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Notice that the error E, (V) — [0 V(x) dx is the sum of two terms,
one of which is O(n™ ') and the other of Wthh 1s Re V(2n). For smooth Vs,
this term is also at least O(n~!) but, in general, sup,. ,, V(2n) can go to zero
arbitrarily slowly. The above results depend critically on the one-dimensional
nature of the problem, for it 1s only in one dimension that the distance
between eigenvalues of H, diverges as n goes to infinity.

XI111.16 Schrodinger operators with periodic
potentials

In this section we study Schrédinger operators —A + V where V i1s a

periodic function. That is, we assume that for some basis {a,}]-, € R", V
satisfies

V(x + a;) = V(x) (135)

As we shall discuss, these operators are important in solid state physics.
We have already seen that the spectral properties of Schrédinger opera-
tors are highly dependent on the behavior of V at infinity. Basically, we have
studied three distinct classes of Schrodinger operators. The class whose
spectral properties were easiest to establish were those with V(x) — oo as
x — 00; this class had empty essential spectrum (Theorem XIII.16). The next
simplest class consisted of the “one-body Schrodinger operators™ where
V(x) 0 as x— o0, at least in some ‘“average sense” (such as
V(x) € IP(R", dx) for some p < o0); under fairly general hypotheses these
operators have o, = [0, 00) (see Theorem XIII.15) and empty singular con-
tinuous spectrum (Theorem XIII.33). The third class is made up of the
“ N-body Schrédinger operators” for which V(x)— 0 as x —» oo in “most”
directions (i.e., those directions in which all “coordinate” differences
|r; — r;| = o0) but for which V did not have a limit in tubes about those
spatial directions where r; = r; (some i, j). These operators were much
harder to analyze; we saw that under fairly general circumstances
0. = |2, 00) where ¥ was a “computable” number (Theorem XIII.17) but

were only able to prove o;,, = & under specialized hypotheses (Theorems
X1I1.27, XII1.29, and XII1.36). We see therefore that spectral properties are
very sensitive to the behavior of V at infinity. Since V’s obeying (135) do not
have a limit as x — o0 1n any direction one might expect the analysis of
periodic Schrédinger operators to be difficult.
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The property that allows one to analyze H = — A 4+ V when V 1s periodic
1s that H has a large symmetry group. For letting

(UEW)(X) = ¥(x + £ 13,

i=1

where t € Z", we see that (formally)
U(t)H = HU(t) (136)

One canin fact prove that U(t)e™'"* = e~ *#sU(t) (Problem 135). A part of the
analysis of H 1s then a special case of general symmetry arguments which are
the subject of Chapter XVI. In this sense our discussion here 1s premature.
We emphasize to the reader that the constant fiber direct integrals described

below are an example of a construction from Chapter XVI (with most of the
essential features) and that the fact that periodic Schrédinger operators have
a direct integral decomposition is a direct consequence of (136). We remark
that historically the essentials of the decomposition were discovered both by
mathematicians (Floquet) and physicists (Bloch) who did not realize they
were speaking group theory. We too shall not explicitly use the connection
with the symmetry group here but will develop the theory directly.

Let 5’ be a separable Hilbert space and {M, u) a g-finite measure space.
In Section II.1, we constructed the Hilbert space [*(M, du; #') of square
integrable #'-valued functions. Notice that if 4 1s a sum of point measures at a
finite set of points m,, ..., m,, then any f € [*(M, du; #') is determined by
the k-tuple {f(m,), ..., f(m,)> so }(M, du; #’') is isomorphic to the direct
sum @™, »#'. In some sense then, I?(M, du; »#') for more general u is a
kind of “continuous direct sum” but with identical summands. We shall
thus call ¥ = [*(M, du; ') a constant fiber direct integral and write

x’=j:x" dy

It may seem silly to give an old familiar object a strange new name, but the
new name is intended to convey a new emphasis on the “fibers” ¢’ rather
than the points of M. A particular class of operators on »# will concern us. A
function A(-) from M to £(5¢') is called measurable if and only if for each
o, Y € F#', (p, A(- )W) is measurable. L°(M, du; £ (s#’)) denotes the space of
(equivalence class of a.e. equal) measurable functions from M to £ (") with

|4l = ess sup||A(m)] o < o
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Definition A bounded operator A on # = (57 # du is said to be
decomposed by the direct integral decomposition if and only if there 1s a

function A(-) in L*(M, du; £ (s#')) so that for all Y € 7,

(AY)(m) = A(m)y(m) (137)
We then call A decomposable and write
®

A= jM A(m) du(m)

The A(m) are called the fibers of A.

We first note that every A(-) in L*(M, du; »#') is associated with some
decomposable operator:

Theorem XII1.83 If A(-) e [*(M, du; £(5¢')), then there is a unique
decomposable operator A4 € Z(H#) so that (137) holds. Moreover

|4l e = |1 A()]| -

Proof Uniqueness is obvious. We must only show that (137) takes measur-
able square integrable J#'-valued functions ¥ into measurable square inte-
grable »#¢'-valued functions and that the operator A so defined 1s bounded
with norm ||A(")| .. Let ¢ € I}(M, du; »#'). Let {n,}i-, be an orthonormal
basis for »#’. Then A(m)y(m) = Y 2 (m, Y(m))A(m)n,, a.e. in m since A(-)
is a.e. a bounded operator. Now, by definition of measurability for A(-),
A(m)n, is weakly measurable, so for any N < o0, @y(m)=)>¥_; (1,
W(m))A(m)n, is strongly measurable (Theorem 1V.22). Moreover,

[ Nowml? d = || 40m) 3. (. Wb |

2

- ) V’(m))'h
< [[AC)]5 v ]® (138)

A similar computation shows that that ¢y 1s Cauchy in 5. Thus it has a
limit @ € LZ(M du; »#'). But for almost all m e M, @y(m) converges to

A(mW(m) in 5. It follows that A(-(-) € I*(M, du; 5#'). By (138)

[4(- W) < 4]« ¥ ]
so A is bounded and ||A|| yn < [|4(")| -
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To prove the converse inequality, let {B,};-; be a dense subset of the unit
ball in s’ and let fe L'(M, du). We may decompose f as f= gh, with
g, he I and |g|2 = |h|Z = || f]|;- Fix k, ¢ and let ¢ = gB, and ¢ = hf,.
Then

[ £0m)a . 4GB di | = 16 40)] < 4] W] o]

= [ AJ 1B 18N [ 1 (m)] e

Since °(M) is the dual of L' (M), it follows that
| (Be, A(m)Be)| < [|Bicll 1B || A1l ey

a.e. in m. It follows that |A(- ). < || 4] v - |

The above theorem sets up an isometric isomorphism of
[°(M, du; £(s#')) and the decomposable operators on (3; s#' du. Both
these spaces are algebras in a natural way, and it 1s easy to see that the
algebraic structure is preserved. [*(M, du; C) is the natural subalgebra of
[*(M, du; £ (') corresponding to those decomposable operators whose
fibers are all multiples of the identity.

Theorem XIill.84 Let ¢ = ﬁ'} H' du where (M, u> 1s a separable
o-finite measure space and ¢’ 1s separable. Let &/ be the algebra of decom-
posable operators whose fibers are all multiples of the identity. Then

A € () is decomposable if and only if A commutes with each operator in
.

Proof It is obvious that any decomposable A commutes with all the opera-
tors in &, so we need only prove the converse. Since u is o-finite, we can find
a strictly positive Fe L so that dv=F dy has unit mass. Let
K = j,?} X' dv. Then the map U: &# — # by Ug = F~3g is unitary and
U U™ = of. Moreover, A is decomposable if and only if UAU ™!
decomposable. As a result, we suppose without loss that j' du = 1.

