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1. Introduction

This document is a summary of basic facts about the “standard” category of compactly
generated spaces introduced by McCord [McC69] (often referred to in the literature as
“compactly generated weak Hausdorff spaces”, or “weak Hausdorff k-spaces”). The main
references I’ve used for this material are Gaunce Lewis’s thesis [Lew, App. A], and Neil
Strickland’s note [Str09] (especially for material about colimits in compactly generated
spaces). Many of the proofs given here stem from ones given in those works, though they
may have mutated significantly.

There is one innovation here, namely the notion of a “k-Hausdorff” space, which is (perhaps)
a bit more convenient than “weak Hausdorff”. Every weak Hausdorff space is k-Hausdorff
(11.2), and for a k-space, weak Hausdorff and k-Hausdorff are equivalent (11.4), so our
category of “k-Hausdorff k-spaces” is identical to McCord’s category. I have also tried, as
much as possible, to rely directly on these definitions and not on inessential intermediate
constructions. For instance, I give a direct construction of the topology on mapping spaces,
rather than producing it as the k-ification of the compact-open topology. Also notable is the
characterization of compactly generated spaces given as (9.10).

2. Conventions

We write Top for the category of topological spaces and continuous maps. In the following,
“function” means a not-necessarily continuous function between topological spaces, and “map”
means “continuous function between topological spaces”, unless otherwise indicated.
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When we speak of limits and colimits, and in particular products and coproducts, we
always mean those in the category Top, unless otherwise explicitly specified. Similar remarks
apply to subspaces and quotient spaces

We use the Bourbaki convention for compactness. A space X is quasi-compact if every
open cover admits a finite subcover. A space X is compact if it is quasi-compact and
Hausdorff.

3. k-spaces

3.1. The k-topology and k-spaces. We say that a subset C of a topological space X is
k-closed (resp. k-open) if and only if for every map f : K → X from a compact K, the set
f−1(C) is closed (resp. open) in K.

The complements of k-open subsets are k-closed, and vice versa, and the collection of
k-open subsets of X satisfy the axioms for a topology. We write kX for the space with
underlying point set X, whose open sets are the k-open sets of X. All open sets are k-open,
so that the identity function i : kX → X is continuous.

We say that a space X is a k-space if every k-open set is open (or equivalently, every
k-closed set is closed). Thus X is a k-space if and only if i : kX → X is a homeomorphism.

All compact spaces are k-spaces, since if f : K → L is a map between compact spaces and
C ⊆ L is a subset such that f−1C is closed in K, then C = f(f−1C) is a compact subspace
in L and hence closed.

We say that a function f : X → Y between topological spaces is k-continuous if k-open
sets of Y pull back along f to k-open sets of X; equivalently, f is k-continuous if and only if
kf : kX → kY is continuous. Note that continuous maps are automatically k-continuous.

3.2. Proposition. For every map f : Y → X from a k-space Y , there is a unique map
f ′ : Y → k(X) such that if ′ = f .

Proof. It suffices to show that if f : Y → X is a map from a k-space Y , then f ′ = fi−1 is
continuous. For any k-closed subset C ⊆ X, we have that f−1(C) is k-closed in Y , and hence
is closed in Y . Thus f ′ = fi−1 is continuous. �

In fact, the map i : k(X)→ X is characterized up to unique isomorphism by this universal
property.

3.3. Inheritance properties of k-spaces. Recall that a map g : X → Y is a proclusion
if it is surjective, and if for every subset V ⊆ Y such that g−1V is open in X, then V is
open in Y . In other words, g is a proclusion if it factors through a homeomorphism from a
quotient space of X to Y .

3.4. Proposition.

(1) If X is a k-space, any closed subspace C of X is a k-space.
(2) If g : X → Y is a proclusion from a k-space X, then Y is a k-space.
(3) Arbitrary coproducts of k-spaces are k-spaces.

Proof.
Proof of (1). We must show that any k-closed D ⊆ C is closed in X, and hence closed in

C. For any map f : K → X from a compact K, we see that f−1(C) is closed in K and hence
compact, and therefore f−1(D) is closed in f−1(C) and hence closed in K. Therefore D is
closed in X since X is a k-space.

Proof of (2). We must show that any k-closed C ⊆ Y is closed in Y . Since g is a proclusion,
it is enough to show that g−1(C) is closed in X. If f : K → X is a map from a compact K,
then f−1(g−1(C)) = (gf)−1(C) is closed in K since C is k-closed in Y .
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Proof of (3). Let X =
∐
αXα, where each Xα is a k-space. Suppose that C ⊆ X is

k-closed; we must show that C ∩Xα is closed for every α. Let f : K → Xα be a map from a
compact space. Then f−1(C ∩Xα) = f−1(C)∩ f−1(Xα) is closed in K, since Xα is closed in
X and C is k-closed. �

3.5. The category of k-spaces. Let kTop denote the full subcategory of k-spaces in Top.
We obtain a pair of adjoint functors

include: kTop � Top :k.

In particular, if X is a k-space and Y is a space, a function f : X → Y is continuous if and
only if i−1f : X → kY is continuous.

The category kTop admits both limits and colimits. Colimits in kTop are computed as
they are in Top; (3.4) implies that a colimit (in Top) of a diagram of k-spaces is itself a
k-space. Limits in kTop are computed by taking the limit in Top and then applying the
k-functor. In particular, we write

X ×k Y := k(X × Y );

if X and Y are k-spaces then X ×k Y is the product in the category of k-spaces. We reserve
the notation X × Y for the usual product in Top, even if X and Y are k-spaces.

3.6. Remark. A function K → X ×k Y from a compact K is continuous if and only if it is
continuous as a map K → X × Y . This implies that all ways of k-ifying a finite product
coincide; e.g., X ×k (Y ×k Z) = (X ×k Y )×k Z.

