
WHEN ARE HOMOTOPY COLIMITS COMPATIBLE WITH

HOMOTOPY BASE CHANGE?

CHARLES REZK

Abstract. The goal of this note is to understand how to prove things about geometric
realizations of pullbacks, without using the dreaded “π∗-Kan condition”.
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1. Realization-fibrations

I’ll write Spaces for the category of spaces, by which I probably mean simplicial sets.
For this section, fix a small category I. An I-presheaf is a functor Iop → Spaces. I write

PSh(I) for the category of I-presheaves.
I will write |X|I for the homotopy colimit hocolimIop X of an I-presheaf X, and call it the

realization of the presheaf X.
If J is a small category, a J-diagram is a functor Y : J → Spaces. I’ll write hocolimJ Y

for the homotopy colimit of such functors.

Definition 1.1. A map p : E → B of I-presheaves is said to be a realization fibration
(RF), if for every homotopy pullback square

(1.2)

E′ //

p′

��

E

p

��

B′ // B
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of I-presheaves, the square

(1.3)

|E′|I //

��

|E|I

��

|B′|I // |B|I,

obtained by applying | |I to each corner of the square, is a homotopy pullback of spaces.

We make the following elementary remarks about this definition:

(1) The property of being a realization-fibration is closed under weak equivalence; if p
is a realization-fibration, then any map weakly equivalent to p is also a realization-
fibration.

(2) The property of being a realization-fibration is stable under homotopy base change;
if p is a realization-fibration, and p′ is a map fitting into a homotopy pullback square
as in (1.2), then p′ is a realization-fibration.

(3) Every weak equivalence of I-presheaves is a realization-fibration.

2. Local-to-global principle

Our main theorems for recognizing realization-fibrations encode a kind of “local-to-global”
principle.

2.1. Descent. Let J be a small category, let E,B be functors J → M where M is some
model category, and let p : E → B be a natural transformation. We say that p is J-
equifibered (or simply equifibered) if for every morphism α : J1 → J2 in J, the square

E(J2)
E(α)

//

p

��

E(J1)

p

��

B(J2)
U(α)

// B(J1)

is a homotopy pullback of spaces.

Remark 2.2. A map p : E → B of functors I×J→M from a product category can potentially
be equifibered in only one of the input variables. Thus we might say that such p is “J-
equifibered”, by which we really mean that the tautologically equivalent map of functors
J→MI is an equifibered map of J-diagrams.

We will use the principle of descent.

Proposition 2.3 (Descent).
Let J be a small category.

(1) Suppose that p : E → B is a fibration in Spaces, that V : J → Spaces is a functor,
and that h : hocolimJ V → B is a weak equivalence. Let U : J→ Spaces be defined by
U(J) = V (J)×B E. Then the evident map hocolimJ U → E is a weak equivalence.
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(2) Suppose that f : U → V is an equifibered map in SpacesJ . Then for each object
J ∈ J, the evident square

U(J) //

��

hocolimJ U

��

V (J) // hocolimJ V

is a homotopy pullback of spaces.

In particular, we note the following consequence of descent.

Proposition 2.4. Let J be a small category, and let

X ′ //

��

X

f
��

Y ′ // Y

be a homotopy pullback square in SpacesJ. If f is equifibered, the commutative square of
spaces applied by applying hocolimJ at each corner of the above diagram is a homotopy
pullback.

In particular, this means that any equifibered map of I-presheaves is a realization-fibration.

2.5. The first local-to-global principle. The next theorem tells us that we can sometimes
“glue together” realization-fibrations to get another realization-fibration.

Theorem 2.6. Let J be a small category, let V and W be functors J → PSh(I), and let
h : W → V be a natural transformation. Suppose that h is an equifibered map of functors
J → PSh(I) , and that for each object J ∈ J the map h(J) : W (J) → V (J) of I-presheaves
is a realization-fibration of I-presheaves. Then hocolimJ h : hocolimJW → hocolimJ V is a
realization-fibration of I-presheaves.

