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The goal is to understand what “topology” means. Everything new I say (if I do) will be
joint work with Qi Zhu.

1 Topology is Cool!

The story of topological spaces goes back to ideas of Hausdorff in order to study “sets with a
notion of closeness” and generalizes examples such as metric spaces from analysis, manifolds
and schemes from geometry up to Polish spaces in logic.

By its very definition the notion of “topology” is tied to sets. In fact the definition proposed
by Hausdorff (what we now call Hausdorff topological space) is introduced in the book “Prin-
ciples of Set Theory”. This naturally suggests the question how to define topologies in settings
other than sets. Two key examples that are of particular relevance are:

1. Algebraic structures: We can wonder how to infuse topologies with groups, rings, modules,
... . This way we get relevant examples such as group schemes or Lie groups or topological
vector spaces.

2. Homotopy types: We can wonder how to add topologies to “homotopy types” meaning
the ∞-category of spaces or similar ∞-categories. Let us see one example to understand
its relevance. One classical result in topology is the Brouwer fixed point theorem, which
states that every morphisms from the disc to itself has a fixed point. While there has been
a general trend in homotopy theory to move from topological spaces to homotopy types,
this example does not work as in the ∞-category of spaces as the disc is contractible and
so the statement becomes trivial. So, in order to be able to state and prove a “Brouwer
fixed point theorem” in a higher categorical setting, we need to “topologize homotopy
types”.

2 Naive Generalizations

Here is our first naive effort towards generalizing topologies. Let C be a category with a given
functor U : C → Set, which we intuitively think of as the “underlying set”. Define Top(C) as
the pullback of the diagram C → Set ← Top. Intuitively this is saying we have an object with
a topology on the underlying set.

Let’s check some examples:

• If C = Set and U the identity we get usual topologies. Good!

• If C = Top, then we get something meaningless, a set with two topologies and morphisms
continuous maps with respect to both topologies. X

• If C = Ab, then we get “topological abelian groups”. This might appear reasonable,
however, its a problematic category. For example, the category of topological abelian
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groups is not even an abelian category. Indeed, the identity map Rdisc → Rclass has no
kernel or cokernel, but is not an isomorphism (the inverse is not continuous). We can see
that the same applies to topological vector spaces.

• Let X be a set and C = Set/X . Then Top(C) has objects non-continuous morphisms
T → X. We get similar results when looking at SetX/.

We have the same problem when mingling things with homotopy theory.

• Let C = S, the ∞-category of homotopy types. Then Top(S) is the ∞-category with
objects in S with a topology on its path-components. In particular, if we take Scn the
full subcategory of connected objects, then Top(Scn) ≃ Scn, meaning there exists no
meaningful topology.

3 A first Generalization: Condensed stuff

As we just saw our first approach failed miserably, so let’s try something else. Our approaches
hinges on redefining what a topology is.

Here is the basic idea: Let T be a full subcategory of Top. Then this induced a functor
Hom(T,−) : Top→ Fun(Top, Set), which takes a topological space X to the restricted presheaf
Hom(−, X) : Top → Set.

1. If T is the full subcategory with one object being the one point space, then Hom(T,−) is
just the forgetful functor to set.

2. If T = Top, then this is just the Yoneda embedding.

So, those are two extreme cases: one forgets everything about the topology, the other
remembers everything about the topology (via the Yoneda lemma) and so what we want is to
pick a good middle case that remembers some thing in a topologically effective manner.

The insight of Clausen and Scholze [Sch19] was to try the full subcategory of compact
Hausdorff spaces CHaus. Then we use the Yoneda embedding CHaus→ Fun(CHausop, Set), but
as usual we like to identity the representable presheaf of U ∪ V with the pushout yU

∐
yU∩V

yV .
Hence, we focus on the subcategory of sheaves. That’s what we call condensed sets denote
Cond(Set).

Remark 3.1. Depending on which set-theoretical assumptions one makes on the source and
target this could also be known as pyknotic sets [BH19]. We will not go into this and just use
the terminology condensed throughout.

Now, notice, the inclusion functor Top→ Cond(Set) is not generally fully faithful, however,
it is faithful and also full when restricted to compact Hausdorff spaces.

While very insightful from a conceptual perspective, we can use a more computational lens.

Definition 3.2. Let C be a category. A pro-object is a cofiltered diagram F : I → C, meaning
I is cofiltered category. The collection of pro-objects in C assemble into a category, called the
category of pro-objects Pro(C). It is formally defined as Ind(Cop)op, meaning the full subcategory
of Fun(C, Set)op consisting of objects given by filtered colimits of representables.