Suppose that 4 in £ (5¥) commutes with any operator in /. Choose an
orthonormal basis {,}i=, for ' and let F . be the element of s with
F.(x) = n, for all x. The F, are orthonormal since { du = 1. Moreover, any
Y € # has an expansmn ¥ =) filx)F, with each f, € [*(M, du; C)and
|2 =>4 || fi ||* (see Problem 12 of Chapter II). Define functions a,,,(x) by

AF, =) 2_, a,n(x)F,,. Choose a countable dense set D in ¢’ of vectors of
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the fOrm Eal Ay = @ and set A(X)(O L m %k ak,,,(x)n,,, Then for any
fe I°(M, du; C),

A(fp) = 1(49) = ¥ fo AF,
= kz fakakm(')Fm
since f 1€ . Thus

2
[P | S avaunte) | dute) < 141100 S I
It follows that, for almost all x and all ¢ € D,

|A(x)el < [|4] o]

so A(x) can be extended to an operator on #(s#') and A(-) € L*. Let B be

the corresponding decomposable operator. Let y € »# have the form
Y = Zf fi(x)F, with each f, € L°. Then

(AY)(x) = Z flx)(AF(x)) = k;fk(x)(A(x ) = A(x) Z Sfilx )
= (By)(x)

Since such y’s are dense, A = B. |}

The construction we use below depends basically on the fact that the U(t)
generate an algebra that is isomorphic to the algebra ./ for a suitable

constant fiber direct integral decomposition of »# = [*(R", dx).
~Since —A + V is unbounded, we need to discuss unbounded decompos-
able self-adjoint operators.

Definition A function A(-) from a measure space M to the (not neces-
sarily bounded) self-adjoint operators on a Hilbert space 5’ is called meas-
urable if and only if the function (4(-) + i)~ ' is measurable. Given such a
function, we define an operator 4 on ) = [§ »#’ with domain

D(A)--{v,l/ex’

W(m) e D(A(m)) a.e.; J y | A(m)r(m)| % du(m) < oo

by

(AY)(m) = A(mp(m)
We write A = [ A(m) du.
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The properties of such operators are summarized by:

Theorem XI11.85 Let A = [§; A(m)du where A(-) is measurable and
A(m) is self-adjoint for each m. Then:

(a) The operator A is self-adjoint.

(b) A self-adjoint operator A on J# has the form |3 A(m) du if and only if
(A + i)~ ! is a bounded decomposable operator.

(c) For any bounded Borel function F on R,

O
F(4) = | F(A(m)) dy (139)

M

(d) A€ a(A)if and only if for all e > 0,
u({m | o(A(m) A (A — &, 4+ ) # @}) > O
(e) A is an eigenvalue of A if and only if
u({m] A is an eigenvalue of A(m)}) > 0

(f) If each A(m) has purely absolutely continuous spectrum, then so does
A

(g) Suppose that B = |§ B(m) du(m) with each B(m) self-adjoint. If B is
A-bounded with A-bound a, then a.e. B(m) is A(m)-bounded with A(m)-
bound a(m) < a. If a < 1, then

&
A+B= L (A(m) + B(m)) du (140)

is self-adjoint on D(A).

Proof (a) We first note that A4 is symmetric, so by the fundamental criter-
ion, we need only prove that Ran(A4 * i) = . Let C(m) = (A(m) + i)~ *. By
hypothesis, C(m) is measurable and [|[C(m)|| <1, so we can define
C = |§ C(m) du. Let Y = Cn for n e #. Then, ae., Yy(m) e Ran C(m) =
D(A(m)) and

|A(mW(m)|| = [[A(m)Cmn(m)| < |n(m)| € L*(du)

so Y € D(A). Moreover (A + i)y = n so Ran(A4 + i) = 5. Similarly, since
(A(m) — i)~ ! = C(m)* is weakly measurable, Ran(4 — i) = .
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(b) We leave this to the reader (Problem 136).

(c) Let us sketch the argument leaving the details to the reader (Problem
136). By the argument in (a), for any 4 with Im 4 # 0,

D
(A=2)" =] (A(m)—2)"" dp(m)

M

Since &' = lim,, ,, (1 — (itA/n))” " (by the functional calculus), one sees, em-
ploying the dominated convergence theorem, that

3
e:At —_— [ e:tA(m) d[,t
*M

If Fe &(R), (139) follows by use of the Fourier transform. By a suitable
limiting argument, (139) holds for arbitrary F.
(d) A particular case of (139) is

D
Pan(4)=| Pe n(A(m)) du

M

Now (d) follows by noting that 4 € g(A4) if and only if P(,_, ;+,(A4) # O for
all ¢ > 0 and that (§} T(m) du = 0 if and only if T(m) =0 a.e.
(e) The proof is similar to (d) using

@
Puy(A) = | Py(A(m)) dp

M

(f) Let y € 5 and let dv be the spectral measure for A associated to .
Let dv,, be the spectral measure for A(m) associated to y/(m). Then

dv = .“M(dv,,,) du(m)

in the sense that

LF(x) dv = f (f F(x) dv,,,) du(m) (141)

OM R

(141) follows immediately from (139). Now, if each A(m) has purely abso-
lutely continuous spectrum, then

dv,(x) = gm(x) dx
for some g,, € L'(R, dx) with | g,,(x) dx = ||yy(m)||% . Thus

g(x) = [ gmlx) du(m)
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is in L' (R, dx) and, by (141),
dv = g(x) dx

It follows that y € 5, for A, so that A has purely absolutely continuous
spectrum.

(g) If |By| < a|AYy| + b|y|, then |B(A + ik)™'|| < a+ bk™* for any
positive integer k. Therefore,

|B(m)(A m) + ik)" | <a+ bk™*
a.e. so B(m) is A(m)-bounded with bound a(m) < a. (140) is immediate. §

Part (f) of this last theorem says that a sufficient condition for
A = |y A(m) du(m) to have purely absolutely continuous spectrum is that
each A(m) have purely absolutely continuous spectrum. But this is certainly
not necessary. In fact, 4 can have purely absolutely continuous spectrum
even though each A(m) has purely discrete spectrum! The following theorem
1llustrates the phenomenon.

Theorem XII1.86 Let (M, du) be |0, 1] with Lebesgue measure. Let #”

be a fixed separable infinite-dimensional space and let A = (3. ;) A(m) du(m)
with each A(m) self-adjoint. Suppose we are given »#'-valued functions
{W.(- B=y on [0, 1], real analytic on (0, 1), continuous on [0, 1], and
complex-valued functions E,(‘), analytic in a neighborhood of [0, 1], so
that:

(i) No E,(-) is constant.
(1) A(mW,(m)= E,(mW,(m)forallme[0,1];n=1,2,....
(1) For each m, the set {y/,(m)}>%, is a complete orthonormal basis for .

Then A has purely absolutely continuous spectrum.

Proof Let
={y € ' |Y(m) = f(mW,(m); f € L'(M; dp)}

Then the .}f,, are closed subspaces that are mutually orthogonal and
H = @D A, since any Y € H# has an expansion (Problem 134):

b= 3 (o) wmW ()

Moreover, each 5, lies in D(A) with A[o¢,] < ##,. Consider the unitary
map U, #,-IX[0,1),dx) given by U,(f(m)y(m))=f(m) Then
A, = U, AU ! is given by

(A f )m) = E,(m) f (m) (142)
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We need only show that each A, has purely absolutely continuous spectrum.
Since E,(-) is analytic in a neighborhood of [0, 1] and nonconstant, dE, /dm
has only finitely many zeros in (0, 1), say at my, ..., m,_,. Let my = 0 and
m, = 1. Then

(0, 1], dx) = & I3((m;- 1, m,), dx)

j=1

A, leaves each summand invariant and acts on the summand by (142). On
each interval (mj_,, m;), E,(-) is strictly monotone, either increasing or
decreasing. Consider the case where it is increasing. Define a: (E,(m;- ),
E.(m;)) = (m;-,, m;) by E, (x(A)) = A. Then a is differentiable and the Stieltjes
measure da 1s absolutely continuous with respect to dx. In fact,

-1
o[]S
dm m=a(A)

Let U be the unitary operator from L*((m;-,, m;), dx) to L*((E.(m;-,),
E,(m;)), dA) given by

*

+1/2
ww=(5) rew)

Then
(UA, U™ ")g(A) = Ag(A)

We have thus explicitly constructed a spectral representation for
A, | E([m;-,,m;],dx) for which the spectral measure da is Lebesgue
measure. It follows that each A,, and thus A4, has purely absolutely

continuous spectrum. |

We turn now to an analysis of Schrédinger operators with periodic poten-
tials. We first consider the case of one dimension with V piecewise contin-
uous where differential equation methods are available and then the case of
higher dimension and more general V. -

To motivate our analysis, suppose that V e CF(R) with bounded
derivatives so that —d*/dx? + V takes £(R) into itself. If f € #(R), then

dx?

