
Introduction to homotopy type theory

Egbert Rijke

Carnegie Mellon University
Pittsburgh PA
Spring 2018

Version: May 18, 2018

Contents

Contents i

Syllabus v

Essential course information . v

Course description . v

Course material . vi

Organization . vi

1 Dependent type theory 1

1.1 The primitive judgments of type theory 1

1.2 Renaming variables . 2

1.3 Inference rules governing judgmental equality 3

1.4 Structural rules of type theory 3

Exercises . 5

2 Dependent function types and the natural numbers 7

2.1 Dependent function types . 7

2.2 Function types . 9

2.3 The natural numbers . 11

Exercises . 13

3 Inductive types and the universe 15

3.1 Inductive types . 15

3.2 The universe . 20

3.3 The type of integers . 23

Exercises . 24

4 Identity types 27

4.1 The inductive definition of identity types 28

4.2 The groupoid structure of types 29

i

ii CONTENTS

4.3 The action on paths of functions 32
4.4 Transport . 33
Exercises . 34

5 Equivalences 37
5.1 Homotopies . 37
5.2 Bi-invertible maps . 39
5.3 The identity type of a Σ-type 40
Exercises . 41

6 Contractible types and contractible maps 45
6.1 Contractible types . 45
6.2 Contractible maps . 47
6.3 Equivalences are contractible maps 48
Exercises . 50

7 The fundamental theorem of identity types 53
7.1 Fiberwise equivalences . 53
7.2 The fundamental theorem . 55
Exercises . 57

8 The hierarchy of homotopical complexity 61
8.1 Propositions and subtypes . 61
8.2 Sets . 62
8.3 General truncation levels . 64
Exercises . 66

9 Function extensionality 69
9.1 Equivalent forms of function extensionality 69
9.2 Universal properties . 73
9.3 Composing with equivalences 74
Exercises . 77

10 Homotopy pullbacks 81
10.1 Cartesian squares . 81
10.2 The unique existence of pullbacks 85
10.3 Fiber products . 89
10.4 Fibers as pullbacks . 90
10.5 Fiberwise equivalences . 92
10.6 The pullback pasting property 95
10.7 The disjointness of coproducts 96

CONTENTS iii

Exercises . 99

11 The univalence axiom 105
11.1 Type extensionality . 105
11.2 Groups in univalent mathematics 106
11.3 Equivalence relations . 111
11.4 Essentially small types and maps 113
Exercises . 117

12 The circle 119
12.1 The universal property of the circle 119
12.2 The fundamental cover of the circle 124
Exercises . 128

13 Homotopy pushouts 133
13.1 Pushouts as higher inductive types 134
13.2 Examples of pushouts . 136
13.3 The universal property of pushouts 137
13.4 The pasting property for pushouts 141
Exercises . 142

14 Descent 147
14.1 Type families over pushouts . 147
14.2 The flattening lemma for pushouts 149
14.3 Commuting cubes . 152
14.4 The descent property for pushouts 154
Exercises . 161

15 Sequential colimits 165
15.1 The universal property of sequential colimits 165
15.2 The construction of sequential colimits 166
15.3 Descent for sequential colimits 167
15.4 The flattening lemma for sequential colimits 168
Exercises . 170

16 The homotopy image of a map 173
16.1 The universal property of the image of a map 173
16.2 The propositional truncation 174
16.3 Constructing the propositional truncation 176
16.4 The construction of the image of a map 179
16.5 Surjective maps . 181

iv CONTENTS

Exercises . 182

17 Set quotients 185
17.1 The universal property of set quotients 185
17.2 The construction of set quotients 187
17.3 Connected components of types 188
17.4 Set truncation . 188
Exercises . 188

18 Homotopy groups of types 191
18.1 Pointed types . 191
18.2 Loop spaces . 192
18.3 Homotopy groups . 193
18.4 The Eckmann-Hilton argument 194
18.5 Simply connectedness of the 2-sphere 195
Exercises . 196

19 The long exact sequence of homotopy groups 199
19.1 The long exact sequence . 199
19.2 The Hopf fibration . 202
Exercises . 204

Bibliography 205

Index 207

Syllabus

Essential course information

Course title Introduction to Homotopy Type Theory
Instructor Egbert Rijke

Department of Philosophy
Carnegie Mellon University

Course number 80-518, 80-818
Semester Spring 2018
Website http://www.andrew.cmu.edu/user/erijke/hott/

Lecture room Baker Hall 150
Meeting time Tue/Thu 12:00 - 1:20
Email erijke@andrew.cmu.edu
Instructor’s office Baker Hall 148
Office Hours Mon/Wed 5:00 - 6:00, or by appointment

Course description

Homotopy Type Theory (HoTT) is an emerging field of mathematics and
computer science that extends Martin-Löf’s dependent type theory by the
addition of the univalence axiom and higher inductive types. In HoTT we think
of types as spaces, dependent types as fibrations, and of the identity types as
path spaces. We start the course by introducing type theory as a deductive
system, and once the basic ingredients of homotopy type theory are in place
we will mainly focus on synthetic homotopy theory, i.e. the development of
homotopy theory in type theory.

v

http://www.andrew.cmu.edu/user/erijke/hott/
mailto:erijke@andrew.cmu.edu

vi SYLLABUS

Course material

We will roughly follow the book Homotopy Type Theory: Univalent foundation
of mathematics [2], of which a PDF is freely available.

Some of the later results of synthetic homotopy theory can only be found in
recent research papers. We will also use the PhD thesis of Guillaume Brunerie
[1] as a resource.

Organization

Each session will consist of two parts: a 50 minute lecture and 30 minutes
in which students present solutions to exercises provided with the previous
lecture. These presentations are intended to be short (roughly 5 minutes) and
focused to the problem at hand. Problem sets will be posted below with the
lecture synopses.

Students are expected to:

(i) Present a solution when they are asked to do so (usually a week in
advance). Graduate students will be asked to present more often than
undergraduate students.

(ii) Per lecture, either correct a somewhat substantial mistake made by the
instructor, or hand in a written solution for one exercise of their choice.
Written solutions are to be handed in at the start of the next lecture for
an A, or at the start of the next lecture after that for a B. Collaborations
are encouraged, but solutions must be handed in individually. Presenting
students hand in a written solution for the exercise they are asked to
present.

Hints for the exercises will be presented by the instructor during office
hours, a day before they have to be handed in.

Lecture 1

Dependent type theory

1.1 The primitive judgments of type theory

The theory of type dependency is formulated as a deductive system in which
derivations establish that a given construction is well-formed. In any dependent
type theory there are four primitive judgments:

(i) ‘A is a well-formed type in context Γ.’

(ii) ‘A and B are judgmentally equal types in context Γ.’

(iii) ‘a is a well-formed term of type A in context Γ.’

(iv) ‘a and b are judgmentally equal terms of type A in context Γ.’

The symbolic expressions for these four primitive judgments are as follows:

Γ ` A type Γ ` A ≡ B type

Γ ` a : A Γ ` a ≡ b : A.

A context is an expression of the form

x1 : A1, x2 : A2(x1), . . . , xn : An(x1, . . . , xn−1),

which we often simply write as x1 : A1, x2 : A2, . . . , xn : An, satisfying the
condition that for each 1 ≤ k ≤ n we have that Ak is a well-formed type in
context x1 : A1, x2 : A2, . . . , xk−1 : Ak−1, i.e.

x1 : A1, x2 : A2, . . . , xk−1 : Ak−1 ` Ak type.

1

2 LECTURE 1. DEPENDENT TYPE THEORY

We say that a context x1 : A1, . . . , xn : An declares the variables x1, . . . , xn.
We may use variable names other than x1, . . . , xn, as long as no variable is
declared more than once.

In the special case where n = 0, the list x1 : A1, x2 : A2, . . . , xn : An is
empty, which satisfies the well-formedness condition vacuously. In other words,
the empty context is well-formed. A well-formed type in the empty context
is also called a closed type, and a well-formed term of a closed type is called
a closed term.

When B is a type in context Γ, x : A, we also say that B is a family of
types over A (in context Γ).

1.2 Renaming variables

In some situations one might want to change the name of a variable in a context.
This is allowed, provided that the new variable does not occur anywhere else in
the context, so that also after renaming no variable is declared more than once.
The inference rules that rename a variable are sometimes called α-conversion
rules.

If we are given a type A in context Γ, then for any type B in context
Γ, x : A,∆ we can form the type B[x′/x] in context Γ, x′ : A,∆[x′/x], where
B[x′/x] is an abbreviation for

B(x1, . . . , xn−1, x
′, xn+1, . . . , xn+m−1)

This definition of renaming the variable x by x′ is understood to be recursive
over the length of ∆. The first variable renaming rule postulates that the
renaming of a variable preserves well-formedness of types:

Γ, x : A,∆ ` B type
x′/x

Γ, x′ : A,∆[x′/x] ` B[x′/x] type

Similarly we obtain for any term b : B in context Γ, x : A,∆ a term
b[x′/x] : B[x′/x], and there is a variable renaming rule postulating that the
renaming of a variable preserves the well-formedness of terms. In fact, there is
variable renaming rule for each of the primitive judgments. To avoid having
to state essentially the same rule four times in a row, we postulate the four
variable renaming rules all at once using a generic judgment J .

Γ, x : A,∆ ` J
x′/x

Γ, x′ : A,∆[x′/x] ` J [x′/x]

1.3. INFERENCE RULES GOVERNING JUDGMENTAL EQUALITY 3

where J may be a typing judgment, a judgment of equality of types, a term
judgment, or a judgment of equality of terms. We will use generic judgments
extensively to postulate the rest of the rules of dependent type theory.

1.3 Inference rules governing judgmental equality

Both on types and on terms, we postulate that judgmental equality is an
equivalence relation. That is, we provide inference rules for the reflexivity,
symmetry and transitivity of both kinds of judgmental equality:

Γ ` A type

Γ ` A ≡ A type

Γ ` A ≡ A′ type

Γ ` A′ ≡ A type

Γ ` A ≡ A′ type Γ ` A′ ≡ A′′ type

Γ ` A ≡ A′′ type

Γ ` a : A
Γ ` a ≡ a : A

Γ ` a ≡ a′ : A
Γ ` a′ ≡ a : A

Γ ` a ≡ a′ : A Γ ` a′ ≡ a′′ : A
Γ ` a ≡ a′′ : A

Apart from the rules postulating that judgmental equality is an equivalence
relation, there are also variable conversion rules. Informally, these are rules
stating that if A and A′ are judgmentally equal types in context Γ, then any
valid judgment in context Γ, x : A is also a valid judgment in context Γ, x : A′.
In other words: we can convert the type of a variable to a judgmentally equal
type. We state this with a generic judgment J

Γ ` A ≡ A′ type Γ, x : A,∆ ` J
A′/A

Γ, x : A′,∆ ` J

An analogous term conversion rule stated in Exercise 1.1, converting the type
of a term to a judgmentally equal type, is derivable.

1.4 Structural rules of type theory

We complete the specification of dependent type theory by postulating rules
for weakening and substitution, and the variable rule:

(i) If we are given a type A in context Γ, then any judgment made in a
longer context Γ,∆ can also be made in the context Γ, x : A,∆, for a
fresh variable x. The weakening rule asserts that weakening by a type
A in context preserves well-formedness and judgmental equality of types
and terms.

Γ ` A type Γ,∆ ` J
WAΓ, x : A,∆ ` J

4 LECTURE 1. DEPENDENT TYPE THEORY

This process of expanding the context by a fresh variable of type A is
called weakening (by A). The type family WA(B) over A is also called
the constant family B, or the trivial family B.