Proof. Let B = hocolimJ V , and choose a factorization hocolimJW
i−→ E

p−→ B = hocolimJ V
so that i is a weak equivalence and p is a fibration of I-presheaves. Let U : J → PSh(I)
be defined by U(J) = V (J) ×B E. Since h is equifibered, descent implies that the map
W → U of functors J → PSh(I) is a weak equivalence. Thus the maps f(J) : U(J) →
V (J) are realization-fibrations of I-presheaves. There are weak equivalences hocolimJW →
hocolimJ U → E of I-presheaves, so to prove that hocolimJ h is a realization-fibration, it
suffices to prove that p is a realization-fibration of I-presheaves.

Let i : B′ → B be a map of I-presheaves. Define an I-presheaf E′, and functors U ′, V ′ : J→
PSh(I), by forming the homotopy pullback of each of the objects in the square

U(J) //

f(J)
��

E

p

��

V (J) // B
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along i. The homotopy pullback square of I-presheaves

(2.7)

E′ //

p′

��

E

p

��

B′ // B

is obtained by applying hocolimJ to each corner of the homotopy pullback square

(2.8)

U ′ //

f ′

��

U

f
��

V ′ // V

of functors J→ PSh(I). That is is the case is an application of (2.4).
Since f(J) is a realization fibration for all J , applying | |I to each corner of (2.8) gives

a homotopy pullback of J-diagrams. Thus, commuting colimits with colimits shows that
applying | |I to each corner of (2.7) gives a homotopy pullback of spaces. �

2.9. Local realization-fibrations. For each object I of I, let HI denote the I-presheaf
represented by I, i.e.,

HI(I
′) = homI(I

′, I).

These fit together to give the Yoneda functor H : I→ PSh(I).
Given maps p : E → B and b : HI → B of I-presheaves, let Fib(p, b) denote the I-presheaf

which is the homotopy pullback of p along b. Given f : I ′ → I in I, there is a diagram

Fib(p, b ◦Hf ) //

��

Fib(p, b)

��

// E

p

��

HI′
Hf

// HI
b

// B

obtained by taking homotopy pullbacks. Note that if p is itself a fibration of I-diagrams,
then we may assume that Fib(p, b) is actually the pullback of p along b.

Definition 2.10. A map p : E → B of I-presheaves is said to be a local realization-fibration
(LRF), if for every f : I ′ → I in I and every b : HI → B, the induced map

|Fib(p, b ◦Hf )|I → |Fib(p, b)|I
is a weak equivalence of spaces.

We make the following elementary remarks about this definition:

(1) The property of being a local realization-fibration is closed under weak equivalence.
(2) The property of being a local realization-fibration is stable under homotopy base

change.
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(3) Every realization-fbration is a local realization-fibration. In fact, if p is a realization-
fibration, then

|Fib(p, b ◦Hf )|I //

��

|Fib(p, b)|I

��

|HI′ |I // |HI |I
is necessarily a homotopy pullback of spaces. But the bottom map |Hf |I is a weak
equivalence, since both |HI |I and |HI′ |I are contractible, whence the top map is a
weak equivalence.

Lemma 2.11. Let p : E → B be a map of I-presheaves, such that B = HI for some I ∈ I.
Then p is a realization-fibration if and only if p is a local realization-fibration.

Proof. We know that in general RF implies LRF, so we need only deal with the converse.
Without loss of generality, we may assume that p is a fibration of I-presheaves which is LRF.
Let C(p) denote the collection of maps f : B′ → B of simplicial spaces such that

|B′ ×B E|I //

��

|E|I

��

|B′|I // |B|I
is a homotopy pullback of spaces. To show that p is RF, it suffices to show that all maps to
B are in C(p), and this in turn will follow from the following three statements.

(a) If B′′
g−→ B′

f−→ B are such that g is a weak equivalence, and f ∈ C(p), then fg ∈ C(p).
(b) If V : J → PSh(I)/B is a functor from a small category J to the slice category of

presheaves over B, and if each map V (J)→ B ∈ C(p) for every object J in J, then
hocolimJ V → B is in C(p).

(c) Every map of the form g : HI′ → B is in C(p).
The conclusion follows from the observation that every object in PSh(I)/B is weakly equiv-
alent to one obtained as homotopy colimit of a small diagram objects of the form HI′ → B.

Statement (a) is clear. Statement (b) is a straightforward consequence of (a) and our first
local-to-global principle (2.6).