[ ( S V)f ' (p) = P/ (p) + (2m)~ V2 | V(p — p')] (p') dp’ (143)
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where the integral in (143) is a formal symbol for the convolution of the
distribution V and the function f. Now, let us suppose that V has period 2.
Then Vhas a uniformly convergent Fourier series (see Theorem I1.8):

Qa0

V)= Y 7,em (144)
where
s — inx dx
17" = J_“V(X)e 5'7;
(144) suggests that
(2n)"*V(p)= Y V,d(p—n) (145)

since putting (145) formally into the Fourier inversion formula yields (144).
In fact, one can prove (145) as follows: If f € #(R), then the uniform conver-
gence of (144) implies that

[ FV(x) dx = (2n)2 3 P, fin)

n= —a

from which (145) follows if the sum is viewed as convergent in the weak
(0(&, &)) topology on &'

Now that we have analyzed Fourier transforms of periodic tempered
distributions, we can use this analysis to rewrite (143) as

[(_£+ V)f]A(p)=p’f(P)+ Y V.- n)

2
dx n=—q

Thus, if H = —d?/dx* + V, then ff? (p) depends only on the values f (p — n);
n e Z. We have therefore proven:

Theorem XI11.87 (direct integral decomposition of periodic Schrodinger
operators—p-space version in one dimension) Let #' =/, and let

H = |2 12,12 ' dx. For g € (=3, 3], let

(H(Q)g)j = (q +j)2gj + i Vngj—n

n= -—a
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where V, are the Fourier series coefficients of some V € C*(R) with period
2n. Map [*(R, dx) to 5 by

[(Uf)@)]; =1 (g +))

Let H = —d*/dx* + Von }(R). Then,

@
UHU"‘=J H(q) dq

(—1/2.1/2]

One can get quite far in the analysis of H by using this p-space version of
the direct integral decomposition. In fact, this will be our main tool in the
multidimensional case. However, in the one-dimensional case, the x-space
translation of Theorem XIII.87 gives a little more information. While we
could use Theorem XIII.87 directly to write down the x-space version, we
shall give an independent proof, using Theorem XIII.87 merely for the fol-
lowing motivation. In case V = 0 the operator H(q) has eigenvalues (g + j)*
and eigenfunctions that are basically the Fourier transforms of the functions
'@ )* This suggests that somehow H(q) is related to the operator —d?/dx?
on L*([0, 2r], dx) but with the boundary conditions

Y(2n) = 2"y (0),  Y'(2n) = e*™%’(0)

Lemma Let o' = ([0, 2], dx). Let

® db
H = ' 146
J;O, 2n) 27'5 ( )
Then U: *(R, dx) — 5 given by
(Ufe(x) = ) e "f(x + 2=an) (147)

for @ and x in [0, 2x), is well defined for f € £(R) and uniquely extendable to
a unitary operator. Moreover,

a2\ . (® d*\ do
o\-ga)o =1, (i), 3 (149
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where (—d?*/dx*), is the operator —d*/dx? on I*([0, 2r]) with the boundary
conditions

y(2rn) = e"Y(0),  Y'(2n) = €%Y'(0)

Proof For fe &, the sum (147)is clearly convergent. To prove that Ufis in

', we compute that for fe &,
2
Y e "f(x + 2nn) dx) 40

2n [ . 2n
jo (Jo n=— 27

= J:R [(,, i i f(x + 2rn) f(x + 27rj)) l zue"‘j'"’og—gJ dx

=- j=— 0,

Q0

aoD

[ (3 176+ 2mn) 2 s = [ | 7 d

= — —

where we have used the Fubini and Plancherel theorems. Thus we see that U
1s well defined and has a unique extension to an isometry. To see that U 1s
onto ¢, we compute U*. For g € »#, we define, for 0 < x <2n, ne Z,

o do
(U*g)(x +2mn) = | e"g,(x) 5 (149)
0 2n
A direct computation shows that this is indeed the formula for the adjoint of

U. Moreover,

= |gl°

In the next to the last step we have used the Parseval relation for Fourier
SEries.

To verify (148), let A be the operator on the right-hand side of (148). We
shall show that if fe £(R), then Ufe D(4) and U(—f") = A(Uf). Since
—d*/dx* is essentially self-adjoint on & and A is self-adjoint, (148) will
follow. So, suppose f € £#(R"). Then Ufis given by the convergent sum (147)
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so that Uf1s C* on (0, 2xr) with (Uf )s(x) = (Uf’)s(x) and similarly for higher
derivatives. Moreover, it 1s clear that

(Uf)e(21) = Z e " 2n(n + 1))

n= —ad

Y e~ #0011 (2mn) = €°(Uf)o(0)

n= —a

Similarly, (Uf)s(27) = €'°(Uf,)'(0). Thus, for each 6, (Uf), € D((— d?*/dx?),)
and

dz
(- 252) (wn = vi-1
We conclude that Uf € D(A) and A(Uf) = U(—f"). This proves (148). }

Theorem XI111.88 (direct integral decomposition of periodic Schrodinger
operators—x-space version in one dimension) Let V be a bounded meas-

urable function on R with period 2xn. For 0 € [0, 2x), let

H(0) = (— 2-;5)9 + V(x)

as an operator on I[*[0, 2n]. Let U be given by (147). Then, under the
decomposition (146),

(- g+ v)u [, (150

Proof Let V be the 0-independent operator acting on the fiber
= [*([0, 2=n), dx) by

(% f)x)=V(X)f(x) O0<x<2n
(150) follows from Theorem XII1.85g and the lemma if we can prove that

® do
-1 - V.—
i J;o. 27) "2m

(151)

By (147), for fe &,
(UVf)e(x)= )Y e "V(x + 2an)f(x + 2nn)

n= —a

= V(x) i e~ "f(x + 2nn)

n= -

= Vo(Uf )o(x)
since V is periodic. This proves (151) and so (150). |}
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As a result, to analyze —d*/dx* + V with V periodic, we need only
analyze (—d*/dx*), + V for each 6. As a preliminary, we note:

Lemma

(a) For each 6 € [0, 2n), (— d?/dx?), has compact resolvent.
(b) For 0 =0, exp(—t(—d?*/dx?),=,) is a positivity improving semigroup
(see Section 12).

(c) [(—d?*/dx*), + 1]7 ' is an analytic operator-valued function of 6 in a
neighborhood of [0, 2x).

Proof We shall later prove the analogue of this lemma in the multi-
dimensional case by using general arguments that could be used here.
However, it is easy to obtain explicit formulas for K, = [(—d?/dx*), + 1] .
Let fe CJ(0, 2n). Let K be the inverse of —d*/dx* + 1 defined on all of
[’(R). Let g = Kf. By our arguments in Section IX.7, K is an integral opera-
tor with kernel G(x — y) where G(p) = (2n)~ /?(p? + 1)~ 1. A direct compu-
tation of G is possible (Problem 137) and one finds

glx) = Kf(x) =4 [ e™f (y) dy (152)

Now, both Kf and K, f solve the differential equation —u"(x) + u(x) = f(x )

on (0, 2x). It follows that their difference v = K, f — Kf obeys —v" + v =
so that

(Ko f)(x) = g(x) + ae* + be™"

Since K, f € D((—d/dx*),), a and b must be chosen so that K, f obeys the
boundary conditions

u2n) = €u(0), u'(2n) = €°u'(0) (153)
Direct computation using (152) shows that
(Ko 1)) = [ Golx, 11 0) dy
Go(x, y) = 2e 7Y + a(B)e* > + B(O)e” > (154)
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One can read the properties claimed for (—d?*/dx?), directly from (154).
Since Gy(x, y) is bounded in x, y for each fixed 6,

2 2=«

jo [ 1Go(x, y)? dx dy < oo

0

so K, is Hilbert-Schmidt and so compact, proving (a). By direct examina-
tion, the kernel G, (x, y) is strictly positive. A similar computation proves
that [(—d?/dx?),=o + a] ™! has a strictly positive kernel for any a > 0 and so
by Theorem XIII.44 and the preceding proposition, exp(— t(—d?/dx?),-0) is
a positivity improving semigroup. Finally, to prove (c), we note that the
formulas (154) allow us to define a Hilbert-Schmidt operator K, for any 6
with |Im 0| < 2n and that 6 — K, is clearly analytic in 6. |

It may seem striking at first sight that K, — K, is a rank two operator for
any 0, &, but, in fact, this i1s just a reflection of the fact that
—d?*/dx?® | CZ(0, 2n) has deficiency indices {2, 2) so that K, is completely
determined In a 6-independent way on the closure of the space
(—d?/dx?* + 1)[C& (0, 2n)] which has codimension 2.