(ii) If we are given a type A in context Γ, then x is a well-formed term of
type A in context Γ, x : A.

Γ ` A type
δAΓ, x : A ` x : A

This is called the variable rule. It provides an identity function on the
type A in context Γ.

(iii) If we are given a term a : A in context Γ, then for any type B in context
Γ, x : A,∆ we can form the type B[a/x] in context Γ,∆[a/x], where
B[a/x] is an abbreviation for

B(x1, . . . , xn−1, a(x1, . . . , xn−1), xn+1, . . . , xn+m−1)

This definition of substituting a for x is understood to be recursive over
the length of ∆. Similarly we obtain for any term b : B in context
Γ, x : A,∆ a term b[a/x] : B[a/x]. The substitution rule asserts that
substitution preserves well-formedness and judgmental equality of types
and terms:

Γ ` a : A Γ, x : A,∆ ` J
Sa

Γ,∆[a/x] ` J [a/x]

Furthermore, we postulate that substitution by judgmentally equal terms
results in judgmentally equal types

Γ ` a ≡ a′ : A Γ, x : A,∆ ` B type

Γ,∆[a/x] ` B[a/x] ≡ B[a′/x] type

and it also results in judgmentally equal terms

Γ ` a ≡ a′ : A Γ, x : A,∆ ` b : B

Γ,∆[a/x] ` b[a/x] ≡ b[a′/x] : B[a/x]

When B is a family of types over A and a : A, we also say that B[a/x]
is the fiber of B at a. Often we write B(a) for B[a/x].

1.4. EXERCISES 5

Example 1.4.1. To give an example of how the deductive system works, we
give a deduction for the interchange rule

Γ ` B type Γ, x : A, y : B,∆ ` J
Γ, y : B, x : A,∆ ` J

In other words, if we have two types A and B in context Γ, and we make a
judgment in context Γ, x : A, y : B, then we can make that same judgment in
context Γ, y : B, x : A. The derivation is as follows:

Γ ` B type
δBΓ, y : B ` y : B
WWB(A)

Γ, y : B, x : A ` y : B

Γ, x : A, y : B,∆ ` J
y′/y

Γ, x : A, y′ : B,∆[y′/y] ` J [y′/y]
WB

Γ, y : B, x : A, y′ : B,∆[y′/y] ` J [y′/y]
SWA(y)

Γ, y : B, x : A,∆ ` J

Exercises

1.1 Give a derivation for the following conversion rule:

Γ ` A ≡ A′ type Γ ` a : A

Γ ` a : A′

Lecture 2

Dependent function types
and the natural numbers

2.1 Dependent function types

Dependent function types are formed from a type A and a type family B
over A, i.e. the Π-formation rule is as follows:

Γ, x : A ` B(x) type
Π

Γ `
∏

(x:A)B(x) type

Γ ` A ≡ A′ type Γ, x : A ` B(x) ≡ B′(x) type
Π-eq

Γ `
∏

(x:A)B(x) ≡
∏

(x:A′)B
′(x) type

Furthermore, when x′ is a fresh variable, i.e. which does not occur in the
context Γ, x : A, we also postulate that

Γ, x : A ` B(x) type
Π-x′/x

Γ `
∏

(x:A)B(x) ≡
∏

(x′:A)B(x′) type

The idea of dependent function types is that their terms are functions of which
the type of the output depends on the input. In other words, they consist
of constructions that provide for every x : A a term b(x) : B(x). Dependent
functions are formed from terms b(x) of type B(x) in context Γ, x : A, i.e. the
λ-abstraction rule is as follows:

Γ, x : A ` b(x) : B(x)
λA

Γ ` λx. b(x) :
∏

(x:A)B(x)

7

8 LECTURE 2. Π-TYPES AND THE NATURAL NUMBERS

Γ, x : A ` b(x) ≡ b′(x) : B(x)
λA-eq

Γ ` λx. b(x) ≡ λx. b′(x) :
∏

(x:A)B(x)

Furthermore, when x′ is a fresh variable, we also postulate that

Γ, x : A ` b(x) : B(x)
λA-x′/x

Γ ` λx. b(x) ≡ λx′. b(x′) :
∏

(x:A)B(x)

There are also rules providing a way to use dependent functions. This is
determined by the evaluation rule, which asserts that given a dependent
function f :

∏
(x:A)B(x) in context Γ we obtain a term f(x) of type B(x) in

context Γ, x : A. More formally:

Γ ` f :
∏

(x:A)B(x)
evA

Γ, x : A ` f(x) : B(x)

In other words, every term of type B(x) in context Γ, x : A determines a term
of type

∏
(x:A)B(x) in context Γ, and vice versa. The λ-abstraction rule and

the evaluation rule are mutual inverses: we impose the β-rule

Γ, x : A ` b(x) : B(x)
β

Γ, x : A ` (λy.b(y))(x) ≡ b(x) : B(x)

and the η-rule

Γ ` f :
∏

(x:A)B(x)
η

Γ ` λx. f(x) ≡ f :
∏

(x:A)B(x)

This completes the specification of dependent function types.

Remark 2.1.1. Types of dependent functions with multiple arguments can be
obtained by iterating the Π-construction.

Remark 2.1.2. Some authors write

(x : A)→ B(x)

for the dependent function type
∏

(x:A)B(x).

Remark 2.1.3. By the derivation

Γ, x : A ` B type
ΠA

Γ `
∏

(x:A)B(x) type
δ

Γ, f :
∏

(x:A)B(x) ` f :
∏

(x:A)B(x)
ev

Γ, f :
∏

(x:A)B(x), x : A ` f(x) : B(x)

it follows that one can also evaluate variables of type
∏

(x:A)B(x).

2.2. FUNCTION TYPES 9

2.2 Function types

In the case where both A and B are types in context Γ, we may first weaken
B by A, and then apply the formation rule for the dependent function type:

Γ ` A type Γ ` B type

Γ, x : A ` B type

Γ `
∏

(x:A)B type

The result is the type of functions that take an argument of type A, and return
a term of type B. In other words, terms of the type

∏
(x:A)B are ordinary

functions from A to B. We write A→ B for the type of functions from A
to B.

Γ ` A type Γ ` B type →
Γ ` A→ B type

Γ ` B type Γ, x : A ` b(x) : B
λ

Γ ` λx. b(x) : A→ B

Γ ` f : A→ B
ev

Γ, x : A ` f(x) : B

Γ ` B type Γ, x : A ` b(x) : B
β

Γ, x : A ` (λy. b(y))(x) ≡ b(x) : B

Γ ` f : A→ B
η

Γ ` λx. f(x) ≡ f : A→ B

Remark 2.2.1. We also use the exponent notation BA for the function type
A→ B. Furthermore, we maintain the convention that the → associates to
the right, i.e. when we write A→ B → C, we mean A→ (B → C).

Remark 2.2.2. Similar to Remark 2.1.3, we can derive

Γ ` A type Γ ` B type

Γ, f : BA, x : A ` f(x) : B

10 LECTURE 2. Π-TYPES AND THE NATURAL NUMBERS

Definition 2.2.3. For any type A in context Γ, we define the identity
function idA : A→ A using the ‘variable rule’:

Γ ` A type

Γ, x : A ` x : A

Γ ` idA :≡ λx. x : A→ A

Definition 2.2.4. For any three types A, B, and C in context Γ, there is a
composition operation

comp : (B → C)→ ((A→ B)→ (A→ C)),

i.e. we can derive

Γ ` A type Γ ` B type Γ ` C type

Γ ` comp : (B → C)→ ((A→ B)→ (A→ C))

We will write g ◦ f for ev(ev(comp, g), f).

Construction. We give the following derivation to define the composition
operation:

Γ ` A type Γ ` B type

Γ, f : BA, x : A ` f(x) : B

Γ, g : CB , f : BA, x : A ` f(x) : B

Γ ` B type Γ ` C type

Γ, g : CB , y : B ` g(y) : C

Γ, g : CB , f : BA, y : B ` g(y) : C

Γ, g : CB , f : BA, x : A, y : B ` g(y) : C

Γ, g : CB , f : BA, x : A ` g(f(x)) : C

Γ, g : CB , f : BA ` λx. g(f(x)) : CA

Γ, g : B → C ` λf. λx. g(f(x)) : BA → CA

Γ ` comp :≡ λg. λf. λx. g(f(x)) : CB → (BA → CA)

Lemma 2.2.5. Composition of functions is associative, i.e. we can derive

Γ ` f : A→ B Γ ` g : B → C Γ ` h : C → D

Γ ` (h ◦ g) ◦ f ≡ h ◦ (g ◦ f) : A→ D

Proof. In the following derivation we prove that composition of functions is
associative.

2.3. THE NATURAL NUMBERS 11

Γ ` f : A→ B

Γ, x : A ` ev(f, x) : B

Γ ` g : B → C

Γ, y : B ` ev(g, y) : C

Γ, x : A ` ev(g, ev(f, x)) : C
Γ ` h : C → D

Γ, z : C ` ev(h, z) : D

Γ, x : A ` ev(h, ev(g, ev(f, x))) : D

Γ, x : A ` ev(h, ev(g, ev(f, x))) ≡ ev(h, ev(g, ev(f, x))) : D

Γ, x : A ` ev(h ◦ g, ev(f, x)) ≡ ev(h, ev(g ◦ f, x)) : D

Γ, x : A ` ev((h ◦ g) ◦ f, x) ≡ ev(h ◦ (g ◦ f), x) : D

Γ ` (h ◦ g) ◦ f ≡ h ◦ (g ◦ f) : A→ D

Lemma 2.2.6. Composition of functions satisfies the left and right unit laws,
i.e. we can derive

Γ ` f : A→ B

Γ ` idB ◦ f ≡ f : A→ B

and

Γ ` f : A→ B

Γ ` f ◦ idA ≡ f : A→ B

Proof. The derivation for the left unit law is

Γ ` f : A→ B

Γ, x : A ` ev(f, x) : B

Γ ` B type

Γ, y : B ` ev(idB, y) ≡ y : B

Γ, x : A, y : B ` ev(idB, y) ≡ y : B

Γ, x : A ` ev(idB, ev(f, x)) ≡ ev(f, x) : B

Γ, x : A ` ev(idB ◦ f, x) ≡ ev(f, x) : B

Γ ` idB ◦ f ≡ f : A→ B

The right unit law is left as Exercise 2.1.

2.3 The natural numbers

The archetypal example of an inductive type is the type of natural numbers.
The type of natural numbers is defined to be a closed type N equipped with
closed terms for a zero term and a successor function

0 : N and S : N→ N,

To prove properties about the natural numbers, we postulate an induction
principle for N. In dependent type theory, however, the induction principle for

12 LECTURE 2. Π-TYPES AND THE NATURAL NUMBERS

the natural numbers provides a way to construct dependent functions of types
depending on the natural numbers.

The induction principle for N states that for every type P in context
Γ, n : N one can infer

Γ ` p0 : P (0)

Γ ` pS :
∏

(n:N) P (n)→ P (S(n))
N−Ind

Γ ` indN(p0, pS) :
∏

(n:N) P (n)

Furthermore we require that the dependent function indN(P, p0, pS) behaves as
expected when it is applied to 0 or a successor, i.e. with the same hypotheses
as for the induction principle we postulate the computation rules for N

· · · N−Comp(0)
Γ ` indN(p0, pS , 0) ≡ p0 : P (0)

· · · N−Comp(S)
Γ, n : N ` indN(p0, pS , S(n)) ≡ pS(n, indN(p0, pS , n)) : P (S(n))

Using the induction principle of N we can perform many familiar construc-
tions. For instance, we can define the addition operation

add : N→ (N→ N)

by induction.
Informally, the definition of addition is as follows. By induction it suffices

to construct a function add0 : N→ N, and a function

addS(f) : N→ N,

assuming n : N and f : N→ N. The function add0 : N→ N is of course taken
to be idN, since it has to add nothing. Given a function f : N→ N we define
addS(f) to be λm.S(f(m)), simply adding one to f pointwise.