Observe that a general subspace of a k-space need not be a k-space. In particular, open
subsets of a k-space can fail to be k-spaces. More generally, a k-open subset of a subspace A
of a space X need not be the intersection of A with a k-open subset of X.

4. k-Hausdorff spaces

We say that a space X is k-Hausdorff if the diagonal subset ∆X ⊆ X ×X is k-closed
(in the usual product topology).

4.1. Characterizations of k-Hausdorff spaces.

4.2. Proposition. Let X be a space. The following are equivalent.

(1) X is k-Hausdorff.
(2) For all maps f : K → X and g : L→ X from compact K, L, the set (f ×g)−1(∆X) =

K ×X L is closed in K × L.
(3) For all maps f : K → X from compact K, the set (f ×f)−1(∆X) = K×XK is closed

in K ×K.
(4) For every map f : K → X from a compact K and every pair of points k1, k2 ∈ K

such that f(k1) 6= f(k2), there exist open neighborhoods Ui of ki in K such that f(U1)
and f(U2) are disjoint.

Proof. The equivalence of (1) and (2) follows from (4.3) below. The equivalence of (1) and
(3) follows from (4.4) below. The equivalence of (3) and (4) is immediate. �

4.3. Lemma. Let X and Y be spaces, and let C ⊆ X × Y . The following are equivalent.

(1) The subset C is k-closed in X × Y .
(2) For all maps f : K → X and g : L → Y from compact K and L, (f × g)−1(C) is

closed in K × L.
(3) For all maps f : K → X and g : K → Y from compact K, (f × g)−1(C) is closed in

K ×K.
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(4) For all g : L→ Y from compact L, (id×g)−1(C) is k-closed in X × L.

Proof. It is clear that (1) implies (2), since f : K×L→ X×Y is a map from a compact space.
It is immediate that (2) implies (3). To see that (3) implies (1), note that any f : K → X×Y
factors as f = (f1 × f2)d, where d : K → K × K is the diagonal map and the fi are the
projections of f to each factor of X × Y .

That (1) implies (4) is immediate. To show that (4) implies (1), suppose C ⊆ X × Y
satisfies (4), and let (f, g) : L→ X × Y be a map from a compact L. We can factor this as

L
(f,id)−−−→ X × L id×g−−−→ X × Y , and we see that since (id×g)−1C is k-closed in X × L, then

(f, id)−1(id×g)−1C is closed in L, as desired. �

4.4. Lemma. Let X be a space. A subset C ⊆ X × X is k-closed if and only if for all
f : K → X from compact K, (f × f)−1(C) is closed in K ×K.

Proof. It is immediate that a k-closed C ⊆ X ×X has the asserted property.
Now suppose that C ⊆ X × X is such that (f × f)−1(C) is closed in K × K for all

f : K → X from compact K. We will show that C is k-closed in X ×X using criterion (2) of
(4.3).

Given fi : Ki → X from compact Ki for i = 1, 2, let K = K1 q K2 with inclusion
ji : Ki → K, and let f : K → X be the map such that fji = fi. Note that K is compact.
Since (f × f)−1(C) is closed in K × K by hypothesis, we have that (f1 × f2)

−1(C) =
(j1 × j2)−1(f × f)−1(C) is closed in K1 ×K2. This verifies condition (2) of (4.3), whence C
is k-closed. �

We can characterize the k-Hausdorff property in terms of fiber products of compact spaces
mapping to X.

4.5. Proposition. A space X is k-Hausdorff if and only if for all maps f : K → X and
g : L→ X from compact K and L, the fiber product K ×X L is compact.

Proof. The fiber product K ×X L = (f × g)−1∆X is a subspace of the compact space K ×L,
and so is itself compact if and only if it is a closed subset of K ×L. The claim follows by the
equivalence of (1) and (2) in (4.2). �

4.6. Inheritance properties of k-Hausdorff spaces.

4.7. Proposition.

(1) Hausdorff spaces are k-Hausdorff.
(2) If g : X → Y is a continuous injective map, and Y is k-Hausdorff, then X is also

k-Hausdorff. In particular, subspaces of k-Hausdorff spaces are k-Hausdorff.
(3) Arbitrary products of k-Hausdorff spaces are k-Hausdorff.
(4) Arbitrary coproducts of k-Hausdorff spaces are k-Hausdorff.
(5) In a k-Hausdorff space, finite subsets are k-closed.

Proof of (1). If X is Hausdorff, then ∆X is closed in X ×X, and so is k-closed. �

Proof of (2). Let f : K → X be a map from a compact K. Then (f × f)−1∆X = (gf ×
gf)−1∆Y since g is injective, and thus is closed in K ×K by (4.2). �

Proof of (3). Let {Xα}α∈A be an indexed set of k-Hausdorff spaces, and let X =
∏
αXα,

with projection maps pα : X → Xα. We have that ∆X =
⋂
α(pα× pα)−1(∆Xα) in X ×X. By

hypothesis ∆Xα is k-closed in Xα ×Xα, and pα × pα : X ×X → Xα ×Xα is continuous and
hence k-continuous; therefore ∆X is k-closed in X ×X as desired. �
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Proof of (4). Let {Xα}α∈A be an indexed set of k-Hausdorff spaces, and let X =
∐
αXα. If

f : K → X is a map from a compact K, then the collection {f−1(Xα)} forms an open cover of
K. Thus there is a finite set of indices α1, . . . , αn so that K =

⋃n
k=1Ki where Ki = f−1(Xαi)

is compact. It is now straightforward to check condition (4) of (4.2). �

Proof of (5). If x ∈ X, {x} = (c, id)−1(∆X) where c : X → X is the constant map sending
all points to x. Thus if X is k-Hausdorff then {x} is k-closed. �

4.8. k-Hausdorffification. Given a space X, we define a space h(X) as follows. Given an
equivalence relation ∼α on the point set of X, let Xα = X/ ∼α denote the quotient space,
and qα : X → Xα the quotient map. Consider the evident map

h = (qα) : X →
∏
α

Xα

where the product is taken over all equivalence relations such that Xα is k-Hausdorff. Define
h(X) to be the subspace h(X) of

∏
αXα, and write q : X → h(X) for the surjective map

induced by h.