An analysis similar to that above shows that ((—d*/dx*), + a)~ ' is analy-
tic in the region |Im | < 2n,/a so that the map 8+ (—d?/dx?), can be
extended to an entire analytic family. This family is neither type (A) nor type
(B).

Armed with the lemma, we are prepared for a complete analysis of the
operators

H(0) = (— ;3;)9 +V (155)

Theorem XI1I11.89 Suppose that V is piecewise continuous and periodic of
period 2n. Then:

(a) H(0) has purely discrete spectrum and is real analytic in 6.

(b) H(6) and H(2n — 0) are antiunitarily equivalent under ordinary com-
plex conjugation. In particular, their eigenvalues are identical and their
eigenfunctions are complex conjugates.

(c) For @€ (0, n), or in (r, 2n), H(A) has only nondegenerate eigenvalues.

(d) Let E, () (n=1,2,...;0 <0 < n) denote the nth eigenvalue of H(6).
Then each E,(-) is analytic in (0, #) and continuous at § = 0 and =.
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(¢) For n odd (respectively, even) E,(f) is strictly monotone increasing
(respectively, decreasing) as 6 increases from O to =z. In particular,

E,(0) < E,(n) < E;(n) < E;(0) <+ < E3,—1(0) < E;, - 1(m) < Ep\(m)
<E,(0)< -

See Figure XIII.13.

£5(0)
FIGURE XIII.13 Bands in one-dimensional  £,(0)

Schrodinger operators. . E, ()
£, (m)

=0 8:=nw

(f) One can choose the eigenvectors ,(0) so that they are analytic in 6 for
6 € (0, #) L (m, 2n), continuous at = and 0 (with ¢,(0) = ¥, (2n)).

Proof (a) This follows directly from the lemma and the basic perturba-
tion Theorems XII.11 and XIII.64.

(b)) When V =0, this is a simple consequence of the definition of
(—d?/dx?),. Since Vi = Vi, the results hold for general V.

(c) If E is an eigenvalue of H(), 6 € (0, =), then —u” + Vu = Eu has a
solution obeying the boundary condition (153). So # is a solution obeying a
distinct boundary condition. Since —u” + Vu = Eu has only two linearly
independent solutions and not all of them obey (153), at most one can.

(d) Consider E(0). This is a simple eigenvalue of H(0) since H(0)
generates a positivity preserving semigroup. Since H(0) is analytic near
0 = 0, we can find f}(6) an eigenvalue of H(0) for 8 € [0, &) analytic in [0, &)
with f;(0) = E,(0). Let ¢ < n. The only thing that can prevent one from
analytically continuing past 0 =¢ is if f;(6)—= oo as 6 T e. For since
H(6) > —|V] ., if fi(6) does not approach oo, then there is a sequence
6, — ¢ such that f,(6,) = E. But then one sees that E is an eigenvalue of H(e).
By (c), it is a simple eigenvalue, so for |6 —e| < &, there is a unique
eigenvalue g(6) of H(6) near E and g is analytic for |0 — ¢| < §. In particu-
lar, for n large g(0,) = f,(6,) so g provides an analytic continuation for f;
past . Thus to prove that f; can be analytically continued to all of [0, =), we
need only show that f, () remains finite as 6 varies. We first show that H(6)
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has no eigenvalue smaller than f,(8) if 8 € [0, ¢). If it did, we could continue
that back to 8 = 0; this continuation could not go to infinity as we decreased
0 since it is always strictly less than £} (8) by the simplicity of eigenvalues and
the argument above. Continuing back to 6 = 0, we would find an eigenvalue
less than E,. Since f;(0) is the smallest eigenvalue of H(6) it cannot go to
infinity as 8 — &. Thus, f,(6) has a continuation to [0, n] and this continua-
tion is the smallest eigenvalue of H(6), i.e., it is E,(0).

Now look at E,(0). This may be doubly degenerate; for example it is when
V =0. If 1t 1s though, the degeneracy must be broken for 6 # 0 since the
spectrum of H(0), 0 + 0 is simple. By degenerate perturbation theory, the
eigenvalue (or eigenvalues if E,(0) is degenerate) near E,(0) is given by
analytic function(s). Let f,(0) be this function if E,(0) is simple, and the
smaller of the functions if E,(0) is degenerate. Then by mimicking the argu-
ment above, f,(8) can be continued throughout [0, 7] and is the second
eigenvalue E,(0). By repeating this argument, we can handle all the
eigenvalues.

() This is the deepest part of the theorem, so we shall give a detailed
proof. As a preliminary, we prove that E,(0) < E,(0) for all . Since e *#(® ;s
positivity improving, the eigenvector y,(0) associated to E,(0) is strictly
positive and by the boundary condition, it has a periodic extension to all of
R. Fix k, an integer, and consider H*)(0) the operator —d?/dx? + V on
I*(—2nk, 2nk) with periodic boundary conditions. Then ,(0) periodically
extended 1s a strictly positive eigenvector of H*(0) and so E,(0) = inf
o(H*(0)) (see Section XIII.12). It follows that if f € C¥(—2nk, 2nk), then

(f, (=d*/dx* + V)f) = (f, H*(0)f) = E,(f, f), and thus the operator
—d*/dx®* + V on [}(R) obeys —d?/dx?> + V > E,. By the direct integral
decomposition, H(0) > E,(0), a.e. in 8 so E, () > E,(0), a.e. in 0. Since E, ()
1is continuous E,(8) > E,(0) for all 6 € (0, 2n).

Now we introduce an important function, D(E), associated to the differen-
tial equation

—u" 4+ Vu= Eu (156)

Let u,(E, x) be the solution of (156) with u,(0) = 1, ¥,(0) =0, and let
u,(E, x) be the solution of (156) with u,(0) = 0, u5(0) = 1. Then u;(x, E) is
analytic in E for each x by the standard theory of ordinary differential
equations. Let M(E) be the analytic two by two matrix

u,(E, 2n) u,(E, 2n)

M(E) = uy(E, 2n) u4y(E, 2r)

(157)
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The discriminant of —u” + Vu 1s the function
D(E) = Tr(M(E)) = u,(E, 2n) + u,(E, 2n)
M(E) 1s a natural object, for if v satisfies (156), then
v(2n) v(0)
R RN

In particular, the equation H(8) = Ey has a nonzero solution if and only if
M(E) has an eigenvalue €. Now M(E) has determinant 1 since W(x) =
uy(E, x)uy(E, x) — uy(E, x)u,(E, x) is a constant. Thus its eigenvalues are A
and A™! and D(E) = A + A~ . We conclude that E is an eigenvalue of H(0) if

and only if D(E) = 2 cos 6. What we will prove is that D(E) has a graph
somewhat like the one in Figure XIII.14.

O(E)

54(0) 55(0)
NEO  £,0~

FIGURE XIIL.14 A typical discriminant. "'

E(W) A Ez('ﬂ')

We have proven that E(0) < E (@) for all 8, so D(E) cannot have any
value in [-2, 2] for E < E(0). Now D(E) =2 for E = E(0). As 6 varies
from O to n, D(E,(@)) varies from 2 to —2. E, must therefore be strictly
monotone increasing since it has an inverse function Arc cos 3$D(E,(6)) = 6.
We have D(E(n)) = —2. D must eventually turn around (since H(x) has
additional eigenvalues) so the next value of D(8) in [ — 2, 2] to occur must be
— 2. This occurs at E,(n) and then D runs from —2 to 2 as # goes from = to 0.
Thus we have the picture in Figure XIII.14. The only subtlety is that we must
show that if D has a turning point at +2 or —2, then H(0) or H(n) has a
double eigenvalue. But if D(E) has a turning point at E = E, with
D(E) = +2, then for 0 near 0, H(0) has two eigenvalues near E, correspond-
ing to the fact that D(E) = 2 cos 0 has two solutions near E = E, . By analy-
tic perturbation theory E, must be a double eigenvalue of H(0).

(f) This follows from the analytic perturbation theory of Section
XIL.2. §

The reader may have noticed that while we have been careful to avoid
saying that E,(0) is analytic near 6 = = or 0, it clearly is. However, if E (0) is
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continued through 0 = &, the continuation may be E,,,(0) or E,_,(0) if
E,(n) is a doubly degenerate eigenvalue (see Figure XIII.15). A similar phen-
omenon can occur at 0 = 0 if we identify 6 and 6 — 2x.

EnulO) Ern1(8)

O
#
3

E(8) 0:=w E£,6)

(a) £,(w) degenerate {b) £,{7) nondegenerate

FIGURE XIII.15 Crossed bands.

