
A MODEL CATEGORY FOR CATEGORIES
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1. Introduction

In this paper we construct a Quillen closed model category structure for
the category of categories in which the “weak equivalences” are chosen to
be precisely the equivalences of categories. We also show that this model
category structure is simplicial and cofibrantly generated. Furthermore, re-
call that the category of categories is a “cartesian closed category”; we show
that with respect to this cartesian structure our model category structure
satisfies an analogue of Quillen’s axiom SM7.1

We introduce some notation, and recall the notion of an equivalence of
categories. Recall that a category C consists of a pair of sets obC and
morC, called the objects and morphisms respectively. We let Cat denote
the category of categories. We write idC : C→C for the identity functor
from a category to itself.

Recall that a functor F : C→D is an equivalence if there exists a functor
G : D→C and natural isomorphisms α : GF ' idC and β : FG ' idD.

Proposition 1.1. A functor F : C→D is an equivalence if and only if

1. for every d ∈ obD there exists c ∈ obC and an isomorphism
h : Fc→ d ∈ D, i.e., if F is essentially surjective, and

2. for every pair c, c′ ∈ obC the induced map

F : C(c, c′)→D(Fc, Fc′)

is an isomorphism, i.e., if F is fully faithful.

2. Fibrations and cofibrations

We say that a functor F : C→D is a cofibration if the induced map
obF : obC→ obD is injective.

We say that a functor F : C→D is a fibration if for each object c ∈
obC and each isomorphism h : Fc→ d ∈ D there exists an isomorphism
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g : c→ c′ ∈ C such that Fg = h. Equivalently, F is a fibration if and only if
for each commutative square of the form

0 //

��

C

F
��

I //

??

D

there exists a dotted arrow making both triangles commute. Here 0 denotes
the category with a single object and a single morphism and I denotes the
category with two objects with unique isomorphisms between them.

Note that by the above definitions, every object in Cat is fibrant and
cofibrant.

We say a functor F : C→D is a trivial cofibration if it is both a cofibration
and an equivalence. We say F is a trivial fibration if it is both a fibration
and an equivalence.

Proposition 2.1. A functor F : C→D is a trivial cofibration if and only
if it includes C as a full subcategory of D which is equivalent to D.

A functor F : C→D is a trivial fibration if and only if

1. the induced map obF : obC→ obD is surjective, and
2. F is fully faithful.

Proof. This is straightforward given Proposition 1.1.

3. The model category structure

We now prove that the given structure makes Cat into a model category.

Theorem 3.1. The category Cat of all small categories admits a Quillen
closed model category structure, with equivalences as the weak equivalences
and fibrations and cofibrations as above.

Proof. We prove each of the axioms M1-M5 of a model category.

M1. It is well known that Cat has all small limits and colimits.
M2. It is clear that if F , G, and GF are functors such that any two of them

are equivalences, then the third is also an equivalence.
M3. It is easy to check that cofibrations and equivalences are closed under

retracts. Since fibrations are characterized by a lifting property, they
are also closed under retracts.

M4. Consider the square

C
U //

F
��

M

G
��

D
V

//

H
>>

N

in which F is a cofibration and G is a fibration. We must show that if
either F or G is an equivalence, then a lift H exists.
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First suppose that F is a trivial cofibration. We can construct a
functor F ′ : D→C such that

F ′F = idC ,

and a natural isomorphism α : FF ′ ' idD. Furthermore, α can be
chosen such that when restricted to the image of F it gives the identity
map, i.e.,

αFc = idFc .

We first construct obH : obD→ obM . Note that for each d ∈ obD
the object V FF ′d ∈ obN is in the image of the functor G; in fact,
V FF ′d = GUF ′d. Thus by the definition of fibration we can choose
an object Hd ∈ obM and an isomorphism βd : UF ′d→Hd ∈ M such
that

GHd = V d, Gβd = V αd.

Furthermore, β can be chosen such that when restricted to the image
of F it gives the identity map, i.e.,

HFc = Uc, βFc = idUc .

Now we can define H on morphisms by sending f : d→ d′ ∈ D to

Hf = βd′ · UF ′f · β−1
d : Hd→Hd′ ∈ M.

It is now easy to see that H : D→M defines a functor, and that GH =
V and HF = U as desired.

Now suppose instead that G is a trivial fibration. Since
obF : obC→ obD is injective and obG : obM → obN is surjective,
we can construct a lift obH : obD→ obM . By the characterization
of trivial fibration, for each d, d′ ∈ obD the map

G : M(Hd,Hd′)→N(V d, V d′)

is an isomorphism. Thus there is a unique extension of H to the
morphisms of D; this extension is clearly the desired lift.

M5. Let F : C→D be a functor. We construct a factorization F = V U
where U : C→C ′ is a trivial cofibration and V : C ′→D is a fibration,
as follows. Let C ′ be the category with

obC ′ = {(c, α, d) | c ∈ obC, d ∈ obD,α : Fc ' d ∈ D}
and

C ′((c, α, d), (c′, α′, d′)) = C(c, c′).

Define U : C→C ′ on c ∈ obC and f : c→ c′ ∈ C by

Uc = (c, idFc, F c), Uf = f,

and define V : C ′→D on (c, α, d) ∈ obC ′ and f : (c, α, d)→(c′, α′, d′)
by

V (c, α, d) = d, V f = α−1 · Ff · α′.

It is now straightforward to check that V U is a factorization of F , and
that U is a trivial cofibration and V is a fibration.