To prove statement (c) note that since B = HI , the map g is of the form Hf for some
f : I → I ′ ∈ I. The claim is then immediate from the fact that p is LRF, where in the
definition of LRF we take b to be the identity map of HI . �

2.12. Second local-to-global principle. Our second local-to-global principle is the fol-
lowing.

Theorem 2.13. Let p : E → B be a map of I-presheaves. Then p is RF if and only if it is
LRF.

Proof. We have already noted that RF implies LRF.
Suppose that p is LRF, and without loss of generality suppose that p is a fibration. We

can find a small category J and a functor V : J → PSh(I)/B such that hocolimJ V → B is
a weak equivalence, and such that each V (J) is weakly equivalent to an HI for some I ∈ I.
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Let U : J→ PSh(I)/E be defined by U(J) = V (J)×B E, and let f : U → V be the natural
transformation induced by pulling back p. Then hocolimJ f is weakly equivalent to p, and
is a realization-fibration by (2.6). �

3. Approximating a map by a realization-fibration

Although a map p : E → B of I-presheaves might fail to be a realization-fibration, it turns
out that there is a “maximal subobject” BRF(p) of B such that the restriction of p over
BRF(p) is a realization-fibration. Furthermore, for any map B′ → B which factors through
the subobject BRF(p), realization | |I preserves the resulting homotopy pullback.

3.1. The lrf sub-presheaf. Given a I-presheaf X, let π0X : Iop → Set denote the I-presheaf
of sets defined by (π0X)(I) = π0(X(I)). I’ll typically think of this as a discrete presheaf of
spaces.

Given a map p : E → B of I-presheaves, let lrf(p) ⊆ π0B denote the subpresheaf defined as
follows: lrf(p)(I) ⊆ π0B(I) consists of all elements of π0B(I) represented by maps b : HI → B
such that Fib(p, b)→ HI is a realization-fibration.

In particular,

Proposition 3.2. p : E → B is RF if and only if lrf(p) = π0B.

3.3. The RF-approximation to a map. Let BRF(p) denote the I-diagram of spaces de-
fined by BRF(p)(I) = B(I) ×π0B(I) lrf(p). We can think of BRF(p) as a subobject of B,
where each BRF(p)(I) is isomorphic to a union of some of the path components of B(I). Let
RF(p) : ERF(p) → BRF(p) denote the restriction of p to the subobject BRF(p); we call it the
RF-approximation to p.

Theorem 3.4. Let
E′ //

p′

��

E

p

��

B′
f
// B

be a homotopy pullback square of I-presheaves. Then p′ is a realization-fibration if and only
if i factors through BRF(p) ⊆ B. In particular, RF(p) : ERF(p) → BRF(p) is a realization-
fibration.

Proof. The equivalence between RF and LRF shows that if p′ is a realization-fibration, then
i must factor through BRF(p).

Conversely, suppose i factors through BRF(p). Then it is clear that p′ is LRF, and therefore
is RF by (2.6). �

4. Application to sifted categories

Let D be a small category. Recall that Dop is sifted if

(i) |1|D ≈ 1 (i.e., the realization of the terminal object is contractible), and
(ii) for any pair of objects D1, D2 in D, we have |HD1 ×HD2 |I ≈ 1 (i.e., the realization

of a product of representable presheaves is contractible).
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An elementary consequence of the definition is that for any X,Y ∈ PSh(D), the evident
map |X × Y |D → |X|D × |Y |D is a weak equivalence; i.e., realization commutes with finite
products.

The most significant example of a sifted category for our purposes is Dop = ∆op, the
indexing category for simplicial objects.

Although for such D, realization commutes with products, it does not follow that real-
ization commutes with homotopy pullbacks. Thus, we will apply the theory of the previous
sections in this context, and see what we get.

4.1. Local projection maps. In what follows, we give a sufficient condition for a map of
presheaves on a sifted category to be a realization-fibration: namely, a map is RF whenever
it looks “locally” like a projection.

In the following, fix a small category D such that Dop is sifted.
Say that a map p : E → B of D-presheaves is a weak projection if it is weakly equivalent

in PSh(D)/B to a projection map p′ : B × C → B, where C is some D-presheaf.
The class of weak projection maps in PSh(D) is clearly closed under weak equivalence, is

stable under homotopy base change, and includes all weak equivalences.
Say that a map p : E → B of D-presheaves is a local projection if for every object D of

D and every homotopy pullback square of the form

E′ //

q

��

E

p

��

HD
b
// B

the map q is a weak projection map.
The class of local projection maps in PSh(D) is closed under weak equivalence, is stable

under homotopy base change, and includes all weak equivalences. Every weak projection
map is a local projection map.