We can now combine Theorems XIII.85, 86, 88, and 89 to conclude:

Theorem XI11.90 Let V be a piecewise continuous function of period 2.
Let H= —d?/dx* + V on *(R, dx). Let E,(0), E,(0), ... be the eigenvalues
of the corresponding operator on (0, 2n) with periodic boundary conditions

and let E,(n), ... be the eigenvalues with antiperiodic boundary conditions.
Let

_|E0), nodd _ [EJ(m), nodd

= E,(n), neven P = E,(0), neven

Then:
(a) G(H) = :0=1 [am ﬂn]

(b) H has no eigenvalues.
(c) H has purely absolutely continuous spectrum.

Proof (a) Since the E,(0) are continuous, if 8, and ¢ are given, then for
some 0,

()10 8] < 8} = {0]| E.(0) — E(00)] <)

so by Theorem XIIL8S, o(H) = | ), [¢ts > B}
(b) No function E, is constant since the E, are strictly monotone. Thus
for each E,, {0|E,(0) = E,} is a set with at most two points. Such a set has

measure zero, so by Theorem XIII.86, E, i1s not an eigenvalue.
(c) follows by Theorems XIII.86 and 89.

We remark that —d?/dx? + V has a simple eigenfunction expansion, but
since we shall give the general n-dimensional result below, we do not pause
to give the details now.
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The most striking feature of Theorem XIII.90 is that o(H) has gaps
(Bys ®2)s ..oy (B> ®psq), ... Of course, all we know is that 8, < o, 4, SO that
some of the “gaps” listed may be empty. In fact, if V' = 0, then there are no
gaps, SO 1t 1s necessary to impose some condition on V for any given gap to
be nonempty. The beautiful feature of this analysis i1s that the occurrence of

any gap 1s reduced to a question about the degeneracy of some eigenvalue.

Example 1 (the Mathieu equation) Let
V(x) = u cos x

with u # 0. We claim that for all n, «,, ; # B,, i.e., every gap occurs. Let H}
(respectively, Hg) be —d?/dx* on I?(0, 2n) with periodic (respectively,
antiperiodic) boundary conditions. We need only show that Hy + V and
Hg + V have no double eigenvalues. We give the proof for Hb + V: the
proof is similar for Hg + V. Consider the functions ¢, = (27)” !/2¢™. Then
¢, € D(Hp)and Hg @, = n*e, . If Y solves (Hy + V)Y = Ey and a, = (¢, V),
then

(nz _ E)an + %ﬂ’(an+l + an—l) =0 (1583)
If  also solves (Hy + V)n = En and b, = (¢,, 1), then
(nz N E)bn T %ﬂ’(bn+l + bn—l‘) =0 (158b)

Eliminating the n* — E term from (158) and using u # 0, we have
b,a,,, —a,b,,, =a,b,_,—b,a,_, so b,a,,; —a,b,,; =c, where c is
some constant. Since n, Y € I, ) a} < o0, ) b? < 0,s0a,—0andb,— 0
as n — 00. Therefore ¢ must be zero, and thus

anbn+l - bnan+l (159)

By (158a), if any two successive a; are zero, all the a; are zero so for any n,
either a, # 0 or a,,; # 0. A similar result holds for the b,. Now suppose
that E 1s a doubly degenerate eigenfunction. Since cos x is even under
x — — X, we can choose y to be the even solution of —y/” + Viy = Ey and n
to be the odd solution since all solutions are periodic if HS + V has E as a
degenerate eigenvalue. Since n is odd, by = [~ , n(x) dx ='0. Thus, by our
remark above, b; # 0. Since ¥ is even, g, = a_, and so, in particular, by
(158a)

—an + ﬂal —_— O
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It follows that a, # O since if it were zero, a; would be zero, violating the
remark above. Thus ayb, # 0 but a, b, = 0. This violates (159). We con-
clude that Hj + V has no degenerate eigenvalues.

There is another example in Problem 139 where.one can obtain an asymp-
totic formula for ¢, =«a,,, — B, as n— oo, which proves that at least for
large n (where ¢, # 0), there are lots of gaps. There are also the following
general results whose proofs can be found in the references in the Notes.

Theorem XI1I1.91 Let V be periodic of period 2n. Then:

(a) If no gaps are present, V is a constant.
(b) If precisely one gap occurs, then V is a Weierstrass elliptic function.

(c) If all the odd gaps are absent (i.e., if H5 + V has only degenerate
eigenvalues), then V has period n. More generally, if, for fixed n, all
gaps (B, &+ ) are absent for k # 2"m (m = 1, 2,...), then V has period
27"(2x%) and the converse relation is true.

(d) If only finitely many gaps are present, then V is real analytic as a
function on R. ‘

(¢) Topologize Y, the space of all C* functions on R with period 2z, with
the seminorms || f||, = |D"f ||, n =0, 1, .... Then the set of potentials
in V for which all gaps are nonzero is a dense G, set of Y. (See the
discussion of “Baire almost every” in the notes to Section IIL.5.)

There are some general results about when two potentials V and W pro-
duce the same energy bands.

Theorem XI111.92 Let V and W be two potentials of period 2n so that
—d*/dx* + V and —d?*/dx* + W, on [0, 2n] with periodic boundary con-
ditions, have the same eigenvalues. Then their energy bands are the same.

Proof We shall sketch the main ideas. Fuller details can be found in the
reference in the notes. Let Dy (E) and Dy/(E) be the respective discriminants.
By the analysis used in the proof of Theorem XIII.89, 1t suffices to prove that
the discriminants are equal. We claim that

DVE)| + |Dw(E)| < C, exp(C,|E["?) (160)
Dy(E)/2 cos(2n/E)—»1 as E—io (161)
Dyw(E)/2 cos(2n\/E) — 1 as E-—ioo (162)
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Deferring the proofs of (160)-(162), let us complete the proof that
D, = Dy, . By (160) and the Hadamard factorization theorem of complex
analysis,

2 — Dy(E) = Cvﬁ (1 - Ej(V)-lE)

j=1
2= Dy(E) = CW]_[(I — E,(W)™'E)

where E;(V) are the zeros of Dy(E) — 2. By hypothesis, the zeros of 2 — Dy,
and 2 — Dy are the same. By (161) and (162), (2 — Dy)/(2 — Dw)— 1 as
E — ioco, s0 Dy = Dy, .

(160)}-(162) follow by a detailed analysis of the solutions uj(x, E). One
shows that they solve integral equations, for example,

1 ¢* .
uy(x, E) = cos(x/E) + —= | sin((x — yN/E)V (y)u, (3, E) dy
\/E 0 |
By iterating these equations, one proves (160)-(162). |

At first sight, one might think that there are not many pairs V, W with

D, = Dy . Quite the contrary: In the Notes, the reader can find references
for the following two theorems:

Theorem XI111.93

Let V(x, t) solve the partial differential equation

oV v 16°V

5?_3V5;_§5;_ (163)

with V(x, 0) periodic of period 2z. Then for each fixed ¢, V(x, t) is periodic of
period 27 and has energy bands independent of ¢.

Equation (163) is called the Korteweg—de Vries equation.

Theorem XI11.94 Topologize the C* functions on R with period 2z by
the seminorms ||D%|,. Fix V and suppose that the spectrum of
—d?*/dx* + V has n gaps (n may be infinite). Then {W|D, = Dy} is homeo-
morphic to an n-dimensional torus.

In the one-dimensional case one can also say quite a lot about global
analytic properties of E,(0).
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Theorem XI111.95 (Kohn’s theorem) Suppose that all the gaps 1n a one-
dimensional problem are nonzero. Then the energy band functions E,(6) are
the branches of a single multisheeted function that has no singularities other
than square root branch points on the lines Im6=mn, m=0, 1, ....
Explicitly, there exist positive numbers a,, a,, ... so that the Riemann sur-
face of E(0) can be described as follows. E is equal to E,(@) on the nth sheet
which is cut in | ), [(2m + 1)n] % i(e,, o0)and | J,, (2mn) % i(a, -, c0)for n
odd; and | },, [2mn] % i(«,, 0)and | J,, [(2m + 1)n] % i(«, -, 00)for neven.
The nth and (n + 1)th sheet are joined by crossing the cuts 2mn * i(a,, o)
(n even) and (2m + 1)x * i(a,, o) (n odd); see Figure XIII.16.

l e } ™ e

"'W"‘fﬂz ‘lT"‘laz

-+ /a, 7+ /a,

l I

FIGURE XIII.16 The Riemann surfaces of an energy band; n = 2.