4.9. Proposition. The space h(X) is k-Hausdorff, and the map q : X → h(X) is a proclusion.
For every map f : X → Y to a k-Hausdorff Y , there is a unique map f ′ : h(X) → Y such
that f ′q = f .

Proof. Since h(X) is a subspace of a product of k-Hausdorff spaces, it is k-Hausdorff by (4.7)
(2) and (3).

Let ∼ be the equivalence relation on X defined by the map q, and let X ′ = X/ ∼ be the
corresponding quotient space, with quotient map g : X → X ′. Then the map k : X ′ → h(X)
factoring q through g is a continuous bijection, whence X ′ is k-Hausdorff by (4.7)(2). This
implies that g is one of the quotient maps qα involved in the definition of h(X), and thus there
is continuous map h(X)→ X ′ factoring g through q, and we conclude that k : X ′ → h(X) is
a homeomorphism, whence q is a proclusion.

Given f : X → Y to a k-Hausdorff space Y , let ∼ denote the equivalence relation on X

defined by the map f , and let Ỹ = X/ ∼ with quotient map g : X → Ỹ . The induced map

i : Ỹ → Y maps Ỹ injectively to Y , and thus Ỹ is k-Hausdorff by (4.7)(2). Since g is thus a

proclusion to a k-Hausdorff space, by construction of h(X) there exists a map g̃ : h(X)→ Ỹ

such that g̃q = g, and thus f̃ = ig̃ is such that f̃ q = f , uniquely so since q is a proclusion. �

4.10. The category of k-Hausdorff spaces. Let kHaus denote the full subcategory of
k-Hausdorff spaces in Top. We obtain a pair of adjoint functors

h : Top � kHaus : include.

The category kHaus has both limits and colimits. Limits in kHaus are computed as they
are in Top; colimits in kHaus are computed by taking the colimit in Top and then applying
the h-functor. Note though that coproducts in kHaus can be computed exactly as in Top,
by (4.7)(6).

5. Compactly generated spaces

We say that a space X is compactly generated if it is a k-Hausdorff k-space. We write
CG for the full subcategory of compactly generated spaces inside Top.

5.1. Proposition. If X is a k-space, then h(X) is compactly generated. If X is k-Hausdorff,
then k(X) is compactly generated.

Proof. Immediate from (3.4)(2) and (4.7)(2), since q : X → h(X) is a proclusion and
i : k(X)→ X is injective. �
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The category of compactly generated spaces admits both limits and colimits. Limits in
CG are computed by taking the limit in Top and then applying the functor k. Colimits
in CG are computed by taking the colimit in Top and then applying the functor h. Note,
however, that coproducts in CG can be computed exactly as they are in Top.

5.2. Proposition. If {Xi} is a set of compactly generated spaces, then
∐
Xi is compactly

generated and is the coproduct of {Xi} in CG.

Proof. Immediate from (3.4)(3) and (4.7)(4). �

As is our convention, notation such as “q” and “×” refers to coproduct and product in
Top. In fact, q is also the coproduct in CG, while product in CG coincides with the k-space
product ×k.

6. The projection criterion for k-open subsets of a product

We have a k-topology analogue of the tube lemma.

6.1. Proposition. Let X be a space and L a compact space. Then the projection map
π : X × L→ X takes closed sets to closed sets, and takes k-closed sets to k-closed sets.

Proof. The first statement says that if C is closed in X × L, then π(C) =
{x ∈ X | (x× L) ∩ C 6= ∅ } is closed in X, or equivalently that {x ∈ X | (x× L) ∩ C = ∅ }
is open in X. This is equivalent to the “tube lemma”, which asserts that for such C, and any
x ∈ X such that (x× L) ∩ C = ∅ there exists an open neighborhood V of x in X such that
(V × L) ∩C = ∅. (Proof sketch: for each y ∈ L choose (x, y) ∈ Vy ×Wy ⊆ (X × L) rC and
use compactness of L to obtain a finite subcollection covering x× L.)

For the second statement, suppose C is k-closed in X×L, and consider any map f : K → X
from compact K. Then

f−1{x ∈ X | (x× L) ∩ C 6= ∅ } = { k ∈ K | (k × L) ∩ (f × id)−1C 6= ∅ }.
Since C is k-closed, (f×id)−1C is closed in K×L, so the tube lemma applied to π : K×L→ K
shows that the above set is closed in K, and therefore that {x ∈ X | (x× L) ∩ C 6= ∅ } is
k-closed in X as desired. �

The following gives a precise criterion for a subset of a product X × Y to be k-open. We
will usually use this in the special case that both X and Y are themselves k-spaces, in which
case it gives a precise description of the open subsets of X ×k Y .

6.2. Proposition. Let X, Y be spaces. A subset U ⊆ X × Y is k-open if and only if

(1) for each x ∈ X, the set Ux := { y ∈ Y | (x, y) ∈ U } is k-open in Y , and
(2) for each map g : L→ Y from compact L, the set

Tg(U) := {x ∈ X | x× g(L) ⊆ U }
is k-open in X.

Proof. Note that if C = (X × Y ) r U , then (1) and (2) correspond precisely to

(1’) for each x ∈ X, the set Cx := { y ∈ Y | (x, y) ∈ C } is k-closed in Y , and
(2’) for each map g : L→ Y from compact Y , the set π(id×g)−1C is k-closed in X, where

π : X × L→ X is the projection.