Recall that if X is a D-presheaf of spaces, we have a D-presheaf of sets π0X, obtained by
(π0X)(D) = π0(X(D)). I’ll think of this as a discrete object in PSh(D).

Given a map p : E → B, let lproj(p) ⊆ π0B denote the subobject defined as follows:
lproj(p)(D) ⊆ π0B(D) consists of all elements of π0B(D) represented by maps b : HD → B
such that the pullback of p along b is a weak projection map.

Proposition 4.2. Let p : E → B and f : B′ → B be maps of D-presheaves. The pullback of
p along f is a local projection map if and only if f(π0B

′) ⊆ lproj(p).
In particular, p is a local projection map if and only if lproj(p) = π0B.

Our interest in local projection maps comes from the following result, which makes use of
the fact that D is sifted for the first time.

Lemma 4.3. If p : B×C → B is a projection map between D-presheaves for a sifted category
D, then p is RF.

Proof. If i : B′ → B is any map, then the homotopy pullback of p along i is weakly equivalent
to the projection map B′ × C → B′. When we realize at each corner, the siftedness of D
implies that we get a homotopy pullback, as desired. �
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Theorem 4.4. Let p : E → B be a map of D-presheaves for a sifted D. Then lproj(p) ⊆
lrf(p). In particular, all local projections in PSh(D) are realization-fibrations.

Proof. It suffices to show that the projection map p : HD×C → HD is a realization fibration
for all D-presheaves C. This is immediate from (4.3). �

5. Application to simplicial spaces

5.1. Identifying local projection maps in simplicial spaces. We now consider the
problem of identifying lproj(p) ⊆ π0B in the case when D = ∆, and thus PSh(D) is simplicial
spaces.

Note that if B is a simplicial space, then π0B is a simplicial set. We first note that the
subobject lproj(p) ⊆ π0B contains all path components of the simplicial set π0B not in the
image of p.

Lemma 5.2. Let p : E → B be a map of simplicial spaces, and let V (p) ⊆ π0B denote the
union of all path compenents of of the simplicial set π0B which are not in the image the map
π0(p) : π0E → π0B. Then V (p) ⊆ lproj(p).

Proof. If b̃ : H[m] → B is any map whose effect on π0 is a map H[m] → π0B which lands in

a path component not in the image of π0(p), then the pullback of p along b̃ is the empty
simplicial space; thus, this pullback is trivially a projection map, and so b represents a point
in lproj(p). �

Next, we note that the simplicial set lproj(p) contains all vertices of π0B.

Lemma 5.3. Let p : E → B be a map of simplicial spaces. Then every 0-simplex of π0B is
contained in lproj(p).

Proof. This is a consequence of the fact that H[0] is the terminal object in simplical spaces,
and so every map p : E → H[0] is a projection. �

This gives an immediate easy consequence.

Proposition 5.4. Let p : E → B be a map of simplicial spaces such that π0B is discrete
(i.e., such that each map B([m])→ B([0]) in the simplicial space is an isomorphism on π0).
Then p is a realization fibration.

Proof. Immediate from (5.3). �

5.5. H-group objects. An H-group in a homotopy theory M consists of: an object X,
a map u : 1 → X from the terminal object, and a map m : X × X, which (i) satisfy the
axioms for a commutative monoid in the homotopy category hM, and (ii) are such that the
“shearing map”

s = (π1,m) : X ×X → X ×X
is a weak equivalence.

A map of H-groups is a map f : E → B objects in M such that f commutes with the
structure maps e and m on the nose (i.e., not just up to homotopy). (Up to a suitable weakly-
equivalent replacement, this commutativity condition is equivalent to a condition which can
be stated purely in terms of homotopy commutativity, but I don’t want to bother.)
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Let p : E → B be a map of H-group objects in simplicial spaces. Let G = Ker(p), i.e., the
homotopy pullback of p along the inclusion uB : 1 → B of the identity. Observe that G is
itself naturally an H-group object.