For a proof of this theorem, see the references in the Notes.

Now we turn to the general n-dimensional case. The direct integral de-
composition in both the x-space and p-space versions will go through without
significant change. The main difficulty will be in extending the analysis of the
fibers of H (Theorem XIII1.89). For that analysis depended critically on the
simplicity of the eigenvalues of H(6), which fails in the multidimensional
case. An additional complication is that in the multivariable case,
eigenvalues are not necessarily analytic (in a single-valued sense) at degener-
acy points: See the example in the Notes to Section XII.1. It will turn out to
be easier to analyze the fibers of the direct integral decomposition in the
p-space version.

We want to allow for the possibility of local singularities:in V in our
discussion of the general n-dimensional case. The perturbation criteria, as
stated in Section X.2, are not applicable if V i1s unbounded since such a
periodic ¥V cannot be in any I? + L® with p < oc0; but if V is I? over all
bounded sets and periodic, then it will be uniformly locally I? where:
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Definition A measurable function V on R” is called uniformly locally I? if

and only 1if

[ V()PP dox < 4
C
for any unit cube C and some C-independent constant A.

The perturbation theory of Section X.2 extends to uniformly locally I?
perturbations (for suitable p) by the following localization method.

Theorem X196 lLetp=2ifn<3,p>2ifn=4and p>n/2ifn=5.
Then any real-valued function on R” that is uniformly locally I7 1s a — A-
bounded operator with relative bound zero.

Proof Let g besuch that p™! + g~' = 4. We proved in Section X.2 that for
any &, there 1s an A, so that ' |

lo||2 <el|Ap|}+ 4.[el7 (164)
For any cube C, let

lolrc=[ le()f dx
C

Let C be a unit cube and let C’ be the cube with side 3 and the same center as
C. Let n be a C* function with support in C’ that is identically 1 on C. Now,

by (164),

loll2 c < |ne|2

< ¢|AMme)|2 + A.[nel|2
< 3¢[Ag|2;c + B| Vo3¢ + Dl|o|2; ¢ (165)

where we have used A(np) = ¢ An + n Ap + 2 Vi - Vo, the triangle inequa-
lity, the fact that (a + b + ¢)? < 3(a? + b® + ¢?), and the fact that , V», and
An are bounded functions with support in C’. Notice that since the various
|D*n||o can be chosen independently of C, (165) holds with constants that

are independent of C. For a € Z" let C, be the unit cube with center a and C,
the corresponding C’. Then, since V 1s uniformly locally L7,

IVIII® = sup [[V]|7.c. < oo
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Thus,
[Vol|z =2 Vel3.c.

S Z " V"lz’. Ca

<[IVII* 2. GelAe]3.c. + B|Ve|z:c. + Dlle]3:c.)

¢":- Ca

= [[[V]II*3"(3&[| A |z + B||Ve|Z + De|3)
< [IVIII*3"(@4el|Ap|z + (D + 3™ B)|o[3)

In the next to the last step, we have used the fact that each x € R" not on the
boundary of some C, les in precisely 3” of the C,. Then, in the last step
we used,

|Vol|z <d|Ae|3 + 467 o]

which via the Plancherel theorem follows by the numerical inequality
a<da’+36"1 |

Notice that if V is uniformly locally I? for some p > n/2 then it 1s automa-
tically uniformly locally I?/? so we stated p = n/2 rather than p > n/2 in the
above theorem. .

Given the above criterion, the following theorem has a proof that differs
only in notation from the corresponding one-dimensional result (Theorem

XI11.88).

Theorem XII197 Leta,,...,a, be nindependent vectors in R". Let V be
a real-valued function on R”" obeying:

i) Vix+a,)=V(x),i=1,...,n
(ii) fo |V(x)|? d"x < oo where Q is a basic period cell

Q={X X = Zt,a,;OSt,<1
i=1
and p=21fn<3, p>2ifn=4;,p=n/21fn>53.

For each 0 € [0, 2#)", let H(0) be the operator — A on L*(Q, d"x) = J# with
the boundary conditions

o(x + a;) = e op(x), — (x + a;) = &'% g}?- (x) (166)
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for all x with x, x + a; € Q (i.e., for x on suitable faces of dQ where y; is the
coordinate given by x = ) y;a,. Let

@ &0
|

H = H

[0, 2n)n (2n)n
and let U: [*(R", d"x) — 5 by defining U on % by

(Uf)e(x)= 2, e " (x + ) m;a)

meln

and extended as a unitary operator to I2.
Then:

(a) For almost all 8 € [0, 2n)", V is an H®(0)-bounded multiplication
operator on I*(Q, d"x) with relative bound zero.

(b) U(—A+ V)U !'=(8 ,.. H@®) d"0/(2n)" where H(6) = H(0) + V.

We remark that it is possible to prove that V i1s everywhere, and not just
almost everywhere, H©)(0)-bounded with relative bound zero. This follows,
for example, from analyticity arguments.

One consequence of this theorem 1s the existence of an eigenfunction
expansion for H i1n the sense of Section XI1.6:

Theorem XI111.98 Each H(®) has a complete set of eigenfunctions
V,.(0; x) with eigenvalues E,(0). Extend ¢,(0; x) to all of R" by using the
boundary condition (166). For ¢ € &(R"), let

3(m;8) = | Vnl®; x)0(x) d"x

Then:
2 Jn.. __ ~ . 2 dng
(a) I@n |‘P(x)| a'x = ; ‘[[0, - I‘P(m’ 9)' (2n)"
1 P . . X n

(c) Extend ~ to I2(R") by continuity. Then H = —A + V obeys
Heo(m; 8) = E,,(8)¢ (m; 0)

for all ¢ € D(H).
(d) ~ maps [*(R", d"x) onto @D,, ([0, 2x)", d"6).
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Proof It is possible to find a complete set of eigenvectors for H)(0) ex-
plicitly; namely,

Yi(0; x) = (2r) "2 exp [i Y (6, + anj)ij
j=1
for k;e Z", where y; is defined by x = )"7_, y;a;. The corresponding
eigenvalues tend toward infinity as |k|— oo so H‘O’(O) has compact
resolvent. It follows that H(0) has compact resolvent by Theorem XIII.68.
Thus it has discrete eigenvalues {E,(0)}<-, and a corresponding complete
set of eigenfunctions. By the min—-max principle, one can prove that the
functions E,,(0) are measurable and that the corresponding eigenfunctions
can be chosen measurably (Problem 140). Since, for 0 fixed, the y,(0) are an
orthonormal basis in 3’ of eigenfunctions for H(0), we have for

nE H = |3, 200 H d"0/(27)",

&6
;jl(ﬂo’wm Jf’l (27[)
2 W ) ¥m(0)
E

n(0)(¥(8), 7o)

(7, 1)

II

(¥m(8), (4n)s)

where
® a0
A= H(6
|, HO G

(a)-(c) now follow using the definition of U and the way we have extended
Vm(0). (d) has a similar proof. §

To give the p-space analysis, we need a definition that differs by a factor of
27t from the more common one.

Definition Let a,, ..., a, be a basis for R". The dual basis K,, ..., K, 1s
defined by

(Ki, a;) = (27)0;;
Theorem XII1.99 Let V be a function on R* with V(x + a;) = V(x)

(j=1,..., n) where {a .L} =1 15 a basis for R". Let Q be the basic perlod cell for
the ba51s {a} and let Q be the basic period cell for the dual basis {K,}, i.e.,

0<t; <1
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Let #' = /,(Z") and & = |§ ' d"k. Suppose that V is uniformly locally I?
(withp=2ifn<3,p>2ifn=4,p=n/2ifn > 5)and let V_be the Fourier
coefficients for V as a function on Q; i.e., for m € Z",

V = (volQ)"? j exp(—i i m;K; x) V(x)d"x (167)
Q =1
For k € Q, define the operator H(k) on )¢ by
(HK)g)m = (k + 2 m; K\ 'gm + 2, Ve Grm -a (168)

with domain
Do = {g e #'| L m?|ga[? < o)

Finally, let U: I?(R") - 5 by
[(Uf)(K)]w =1 (k + ) m; K))

Then U 1s unitary and .