We will prove this formulation, i.e., that C is k-closed if and only if (1’) and (2’) hold.
If C is k-closed, then (1’) is immediate, while (2’) follows by (6.1).
Conversely, suppose C ⊆ X × Y satisfies (1’) and (2’). By (4.3)(4), to show that C

is k-closed, it suffices to show that D := (id×f)−1C is k-closed in X ×M , for all maps
f : M → Y from compact M .
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Suppose given such an f : M → Y , and consider a point (x0,m0) /∈ D. By (1’), Cx0 is
k-closed in Y , and thus

{m ∈M | (x0,m) ∈ D } = f−1Cx0
is closed in the compact space M . Therefore there exists an open neighborhood V of m0

in M such that (x0 × V ) ∩D = ∅, where V is the closure of V in M (compact spaces are
locally compact).

The closure V of V in M is compact. Writing j : V →M for the inclusion, we see that

E := π(id×j)−1D = π(id×(fj))−1C

is k-closed in X, where π : X × V → X is the projection, by (2’), taking g = fj. Since
(x0 × V ) ∩D = ∅, we have that x0 /∈ E, and thus there exists a k-open subset U in X such
that x0 ∈ U and U ∩ E = ∅.

Thus, starting with (x0,m0) /∈ D, we get a k-open subset U × V of X ×M such that
(x0,m0) ∈ U × V and (U × V ) ∩ D = ∅. We have thus proved that D is k-closed, as
desired. �

7. Locally compact spaces

We say that a space X is locally compact if it is Hausdorff, and if every point of X has a
compact neighborhood. Every compact space (in our sense) is locally compact. Furthermore,
if X is locally compact then for every open neighborhood U of a point x ∈ X, there exists
an open V in X such that x ∈ V ⊆ V ⊆ U with V compact.

We will show that locally compact spaces are a class of CG spaces which satisfy convenient
inheritance properties with respect passage to open subspaces and finite products.

7.1. Proposition. Every locally compact space is compactly generated.

Proof. Let X be a locally compact space. Thus we have that X =
⋃
K IntX K, where the

union ranges over all compact subspaces of X, and IntX K denotes the interior of K relative
to X.

We claim that the surjective map f = (fK) :
∐
K K → X obtained from the collection of

all inclusions of compact subspaces is a proclusion. Suppose U ⊆ X is a subset such that each
f−1K U = U ∩K is open in K. Then given x ∈ U there exists a compact subset K of X such
that x ∈ IntX K, whence U ∩ IntX K is open in IntX K and hence is an open neighborhood
of x in X which is itself a subset of U . Thus U is open in X.

It now follows that X is a k-space using (3.4), (2) and (3). Because X is Hausdorff, it is
also k-Hausdorff by (4.7)(1). Thus X is compactly generated as desired. �

7.2. Proposition. Every open subset of a locally compact space, viewed as a subspace, is
compactly generated.

Proof. By (7.1) it suffices to note that open subsets of locally compact spaces are themselves
locally compact. �

7.3. Proposition. If X is a k-space and Y is locally compact, then X × Y is a k-space

Proof. Suppose S ⊆ X×Y is a k-open subset; we will show that S is open. By the projection
criterion (6.2) and the fact that both X and Y are k-spaces (7.1), we have that

(1) for each x ∈ X, the set Sx = { y ∈ Y | (x, y) ∈ S } is open in Y , and
(2) for each map g : L→ Y from compact L, the set Tg(S) = {x ∈ X | x× g(L) ⊆ S } is

open in X.
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Consider (x0, y0) ∈ S. By (1), we have that Sx0 is open in Y . As Y is locally compact, there
exists an open V in Y such that y0 ∈ V ⊆ V ⊆ Sx0 with V compact. Let g : V → Y denote
the inclusion map. Then by (2) the set Tg(S) = {x ∈ X | x× V ⊆ S } is open in X. Since
x0 ∈ Tg(S), there exists an open set U in X with x0 ∈ U ⊆ Tg(S). We have thus found an
open subset U × V of X × Y such that (x0, y0) ∈ U × V ⊆ S. Thus, we have proved that S
is open in X × Y , and therefore that X × Y is a k-space. �

7.4. Corollary. If X is any space and Y is locally compact, then the “identity” map k(X)×
Y → k(X × Y ) is a homeomorphism.

Proof. By the universal property of i : k(X)→ X (3.2), composition with i× idY induces a
bijective correspondence Map(T,k(X)×Y )→ Map(T,X×Y ) between sets of continuous maps
for any compact T . Since k(X)×Y is itself a k-space (7.3), we have that i× idY : k(X)×Y →
X × Y has the same universal property as i : k(X × Y )→ X × Y , so the claim follows. �

7.5. Proposition. If X is a compactly generated space and Y is locally compact, then X ×Y
is compactly generated.

Proof. Given (7.3), it suffices to show that X × Y is k-Hausdorff. We want to show that the
diagonal subset ∆X×Y is k-closed in (X × Y )×2, or equivalently that ∆X ×∆Y is k-closed
in X×2 × Y ×2 via the evident homeomorphism which switches middle factors. Since X is
compactly generated, ∆X is closed in k(X ×X). Since Y is locally compact it is Hausdorff,
and thus ∆Y is closed in Y × Y . Therefore

∆X ×∆Y = [∆X × Y × Y ] ∩ [k(X ×X)×∆Y ]

is closed in k(X ×X)× Y × Y , which is identical to k(X ×X × Y × Y ) by (7.4). �

8. Mapping spaces

Given spaces X and Y , let Map(X,Y ) denote the set of continuous maps X → Y . For a
function f : T ×X → Y and t ∈ T , write ft : X → Y for the restriction of f to the slice at t,

i.e., ft(x) = f(t, x). Then functions f̃ : T → Map(X,Y ) from a set T correspond exactly to
functions f : T ×X → Y such that each ft is continuous.