Lemma 5.6. Let p : E → B be a map of H-group objects in simplicial spaces which is a
fibration, with G = Ker(p). Let b : T → B be a map of simplicial spaces. If there exists a
map e : T → E such that pe = b, then there exists a commutative diagram

T ×G

proj
""

φ
// T ×B E

{{
T

such that φ is a weak equivalence of simplicial spaces.

Proof. There is a universal example of this, namely b = p : E → B and e = idE : E → E; the
general case is obtained by pullback. In the universal case, it is straightforward to see that
φ is obtained as the homotopy pullback of the shearing equivalence sE : E × E → E × E
along E ×B E → E × E. �

Theorem 5.7. Let p : E → B be a map of H-group objects in simplicial spaces. Let F (p) ⊆
π0B be the image of the map π0(p) : π0E → π0B of simplicial sets, and let V (p) ⊆ π0B is
the union of path components of the simplicial set π0B which do not touch F (p). Then

lproj(p) = F (p) ∪ V (p),

Proof. By (5.6), F (p) ⊆ lproj(p). By (5.2), V (p) ⊆ lproj(p). Thus F (p) ∪ V (p) ⊆ lproj(p).
Now suppose b ∈ lproj(p), represented by b : H[m] → B. By definition, the homotopy

pullback of p along b is equivalent to a projection map H[m] × C → H[m]. If C = ∅, then
b ∈ V (p). If C 6= ∅, then the projection map admits a section, and thus b ∈ F (p). Thus
lproj(p) ⊆ F (p) ∪ V (p), as desired. �

Corollary 5.8. Let p : E → B is a map of H-group objects in simplical spaces such that
π0(p) : π0E → π0B is surjective onto all components which touch its image. Then p is a
local projection, and thus a realization-fibration.

5.9. The second local-to-global criterion for simplicial spaces.

Proposition 5.10. A map p : E → B of simplicial spaces is a realization-fibration if and
only if for all b : H[n] → B and all f : [0] → [n] ∈ ∆, the induced map |Fib(p, b ◦ Hf )|∆ →
|Fib(p, b)|∆ is a weak equivalence of spaces.

Proof. This is essentially (2.13), together with the fact that [0] is weakly initial in ∆. Let
b : H[n] → B. Given u : [m]→ [n] in ∆, choose any map i : [0]→ [m] in ∆, so that we obtain

H[0]
Hi //

Hui

55H[m]
Hu // H[n]

b // B

Pulling back p along these maps, we obtain

Fib(p, b ◦Hui)
g
//

hg

22Fib(p, b ◦Hu)
h // Fib(p, b)
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By hypothesis, |g|∆ and |hg|∆ are weak equivalences, and therefore so is |h|∆, as desired. �

6. Appendix: The π∗-Kan condition

I recall for comparison the Bousfield-Friedlander criterion based on the π∗-Kan condition.
Recall that H[m] denotes the functor ∆op to spaces corepresented by [m] ∈ ∆. Let

HΛi[m] ⊆ H[m] denote the subfunctor of H[m] with represents the “ith horn”.
Let X be a simplical space. For t ≥ 1, let v : πtX → X denote the map of simplicial

spaces, defined so that for each [m] ∈ ∆ the map

v([m]) : (πtX)([m])→ X([m])

is a covering map whose fiber over a ∈ X([m]) is πt(X([m]), a).
We say that X satisfies the π∗-Kan condition if for all m, t ≥ 1, and all 0 ≤ i ≤ m, a

dotted arrow exists in every square of the form

HΛi[m]
//

��

πtX

v

��

H[m]
//

;;

X

If all X([m]) are connected, then X necessarily satisfies the π∗-Kan condition.
Say that a space K is simple if in each component, π1 is abelian and acts trivially on πt

for all t ≥ 2.

Proposition 6.1 ([BF78, B.3.1]). Let X be is a simplical space with X([m]) simple for
all m. Then X satisfies the π∗-Kan condition if and only if the map [St, X] → π0X is a
fibration of simplicial sets. In particular, if X is a group object, then X satisfies the π∗-Kan
condition.

The Bousfield-Friedlander criterion is the following.

Theorem 6.2 ([BF78, Thm. B.4]). Let f : X → Y be a map of simplicial spaces. If X and
Y satisfy the π∗-Kan condition, and if π0X → π0Y is a fibration of simplicial sets, then f
is RF.
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