U(-A + VU™ ! = jo H(K) d"k

Proof That U is unitary is just the Plancherel theorem. Moreover, it 1s clear
that

[(U(=8)U " )g)(k)m = (k + X m; K;)*g(K)s

since -—Zf (¢) = ¢*f(¢). Because V is —A-bounded with relative bound zero,
we need only prove that

[(UVU T 'g)k)]m = 2. VeGm-a(k)

ae I

and this follows if we prove that, for f € & (R"),

Vik)= ¥ Vaf(k - J_;“;‘ Kf) (169)

x e 2"

To prove (169) we need only show that, as a tempered distribution, V has the
Fourier transform

V()= 2np’? T 7 5(k - 3o x,.)

a € 2"

As in the one-dimensional case, this i1s true because the Fourier series

Vix)= Y V, exp(ij;aj K; - x)

x € Z"

is locally I? convergent since V is locally uniformly I?. |
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One advantage of the k-space decomposition in the form we have pre-
sented it is that the operators H(k) have a fixed domain D, . In fact, we can
use (168) to define H(k) for any k € C" and H(k) so defined is an entire

analytic family of type (A). The easiest way of seeing this is to let

).

so that P is H(0)-bounded with relative bound zero and

(Pg)m = ( i m; K,

j=1

H(k)= H(0) + 2k - P+ Y k7 (170)

H(k) depends on n parameters; but it is useful to fix n — 1 of them for two
reasons. First, we avoid the nonanalyticity that can occur in real multipara-
meter eigenvalue variations. The second reason is more subtle. Letaand b
be fixed vectors in R". Let z= A + iy and define

E.(z)=(a+zb+ ) m;K)?

Of course H(k) = Hy(k) + V where Hy(a + zb) has a complete orthogonal
set of eigenvectors with eigenvalues E_(z). Now

Im E,(z) =2y[b- (a + Ab + ) m;K))]

i1s especially simple if the numbers b - K; are rationally dependent for in that
case the number in square brackets will not get arbitrarily small as m varies.
It is thus convenient to pick b as the first vector in the x-space lattice, i.c.,

b:K;=2n, (171)
and A by
b-(a+ib)=n (172)
In that case, Im E,(z) = 2ny(2m,; + 1), so
I Im E,(2)| = =n|y|(1 + |m,]) (173a)
Moreover, it is easy to see that (Problem 141a)
|Re(En(z) + 1)| = cy/m|2  if |m| >cy(1+ |y|) (173b)

for suitable ¢, and ¢, (which will depend on a through the choice of 4 in
(172)). From (173), one deduces that (Problem 141):
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Lemmai1 Let n>2. Letb be given by (171) and 4 by (172). Then

(a) Ifa>3nanda>n-—1,
fy) =) |Eald +iy) + 1]7°

is convergent and bounded for |y| > 1.
(b) If moreover &« > n — 1, then lim ., f,(y) =0.

The point of Lemma 1 is that it will allow us to control
IV(Ho(A + iy) + 1)7 | as y — oo for suitable V’s.

Lemma2 Let n>2 Let V be a periodic potential whose Fourier
coefficients (167) obey

Y | Valf < o0 (174)

where f<(n—1)/(n—2)ifn>3and f=2ifn=2. Fixae R"and let b
obey (171). Let

' A(t) = H(a + bt)
for t € R. Then:

(a) Each A(t) has compact resolvent.

(b) There are real analytic functions {E(t)} and corresponding analytic
vector-valued functions y(t) so that ¥ (t) is a basis for )’ = ¢*(Z")
and, for each t,

AW (t) = Ej(t){t)

(c) No E(t) is constant.

Proof (a) Since B <2, (174) and the Hausdorff-Young inequality imply
that ¥V 1s in L(Q) where a <n—1ifn>3and a=2if n=2. Thus V is
H,(k) relatively bounded so it suffices to prove that H,(k) has compact
resolvent. This follows from the fact that Hy(k) has a complete set of eigen-
vectors with eigenvalues going to infinity.

(b) Let E;(0) be the eigenvalues of A(t = 0), ordered so that E;(0) <
E,(0) <---. Now, we can continue the eigenvalues and eigenvectors using, if
necessary, degenerate perturbation theory. As in the one-dimensional case,
we need only show that E;(t) does not go to infinity at some finite ¢ to
conclude that a continuation is possible for all ¢. By (170)

dA(t)

T=2(b°P+b°(a+tb))
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so, by first-order perturbation theory, and the fact that P is H,(k)-bounded,

dE (1)
dt

from which it follows that E(t) cannot blow up at finite real t.
(c) By Lemma 1, the hypothesis on V, Hélder’s inequality and Young’s
inequality,

< c(|Eft)| + |t] +1)

lim [|(4o(4 +iy) + 1) =0

y=

lim [|[V[4o(4 +iy)+1]7']| =0

y

where A is chosen so that (172) holds. From these results and standard
perturbation arguments we see that for |y| > Y,, (4(4 + iy) + 1)™* exists
and

lim |[A(4 + iy) + 1]"!] =0 (175)

y=*

Now suppose that some E;(t) is a constant C for all t. Since A(t) has
compact resolvent for all real ¢, 1t has a compact resolvent for all t € C so
that C is always an eigenvalue of A(t). It follows that (C + 1)~ ! is always an
eigenvalue of (4(t) + 1)”* so that

j(4@)+ ) z(C+ 1)
This violates (175), so no Et) can be constant. J

We are now able to give a complete analysis of the spectral properties of
Schrodinger operators with periodic potentials:

Theorem XI11.100 Let V be a periodic potential whose Fourier series
coefficients are in £/, where f<(n—1)/(n—-2)ifn>3, p=2ifn=2,3.
Then — A + V has purely absolutely continuous spectrum.

Proof b,K,,...,K,form a basis for R", so we can write the interior of Q in
terms of a decomposmon k=s,b+ - +5,K, as {(s1,5, )]s, € M(s,),

s, € N} where for every s, € N, M(s,) is an open connected set (Figure
X1I1.17). We can write

H=J J H(s;b+ - +5,K,)ds, d" " !s

st EN “"sieM(s,)
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Typical M's

FiGURE XIII.17 The s decomposition of Q.

In a suitable direct integral decomposition. By Lemma 2 and Theorem
XI111.86, the s, direct integral has purely absolutely continuous spectrum for
each s; € N and thus, by Theorem XIII1.85f, H has purely absolutely contin-
uous spectrum. §

We note that as in the one-dimensional case, the spectrum of H breaks up
into “bands,” but there are two big differences. First, due to degeneracy
there may be some ambiguity in definition at singularities in the many-
variable functions. Secondly, bands can “overlap” unlike the one-

dimensional case.
Before discussing some of the connections between the 1deas above and a

simple model of solid state physics, we want to mention an arbitrariness in
choice of a,, ..., a,. Given V, what 1s determined without any choice is

Ly = {a|V(x + a) = V(x), a.e. in X}

For periodic potentials, ., is always a lattice where:

Definition A lattice is a subset .Z of R" obeying:

(1) 2 is discrete, i.e., it has no finite limit points.
(1) £ 1s a subgroup of the additive group of R".
(1) No proper vector subspace of R" contains .%.

Any such . has a basis, 1.e., a set a,, ..., a, € ¥, so thatanyae & 1s
uniquely of the form a = ) 7., m;a; with m; € Z. Such bases are not unique
and the corresponding basic period cell Q i1s not unique; for example, see
Figure XIII.18. What all basic cells have in common i1s the property that

R =1 ).c ¢ 7.0, where 7,8 = {x + a|x € S}, with 7,Q'"™ n 7,Q'"™ = &, if
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FicuURE XII1.18 Two choices of basis and basic cell.

a # b. There is another “basic cell,” C with this property, although it 1s not
associated to any basis. This is the Wigner—Seitz cell for & defined by

C = {x € R"|x is closer to O than any other point of #}

Two examples of Wigner-Seitz cells are shown in Figure XIII.19. One can

Typical @ Typical @
SR S )
o ; N
' \ \
| | \
} } \
. --'.‘ | ---.x
| ® ®
(a) Squore lattice (b) Hexogon lattice

FiGure XIIL.19 Two Wigner-Seitz cells.

show (Problem 143) that any Wigner-Seitz cell is a polyhedron, 1.e., the
intersection of finitely many slabs {x|a < #(x) < b}, ¢ a linear functional.
The Wigner-Seitz cell 1s unique.

Similarly, the dual basis depends on the choice of basis for £, ; but the
dual lattice £, ={k € R"|k - a € 2nZ for all a € ¥} and its Wigner-Seitz
cell, called the Brillouin zone B, are independent of the basis chosen.