We will show below that if X and Y are compactly generated spaces, then Map(X,Y ) can
be equipped with a compactly generated topology, so that it is an internal function object in
CG: continuous maps T → Map(X,Y ) correspond exactly to continuous maps T ×kX → Y
for all compactly generated T .

8.1. A topology on spaces of continuous maps. We define a topology on Map(X,Y )
as follows. We declare a subset S ⊆ Map(X,Y ) to be open if, for every map f : K ×X → Y
with K a compact space, the set

f̃−1S = { k ∈ K | fk ∈ S }

is open in K; here f̃ : K → Map(X,Y ) is the evident adjoint function to f : K ×X → Y . It
is straightforward to see that this is indeed a topology on Map(X,Y ).

8.2. Proposition. The construction of Map gives rise to a functor Map: Topop×Top→ Top.

Proof. Let g : X ′ → X be a continuous map. We want to show that Map(g, Y ) : Map(X,Y )→
Map(X ′, Y ) is continuous. Let S ⊆ Map(X ′, Y ) be an open set, and let f : K ×X → Y be a
map with K compact. Then

f̃−1 Map(g, Y )−1S = { k ∈ K | fkg ∈ S } = { k ∈ K | f ′k ∈ S } = f̃ ′
−1
S,

where f ′ = f(id×g) : K ×X ′ → Y , and f̃ ′
−1
S is open in K by definition. This proves that

Map(g, Y ) is continuous, as desired.



COMPACTLY GENERATED SPACES 9

Let h : Y → Y ′ be a continuous map. We want to show that Map(X,h) : Map(X,Y )→
Map(X,Y ′) is continuous. Let S ⊆ Map(X,Y ′) be an open set, and let f : K ×X → Y a
map with K compact. Then

f̃−1 Map(X,h)−1S = { k ∈ K | hfk ∈ S } = { k ∈ K | f ′k ∈ S } = f̃ ′
−1
S,

where f ′ = hf : K × X → Y ′, and f̃ ′
−1
S is open in K by definition. This proves that

Map(X,h) is continuous, as desired. �

8.3. Construction of some open subsets in Map(X,Y ).

8.4. Lemma. Let g : L→ X be a map from a compact space L, and V an open subset of Y ,
and define

S(g, V ) := {φ ∈ Map(X,Y ) | φ(g(L)) ⊆ V }.
Then S(g, V ) is an open subset of Map(X,Y ).

Proof. Given a map f : K ×X → Y with K compact, we see that

f̃−1S(g, V ) = { k ∈ K | f(k × g(L)) ⊆ V } = { k ∈ K | k × g(L) ⊆ f−1V }.

That is, we see that f̃−1S(g, V ) = Tg(f
−1V ) as described in (6.2)(2), which asserts that it is

k-open in K (and hence open) since f−1V is k-open (and in fact open) in K ×X. �

8.5. Mapping space adjunction for k-spaces.

8.6. Proposition. If X and Y are k-spaces and Z is any space, then a function f : X×kY →
Z is continuous if and only if its adjoint f̃ : X → Map(Y, Z) is defined and continuous.

Proof. First, suppose given a continuous map f : X ×k Y → Z. Then each slice fx : Y → Z

is continuous, since it is isomorphic to the composite Y = x×k Y → X ×k Y f−→ Z as Y is a

k-space. Thus we have a well-defined adjoint function f̃ : X → Map(Y, Z).

To show that f̃ is continuous, consider an open subset S ⊆ Map(Y,Z). Since X is a
k-space, we must show that for any continuous g : K → X with K compact the set

g−1f̃−1S = g−1{x ∈ X | fx ∈ S } = { k ∈ K | fg(x) ∈ S } = { k ∈ K | f ′k ∈ S } = f̃ ′
−1
S

is open in K, where f ′ = f(g × id) : K × Y → Z. That this is so is immediate from the
definition of the topology on Map(Y,Z).

Next, suppose given f̃ : X → Map(Y,Z) a continuous map, and let f : X × Y → Z denote
the adjoint function. We want to show that, as a function X ×k Y → Z it is continuous.
Thus, given V an open set in Z, we need to show that f−1V is k-open in X × Y .

By the criterion of (6.2), and the fact that both X and Y are k-spaces, we must show

(1) that each f−1x V = { y ∈ Y | (x, y) ∈ f−1V } is open in Y , and
(2) that for each map g : L → Y from compact L, the set Tg(f

−1V ) =
{x ∈ X | x× g(L) ⊆ f−1V } is open in X.

Statement (1) is immediate from the fact that each fx : Y → Z is continuous. Statement (2)

follows because Tg(f
−1V ) = f̃−1S(g, V ), and that S(g, V ) is open in Map(Y, Z) by (8.4). �

8.7. Corollary. If X and Y are spaces with X a k-space, then Map(X,Y ) is a k-space.

Proof. A subset S of Map(X,Y ) is k-open if and only if f̃−1S is open in K for each continuous

map f̃ : K → Map(X,Y ) from compact K, while by definition S is open if and only if f̃−1S

is open in K for each adjoint f̃ of a continuous map f : K ×X → Y with K compact. By
(7.3), K×X is a k-space, whence K×X = K×kX. The result follows by (8.6), which shows

that continuous f̃ : K → Map(X,Y ) correspond exactly to continuous f : K ×k X → Y . �
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8.8. Proposition. For all spaces Z and k-spaces X and Y , the evident bijection
Map(X,Map(Y,Z))→ Map(X ×k Y,Z) implied by (8.6) is a homeomorphism.