4 CHARLES REZK

We now construct a factorization F = V U where U : C→D′ is a
cofibration and V : D′→D is a trivial fibration, as follows. Let D′ be
the category with

obD′ = obC q obD

and for c, c′ ∈ obC and d, d′ ∈ obD, all viewed as objects of obD′,

D′(c, c′) = D(Fc, Fc′), D′(c, d′) = D(Fc, d′),

D′(d, c′) = D(d, Fc′), D′(d, d′) = D(d, d′).

Define U : C→D′ on c ∈ obC and f : c→ c′ ∈ C by

Uc = c, Uf = Ff.

Define V : D′→D on c ∈ obC and d ∈ obD, viewed as objects of D′,
by

V c = Fc, V d = d,

and define V in the obvious manner on morphisms. It is now straight-
forward to check that F = V U and that U is a cofibration and V is a
trivial fibration.

Remark 3.2. Note that the factorizations constructed in the proof of Axiom
M5 are functorial; in fact, they are precisely the classical path and cylinder
constructions, i.e., C ′ = DI ×D C and D′ = C × I qC D.

4. Cofibrantly generated

We note that Cat is a cofibrantly generated model category. As noted
above, fibrations in Cat are characterized by a right lifting property. Let ∅
denote the empty category, let 0 denote the category with a single object and
its identity map, and let 1 denote the category with two objects and a single
non-identity map between them. Let 1̇ denote the maximal subcategory of
1 not containing this map. Let P = 1 q1̇ 1 denote the category consisting
of a pair of parallel arrows.

Proposition 4.1. A functor F : C→D is a trivial fibration if and only if
it has the right lifting property with respect to the obvious maps

u : ∅→0,

v : 1̇→1,

and
w : P →1.

Proof. It is clear that each of these functors is a cofibration, and thus all
trivial fibrations must have the right lifting property with respect to each
by Theorem 3.1, Axiom M4. Conversely, suppose G : M →N has the right
lifting property with respect to each of the above maps. The right lifting
property with respect to u implies that obG : obM → obN is a surjection.
The right lifting property with respect to v implies that for each m,m′ ∈
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obM , the map G : M(m,m′)→N(Gm,Gm′) is surjective. Finally, the right
lifting property with respect to w implies that for each m,m′ ∈ obM , the
map G : M(m,m′)→N(Gm,Gm) is injective. Hence by Proposition 2.1 it
follows that G is a trivial fibration, as desired.

5. Enrichment and the model category structure

We have the following analogue of Quillen’s Axiom SM7.

Theorem 5.1. The two following equivalent statements hold.

1. Let F : C→D and F ′ : C ′→D′ be cofibrations of categories, and let

K : C ×D′ qC×C′ D × C ′→D ×D′

denote the induced corner map. Then K is a cofibration; if furthermore
either F or F ′ is an equivalence then so is K.

2. Let F : C→D be a cofibration and G : M →N be a fibration of cate-
gories, and let

K ′ : MD →MC ×NC ND

denote the induced corner map. Then K ′ is a fibration; if furthermore
either F or G is an equivalence then so is K ′.

Proof. Since the two statements are equivalent it will suffice to prove 1.
Note that for arbitrary categories A and B we have that ob(A × B) '

obA× obB, and for arbitrary functors A→B and A→C we have ob(BqA

C) ' obB qobA obC. Thus it is easy to see that obK is an inclusion, and
hence K is a cofibration.

Now suppose that F is a trivial cofibration. Then it follows that F ×
C ′ : C × C ′→D × C ′ is an equivalence, and in fact is a trivial cofibration.
Thus the push-out of this map along C×G : C×C ′→C×D′ is also a trivial
cofibration, hence in particular an equivalence. Since F ×D′ : C×D′→D×
D′ is also an equivalence it follows that K is an equivalence by Theorem 3.1,
Axiom M2.

6. Simplicial model category structure

Let sSet denote the category of simplicial sets. We define a pair of adjoint
functors

π : sSet � Cat : µ

as follows. Let µ be the functor which takes C ∈ obCat to µC, the sim-
plicial nerve of the subcategory C ′ ⊆ C having obC ′ = obC and having
as morphisms the isomorphisms of C. Let π be the functor which takes
K ∈ ob sSet to πK, the fundamental groupoid of K; i.e., πK is the category
with obπK = K0, with a generating isomorphism k : d1k→ d0k for each
k ∈ K1, subject to the relation d0ℓ · d2ℓ = d1ℓ for each ℓ ∈ K2.
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Theorem 6.1. The adjoint functor pair

π : sSet � Cat : µ

is a Quillen pair of adjoint functors between model categories; i.e., π pre-
serves cofibrations and trivial cofibrations, and µ preserves fibrations and
trivial fibrations.

Proof. It suffices to show that π preserves cofibrations and trivial cofibra-
tions. It is immediately clear that π preserves cofibrations. To show that π
preserves trivial cofibrations, it suffices to show that π preserves the gener-
ating cofibrations

ιn,k : Λ
k[n]→∆[n] ∈ sSet, n ≥ 1, 0 ≤ k ≤ n,

of sSet. But it is easy to see that for n > 1 the induced map πιn,k is
an isomorphism, since both source and target are sent to the connected
groupoid with (n + 1) objects and trivial automorphism groups, and πι1,k
for k = 0, 1 is precisely the map

0→ I.

Thus each πιn,k ∈ Cat is a trivial cofibration as desired.

Let us now define functors

C,K 7→ C ⊗K : Cat× sSet→Cat,

C,K 7→ CK : Cat× sSetop→Cat,

and

C,D 7→ Map(C,D) : Catop×Cat→ sSet

by the formuli

C ⊗K ' C × πK

CK ' CπK

and

Map(C,D) ' µ(DC).

Theorem 6.2. The above structure makes Cat into a simplicial closed
model category.
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