The derivation for the construction of addS looks as follows:

` N type

` N type ` N type

f : NN,m : N ` f(m) : N

` S : N→ N
n : N ` S(n) : N

f : NN,m : N, n : N ` S(n) : N
f : NN,m : N ` S(f(m)) : N

n : N, f : NN,m : N ` S(f(m)) : N
` addS :≡ λn. λf. λm. S(f(m)) : N→ NN → NN

2.3. EXERCISES 13

We combine this derivation with the induction principle of N to complete the
construction of addition:

` add0 :≡ idN : NN ` addS : N→ NN → NN

` add : indN(add0, addS) : N→ NN

Usually we will write n+m for add(n,m). By the computation rules we have

0 +m ≡ m
S(n) +m ≡ S(n+m)

for any n,m : N.

Remark 2.3.1. The rules that we provided so far are not sufficient to also
conclude that n+ 0 ≡ n and n+ S(m) ≡ S(n+m). However, once we have
introduced the identity type we will nevertheless be able to identify n+ 0 with
n, and n+ S(m) with S(n+m).

Exercises

2.1 Give a derivation for the right unit law of Lemma 2.2.6.
2.2 In this exercise we generalize the composition operation of non-dependent

function types:

(a) Define a composition operation for dependent function types

Γ ` f :
∏

(x:A)B(x) Γ, x : A ` g :
∏

(y:B)C(x, y)

Γ ` g ◦ f :
∏

(x:A)C(x, ev(f, x))

and show that this operation agrees with ordinary composition when
it is specialized to non-dependent function types.

(b) Show that composition of dependent functions is associative.
(c) Show that composition of dependent functions satisfies the right

unit law:

Γ ` f :
∏

(x:A)B(x)

Γ ` f ◦ idA ≡ f :
∏

(x:A)B(x)

(d) Show that composition of dependent functions satisfies the left unit
law:

Γ ` f :
∏

(x:A)B(x)

Γ ` idB ◦ f ≡ f :
∏

(x:A)B(x)

14 LECTURE 2. Π-TYPES AND THE NATURAL NUMBERS

2.3 (a) Construct the constant function

Γ ` A type

Γ, y : B ` consty : A→ B

(b) Show that

Γ ` f : A→ B

Γ, z : C ` constz ◦ f ≡ constz : A→ C

(c) Show that

Γ ` A type Γ ` g : B → C

Γ, y : B ` g ◦ consty ≡ constev(g,y) : A→ C

2.4 (a) Given two types A and B in context Γ, and a type C in context
Γ, x : A, y : B, define the swap function

Γ ` σ :
(∏

(x:A)

∏
(y:B)C(x, y)

)
→
(∏

(y:B)

∏
(x:A)C(x, y)

)
that swaps the order of the arguments.

(b) Show that

Γ ` σ ◦ σ ≡ id :
(∏

(x:A)

∏
(y:B)C(x, y)

)
→
(∏

(x:A)

∏
(y:B)C(x, y)

)
.

2.5 (a) Define the multiplication operation mul : N→ (N→ N).
(b) Define the power operation n,m 7→ mn of type N→ (N→ N).
(c) Define the factorial function n 7→ n!.

2.6 Define the binary min and max functions min,max : N→ (N→ N).
2.7 Construct a function

indN : P (0)→
(∏

(n:N)P (n)→ P (S(n))
)
→
∏

(n:N)P (n),

in context Γ, for every type P in context Γ, n : N, and show that the
computation rules

indN(p0, pS , 0) ≡ p0

indN(p0, pS , S(n)) ≡ pS(n, indN(p0, pS , n))

hold. Note: this is more an exercise in type theoretical bookkeeping than
an exercise about the natural numbers.

Lecture 3

Inductive types and the
universe

From this chapter on we will use a more informal style of reasoning. Keeping
in mind that formal deductions can be given, we will reason in prose.

3.1 Inductive types

Many other types can also be specified as inductive types, similar to the natural
numbers. The unit type, the empty type, and the booleans are the simplest
examples of this way of defining types. Just like the type of natural numbers,
other inductive types are also specified by their constructors, an induction
principle, and their computation rules:

(i) The constructors tell what structure the inductive type comes equipped
with. There may be multiple constructors, or no constructors at all in
the specification of an inductive type.

(ii) The induction principle specifies the data that should be provided in
order to construct a section of an arbitrary dependent type over the
inductive type.

(iii) The computation rules assert that the inductively defined section agrees
on the constructors with the data that was used to define the section.
Thus, there is a computation rule for every constructor.

The induction principle and computation rules can be generated automatically
once the constructors are specified, but it goes beyond the scope of our course
to describe general inductive types.

15

16 LECTURE 3. INDUCTIVE TYPES AND THE UNIVERSE

Table 3.1: Many types can be defined as inductive types.

name type constructors

natural numbers N 0 : N
S : N→ N

empty type 0 (no constructors)
unit type 1 ? : 1
booleans 2 02 : 2

12 : 2
coproduct A+B inl : A→ A+B

inr : B → A+B
product A×B (– , –) : A→ (B → A×B)
Σ-type

∑
(x:A)B(x) (– , –) :

∏
(y:A)

(
B(y)→

∑
(x:A)B(x)

)
A straightforward example of an inductive type is the unit type, which has

just one constructor. Its induction principle is analogous to just the base case
of induction on the natural numbers.

Definition 3.1.1. We define the unit type to be a closed type 1 equipped
with a closed term

? : 1,

satisfying the induction principle that for any type family Γ, x : 1 ` P (x) type,
there is a term

ind1 : P (?)→
∏

(x:1)P (x)

in context Γ for which the computation rule

ind1(p, ?) ≡ p

holds. Sometimes we write λ ? . p for ind1(p).

The empty type is a degenerate example of an inductive type. It does
not come equipped with any constructors, and therefore there are also no
computation rules. The induction principle merely asserts that any type family
has a section. In other words: if we assume the empty type has a term, then
we can prove anything.

Definition 3.1.2. We define the empty type to be a type 0 satisfying the
induction principle that for any type family P : 0→ Type, there is a term

ind0 :
∏

(x:0)P (x).

3.1. INDUCTIVE TYPES 17

Using the empty type we can also define negation. The idea is that if A is
false (i.e. has no terms), then from A follows everything.

Definition 3.1.3. For any type A, we define ¬A :≡ A→ 0.

Unlike set theory, in most type theories every term has a unique type.
Therefore we annotate the constructors of 2 with their type, to not confuse
them with the terms 0 and 1 of the natural numbers.

Definition 3.1.4. We define the booleans to be a type 2 that comes equipped
with

02 : 2

12 : 2

satisfying the induction principle that for any type family P : 2→ Type, there
is a term

ind2 : P (02)→
(
P (12)→

∏
(x:2)P (x)

)
for which the computation rules

ind2(p0, p1, 02) ≡ p0

ind2(p0, p1, 12) ≡ p1

hold.

Definition 3.1.5. Let A and B be types. We define the coproduct A+B
to be a type that comes equipped with

inl : A→ A+B

inr : B → A+B

satisfying the induction principle that for any type family P : (A+B)→ Type,
there is a term

ind+ :
(∏

(x:A)P (inl(x))
)
→
(∏

(y:B)P (inr(y))
)
→
∏

(z:A+B)P (z)

for which the computation rules

ind+(f, g, inl(x)) ≡ f(x)

inr+(f, g, inr(y)) ≡ g(y)

hold. Sometimes we write [f, g] for ind+(f, g).

18 LECTURE 3. INDUCTIVE TYPES AND THE UNIVERSE

The coproduct of two types is sometimes also called the disjoint sum.
When one thinks of types as propositions, then the coproduct plays the role of
the disjunction. To construct a term of type A+B you first have to decide
whether it is of the form inl or inr, and then you construct a term of A or
B accordingly. Of course, this is to be contrasted with the double negation
translation of the disjunction, which is read as ‘not neither A nor B’.

The dependent pair type (or Σ-type) can be thought of as a ‘type indexed’
disjoint sum. However, this intuition for the dependent pair type can be
counterproductive once we start to do homotopy theory in type theory. It is
better to think of the Σ-type as the total space of a family of types depending
continuously on a base type, just like one can have a family of spaces depending
continuously on a base space (i.e. a fibration).

Definition 3.1.6. Let A be a type in context Γ, and let Γ, x : A ` B(x) type
be a type family over A. The dependent pair type is defined to be the
inductive type

∑
(x:A)B(x) in context Γ equipped with a pairing function

(– , –) :
∏

(x:A)

(
B(x)→

∑
(y:A)B(y)

)
.

The induction principle for
∑

(x:A)B(x) asserts that for every type family

Γ, p :
∑

(x:A)B(x) ` P (p) type

one has

indΣ :
(∏

(x:A)

∏
(y:B(x))P ((x, y))

)
→
(∏

(p:
∑

(x:A)B(x))P (p)
)
.

satisfying the computation rule

indΣ(f, (x, y)) ≡ f(x, y).

Most of the time we write λ(x, y). f(x, y) for indΣ(λx. λy. f(x, y)).

Remark 3.1.7. Some authors write (x : A)×B(x) for the dependent pair type∑
(x:A)B(x).

Definition 3.1.8. Given a type A and a type family B over A, the first
projection map

pr1 :
(∑

(x:A)B(x)
)
→ A

is defined by induction as
pr1 :≡ λ(x, y). x.

3.1. INDUCTIVE TYPES 19

The second projection map is a dependent function∏
(p:

∑
(x:A) B(x))B(pr1(p))

defined by induction as

pr2 :≡ λ(x, y). y.

By the computation rule we have

pr1(x, y) ≡ x
pr2(x, y) ≡ y.

When one thinks of types as propositions, then the Σ-type has the rôle of
the existential quantification.

A special case of the Σ-type occurs when the B is a type in context Γ
weakened by A (i.e. B is not actually depending on A). In this case, a term of∑

(x:A)B is given as a pair consisting of a term of A and a term of B. Thus,∑
(x:A)B is the (cartesian) product) of A and B. Since the cartesian product

is so common (just like A → B is a common special case of the dependent
product), we provide its definition.

Definition 3.1.9. Let A and B be types in context Γ. The (cartesian)
product of A and B is defined as the inductive type A×B with constructor

(– , –) : A→ (B → A×B).

The induction principle for A × B asserts that for any type family P over
A×B, one has

ind× :
(∏

(x:A)

∏
(y:B)P ((– , –))

)
→
(∏

(p:A×B)P (p)
)

satisfying the computation rule that

ind×(f, x, y) ≡ f(x, y).

The projection maps are defined similarly to the projection maps of Σ-types.
When one thinks of types as propositions, then A × B is interpreted as the
conjunction of A and B.

20 LECTURE 3. INDUCTIVE TYPES AND THE UNIVERSE

3.2 The universe

The induction principle for inductive types can be used to prove universal
quantifications. However, it would also be nice if we could construct new type
families over inductive types, using their induction principles. To be able to
do this, we introduce a universe, a type of which the terms represent types.
The idea is that the universe U comes equipped with a type family El, so that
for each X : U we have an associated type El(X), the type of elements of X.