Proof. Since both mapping spaces are k-spaces (8.7), it suffices to show that for T a k-space
this map induces a bijective correspondence between maps T → Map(X,Map(Y, Z)) and
maps T → Map(X ×k Y,Z). That this is so is a straightforward consequence of (8.6), and
the fact (3.6) that (T ×k X)×k Y = T ×k (X ×k Y ). �

8.9. Maps into k-Hausdorff spaces.

8.10. Proposition. If X is a space and Y is a k-Hausdorff space, then Map(X,Y ) is k-
Hausdorff.

Proof. Write M := Map(X,Y ). We need to show that the diagonal ∆M is k-closed in M×M .
For x ∈ X, let ex : M → Y denote the evaluation map ex(f) = f(x), which is continuous by
(8.2). Then

(ex × ex)−1∆Y = { (f1, f2) ∈M ×M | f1(x) = f2(x) }
is k-closed in M×M since Y is k-Hausdorff, and hence ∆M =

⋂
x∈X(ex×ex)−1∆Y is k-closed

in M ×M as desired. �

8.11. Internal function objects in CG. Putting together what we have done, we see that
if X and Y are compactly generated spaces, then Map(X,Y ) is compactly generated (8.7),
(8.10). We obtain the following from (8.8).

8.12. Corollary. The mapping space construction exhibits CG as a Cartesian closed category.
In particular, for compactly generated spaces X,Y, Z there are natural homomorphisms

Map(X,Map(Y,Z)) ≈ Map(X ×k Y, Z)

of compactly generated spaces.

9. Compactly generated spaces and quotients

9.1. Products of proclusions of k-spaces.

9.2. Proposition. Let f : X → X ′ be a proclusion between k-spaces, and let Y be a k-space.
Then the map f ×k id : X ×k Y → X ′ ×k Y is a proclusion.

Proof. To show that the surjective map f ×k id is a proclusion, it suffices to show that if
g′ : X ′ ×k Y → Z is a function to any space Z such that g := g′(f × id) : X ×k Y → Z is
continuous, then g′ is itself continuous.

First note that for any x′ ∈ X, the slice function g′x′ : Y → Z defined by g′x′(y) = g′(x, y) is
continuous. To see this, choose any x ∈ X such that f(x) = x′, and note that g′x′ = gx, which

is continuous because Y is a k-space and so gx is the composite Y = x×k Y → X ×k Y g−→ Z.

Thus, the adjoint function g̃′ : X ′ → Map(Y,Z) to g′ is well-defined, and g̃ = g̃′f is the

adjoint function to g. By (8.6) g̃ is continuous, and thus g̃′ is continuous since f is a proclusion.
Apply (8.6) again to see that g′ is continuous, as desired. �

9.3. Proposition. Let f : X → X ′ and g : Y → Y ′ be proclusions between k-spaces. Then
f ×k g : X ×k Y → X ′ ×k Y ′ is a proclusion.

Proof. Factor f ×k g as X ×k Y f×kid−−−−→ X ′ ×k Y id×kg−−−−→ X ′ ×k Y ′ and apply (9.2). �
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9.4. Compactly generated quotients of k-spaces.

9.5. Proposition. Let f : X → Y be a proclusion from a k-space X. The following are
equivalent.

(1) Y is compactly generated.
(2) (f × f)−1∆Y is k-closed in X ×X.

Proof. (1) implies (2). ∆Y is k-closed in Y × Y by definition of k-Hausdorff, whence
(f × f)−1∆Y is k-closed in X ×X.

(2) implies (1). By (3.4)(2), Y is a k-space. By (9.3), f ×k f : X ×k X → Y ×k Y is a
proclusion. By (2), (f ×k f)−1∆Y is closed in X ×k X, whence ∆Y is closed in Y ×k Y , so
that Y is k-Hausdorff. �

9.6. Proposition. Let X be a k-space, and suppose E ⊆ X×X is a k-closed set which is also
an equivalence relation on X. Then the quotient space Y := X/ ∼E is compactly generated.

Proof. If f : X → Y is the quotient map, then E = (f × f)−1∆Y , and the claim follows from
(9.5). �

9.7. Corollary. If X is a k-space, then h(X) is the quotient of X by the smallest k-closed
equivalence relation in X ×X.

Proof. Such a smallest k-closed equivalence relation exists, since k-closed subsets are closed
under intersection. The result is a formal consequence of (9.5) and (9.6). �

9.8. CG spaces as quotients of coproducts of compact spaces.

9.9. Proposition. A topological space X compactly generated if and only if it is a k-space,
and if for all f : K → X and g : L → X from compact K, L, the fiber product K ×X L is
compact.

Proof. Suppose X a k-space. By (4.2) we see that X is k-Hausdorff if and only if and only if
(f × g)−1∆X = K ×X L is closed in K ×L for all f : K → X, g : L→ X from compact K, L.
Since K × L is compact, K ×X L is closed in K × L if and only if K ×X L is compact. �

We obtain the following pleasant characterization of compactly generated spaces.

9.10. Proposition. Let X be a topological space. Then X is compactly generated if and only
if there exists a set of maps {fα : Kα → X}α∈A such that

(1) f = (fα) :
∐
α∈AKα → X is a proclusion,

(2) each Kα is compact, and
(3) each Kα ×X Kβ is compact.