The definition already suggests a reasonable universal property. For every category D closed
under cofiltered limits and functor F : C → D there exists a unique lift that preserves all
cofiltered limits

C D

Pro(C)

F

F̂
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The relevant example are pro-finite sets Pro(Fin). Following the universal property described
above, there exists a diagram

Fin Top

Pro(Fin)

Disc

D

One of the key results [RZ10, Theorem 1.1.12] is that D : Pro(Fin) → Top is fully faithful
and the essential image is given by Stone spaces which can equivalently be described as totally
disconnected compact Hausdorff spaces. In particular, the functor above factors as Pro(Fin)→
CHaus, which induces a diagram

Fun(CHausop, Set)→ Fun(Pro(Fin)op, Set).

This functor is evidently not an equivalence of any sort. However, if we restrict ourselves
to sheaves for jointly surjective families of morphisms, then we in fact get an equivalence of
categories [Yam22], hence, we can describe condensed sets also as “sheaves on profinite sets”,
which is very computationally feasible: A sheaf is a functor F : ProFinop → Set such that

• F (T1
∐

T2)→ F (T1)× F (T2) is a bijection for all profinite sets T1, T2, and

• for all parallel arrows of pro-finite sets f, g : T1 → T2 with equalizer E, T (E) is the
equalizer of T (f), T (g).

Hence, we think of condensed sets as our “new topological spaces”. Given that how can we
define topological objects?

Definition 3.3. Let C be a category. Let Cond(C), the category of condensed objects in C to
be the category of sheaves with value in C.

Let us see very concretely how this can help us solve a problem we had before.

Example 3.4. As we saw before the map Rdisc → Rclass has a trivial cokernel, meaning
it is surjective. However, what happens when consider them as condensed abelian groups?
By construction, the condensed abelian groups are given by S 7→ Hom(S,Rdisc) and S 7→
Hom(S,Rclass). When S = ∗ they precisely recover the original topological spaces with the
identity and so Q(∗) is trivial again, however, for a general S, Hom(S,Rdisc) is given by locally
constant morphisms, whereas Hom(S,Rclass) is given by the continuous ones, so we have

Q(S) = {f : S → R : f continuous}/{f : S → R : f locally constant}

This result is not a coincidence and in fact we have the following.

Theorem 3.5 ([Sch19]). The category of condensed abelian groups is an abelian category.

Similarly, we can now define a good notion of topologized homotopy types.

Definition 3.6. A condensed homotopy type/space is a condensed object in the ∞-category
of spaces (this is what Scholze now calls “condensed anima”).

Notice from the definition it follows immediately that Cond(S) is an ∞-topos, with all its
bells and whistles, in particular it is locally Cartesian closed, it satisfies descent and has nice
“univalent universes”.
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4 Theoretical Framework: Local & Cohesive Topos

This last example brings us to a second way of imposing some topological structure into our
setting: locality and cohesion. Given a set how can we topologize it? There are two standard
ways: the discrete topology and the codiscrete topology, both of which are fully faithful. This
assembles into the following very nice diagram

Set Top

Co

Disc⊥
U⊥

Finally, with some minor conditions on Top we can further compute path-components of a
topological spaces getting the following diagram.

Set Toploc. cn.

Co

Disc⊥
U⊥

π0

⊥

Notice here, Disc, Co are fully faithful and π0(when it exists) commutes with products. What
we would like is a formalization of this data. This goes back to ideas of Lawvere who was
working on topos theory [Law07]. The category of topological spaces are messed up and so
what we would want to do is to replace Top with a better category which fits into this diagram.

Remark 4.1. Let X and Y be two topoi. Recall that Y is over X, or X is a base topos, if there
exists a left adjoint f∗ : X→ Y commuting with finite limits.

Definition 4.2. A topos Y over X via U is local

X Y

Co

Disc

⊥
U⊥

with Co, Disc fully faithful, and moreover is cohesive if there exists a further left adjoint

X Y

Co

Disc⊥
U⊥

π0

⊥

with π0 product preserving.

Remark 4.3. If X = Set and U : HomY(1,−) then we just say Y is local or cohesive.

As we just noted topological spaces don’t actually fit into this diagram as it is not a topos,
but it’s not too hard to find nice examples. Let’s start with an old example similar to condensed
stuff. in [Joh79] of a topos very close to topological spaces, that is in fact local.