We assume there is a closed type U called the universe, and a type family
El over U called the universal family.

` U type X : U ` El(X) type

We postulate that the universe is closed under the type constructors, by
the following rules:

(i) The universe is closed under Π-types

Γ ` A : U Γ ` B : El(A)→ U
Γ ` Π̌(A,B) : U

Γ ` A : U Γ ` B : El(A)→ U
Γ ` El(Π̌(A,B)) ≡

∏
(x:El(A)) El(B(x)) type

(ii) The type of natural numbers is in the universe

` Ň : U

` El(Ň) ≡ N type

(iii) Similarly we postulate that the universe contains the empty type, the unit
type, the booleans, coproducts, products, and Σ-types. These closure
properties of the universe are given concisely in Table 3.2.

Definition 3.2.1. We say that a type A in context Γ is small if it occurs in the
universe, i.e. if there is a term Ǎ : U in context Γ such that Γ ` El(Ǎ) ≡ A type.

In particular, if A is a small type in context Γ and B is a small type in
context Γ, x : A, then

∏
(x:A)B(x) is again a small type in context Γ.

3.2. THE UNIVERSE 21

Table 3.2: Closure properties of the universe

Premises Type encoding in U Type of elements El(–)

A : U , B : El(A)→ U Π̌(A,B)
∏

(x:El(A)) El(B(x))

Ň N
0̌ 0
1̌ 1
2̌ 2

A,B : U A +̌B El(A) + El(B)
A,B : U A ×̌B El(A)× El(B)

A : U , B : El(A)→ U Σ̌(A,B)
∑

(x:El(A)) El(B(x))

Definition 3.2.2. Let A be a type in context Γ. A family of small types
over A is defined to be a map

B : A→ U

Remark 3.2.3. If A is small, we usually write simply A for Ǎ and also A for
El(Ǎ). In other words, by A : U we mean that A is a small type.

Example 3.2.4. One important way to use the universe is to define types of
structured types. We give some examples:

(i) The type of small pointed types is defined as

U∗ :≡
∑

(A:U)A,

(ii) The type of small graphs is defined as the type

GphU :≡
∑

(A:U)A→ (A→ U),

(iii) The type of small reflexive graphs is defined as the type

rGphU :≡
∑

(A:U)

∑
(R:A→(A→U))

∏
(a:A)R(a, a).

Once we have introduced the identity types we will also be able to state the
types of groups, rings, and many other structured types. However, when doing
so one has to be cautious to make sure that the underlying type is in the level
of sets, in the hierarchy of homotopical complexity of types.

22 LECTURE 3. INDUCTIVE TYPES AND THE UNIVERSE

Another important way to use the universe is to define new type families
by induction. For example, we can define the finite types as family over the
natural numbers.

Definition 3.2.5. We define the type family Fin : N → U of finite types by
induction on N, taking

Fin(0) :≡ 0

Fin(n+ 1) :≡ Fin(n) + 1

A second example of this kind is the notion of observational equality on
the natural numbers.

Definition 3.2.6. We define the observational equality on N as binary
relation EqN : N→ (N→ U) satisfying

EqN(0, 0) ≡ 1 EqN(S(n), 0) ≡ 0

EqN(0, S(n)) ≡ 0 EqN(S(n), S(m)) ≡ EqN(n,m).

Construction. We define EqN by double induction on N. By the first application
of induction it suffices to provide

E0 : N→ U
ES : N→ (N→ U)→ (N→ U)

We define E0 by induction, taking E00 :≡ 1 and E0S(n,X,m) :≡ 0. The
resulting family E0 satisfies

E0(0) ≡ 1

E0(S(n)) ≡ 0.

We define ES by induction, taking ES0 :≡ 0 and ES0(n,X,m) :≡ X(m). The
resulting family ES satisfies

ES(n,X, 0) ≡ 0

ES(n,X, S(m)) ≡ X(m)

Therefore we have by the computation rule for the first induction that the
judgmental equality

EqN(0,m) ≡ E0(m)

EqN(S(n),m) ≡ ES(n,EqN(n),m)

holds, from which the judgmental equalities in the statement of the definition
follow.

3.3. THE TYPE OF INTEGERS 23

3.3 The type of integers

Definition 3.3.1. We define the integers to be the type Z :≡ N + (1 + N),
and we write

neg :≡ inl : N→ Z
−1 :≡ neg(0) : Z

0 :≡ inr(?) : Z
pos :≡ inr ◦ inr : N→ Z

1 :≡ pos(0) : Z.

In the following lemma we derive an alternative induction principle for Z,
which makes it easier to make definitions.

Lemma 3.3.2. For any Γ, k : Z ` P (k) type we have

Γ ` p−1 : P (−1)

Γ ` p−S :
∏

(n:N) P (neg(n))→ P (neg(S(n)))

Γ ` p0 : P (0)

Γ ` p1 : P (1)

Γ ` p−S :
∏

(n:N) P (pos(n))→ P (pos(S(n)))

Γ ` indZ(p−1, p−S , p0, p1, pS) :
∏

(k:Z) P (k)

The term indZ(p−1, p−S , p0, p1, pS) furthermore satisfies the following computa-
tion rules:

indZ(p−1, p−S , p0, p1, pS ,−1) ≡ p−1

indZ(p−1, p−S , p0, p1, pS , neg(S(n))) ≡ p−S(n, indZ(p−1, p−S , p0, p1, pS , neg(n)))

indZ(p−1, p−S , p0, p1, pS , 0) ≡ p0

indZ(p−1, p−S , p0, p1, pS , 1) ≡ p1

indZ(p−1, p−S , p0, p1, pS , pos(S(n))) ≡ pS(n, indZ(p−1, p−S , p0, p1, pS , pos(n))).

As an application we define the successor function on the integers.

Definition 3.3.3. We define the successor function on the integers SZ :
Z→ Z.

Construction. We apply the induction principle of Lemma 3.3.2, taking

SZ(−1) :≡ 0

24 LECTURE 3. INDUCTIVE TYPES AND THE UNIVERSE

SZ(neg(S(n))) :≡ neg(n)

SZ(0) :≡ 1

SZ(1) :≡ pos(S(1))

SZ(pos(S(n))) :≡ pos(S(S(n))).

Exercises

3.1 For any type A, show that (A+ ¬A)→ (¬¬A→ A).
3.2 Construct a function

Π̌ :
∏

(A:U)(El(A)→ U)→ U

such that
El(Π̌(A,B)) ≡

∏
(x:El(A))El(B(x))

holds for every A : U and B : El(A)→ U .
A similar exercise can be posed for Σ and + (and for → and × as special
cases of Π and Σ).

3.3 Show that observational equality on N is an equivalence relation, i.e. con-
struct terms of the following types:∏

(n:N)EqN(n, n)∏
(n,m:N)EqN(n,m)→ EqN(m,n)∏
(n,m,l:N)EqN(n,m)→ (EqN(m, l)→ EqN(n, l)).

3.4 Let R be a reflexive binary relation on N, i.e. R is of type N→ (N→ U)
and comes equipped with a term ρ :

∏
(n:N)R(n, n). Show that∏

(n,m:N)EqN(n,m)→ R(n,m).

3.5 Show that every function f : N→ N preserves observational equality in
the sense that ∏

(n,m:N)EqN(n,m)→ EqN(f(n), f(m)).

Hint: to get the inductive step going the induction hypothesis has to be
strong enough. Construct by double induction a term of type∏

(n,m:N)

∏
(f :N→N)EqN(n,m)→ EqN(f(n), f(m)),

and pull out the universal quantification over f : N→ N by Exercise 2.4.

3.3. EXERCISES 25

3.6 (a) Define the order relations ≤ and < on N.
(b) Show that ≤ is reflexive and that < is anti-reflexive, i.e. that
¬(n < n).

(c) Show that both ≤ and < are transitive, and that n < S(n).
3.7 Use the observational equality of the natural numbers to define the

divisibility relation d | n.
3.8 (a) Define observational equality Eq2 on the booleans.

(b) Show that Eq2 is reflexive.
(c) Show that for any reflexive relation R : 2→ (2→ U) one has∏

(x,y:2)Eq2(x, y)→ R(x, y).

3.9 Show that 1 + 1 satisfies the same induction principle as 2, i.e. define

t0 : 1 + 1

t1 : 1 + 1,

and show that for every Γ, t : 1 + 1 ` P (t) type there is a dependent
function of type

ind1+1 : P (t0)→
(
P (t1)→

∏
(t:1+1)P (t)

)
satisfying

ind1+1(p0, p1, t0) ≡ p0

ind1+1(p0, p1, t1) ≡ p1.

In other words, type theory cannot distinguish between 2 and 1 + 1.
3.10 (a) Define the order relations ≤ and < on and Z.

(b) For k : Z, consider the type Z≥k :≡
∑

(n:Z) n ≥ k. Construct

bk : Z≥k
sk : Z≥k → Z≥k,

and show that Z≥k satisfies the induction principle of the natural
numbers:

indZ≥k : P (bk)→
(∏

(n:Z≥k)P (n)→ P (sk(n))
)
→
(∏

(n:Z≥k)P (n)
)

3.11 Define the predecessor function pred : Z→ Z.
3.12 Define operations k, l 7→ k + l : Z→ Z→ Z and k 7→ −k : Z→ Z.

Lecture 4

Identity types

From the perspective of types as proof-relevant propositions, how should we
think of equality in type theory? Given a type A, and two terms x, y : A, the
equality x= y should again be a type. Indeed, we want to use type theory to
prove equalities. Dependent type theory provides us with a convenient setting
for this: the equality type x= y is dependent on x, y : A.

Then, if x= y is to be a type, how should we think of the terms of x= y.
A term p : x= y witnesses that x and y are equal terms of type A. In other
words p : x= y is an identification of x and y. In a proof-relevant world, there
might be many terms of type x= y. I.e. there might be many identifications
of x and y. And, since x= y is itself a type, we can form the type p= q for
any two identifications p, q : x= y. That is, since x= y is a type, we may also
use the type theory to prove things about identifications (for instance, that
two given such identifications can themselves be identified), and we may use
the type theory to perform constructions with them. As we will see shortly,
we can give every type a groupoid-like structure.

Clearly, the equality type should not just be any type dependent on x, y : A.
Then how do we form the equality type, and what ways are there to use
identifications in constructions in type theory? The answer to both these
questions is that we will form the identity type as an inductive type, generated
by just a reflexivity term providing an identification of x to itself. The
induction principle then provides us with a way of performing constructions
with identifications, such as concatenating them, inverting them, and so on.
Thus, the identity type is equipped with a reflexivity term, and further possesses
the structure that are generated by its induction principle and by the type
theory. This inductive construction of the identity type is elegant, beautifully
simple, but far from trivial!

27

28 LECTURE 4. IDENTITY TYPES

Table 4.1: The homotopy interpretation

Type theory Homotopy theory

Types Spaces
Dependent types Fibrations
Terms Points
Dependent pair type Total space
Identity type Path fibration

The situation where two terms can be identified in possibly more than one
way is analogous to the situation in homotopy theory, where two points of a
space can be connected by possibly more than one path. Indeed, for any two
points x, y in a space, there is a space of paths from x to y. Moreover, between
any two paths from x to y there is a space of homotopies between them, and
so on. This leads to the homotopy interpretation of type theory, outlined in
Table 4.1. The connection between homotopy theory and type theory been
made precise by the construction of homotopical models of type theory, and it
has led to the fruitful research area of synthetic homotopy theory, the subfield
of homotopy type theory that is the topic of this course.