Proof. First suppose we are given {fα} satisfying (1)–(3). We have that U :=
∐
αKα is

compactly generated by (2) and (5.2). Observe that U ×U =
∐
α,βKα×Kβ is also compactly

generated for the same reason (finite products in Top distribute over coproducts), so that
U ×U = U ×k U . To show that X is compactly generated, it thus suffices by (1) and (9.5) to
show that (f × f)−1∆X is closed in U × U . This follows since (fα × fβ)−1∆X = Kα ×X Kβ

is compact by (3) and hence is a closed subset of the compact space Kα ×Kβ.
Now suppose X is compactly generated. To obtain a set of maps {fα}, choose for each

non-closed subset S ⊆ X a map f : K → X from a compact space K such that f−1S is not
closed in K. Taken together with inclusions {x} → X of singletons, the resulting collection
{fα} satisfies (1) and (2). Condition (3) follows by (9.9). �

9.11. Corollary. Every CW-complex is compactly generated.

Proof. Let X be a CW-complex, and consider the collection {fα : Kα → X} of all inclusions
of finite CW-subcomplexes. This collection satisfies conditions (1)–(3) of (9.10). �
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10. Some colimits and limits in compactly generated spaces

As we have already noted, colimits in CG are obtained by taking the colimit in Top,
and then applying h, while limits in CG are obtained by taking the limit in Top, and then
applying k. Furthermore, coproducts in CG coincide with coproducts in Top. We observe
some more situations in which certain limits and colimits in CG and Top coincide.

10.1. Closed subspaces. Note that subspaces of a compactly generated space are not
necessarily themselves compactly generated. However, it is reasonable to speak of “closed
subspaces” of a compactly generated space.

10.2. Proposition. A closed subspace of a compactly generated space is compactly generated.

Proof. Immediate from (3.4)(1) and (4.7)(2). �

10.3. Lemma. Let i : A→ X be a closed inclusion of spaces. Then i is a k-closed map, i.e.,
if C is k-closed in A, then i(C) is k-closed in X.

Proof. Let C be a k-closed subset of A, and suppose f : K → X is a map from a compact K.
Form the pullback square

A×X K
j
//

g

��

K

f
��

A
i

// X

in Top, and note that f−1i(C) = jg−1(C). Because i is a closed inclusion, so is j, and thus
A×X K is a closed subspace of K and hence compact. It follows that jg−1(C) is closed in
K. �

10.4. Corollary. If X is a topological space, and if i : A→ X is inclusion of a closed subspace,
then ki : kA→ kX is also inclusion of a closed subspace.

10.5. Pushouts along closed inclusions.

10.6. Proposition. Let i : A → X and f : A → B be maps of compactly generated spaces

spaces, and let Y = colim(X
i−→ A

f−→ B) denote the pushout in Top. If i is the inclusion of a
closed subspace, then Y is compactly generated, and thus Y is the pushout in CG.

Proof. Note that Y is also the colimit of the diagram

X qB iqid←−− AqB (f,id)−−−→ B.

Since i q id is a closed inclusion, and (f, id) is a proclusion, we can replace i and f with
these maps, as coproducts of compactly generated spaces are compactly generated. Thus
without loss of generality we may assume that f is a proclusion. We will use (9.5) applied to
g : X → Y to show that Y is compactly generated.

Because i is injective we have that (g× g)−1∆Y = ∆X ∪ (i× i)(f ×f)−1∆B. We know that
∆X is k-closed in X×X since X is k-Hausdorff, and (f×f)−1∆B is k-closed in A×A since B
is k-Hausdorff. Since i is a closed inclusion of spaces, so is i× i, and thus (i× i)(f × f)−1∆B

is k-closed in X ×X by (10.3). We conclude that (g × g)−1∆Y is k-closed in X ×X, and
thus (g ×k g)−1∆Y is closed in X ×k X, proving statement (2) of (9.5), which implies that
Y is compactly generated since f is a proclusion. �

10.7. Corollary. If A ⊆ X is a closed subset of a compactly generated space X, then X/A is
compactly generated.
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10.8. Pullbacks along closed inclusions.

10.9. Proposition. Suppose X
f−→ Y

i←− B are maps between compactly generated spaces,
and that i is a closed inclusion. Then the pullback A := X ×Y B in Top is also compactly

generated, and A→ k(X ×Y B) is a homeomorphism, i.e., A is the pullback of X
f−→ Y

i←− B
in CG.

Proof. Since i is a closed inclusion, its pullback j : A → X is also a closed inclusion, and
therefore A is compactly generated (10.2). That A → k(X ×Y B) is a homeomorphism
follows by verifying that both objects satisfy the same universal property in CG. �

The following gives a direct construction of an arbitrary pullback in CG.

10.10. Proposition. Given maps X
f−→ Y

p←− B between compactly generated spaces, let

A
g

//

(q,g)
��

B

(p,id)
��

X ×k B
f×id

// Y ×k B

be a commutative square which is a pullback square in Top. Then A is compactly generated,

and (q, g) : A→ k(X ×Y B) is a homeomorphism, i.e., A is the pullback of X
f−→ Y

p←− B in
CG. Furthermore, both vertical maps are closed inclusions.

Proof. (See [Str09, 2.36].) Let Γ = { (p(b), b) | b ∈ B } denote the graph of p in Y × B. As
Γ = (id×p)−1∆Y and Y is k-Hausdorff, we have that Γ is a closed subset of Y ×k B. If
C ⊆ B is any subset, then (p, id)(C) = Γ ∩ π−1C, and thus we see that (p, id) : B → Y ×k B
is a closed injective map, i.e., an inclusion of a closed subspace. Therefore its pullback
(q, g) : A→ X ×k B is also a closed inclusion, and by (10.9), A is compactly generated and
the diagram is a pullback in CG. That (q, g) : A→ k(X ×Y B) is a homeomorphism follows
by verifying that both objects satisfy the same universal property in CG. �

10.11. Pullbacks of proclusions.

10.12. Proposition. In the category of compactly generated spaces, proclusions are closed
under base change.

Proof. Let X
f−→ Y

p←− B be maps of compactly generated spaces such that f is a proclusion.
By (9.2), f × id : X ×k B → Y ×k B is a proclusion. Using (10.10), it thus suffices to
show that the pullback in Top of a proclusion along a closed map is a proclusion, which is
straightforward. �

Warning. This does not imply that arbitrary colimits in CG are preserved under base
change: Although all colimits in CG can be described using proclusions, colimits in CG do
not necessarily coincide with set-theoretic colimits. See [Str09, 6.9] for a counterexample.

