op PshKD
(D)/−i∗

In the above diagram, unlabelled arrows are canonical inclusions of full sublexcategories.

In particular, the unlabelled right 2-cell is the way in which PshKD
(D)/− is an indexed full

sublexcategory of RPshKD
(D).

The top 2-cell i∗ is the one obtained from i∗ : PshKS
(S)→ PshKD

(D)byConstruction 1.85.
The bottom left “triangle” (or square drawn as triangle) is our just previously mentioned

commutative square.

Overloading names yet again, we may compress this last diagram into a composite

2-cell which we shall also name i∗, like so:

PshKS
(S)op LexCat

Psh(S)op Psh(D)op

PshKS
(S)/−

(i∗)op

RPshKD
(D)i∗

6.5.4 Cardinality-constraining the general construction to yield
introspective theories

Construction 6.21 From the above, we have a pre-introspective theory 〈PshKS
(S), C,F〉

in which F is given by the composite 2-cell in the following diagram, and C is given by the

codomain of this F :
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PshKS
(S)op LexCat

Psh(S)op Psh(S)op Psh(D)op

PshKS
(S)/−

(i∗)op

RPshKD
(D)

id

Priorop

i∗

Observation 6.22 Our archetypal examples of introspective theories Construction 2.13

and Construction 2.16 were both instances of Construction 6.21, in the same manner as in

Observation 6.17.

We now consider the question of when the pre-introspective theory described in

Construction 6.21 is in fact an introspective theory. This happens precisely if the C we

have defined is PshKS
(S)-representable. As RPshKD

(D) is Psh(D)-representable (by the

comments at Construction 6.18), and i∗ and Prior both have right adjoints, we automatically

have (by Theorem 1.10) that our C corresponds to a lexcategory internal to Psh(S) (aka, an
S-indexed lexcategory). However, the inclusion of PshKS

(S) into Psh(S) will not in general

have a right adjoint, so we cannot conclude that C is PshKS
(S)-representable in this same

way. We may think of Mor(C) as an object within Psh(S), but do not know that this lives

within its full subcategory PshKS
(S). This will happen just in case, for every s ∈ S, the

s-aspect of Mor(C) is contained in KS(s).
Under suitable conditions, we can arrange for a ramp KS such that this happens. For

t, s ∈ S, let t < smean that SpecialHomS(t, s) is inhabited. We have the following:

Observation 6.23 The s-aspect of C, where s ∈ S, depends only on the values of the ramp

KS at objects < s.

Proof. By definition, the s-aspect of C is the aspect of RPshKD
(D) at i∗(Prior(yoneda(s))).

By Observation 6.19, this depends only on the value ofKD at those objects in D at which

the presheaf i∗(Prior(yoneda(s))) is inhabited.
And by definition, Prior(yoneda(s)) is a presheaf on S which is inhabited only at t < s.

Thus, i∗(Prior(yoneda(s))) is a presheaf onDwhich is inhabited only at d for which i(d) < s.
Thus, the s-aspect of C depends only the values of the ramp KD at d ∈ D for which

i(d) < s. Since KD(d) was defined (at Definition 6.20) as KS(i(d)), this is to say that the

dependence is only on the values of the ramp KS at objects < s. �

Thus, we will have that Construction 6.21 gives an introspective theory just in case for

each s ∈ S, we have that KS(s) contains a certain set (the s-aspect of Mor(C)) determined

by the values ofKS(t) at t < s. If the < relation is well-founded, we can easily recursively

choose the values of KS to always satisfy this condition, by simply choosing at each stage

the minimal full sublexcategory of Set generated by the required set. (Indeed, we could
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just as well arrange in essentially the same way for eachKS(s) to also contain any set-sized

number of other sets of interest.)

Construction 6.24 Thus, when the < relation corresponding to SpecialHomS is well-

founded, we can choose a ramp KS such that Construction 6.21 yields an introspective

theory (and we can furthermore do so in such a way that PshKS
(S) includes any other fixed

set of desired objects of Psh(S)).

Observation 6.25 The introspective theory of Construction 6.24 is straightforwardly a

sub-introspection, in the sense of Construction 2.22, of the locally introspective theory

given by Construction 6.16. This can be seen via the following two diagrams:

PshKS
(S)op LexCat

Psh(S)op Psh(S)op Psh(D)op

PshKS
(S)/−

(i∗)op

RPshKD
(D)

id

Priorop

Psh(D)/−

i∗

PshKS
(S)op LexCat

Psh(S)op Psh(S)op Psh(D)op

PshKS
(S)/−

(i∗)op

id

Priorop

Psh(D)/−

Psh(S)/−
i∗

In the above two diagrams, unlabelled arrows are canonical inclusions. Note that the

composite 2-cells from PshKS
(S)/− to Psh(D)/i∗(−) are the same in both diagrams.
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