4.1 The inductive definition of identity types

Let A be a type in context Γ. The identity type of A at a : A is the inductive
type family

Γ, x : A, y : A ` x =A y type

with constructor
Γ, x : A ` reflx : x =A x.

The induction principle that for any type family

Γ, x : A, y : A,α : x =A y ` P (x, y, α) type

there is a term

indx= : P (x, x, reflx)→
∏

(y:A)

∏
(α:x=Ay)P (x, y, α)

in context Γ, x : A, satisfying the computation rule

indx=(p, x, reflx) ≡ p.

4.2. THE GROUPOID STRUCTURE OF TYPES 29

A term of type x =A y is also called an identification of x with y, and
sometimes it is called a path from x to y. The induction principle for identity
types is sometimes called identification elimination or path induction.
We also write IdA for the identity type on A.

We also assume that the universe U is closed under identity types, i.e. that
there is a map

Ǐd :
∏

(A:U)El(A)→ El(A)→ U

satisfying
El(Ǐd(A, x, y)) ≡ x =El(A) y.

In the following lemma we show that the identity type on A is contained
in any reflexive relation on A.

Lemma 4.1.1. Let Γ, x : A, y : A ` R(x, y) type, and suppose that R is
reflexive in the sense that there is a term

ρ :
∏

(x:A)R(x, x)

Then there is a term of type∏
(y:A)(x =A y)→ R(x, y)

in context Γ, x : A.

Construction. By weakening the reflexive relation R we obtain

Γ, x : A, y : A,α : x =A y ` R(x, y) type,

on which the induction principle is applicable. Thus we see that by the
induction principle for identity types we have a term

indx= : R(x, x)→
∏

(y:A)(x =A y)→ R(x, y)

so it suffices to construct a term of type R(x, x), which we have by reflexivity
of R.

4.2 The groupoid structure of types

We show that identifications can be concatenated and inverted, which corre-
sponds to the transitivity and symmetry of the identity type.

Furthermore, we observe that we can iteratively take identity types, i.e. we
can take identity types of identity types,

p =(x=Ay) q,

30 LECTURE 4. IDENTITY TYPES

and so on. In other words, for any two identifications p, q : x =A y, there
is a type of identifications of p with y. One way to think about this is that
the identifications p, q : x =A y are paths in the type (space) A, and an
identification of p with q is a higher path from p to q, i.e. a homotopy.

Using the observation that identity types can be iterated we show that
concatenation is associative, satisfies the left and right unit laws, and satisfies
the left and right inverse laws. These are the groupoid operations on the
identity type.

Definition 4.2.1. Let A be a type. We define the concatenation operation

concat :
∏

(x,y,z:A)(x= y)→ (y = z)→ (x= z).

We will write p � q for concat(p, q). Also, we will associate to the right, i.e. by
p � q � r we mean p � (q � r).

Construction. We construct the concatenation operation by path induction.
It suffices to construct

concat(reflx) :
∏

(z:A)(x = z)→ (x = z).

Here we take concat(reflx)z ≡ id(x=z). Explicitly, the term we have constructed
is

λx. recx=(λz. id(x=z)) :
∏

(x,y:A)(x = y)→
∏

(z:A)(y = z)→ (x = z).

To obtain a term of the asserted type we need to swap the order of the
arguments p : x = y and z : A, using Exercise 2.4.

Definition 4.2.2. Let A be a type. We define the inverse operation

inv :
∏

(x,y:A)(x = y)→ (y = x).

Most of the time we will write p−1 for inv(p).

Construction. We construct the inverse operation by path induction. It suffices
to construct

inv(reflx) : x = x,

for any x : A. Here we take inv(reflx) :≡ reflx.

Definition 4.2.3. Let A be a type. We define the associativity operation,
which assigns to each p : x = y, q : y = z, and r : z = w the associator

assoc(p, q, r) : (p � q) � r = p � (q � r).

4.2. THE GROUPOID STRUCTURE OF TYPES 31

Construction. By identification elimination it suffices to show that∏
(z:A)

∏
(q:x=z)

∏
(z′:A)

∏
(r:z=w)(reflx � q) � r = reflx � (q � r).

Let q : x = z and r : z = w. Note that by the computation rule reflx � q ≡ q, so
(reflx � q) � r ≡ q � r. Similarly we have reflx � (q � r) ≡ q � r. Therefore we can
simply take reflq � r.

Definition 4.2.4. Let A be a type. We define the left and right unit opera-
tions, which assigns to each p : x = y the terms

left unit(p) : reflx � p = p

right unit(p) : p � refly = p,

respectively.

Construction. By identification elimination it suffices to construct

left unit(reflx) : reflx � reflx = reflx

right unit(reflx) : reflx � reflx = reflx.

In both cases we take reflreflx .

Definition 4.2.5. Let A be a type. We define left and right inverse opera-
tions

left inv(p) : p−1 � p = refly

right inv(p) : p � p−1 = reflx.

Construction. By identification elimination it suffices to construct

left inv(reflx) : refl−1
x
� reflx = reflx

right inv(reflx) : reflx � refl−1
x = reflx.

Using the computation rules we see that

refl−1
x
� reflx ≡ reflx � reflx ≡ reflx,

so we define left inv(reflx) :≡ reflreflx . Similarly it follows from the computation
rules that

reflx � refl−1
x ≡ refl−1

x ≡ reflx

so we again define right inv(reflx) :≡ reflreflx .

32 LECTURE 4. IDENTITY TYPES

4.3 The action on paths of functions

Using the induction principle of the identity type we can show that every func-
tion preserves identifications. In other words, every function sends identified
terms to identified terms. Note that this is a form of continuity for functions
in type theory: if there is a path that identifies two points x and y of a type
A, then there also is a path that identifies the values f(x) and f(y) in the
codomain of f .

Definition 4.3.1. Let f : A→ B be a map. We define the action on paths
of f as an operation

apf :
∏
{x,y:A}(x= y)→ (f(x) = f(y)).

Moreover, there are operations

ap.idfunA :
∏
{x,y:A}

∏
(p:x=y)p= apidA (p)

ap.comp(f, g) :
∏
{x,y:A}

∏
(p:x=y)apg

(
apf (p)

)
= apg◦f (p) .

Construction. First we define apf by identity elimination, taking

apf (reflx) :≡ reflf(x).

Next, we construct ap.idfunA by identity elimination, taking

ap.idfunA(reflx) :≡ reflreflx .

Finally, we construct ap.comp(f, g) by identity elimination, taking

ap.comp(f, g, reflx) :≡ reflg(f(x)).

Definition 4.3.2. Let f : A→ B be a map. Then there are identifications

ap.refl(f, x) : apf (reflx) = reflf (x)

ap.inv(f, p) : apf
(
p−1
)

= apf (p)−1

ap.concat(f, p, q) : apf (p � q) = apf (p) � apf (q)

for every p : x= y and q : x= y.

Construction. To construct ap.refl(f, x) we simply observe that apf (reflx) ≡
reflf (x), so we take

ap.refl(f, x) :≡ reflreflf(x)
.

We construct ap.inv(f, p) by identification elimination on p, taking

ap.inv(f, reflx) :≡ reflapf (reflx).

Finally we construct ap.concat(f, p, q) by identification elimination on p, taking

ap.concat(f, reflx, q) :≡ reflapf (q).

4.4. TRANSPORT 33

4.4 Transport

Dependent types also come with an action on paths: the transport functions.
Given an identification p : x= y in the base type A, we can transport any term
b : B(x) to the fiber B(y). The transport functions have many applications,
which we will encounter throughout this course.

Definition 4.4.1. Let A be a type, and let B be a type family over A. We
will construct a transport operation

trB :
∏
{x,y:A}(x= y)→ (B(x)→ B(y)).

Construction. We construct trB(p) by induction on p : x =A y, taking

trB(reflx) :≡ idB(x).

Thus we see that type theory cannot distinguish between identified terms
x and y, because for any type family B over A one gets a term of B(y) as soon
as B(x) has a term.

As an application of the transport function we construct the dependent
action on paths of a dependent function f :

∏
(x:A)B(x). Note that for such a

dependent function f , and an identification p : x=A y, it does not make sense
to directly compare f(x) and f(y), since the type of f(x) is B(x) whereas the
type of f(y) is B(y), which might not be exactly the same type. However, we
can first transport f(x) along p, so that we obtain the term trB(p, f(x)) which
is of type B(y). Now we can ask whether it is the case that trB(p, f(x)) = f(y).
The dependent action on paths of f establishes this identification.

Definition 4.4.2. Given a dependent function f :
∏

(a:A)B(a) and a path
p : x= y in A, we construct a path

apdf (p) : trB(p, f(x)) = f(y).

Construction. The path apdf (p) is constructed by path induction on p. Thus,
it suffices to construct a path

apdf (reflx) : trB(reflx, f(x)) = f(x).

Since transporting along reflx is the identity function on B(x), we simply take
apdf (reflx) :≡ reflf(x).

34 LECTURE 4. IDENTITY TYPES

Exercises

4.1 Let B be a family over a type A. Construct for any two identifications
p : x =A y and q : y =A z, and any b : B(x) an identification

trB(q, trB(p, x)) = trB(p � q, x).

4.2 Let p : x= y and q : y = z. Construct an identification

inv assoc(p, q) : (p � q)−1 = q−1 � p−1.

4.3 Consider two types A and B, and let p : x = y in A, and b : B.

(a) Construct an identification

tr triv(p, b) : trWA(B)(p, b) = b

where WA(B) is the family B weakened by A.
(b) Construct for any f : A→ B, an identification

apdf (p) = tr triv(p, f(x)) � apf (p),

witnessing that the triangle

trWA(B)(p, f(x)) f(x)

f(y)
apdf (p)

tr triv(p,f(x))

apf (p)

commutes.

4.4 Let f : A→ B be a map, and consider p : x = y in A.

(a) Construct for any q : f(x) = b in B an identification

tr ap(p, q) : trf(–)=b(p, q) = apf (p)−1 � q.

(b) Similarly, construct for any q′ : b = f(x) in B an identification

tr ap′(p, q′) : trb=f(–)(p, q) = q � apf (p) .

4.5 For any p : x = y, q : y = z, and r : x = z, construct maps

inv con(p, q, r) : (p � q = r)→ (q = p−1 � r)

con inv(p, q, r) : (p � q = r)→ (p = r � q−1).

4.4. EXERCISES 35

4.6 Let A be a type, and let B be a type family over A. Construct the path
lifting operation

liftB :
∏
{x,y:A}

∏
(p:x=y)

∏
(b:B(x))(x, b) = (y, trB(p, b)).

In other words, a path in the base type A lifts to a path in the total
space

∑
(x:A)B(x) for every term over the domain.

4.7 Show that the operations of addition and multiplication on the natural
numbers satisfy the following laws:

m+ (n+ k) = (m+ n) + k m · (n · k) = (m · n) · k
m+ 0 = m m · 1 = m

0 +m = m 1 ·m = m

m+ n = n+m m · n = n ·m
m · (n+ k) = m · n+m · k.

Lecture 5

Equivalences

5.1 Homotopies

In homotopy type theory, a homotopy is just a pointwise equality between two
functions f and g.

Definition 5.1.1. Let f, g :
∏

(x:A) P (x) be two dependent functions. The
type of homotopies from f to g is defined as

f ∼ g :≡
∏

(x:A)f(x) = g(x).