Example 4.4. Let Σ be the full subcategory of Top with two objects 1 and the 1-point com-
pactification of N. Then the category of sheaves Shv(Σ, J), where J has the canonical topology
permits a faithful functor from Top, which is fully faithful when restricting to sequential spaces,
meaning spaces which have the universal property that continuous maps out of them are deter-
mined by preserving convergent sequences [Joh79, Lemma 2.1]. Moreover, based on [Joh79] we
can show Shv(Σ, J) is local, meaning there is a diagram
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Set Shv(Σ, J)

Co

Disc

⊥
U⊥

The historical example suggests also the example relevant to us.

Example 4.5 ([BH19]). Notice, Cond(X) is a topos over X via composition X→ Fun(ProFinop,X)→
Cond(X). Now, Cond(X) is local over X as we have the diagram of adjunctions

X Cond(X)

Co

Disc

⊥
ev1
⊥

where the functors Co,Disc are in fact fully faithful. In fact, we can more explicitly describe
Co(X)(K) =

∏
|K|X. This fact resembles the example we saw above.

That’s a good first step. Can we advance this to a cohesive structure? No!

Example 4.6. ([BH19, Example 2.2.14]) Take the functor Disc : ProFin → Cond(Set). It is
given as Disc(S) =

∐
S 1, where 1 is the terminal condensed set. On the other hand, take a

cofiltered diagram of finite sets, then the limit in Cond(Set) will be the corresponding Stone
space given via the embedding ProFin→ Cond(Set), meaning it is not of the form

∐
S 1.

Here is the homotopy theorists favorite example.

Example 4.7. sSet is cohesive. Explicitly, this means we have the diagram

Set sSet

Co

Disc⊥
(−)0⊥

π0

⊥

Here Disc(S) is given by Disc(S)n = S (the discrete Kan complex with vertex set S) and Co(S)
is given by Co(S)n = Sn+1 (the contractible Kan complex with vertex set S).

Indirectly, homotopy theorists use all the time this cohesive structure on sSet when doing
homotopy theory. Notice of course, here there is nothing special about Set and one could use
any other category (or ∞-category) to get a similar diagram of adjunctions. Another elegant
example cohesion that I will not discuss in further detail, but is worth mentioning, is global
equivariant homotopy theory, whose cohesion was established by Rezk [Rez14].

Finally, let us come back to one of the original objections. In [Shu18] Shulman defines
“real-cohesion”, which is a specific class of cohesive ∞-topoi.

Example 4.8. Let Cart be the 1-category with objects Rn and morphisms continuous maps.
Take the evident Grothendieck topology of finitely jointly surjective morphisms in Rn and
use that to define the ∞-category of sheaves Shv(Cart). Then Shv(Cart) is cohesive [Sch13,
Proposition 4.3.2], meaning we have the diagram

S Shv(Cart)

Co

Disc⊥
evR0⊥

π0

⊥

Notice, in particular in Shv(Cart) the object R1 is contractible and we can use that to abstractly
prove Brouwers fixed point theorem, as we now have a disc R2 and a “topological circle” as
the coequalizer of id,+1 : R → R. Indeed it holds in every cohesive ∞-topos which has this
property, meaning it is real-cohesive.
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5 Better Theoretical framework: Fractured Topos

In that last section we saw there is a limit on how well we can understand Cond(X) based
on X. Concretely, as we will see, we would hope to use such categorical frameworks to study
cohomologies. So how about other frameworks and sub-categories?

There are further framework proposed by Lurie [Lur18] based on ideas of Carchedi [Car20]
and very much motivated by certain ∞-topoi arising in geometry. This requires us to move
away from base topoi towards more general adjunctions.

Definition 5.1. A triple of adjunctions of ∞-topoi

X Yf∗

f!

f∗

is a fracture structure if for all objects X in X, the induced functor f∗ : X/X → Y/X is local,
which concretely means f!, f∗ are fully faithful and f! preserves finite limits.

Relevant examples are not as easy to see, but can be found in [Clo21].

Example 5.2. ([Clo21, Example 4.1.8]) For A any commutative ring, Afffp
A denote the cat-

egory of finitely presented affine schemes. Consider the triple (Afffp
A , (Afffp

A )Zar,emb, τZar)
consists of the Zariski open embeddings, and τZar is the Zariski topology. Then for any given
∞-topos X, the induced adjunction

ShvX((Aff
fp
A )Zar,emb) ShvX(Afffp

A )

Co

Disc

⊥

gives us a fractured structure.