Remark. The above proposition is not true if “compactly generated space” is replaced
with “k-space”. This is an advantage of compactly generated spaces over k-spaces.

10.13. Sequential colimits.

10.14. Proposition. Let X0 → X1 → · · · be a countable direct sequence of compactly
generated spaces, and suppose that each map fn,n+1 : Xn → Xn+1 is the inclusion of a closed
subspace. Let X denote the direct limit in Top. Then

(1) X is compactly generated,
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(2) each Xk → X is a closed inclusion, and
(3) every map f : K → X from a compact K factors through Xn for some n.

Proof. (See [Str09, §3.2].) First we prove (1). It is clear that X is a k-space, being a quotient
of the k-space U :=

∐
kXk (3.4).

To show that X is k-Hausdorff, E ⊆ U × U denote the equivalence relation defining X.
As U × U =

∐
i,j Xi ×Xj , we have E =

∐
i,j Ei,j where Ei,j = E ∩ (Xi ×Xj) as a subspace

of Xi ×Xj .
Since each fi,k : Xi → Xk is injective for i ≤ k, we have that Ei,j = (fi,k × fj,k)−1∆Xk for

any k ≥ max(i, j). Since the Xk are k-Hausdorff, we have that Ei,j is k-closed in Xi ×Xj ,
and thus E is k-closed in U × U . It follows that X = U/ ∼E is k-Hausdorff by (9.6). (Note:
it seems that to prove that (1), we only needed the maps Xn → Xn+1 to be injective, not
necessarily closed.)

To prove (2), note that this is merely a property of colimits in Top along sequences of
closed inclusions.

Now we prove (3). Suppose f : K → X is a map from a compact K, and suppose that
f does not factor through any Xn; we will derive a contradiction. For each n choose an
xn ∈ (X rXn) ∩ f(K), and let T = {xn}; this must be an infinite set. Each intersection of
S ∩Xk of any subset S ⊆ T is finite, and thus is closed in Xk by (4.7)(5). Since Xk → X is a
closed inclusion, each such S is closed in X, and thus T is a closed and discrete subset of X,
and so a closed and discrete subset of f(K). Since f(K) is quasi-compact, T is necessarily
finite, a contradiction. �

11. Weak Hausdorff spaces

A space X is said to be weak Hausdorff if for every map f : K → X with K compact,
the image f(K) is closed in X.

11.1. Proposition. If X is weak Hausdorff, then for every map f : K → X with K compact,
the image f(K) is a compact subspace of X.

Proof. It is clear that the subspace f(K) is quasi-compact, so we only need to show that
it is Hausdorff. It is immediate that points in a weak Hausdorff space are closed. Thus if
x1, x2 ∈ f(K) are distinct points, then f−1(x1) and f−1(x2) are closed in K and hence are
compact subsets of K. Since compact spaces are normal, there exist open neighborhoods Ui
of f−1(xi) in K such that U1 and U2 are disjoint. Since the subspaces K r Ui are compact,
their images f(K r Ui) are closed in the weak Hausdorff space X, and hence closed in f(K).
Thus the sets Vi = f(K) r f(K r Ui) are open in f(K), and provide disjoint neighborhoods
of x1 and x2 in f(K). �

11.2. Proposition. Every weak Hausdorff space is k-Hausdorff.

Proof. Suppose X is weak Hausdorff, and let f : K → X be a map from compact K. Let
k1, k2 ∈ K be points such that f(k1) 6= f(k2). Since f(K) is compact by (11.1), there
exist disjoint open neighborhoods Vi of f(ki) in f(K), and thus Ui = f−1Vi provide open
neighborhoods of ki such that the f(Ui) are pairwise disjoint. It follows that X is k-Hausdorff
by (4.2)(4). �

11.3. Lemma. If X is k-Hausdorff and f : K → X is a map from a compact K, then the
subset f(K) is k-closed in X.

Proof. Let g : L → X be any map from a compact L, and let π : K ×X L → L denote the
projection. Then g−1f(K) = π(f × g)−1∆X as a subset of L. Since X is k-Hausdorff,
(f × g)−1∆X is closed in K ×L by (4.2), and thus its image under π in the compact space L
is closed. We conclude that f(K) is a k-closed subset of X. �
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11.4. Proposition. Let X be a k-space. The following are equivalent.

(1) X is k-Hausdorff.
(2) X is a weak Hausdorff k-space.

Thus, the compactly generated spaces (in our sense) are precisely the weak Hausdorff k-spaces.

Proof. Immediate using (11.3) and (11.2). �

11.5. Proposition. Let X be weak Hausdorff. The following are equivalent.

(1) X is compactly generated.
(2) A subset C ⊆ X is closed if and only if its intersection with every compact subset of

X is closed.

Proof. Let X be weak Hausdorff. We will show that a subset C ⊆ X is k-closed if and only
if all its intersection with compact subsets of X are closed. Given this, the equivalence of (1)
and (2) is immediate.

Suppose C ⊆ X is k-closed. Then it is immediate that intersections of C with compact
subsets K of X are closed in K, and thus closed in X by the weak Hausdorff property.

Conversely, suppose that C ⊆ X is such that all intersections with compact subsets of X
are closed in X. Let f : K → X be a map from a compact K. Then f−1C = f−1(C ∩ f(K)).
The weak Hausdorff property says that f(K) is compact in X by (11.4), whence f−1C is
closed in K. Thus, C is k-closed. �
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