Since we formulated homotopies using dependent functions, we may also
consider homotopies between homotopies, and further homotopies between
those higher homotopies. Explicitly, if H,K : f ∼ g, then the type H ∼ K of
homotopies is just the type ∏

(x:A)H(x) = K(x).

In the following definition we define the groupoid-like structure of homo-
topies. Note that we implement the groupoid-laws as homotopies rather than
as identifications.

Definition 5.1.2. For any dependent type B : A→ Type there are operations

htpy.refl :
∏

(f :
∏

(x:A) B(x))f ∼ f

htpy.inv :
∏
{f,g:

∏
(x:A)B(x)}(f ∼ g)→ (g ∼ f)

htpy.concat :
∏
{f,g,h:

∏
(x:A)B(x)}(f ∼ g)→ (g ∼ h)→ (f ∼ h).

We will write H−1 for htpy.inv(H), and H � K for htpy.concat(H,K).

37

38 LECTURE 5. EQUIVALENCES

Furthermore, we define

htpy.assoc(H,K,L) : (H � K) � L ∼ H � (K � L)

htpy.left unit(H) : htpy.reflf � H ∼ H
htpy.right unit(H) : H � htpy.reflg ∼ H
htpy.left inv(H) : H−1 � H ∼ htpy.reflg

htpy.right inv(H) : H � H−1 ∼ htpy.reflf

for any H : f ∼ g, K : g ∼ h and L : h ∼ i, where f, g, h, i :
∏

(x:A)B(x).

Construction. We define

htpy.refl(f) :≡ λx. reflf(x)

htpy.inv(H) :≡ λx.H(x)−1

htpy.concat(H,K) :≡ λx.H(x) � K(x),

where H : f ∼ g and K : g ∼ h are homotopies. Furthermore, we define

htpy.assoc(H,K,L) :≡ λx. assoc(H(x),K(x), L(x))

htpy.left unit(H) :≡ λx. left unit(H(x))

htpy.right unit(H) :≡ λx. right unit(H(x))

htpy.left inv(H) :≡ λx. left inv(H(x))

htpy.right inv(H) :≡ λx. right inv(H(x)).

Apart from the groupoid operations and their laws, we will occasionally
need whiskering operations.

Definition 5.1.3. We define the following whiskering operations on homo-
topies:

(i) Suppose H : f ∼ g for two functions f, g : A → B, and let h : B → C.
We define

hH :≡ λx. aph (H(x)) : h ◦ f ∼ h ◦ g.

(ii) Suppose f : A→ B and H : g ∼ h for two functions g, h : B → C. We
define

Hf :≡ λx.H(f(x)) : h ◦ f ∼ g ◦ f.

5.2. BI-INVERTIBLE MAPS 39

5.2 Bi-invertible maps

Definition 5.2.1. Let f : A→ B be a function. We say that f has a section
if there is a term of type

sec(f) :≡
∑

(g:B→A)f ◦ g ∼ idB.

Dually, we say that f has a retraction if there is a term of type

retr(f) :≡
∑

(h:B→A)h ◦ f ∼ idA.

If f has a retraction, we also say that A is a retract of B. We say that a
function f : A→ B is an equivalence if it has both a section and a retraction,
i.e. if it comes equipped with a term of type

is equiv(f) :≡ sec(f)× retr(f).

We will write A ' B for the type
∑

(f :A→B) is equiv(f).

Remark 5.2.2. An equivalence, as we defined it here, can be thought of as
a bi-invertible map, since it comes equipped with a separate left and right
inverse. Explicitly, if f is an equivalence, then there are

g : B → A h : B → A

G : f ◦ g ∼ idB H : h ◦ f ∼ idA.

Clearly, if f is invertible in the sense that it comes equipped with a function
g : B → A such that f ◦ g ∼ idB and g ◦ f ∼ idA, then f is an equivalence. We
write

is invertible(f) :≡
∑

(g:B→A)(f ◦ g ∼ idB)× (g ◦ f ∼ idA).

Definition 5.2.3. Any equivalence can be given the structure of an invertible
map.

Construction. First we construct for any equivalence f with right inverse g
and left inverse h a homotopy K : g ∼ h. For any y : B, we have

g(y) hfg(y) h(y).
H(g(y))−1 aph(G(y))

Therefore we define K :≡ (Hg)−1 � hG. from which we obtain a homotopy
K : g ∼ h. This allows us to show that g is also a left inverse of f . For x : A
we have the identification

gf(x) hf(x) x.
K(f(x)) H(x)

40 LECTURE 5. EQUIVALENCES

Corollary 5.2.4. The inverse of an equivalence is again an equivalence.

Proof. Let f : A → B be an equivalence. By Definition 5.2.3 it follows that
the section of f is also a retraction. Therefore it follows that the section is
itself an invertible map, with inverse f . Hence it is an equivalence.

Theorem 5.2.5. For any type A, the identity function idA is an equivalence.

Proof. The identity function is trivially its own section and its own retraction.

Example 5.2.6. Let A and B be types in context Γ. For any Γ, x : A, y : B `
C(x, y) type, the map(∏

(x:A)

∏
(y:B)C(x, y)

)
→
(∏

(y:B)

∏
(x:A)C(x, y)

)
is an equivalence by Exercise 2.4.

5.3 The identity type of a Σ-type

In the following theorem we characterize the identity type of a Σ-type as a
Σ-type of identity types.

Theorem 5.3.1. Let B be a type family over A, let s :
∑

(x:A)B(x), and
consider the dependent function

pair eqs :
∏

(t:
∑

(x:A) B(x))(s = t)→
∑

(α:pr1(s)=pr1(t))trB(α, pr2(s)) = pr2(t)

defined as pair eqs :≡ inds=(reflpr1(s), reflpr2(s)). Then pair eqs,t is an equivalence
for every t :

∑
(x:A)B(x).

Proof. The maps in the converse direction

eq pairs,t :
(∑

(p:pr1(s)=pr1(t))trB(p, pr2(s)) = pr2(t)
)
→ (s= t)

are defined by repeated Σ-induction. By Σ-induction on s and t we see that it
suffices to define a map

eq pair(x,y),(x′,y′) :
(∑

(p:x=x′)trB(p, y) = y′
)
→ ((x, y) = (x′, y′)).

A map of this type is again defined by Σ-induction. Thus it suffices to define a
dependent function of type∏

(p:x=x′)(trB(p, y) = y′)→ ((x, y) = (x′, y′)).

5.3. EXERCISES 41

Such a dependent function is defined by double path induction by sending
(reflx, refly) to refl(x,y).

Next, we must show that eq pairs,t is a section of pair eqs,t. In other words,
we must construct an identification

pair eq(eq pair(p, q)) = (p, q)

for each (p, q) :
∑

(p:x=x′) trB(p, y) = y′. We proceed by path induction on p,
followed by path induction on q. Our goal is now to construct a term of type

pair eq(eq pair(reflx, refly)) = (reflx, refly)

By the definition of eq pair we have eq pair(reflx, refly) ≡ refl(x,y), and by the
definition of pair eq we have pair eq(refl(x,y)) ≡ (reflx, refly). Thus we may take
refl(reflx,refly) to complete the construction of the homotopy pair eq◦eq pair ∼ id.

To complete the proof, we must show that eq pairs,t is a retraction of
pair eqs,t. In other words, we must construct an identification

eq pair(pair eq(p)) = p

for each p : s = t. We proceed by identity elimination on p : s = t, so it suffices
to construct an identification

eq pair(reflpr1(s), reflpr2(s)) = refls.

Now we proceed by Σ-induction on s :
∑

(x:A)B(x), so it suffices to construct
an identification

eq pair(reflx, refly) = refl(x,y).

Since eq pair(reflx, refly) computes to refl(x,y), we may simply take reflrefl(x,y)
.

Corollary 5.3.2. Let B be a type family over A, and let (x, y), (x′, y′) :∑
(x:A)B(x). Then the map

pair eq(x,y),(x′,y′) : ((x, y) = (x′, y′))→
(∑

(p:x=x′)trB(p, y) = y′
)

is an equivalence.

Exercises

5.1 Show that for any term a : A the functions

ind1(a) : 1→ A

consta : 1→ A

are homotopic.

42 LECTURE 5. EQUIVALENCES

5.2 Let A and B be types, and consider the constant map constb : A→ B
for some b : B. Construct a homotopy

apconstb(x, y) ∼ constreflb

for any x, y : A.
5.3 Show that inv : (x = y) → (y = x), concat(p) : (y = z) → (x = z), and

trB(p) : B(x)→ B(y) are equivalences. What are their inverses?
5.4 Consider two functions f, g : A→ B and a homotopy H : f ∼ g. Then

is equiv(f)↔ is equiv(g).

5.5 Consider a commuting triangle

A B

X.

h

f g

with H : f ∼ g ◦ h.

(a) Suppose that the map h has a section. Show that f has a section if
and only if g has a section.

(b) Suppose that the map g has a retraction. Show that f has a
retraction if and only if h has a retraction.

(c) (The 3-for-2 property for equivalences.) Show that if any two of
the functions

f, g, g ◦ f

are equivalences, then so is the third.

5.6 Show that the negation function on the booleans is an equivalence. Also
show that for any function f : 2→ 2, if f(02) = f(12) then f is not an
equivalence.

5.7 Show that the successor function on the integers is an equivalence.
5.8 Construct a equivalences A+B ' B +A and A×B ' B ×A.
5.9 Consider a section-retraction pair

A B A,i r

with H : r ◦ i ∼ id. Show that x= y is a retract of i(x) = i(y).
5.10 Let B : A→ Type, and let C be a family over x : A, y : B(x). Construct

an equivalence

Σ.assoc :
(∑

(p:
∑

(x:A) B(x))C(pr1(p), pr2(p))
)
'
(∑

(x:A)

∑
(y:B(x))C(x, y)

)
.

5.3. EXERCISES 43

5.11 Let A and B be types, and let C be a family over x : A, y : B. Construct
an equivalence

Σ.swap :
(∑

(x:A)

∑
(y:B)C(x, y)

)
'
(∑

(y:B)

∑
(x:A)C(x, y)

)
.

5.12 To define all the proof terms involved in showing that the integers form
an abelian group is fairly involved. We suggest to show first that Z is a
retract of N× N in a way that is compatible with addition.

(a) Define the map Z→ N× N by

neg(k) 7→ (0, k)

0 7→ (0, 0)

pos(k) 7→ (k, 0)

for k : N. Construct a retraction r : N×N→ Z of this map, in such
a way that

r((m+m′, n+ n′)) = r(m,n) + r(m′, n′)

for any m,n : N.
(b) Use this retraction to show that the operations k, l 7→ k + l and

k 7→ −k on the integers defined in Exercise 3.12 satisfy the group
laws:

k + (l +m) = (k + l) +m

k + 0 = k

0 + k = k

k + (−k) = 0

(−k) + k = 0,

and that k + l = l + k, making (Z, 0,+,−) into an abelian group.

Lecture 6

Contractible types and
contractible maps

6.1 Contractible types

Theorem 6.1.1. Let A be a type. The following are equivalent:

(i) A is contractible: there is a term of type

is contr(A) :≡
∑

(c:A)

∏
(x:A)c = x.

Given a term (c, C) : is contr(A), we call c : A the center of contrac-
tion of A, and we call C :

∏
(x:A) a = x the contraction of A.

(ii) A comes equipped with a term a : A, and satisfies singleton induction:
for every type family B over A, the map(∏

(x:A)B(x)
)
→ B(a)

given by f 7→ f(a) has a section. In other words, we have a function and
a homotopy

sing indA,a : B(a)→
∏

(x:A)B(x)

sing compA,a :
∏

(b:B(a))sing indA,a(b, a) = b.