Notice in this example we are trying to understand Zariski sheaves by focusing on diagrams
based on embeddings and this is a guiding principle for us. This example motivates us to pursue
the following direction when studying condensed objects.

Definition 5.3. Let CHausinj be the (wide but not full) subcategory of CHaus with the same
objects but with morphisms injections. Notice, CHausinj comes with an evident Grothendieck
topology given by finitely jointly surjective collection of morphisms. We denote by Condinj(C),
the category of C-valued sheaves based on this topology.

The evident inclusion functor Inc : CHausinj → CHaus induces a diagram of adjunctions

Fun((CHaus)op,X) Fun((CHausinj)op,X)Inc∗

Inc!

Inc∗

Now, it is a direct computation that Inc∗ and Inc∗ preserves sheaves. This means the triple
adjunctions restrict to a triple adjunction of categories of sheaves

Cond(X) Condinj(X)Inc∗

Inc!

Inc∗
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What can we say about this?

Lemma 5.4. Cond(X) is not cohesive over Condinj(X). It is not even local. It is not even over.

Proof. The functor Inc! does not preserve the terminal object. Indeed, the terminal object in
Condinj(X) is not representable.

Given that all other approaches failed here we are left with checking the fractured structure.

Theorem 5.5 (Hopefully, R.–Zhu). Let X be an ∞-topos. Then

Cond(X) Condinj(X)Inc∗

Inc!

Inc∗

gives us the structure of a fractured ∞-topos.

Sketch of Proof. Here is an idea of a proof. We can generate certain (many) fractured structures
by choosing an appropriate collection of morphisms in our chosen ∞-topos. This idea has been
formalized by Lurie via admissibility structures.

Hence the steps of the proof are given by:

1. Defining and studying admissibility structures [Lur18, Definition 20.2.1.1]. This is a class
of maps containing equivalences, closed under pullbacks, and satisfying “backhand 2-out-
of-3”.

2. Showing that admissibility structures on a small ∞-category corresponds to a fractured
structure on its category of presheaves [Lur18, Theorem 20.2.4.1].

3. Define local admissibility structures as a mild variation [Lur18, Definition 20.3.2.1].

4. Show that local admissibility structures compatible with a certain Grothendieck topology
(known as Geometric sites [Lur18, Definition 20.3.4.1]) correspond to a fractured structure
on the corresponding ∞-category of sheaves [Lur18, Theorem 20.3.4.4].

6 Why do we care? Cohomologies?

There is of course a certain conceptual satisfaction to having such nice comparison, but are
there any concrete benefits? So, here is a (currently aspirational) benefit: cohomology!

Let C be a compact topological space. There are several ways to define “cohomology”.

1. Singular Cohomology: Classical algebraic topology via cochains.

2. Cech Cohomology: Taking Cech covers, then nerves and then using that compute coho-
mology.

3. Sheaf Cohomology: Taking the category of sheaves in abelian groups on X and then
computing sheaf cohomology, by deriving the global sections functor Γ : Shv(X) → Ab
with respect to an injective resolution.

Now, finally, given that we have a functor Top→ Cond(Set), we can take the image of every
compact Hausdorff space S in Cond(Set). Using the fact that Cond(Set) is a topos, we can
define a fourth cohomology theory.
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4. Condensed Cohomology: Taking the cohomology of the global section in the topos Cond(Set)
at the object S. Concretely, taking a hyper-cover of representables S• → S and then eval-
uating the cohomology of the resulting complex

0→ Γ(S0,Z)→ Γ(S1,Z)→ ...

In [Sch19, Theorem 3.2] Scholze proves that sheaf cohomology of a compact Hausdorff space
coincides with the condensed cohomology of its associated condensed set. This has also been
observed by Haine, who in fact generalized it to locally compact spaces [Hai22]. In particular
the proof by Scholze is very hardcore direct computation, involving surprising amount of ϵ...

The current idea is to exploit the fractured structure to gain a more conceptual understand-
ing regarding the condensed structure via the following series of conjectures.

1. Showing that condensed cohomology coincides with computing cohomology in the∞-topos
given by injections.

2. Establish a similar result for sheaf cohomology.

3. Proving that sheaf cohomology and condensed cohomology coincide in Condinj(X), ben-
efiting from the fact that all morphisms in Condinj are injections, and so in particular
CHausinj/X is a poset.

This would allow us give a conceptual understanding of this result, but also generalize it to
other coefficients, as it shifts the focus of the proof away from the value to the diagram.
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