We mention the above terminology for the following reason. One can
make an x-space direct integral decomposition with Q replaced by C and a
p-space decomposition with Q replaced by B. The study of solids in the
physics literature usually begins with a construction that is a disguised form

of the p-space direct integral decomposition over the Brillouin zone.
We now turn to applications of our analysis to solid state physics. To the

mathematical physicist who is used to looking at atomic physics or even
quantum field theory, the bewildering array of approximations known as
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solid state theory often appears to be more an art than a science. While there
1s some truth in this attitude, we would like to emphasize that the difierence
between atomic physics and solid state physics is really one of degree, for the
“standard” purely Coulomb atomic Hamiltonian 1s an approximation to
“real” atoms. In the first place, relativistic corrections to the kinetic energy
are not included nor is spin-orbit coupling. In addition, experiments on
atoms are not done with isolated atoms but with aggregates, so i1t 1s an
approximation to discuss a simple atomic model and then compare 1t with
experiment. Finally, there are the couplings to the radiation field (quantum
electrodynamics) which are certainly not understood at a fundamental level.
The big difference between atomic and solid state physics i1s that in atomic
physics one model describes the most basic physical phenomena, while 1n
solid state physics the model as described below explains qualitatively only a
limited range of phenomena. Many phenomena require one to take into
account lattice vibrations (“ phonons”) and interactions between electrons
and of the electrons with the phonons. In the end, the mathematical physicist
is presented with a well-defined model (or several well-defined models) to
study and this is all that he or she can reasonably demand.

It 1s an observed phenomenon that the nuclei in a solid lie more or less In
regular arrays (crystals), i.e., there is a lattice in R" so that the nuclei more or
less lie at the lattice points. No one has given an explanation from first
principles of why crystals form; 1.e., no one has proven that a large number
of heavy nucle1 with enough electrons to produce neutrality, interacting via
Coulomb potentials, have a ground state that 1s approximately a crystal. We
thus postulate in our model that there is a fixed nucleus with a number of
core electrons at each site of a lattice. To obtain simplicity we replace a large

solid by one filling all of R". Thus if we ignore electron—electron interactions,
we have electrons moving under a Hamiltonian — A + V with V periodic.
This model 1s known as the one-electron model of solids. We want to use our
analysis of periodic Schrodinger operators to describe two things:

(1) the notion of density of states and the qualitative explanation of the
difference between metals and insulators;

(2) 1mpurity scattering in the one electron model.

For simplicity of notation we suppose that space is three dimensional.

Definition Let Q be a basic period cell in the dual lattice and let E, (k) be

the energy levels of H(k) (ordered by E, < E, < --*). The density of states
measure p 1s the measure on R defined by

pl—0, E] = 51 3 |(k € O] E,K) < (176)
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where |Q| is the Lebesgue measure of Q and |{---}| is the Lebesgue meas-
ure of {---}.

We note that since E, (k) — oo uniformly in k as n — oo (Problem 144), the
number p(— oo, E] is finite. Moreover, one can show easily (Problem 145)
from our general analysis that p is absolutely continuous with respect to dE,
Lebesgue measure on R. The Radon-Nikodym derivative dp/dE is usually
called the density of states. To explain the importance of p to an analysis of
solids, we introduce another notion. Let Q be the basic x-space cell and,
given m € Z, let Q™ be the set of volume m’|Q| obtained by stacking up an
m x m x m set of Q’s. Let H,, be the operator —A; + V on I*(Q"™) where

—Ap denotes periodic boundary conditions. Let P,(€2) be the spectral
projections for H,, and define

pm(— 00, E] = 2 dim P, (— o0, E}/m’
Then:

Theorem XI111101  As m— o0, p,, — p in the sense that p,(— o0, E]—
p(— oo, E] for every E.

Proof We sketch the main ideas, leaving the details to the reader (Problem

147). The key point is that H,, has a direct sum decomposition described as
follows. Parametrize Q as {) /., t;K;|0 <¢; < 1}. Then

m-— 1

e = & A2°)

ayj, a3, a3 =0

In such a way that H,, becomes
m-— 1
o o o
&y H(—J—K, + 2K, +—3K3)
ay, az, 23=0 m m m

where H(k) are the fibers of the infinite volume operator H. The reason that
this decomposition holds is that one shows that any ¢ periodic on Q™ is a
sum of ¢’s with ¢(x + a;) = e*>**#™p(x). As a result of this decomposition,

Pm(—00, E] =2m™3 #{n;0;€ {0, 1,...,m — B|E,(m™ ' ) (¢,K))) _<_ E}

and, since E(-) is continuous, this expression is an approximation for
p(—o0, E]. 1

Now we return-to our model of solids. Suppose that each nucleus in free
space i1s surrounded by ¢ electrons. Then in our model we wish to have ¢
electrons per unit cell. While we ignore interactions between the electrons,
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we cannot ignore the Pauli principle which asserts for noninteracting elec-
trons that each eigenvalue of H can contain at most two electrons. How do
we take this into account when H does not have eigenfunctions and when
there are infinitely many electrons (in our infinite crystal lattice!)? We claim
that a reasonable way of taking the Pauli principle into account is to say that
in the ground state, the electrons fill up the continuum eigenstates up to that
energy E where p(— o0, E] = ¢. For if we have a large but finite m x m x m
crystal with periodic boundary conditions, there are m>¢ electrons, and in
the ground state these fill up the eigenstates of H,, to an energy E,,
determined by p,(—o0, E,)=¢. The smallest number E with
p(— oo, E] = ¢ is called the Fermi energy, Er. The set of k € B, the Brillouin
zone, with E, (k) = Eg for some n is called the Fermi surface. This picture is
similar to the elementary discussion of the periodic table based on the
hydrogen atom but with the complication of continuum states.

We are now In a position to explain why electron conduction is hard in
some solids (insulators) and easy in others (metals). In the ground state one
can use complex conjugation symmetry to prove that there is no net move-
ment of electrons. To get flow of electrons one must excite some of the
electrons. We have seen that typically a periodic Schrodinger operator has
gaps 1n 1ts spectrum. There 1s a qualitative difference if Eg occurs at the
bottom of a gap or not. If Eg 1s at the bottom of a gap, then H has no
spectrum in (Eg, E¢ + €) and there is a discrete amount of energy needed to
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FIGURE XII1.20 Energy bands in conductors and insulators.

set up a current (see Figure XII1.20). In this case one has an insulator. If E¢ 1s
not at the bottom of a gap, one has a metal! Of course, if Eg 1s at the bottom
of a small gap (e small) or if Eg is not at the bottom of a gap but is fairly close
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to the bottom of a gap, then one has an intermediate case where the
metal/insulator distinction is not sharp (semimetals, semiconductors) and in
dealing with real solids one must take into account the fact that the solid is
not in the ground state but rather in a finite temperature state determined by
statistical mechanics. Notice that the gaps in the spectrum are crucial for this
theory of mnsulators versus metals.

As a final topic in the one-electron theory of solids, we mention impurity
scattering. Suppose that one of the lattice points has an impurity atom
instead of the kind of atom at all the other sites. An electron in this crystal
experiences a potential ¥V + W where V 1s periodic and W, which represents
the difference of the potential of the impurity and what it replaces, is short
range. One expects electrons 1n such a crystal to scatter from the impurity
according to the usual scattering theory formalism.

Theorem X111.102 Let V be a periodic potential on R° that is square
integrable over a basic cell. Let W be a potential in I! ~ I?(R?). Then

Qi = s-lim exp["l'it(Ho + V + W)] exp[—it(Ho -+ V)]

t—= + o0
exist and have identical ranges and, in particular, the S matrix is unitary.

Proof Since Hy + V has purely absolutely continuous spectrum (Theorem
XIII.100), we can prove the theorem by showing that (—A + V +
W+c) ! —(—A+ V + c)!istrace class for some c, for then we can apply
the Kato-Birman theory (Theorem XI1.9). Choose ¢ so that —A + V +
W=>—-c+1, —A4+V >—-c+ 1. Since V and W are — A-bounded with
relative bound zero,

(-A+V+W+ce)'—(-A+V+c)!
= —(-A+V+W+c)'W(-A+V+c) !
= —[(-A+V+W+c) (=A+ D[(-A+ 1) 'W(-A+1)7"]
x[(-A+ 1)(-A+V+c)']

The first and third factors are bounded operators by the relative boun-
dedness and since W e L n [* the middle factor is trace class (see
Theorem X1.20). Thus the difference of resolvents is trace class. §