Remark 6.1.2. Suppose A is a contractible type with center of contraction c
and contraction C. Then the type of C is (judgmentally) equal to the type

constc ∼ idA.

45

46 LECTURE 6. CONTRACTIBLE TYPES AND MAPS

In other words, the contraction C is a homotopy from the constant function to
the identity function.

Also note that the ‘computation rule’ in the singleton induction for A is
stated using an identification rather than as a judgmental equality.

Proof of Theorem 6.1.1. Suppose A is contractible with center of contraction
c and contraction C. First we observe that, without loss of generality, we may
assume that C comes equipped with an identification p : C(c) = reflc. To see
this, note that we can always define a new contraction C ′ by

C ′(x) :≡ C(c)−1 � C(x),

which satisfies the requirement by the left inverse law, constructed in Defini-
tion 4.2.5.

To show that A satisfies singleton induction let B be a type family over A
equipped with b : B(a). We define sing ind(b) :

∏
(x:A)B(x) by λx. trB(C(x), b).

To see that sing ind(c) = b note that we have

trB(C(c), b) trB(reflc, b) b.
apλω. trB(ω,b)(p) reflb

This completes the proof that A satisfies singleton induction.

For the converse, suppose that a : A and that A satisfies singleton induction.
Our goal is to show that A is contractible. For the center of contraction we
take the term a : A. By singleton induction applied to B(x) :≡ a = x we have
the map

sing indA,a : a = a→
∏

(x:A)a = x.

Therefore sing indA,a(refla) is a contraction.

Example 6.1.3. By definition the unit type 1 satisfies singleton induction, so it
is contractible.

Theorem 6.1.4. For any x : A, the type∑
(y:A)x = y

is contractible.

In the following proof we stress the analogy of path induction with singleton
elimination, as we did in class. An alternative proof can be found in Lemma
3.11.8 of the HoTT book [2].

6.2. CONTRACTIBLE MAPS 47

Proof. We will prove the statement by showing that
∑

(y:A) x = y satisfies
singleton induction, applying Theorem 6.1.1.

We have the term (x, reflx) :
∑

(y:A) x = y. Thus we need to show that for
any type family B over

∑
(x:A) x = y, the map(∏

(t:
∑

(x:A) x=y)B(t)
)
→ B((x, reflx))

has a section. Note that we have the composite of maps

B((x, reflx))
∏

(y:A)

∏
(p:x=y)B((y, p))

∏
(t:

∑
(y:A) x=y)B(t)

indx= indΣ

which we take as our definition of sing ind. Moreover, by the computation rules
we have

indΣ(indx=(b), (x, reflx)) ≡ b.

Thus, for sing comp we simply take λb. reflb.

6.2 Contractible maps

Definition 6.2.1. Let f : A→ B be a function, and let b : B. The fiber of f
at b is defined to be the type

fibf (b) :≡
∑

(a:A)f(a) = b.

In other words, the fiber of f at b is the type of a : A that get mapped by
f to b. One may think of the fiber as a type theoretic version of the pre-image
of a point.

Definition 6.2.2. We say that a function f : A→ B is contractible if there
is a term of type

is contr(f) :≡
∏

(b:B)is contr(fibf (b)).

Theorem 6.2.3. Any contractible map is an equivalence.

Proof. Let f : A→ B be a contractible map. Using the center of contraction
of each fibf (y), we obtain a term of type

λy. (g(y), G(y)) :
∏

(y:B)fibf (y).

Thus, we get map g : B → A, and a homotopy G :
∏

(y:B) f(g(y)) = y. In
other words, we get a section of f .

48 LECTURE 6. CONTRACTIBLE TYPES AND MAPS

It remains to construct a retraction of f . Taking g as our retraction, we
have to show that

∏
(x:A) g(f(x)) = x. Note that we get an identification

p : f(g(f(x))) = f(x) since g is a section of f . It follows that (g(f(x)), p) :
fibf (f(x)). Moreover, since fibf (f(x)) is contractible we get an identification
q : (g(f(x)), p) = (x, reflf(x)). The base path appr1

(q) of this identification is
an identification of type g(f(x)) = x, as desired.

6.3 Equivalences are contractible maps

In this section we will show the converse to Theorem 6.2.3, that equivalences are
contractible maps. Before we do so, we will establish some useful constructions
on homotopies and section-retraction pairs.

Definition 6.3.1. Let f, g : A→ B be functions, and consider H : f ∼ g and
p : x = y in A. We define identification

htpy nat(H, p) :≡ indx=(right unit(H(x)), p) : H(x) � apg (p) = apf (p) � H(y)

witnessing that the square

f(x) g(x)

f(y) g(y)

H(x)

apf (p) apg(p)

H(y)

commutes. This square is also called the naturality square of the homotopy
H at p.

Definition 6.3.2. Consider f : A → A and H : f ∼ idA. We construct an
identification H(f(x)) = apf (H(x)), for any x : A.

Construction. By the naturality of homotopies with respect to identifications
the square

ff(x) f(x)

f(x) x

apf (H(x))

H(f(x))

H(x)

H(x)

commutes. This gives the desired identification H(f(x)) = apf (H(x)).

Theorem 6.3.3. Any equivalence is a contractible map.

6.3. EQUIVALENCES ARE CONTRACTIBLE MAPS 49

Proof. Since every equivalence has the structure of an invertible map by
Definition 5.2.3, it suffices to show that any invertible map is contractible.

Let f : A → B be a map, with g : B → A, G : f ◦ g ∼ idB, and
H : g ◦ f ∼ idA. We have for any y : B the term (g(y), G(y)) : fibf (y).
However, as our center of contraction we take (g(y), ε(y)), where ε is defined
as the concatenation

fg(y) fgfg(y) fg(y) y.
apfg(G(y))−1 apf (H(g(y))) G(y)

Now it remains to construct the contraction, which we do by Σ-induction. Let
x : A, and let p : f(x) = y. Since p : f(x) = y has a free endpoint, we can
apply path induction on it. Our goal is now to construct an identification

(g(f(x)), ε(f(x))) = (x, reflf(x)).

We will construct an identification of the form eq pair(H(x),), so it remains
to construct an identification of type

trf(–)=f(x)(H(x), ε(f(x))) = reflf(x).

Using Exercise 4.4 we see that

trf(–)=f(x)(H(x), ε(f(x))) = apf (H(x))−1 � ε(f(x)),

so it suffices to show that the square

fgfgf(x) fgf(x)

fgf(x) f(x)

apfg(G(f(x)))

apf (H(gf(x))) apf (H(x))

G(f(x))

commutes, i.e. that

apfg (G(f(x))) � apf (H(x)) = apf (H(gf(x))) � G(f(x)).

Recall from Definition 6.3.2 that we haveH(gf(x)) = apgf (H(x)) and apfg (G(y)) =
G(fg(y)). Using these two identifications and the fact that for any p, p′ : x = y,
r : y = z, q, q′ : x = y′, and s : y′ = z, if p = p′ and q = q′ then
p′ � r = q′ � s→ p � r = q � s, we see that it suffices to show that the square

fgfgf(x) fgf(x)

fgf(x) f(x)

G(fgf(x))

apfgf (H(x)) apf (H(x))

G(f(x))

50 LECTURE 6. CONTRACTIBLE TYPES AND MAPS

commutes. However, this is just a naturality square the homotopy Gf : fgf ∼
f , which commutes by Definition 6.3.1.

Corollary 6.3.4. Let A be a type, and let a : A. Then the type∑
(x:A)x = a

is contractible.

Proof. By Theorem 5.2.5, the identity function is an equivalence. Therefore,
the fibers of the identity function are contractible by Theorem 6.3.3. Note that∑

(x:A) x = a is exactly the fiber of idA at a : A.

Exercises

6.1 Show that if A is contractible, then for any x, y : A the identity type
x = y is also contractible.

6.2 Suppose that A is a retract of B. Show that

is contr(B)→ is contr(A).

6.3 (a) Show that for any type A, the map const? : A→ 1 is an equivalence
if and only if A is contractible.

(b) Apply Exercise 5.5 to show that for any map f : A→ B, if any two
of the three assertions

(i) A is contractible

(ii) B is contractible

(iii) f is an equivalence

hold, then so does the third.
6.4 Let C be a contractible type with center of contraction c : C. Furthermore,

let B be a type family over C. Show that the map b 7→ (c, b) : B(c)→∑
(x:C)B(x) is an equivalence.

6.5 Consider a type A with base point a : A, and let B be a type family on
A that implies the identity type, i.e. there is a term

α :
∏

(x:A)B(x)→ (a = x).

Construct an equivalence(∑
(x:A)B(x)

)
'
(∑

(y:B(a))α(a, y) = refla
)
.

6.3. EXERCISES 51

6.6 Construct for any map f : A→ B an equivalence e : A '
∑

(y:B) fibf (y)
and a homotopy H : f ∼ pr1 ◦ e witnessing that the triangle

A
∑

(y:B) fibf (y)

B

e

f pr1

commutes. The projection pr1 : (
∑

(y:B) fibf (y))→ B is sometimes also
called the fibrant replacement of f .

6.7 Use Exercise 6.2 to show that if A×B is contractible, then A and B are
contractible.

Lecture 7

The fundamental theorem of
identity types

7.1 Fiberwise equivalences

Consider a family
f :
∏

(x:A)B(x)→ C(x)

of maps. Such f is also called a fiberwise map or fiberwise transforma-
tion.

Definition 7.1.1. We define a map

total(f) :
∑

(x:A)B(x)→
∑

(x:A)C(x).

by λ(x, y). (x, f(x, y)).

Lemma 7.1.2. For any fiberwise transformation f :
∏

(x:A)B(x) → C(x),
and any a : A and c : C(a), there is an equivalence

fibf(a)(c) ' fibtotal(f)((a, c)).

Proof. We first define a map ϕ(a,c) : fibf(a)(c)→ fibtotal(f)((a, c)) by Σ-induction.
It suffices to define a term of type∏

(b:B(a))(f(a, b) = c)→ fibtotal(f)((a, c))

for every a : A and c : C(a). Since the endpoint of the identification f(a, b) = c
is free, we may proceed by path induction. It suffices to construct a term of
type

∏
(b:B(a)) fibtotal(f)((a, f(a, b))). For b : B, we take

((a, b), refl(a,f(a,b))) : fibtotal(f)((a, f(a, b))).

53

54 LECTURE 7. THE FUNDAMENTAL THEOREM

Since we have defined ϕ(a,c) for all a : A and c : C(a), note that we also obtain
a map

ϕt : fibf(pr1(t))(pr2(t))→ fibtotal(f)(t)

for every t :
∑

(x:A)C(x).
Our next goal is to define a map

ψ(a,c) : fibtotal(f)(a, c)→ fibf(a)(c).

for every a : A and c : C(a). In fact it will be easier to construct more generally
the map

ψt : fibtotal(f)(t)→ fibf(pr1(t))(pr2(t)).

for every t :
∑

(x:A)C(x). Let us write t1 :≡ pr1(t) and t2 :≡ pr2(t). By
Σ-induction it suffices to construct a term of type∏

(s:
∑

(x:A) B(x))(total(f)(s) = t)→ fibf(t1)(t2),

We apply Σ-induction once more, and we need to construct a term of type∏
(x:A)

∏
(y:B(x))(total(f)(x, y) = t)→ fibf(t1)(t2).

Let x : A and y : B(x). Since the endpoint of the identification total(f)(x, y) =
t is free, we proceed by path induction. Our goal is now to construct a term of
type

fibf(x)(f(x, y)).

Here we simply take (y, reflf(x,y)), completing the construction of ψ.
To show that ψ is a retraction of ϕ, we construct an identification

ψ(ϕ((b, p))) = (b, p)

for each b : B(a) and p : f(a, b) = c. We proceed by path induction on
p : f(a, b) = c. Our goal is now to show that

ψ(ϕ(b, reflf(a,b))) = (b, reflf(a,b))

By definition we have

ϕ(b, reflf(a,b)) ≡ ((a, b), refl(a,f(a,b)))

ψ((a, b), refl(a,f(a,b))) ≡ (b, reflf(a,b)).

Thus, we simply take refl(b,reflf(a,b)) to complete the goal of showing that ψ is a
retraction of ϕ.

7.2. THE FUNDAMENTAL THEOREM 55

To show that ψt is a section of ϕt for every t :
∑

(x:A)C(x), we construct
an identification

ϕ(ψ((x, b), r)) = ((x, b), r)

for each x : A, y : B(x), and r : total(f)(x, y) = t. We proceed by path
induction on r, so our goal is to show

ϕ(ψ((x, y), refl(x,f(x,y)))) = (x, f(x, y)).

By definition we have

ψ((x, y), refl(x,f(x,y))) ≡ (y, reflf(x,y))

ϕ(y, reflf(x,y)) ≡ ((x, y), refl(x,f(x,y)))

Thus, we simply take refl(x,f(x,y)) to complete the goal of showing that ψ is a
section of ϕ.

Theorem 7.1.3. Let f :
∏

(x:A)B(x) → C(x) be a fiberwise transformation.
The following are logically equivalent:

(i) For each x : A, the map f(x) is an equivalence. In this case we say that
f is a fiberwise equivalence.

(ii) The map total(f) :
∑

(x:A)B(x)→
∑

(x:A)C(x) is an equivalence.

Proof. By Theorems 6.2.3 and 6.3.3 it suffices to show that f(x) is a contractible
map for each x : A, if and only if total(f) is a contractible map. Thus, we will
show that fibf(x)(c) is contractible if and only if fibtotal(f)(x, c) is contractible,
for each x : A and c : C(x). However, by Lemma 7.1.2 these types are
equivalent, so the result follows by Exercise 6.3.

7.2 The fundamental theorem

Theorem 7.2.1. Let A be a type with a : A, and let B be be a type family
over A with b : B(a). Then the following are logically equivalent:

(i) The canonical family of maps

reca=(b) :
∏

(x:A)(a = x)→ B(x)

is a fiberwise equivalence.

56 LECTURE 7. THE FUNDAMENTAL THEOREM

(ii) The total space ∑
(x:A)B(x)

is contractible.

Proof. By Theorem 7.1.3 it follows that the fiberwise transformation reca=(b)
is a fiberwise equivalence if and only if it induces an equivalence(∑

(x:A)a = x
)
'
(∑

(x:A)B(x)
)

on total spaces. We have that
∑

(x:A) a = x is contractible. Now it follows by
Exercise 6.3, applied in the case

∑
(x:A) a = x

∑
(x:A)B(x)

1

total(reca=(b))

'

that total(reca=(b)) is an equivalence if and only if
∑

(x:A)B(x) is contractible.

As an application of the fundamental theorem we show that equivalences
are embeddings. The notion embeddings is the homotopically correct notion
of injective maps.

Definition 7.2.2. An embedding is a map f : A→ B satisfying the property
that

apf : (x= y)→ (f(x) = f(y))

is an equivalence for every x, y : A. We write is emb(f) for the type of witnesses
that f is an embedding.

Theorem 7.2.3. Any equivalence is an embedding.

Proof. Let e : A ' B be an equivalence, and let x : A. Our goal is to show
that

ape : (x= y)→ (e(x) = e(y))

is an equivalence for every y : A. By Theorem 7.2.1 it suffices to show that∑
(y:A)e(x) = e(y)

7.2. EXERCISES 57

is contractible for every y : A. Now observe that there is an equivalence∑
(y:A)e(x) = e(y) '

∑
(y:A)e(y) = e(x)

≡ fibe(e(x))

by Theorem 7.1.3, since for each y : A the map

inv : (e(x) = e(y))→ (e(y) = e(x))

is an equivalence by Exercise 5.3. The fiber fibe(e(x)) is contractible by
Theorem 6.3.3, so it follows by Exercise 6.3 that the type

∑
(y:A) e(x) = e(y)

is indeed contractible.

Exercises

7.1 (a) Let f, g :
∏

(x:A)B(x) → C(x) be two fiberwise transformations.
Show that(∏

(x:A)f(x) ∼ g(x)
)
→ (total(f) ∼ total(g)).

(b) Let f :
∏

(x:A)B(x)→ C(x) and let g :
∏

(x:A)C(x)→ D(x). Show
that

total(λx. g(x) ◦ f(x)) ∼ total(g) ◦ total(f).

(c) For any family B over A, show that

total(λx. idB(x)) ∼ id∑
(x:A)B(x).

7.2 Construct an equivalence(∑
(x:A)f(x) = y

)
'
(∑

(x:A)y = f(x)
)
.

7.3 Consider a triangle

A B

X

h

f g

with a homotopy H : f ∼ g ◦ h witnessing that the triangle commutes.

(a) Construct a fiberwise transformation

fib triangle(h,H) :
∏

(x:X)fibf (x)→ fibg(x).

58 LECTURE 7. THE FUNDAMENTAL THEOREM

(b) Show that h is an equivalence if and only if fib triangle(h,H) is a
fiberwise equivalence.

7.4 Let f : A→ B be a map. Then for each y : B, and each (x, p), (x′, p′) :
fibf (y), the map

(x, p) = (x′, p′)→
∑

(q:x=x′)p= apf (q) � p′

is an equivalence.
7.5 Let B be a type family over A. Show that for the projection map

pr1 : (
∑

(x:A)B(x))→ A, the map

λy. ((x, y), reflx) : B(x)→ fibpr1(x)

is an equivalence, for each x : A. Conclude that pr1 is itself an equivalence
if and only if each B(x) is contractible.

7.6 Let A be a type with a : A, and let B be a type family over A. Show
that for any family of maps

f :
∏

(x:A)(a = x)→ B(x)

the following are logically equivalent:

(i) The family of maps f is a fiberwise equivalence.

(ii) The total space ∑
(x:A)B(x)

is contractible.

7.7 Let a : A, and let B be a type family over A. Use Exercises 7.1, 6.2
and 7.6 to show that if each B(x) is a retract of a = x, then B(x) is
equivalent to a= x for every x : A.

7.8 Show that the map 0→ A is an embedding for every type A.
7.9 Show that

(f ∼ g)→ (is emb(f)↔ is emb(g))

for any f, g : A→ B.
7.10 Consider a commuting triangle

A B

X

e

f g

with H : f ∼ g ◦ e, where e is an equivalence. Show that f is an
embedding if and only if g is an embedding.

7.2. EXERCISES 59

7.11 Consider a map
f : A→

∑
(y:B)C(y).

(a) Construct a fiberwise transformation

f ′ :
∏

(y:B)fibpr1◦f (y)→ C(y).

(b) Construct an equivalence

fibf ′(b)(c) ' fibf ((b, c))

for every (b, c) :
∑

(y:B)C(y).
(c) Conclude that the following are equivalent:

(i) f is an equivalence.

(ii) f ′ is a fiberwise equivalence.

Lecture 8

The hierarchy of homotopical
complexity

8.1 Propositions and subtypes

Definition 8.1.1. A type A is said to be a proposition if there is a term of
type

is prop(A) :≡
∏

(x,y:A)is contr(x = y).

Example 8.1.2. Any contractible type is a proposition by Exercise 6.1. However,
propositions do not need to be inhabited: the empty type is also a proposition,
since ∏

(x,y:0)is contr(x = y)

follows from the induction principle of the empty type.

In the following lemma we prove that in order to show that a type A is a
proposition, it suffices to show that any two terms of A are equal. In other
words, propositions are types with proof irrelevance.

Lemma 8.1.3. Let A be a type. Then we have

is prop(A)↔
(∏

(x,y:A)x = y
)
.

Proof. Suppose A is a proposition. By taking the center of contraction of x= y
for each x, y : A we obtain a term of type

∏
(x,y:A) x= y.

Now suppose that A is a type equipped with H :
∏

(x,y:A) x= y. Then we

take H(x, x)−1 �H(x, y) as the center of contraction of x= y. To construct the
contraction ∏

(p:x=y)H(x, x)−1 � H(x, y) = p

61

62 LECTURE 8. HOMOTOPICAL COMPLEXITY

we proceed by path induction. Our goal is to show that

H(x, x)−1 � H(x, x) = reflx.

By proof irrelevance it follows that propositions are contractible as soon as
they are inhabited.

Corollary 8.1.4. For any type A we have

is prop(A)↔ (A→ is contr(A)).

Lemma 8.1.5. Let A and B be types, and let e : A ' B. Then we have

is prop(A)↔ is prop(B).

Proof. We will show that is prop(B) implies is prop(A). This suffices, because
the converse follows from the fact that e−1 : B → A is also an equivalence.

Since e is assumed to be an equivalence, it follows by Theorem 7.2.3 that

ape : (x = y)→ (e(x) = e(y))

is an equivalence for any x, y : A. If B is a proposition, then in particular
the type e(x) = e(y) is contractible for any x, y : A, so the claim follows from
Theorem 6.3.3.

In type theory terms always come equipped with their types, i.e. they never
appear in isolation. This is useful from the perspective that terms are programs
with a certain specification, but as a consequence we cannot consider subtypes
in the same way as set theorists have subsets. Our definition of subtype is
therefore considerably different:

Definition 8.1.6. A type family B over A is said to be a subtype of A if for
each x : A the type B(x) is a proposition.

We will show in Corollary 8.3.9 that a type family B over A is a subtype of
A if and only if the projection map pr1 :

(∑
(x:A)B(x)

)
→ A is an embedding.

8.2 Sets

Definition 8.2.1. A type A is said to be a set if there is a term of type

is set(A) :≡
∏

(x,y:A)is prop(x= y).

8.2. SETS 63

Lemma 8.2.2. A type A is a set if and only if it satisfies axiom K, which
asserts that ∏

(x:A)

∏
(p:x=x)reflx = p.

Proof. If A is a set, then x= x is a proposition, so any two of its elements are
equal. This implies axiom K.

For the converse, if A satisfies axiom K, then for any p, q : x= y we have
p � q−1 = reflx, and hence p= q. This shows that x= y is a proposition, and
hence that A is a set.

Lemma 8.2.3. Let A be a type, and let R : A→ A→ U be a binary relation
on A satisfying

(i) Each R(x, y) is a proposition,

(ii) R is reflexive, as witnessed by ρ :
∏

(x:A)R(x, x).

Then any fiberwise map ∏
(x,y:A)R(x, y)→ (x= y)

is a fiberwise equivalence. Consequently, if there is such a fiberwise map, then
A is a set.

Proof. Let f :
∏

(x,y:A)R(x, y)→ (x= y). Since R is assumed to be reflexive,
we also have a fiberwise transformation

recx=(ρ(x)) :
∏

(y:A)(x= y)→ R(x, y).

Since each R(x, y) is assumed to be a proposition, it therefore follows that
each R(x, y) is a retract of x= y. We conclude by Exercise 7.7 that for each
x, y : A, the map f(x, y) : R(x, y)→ (x= y) must be an equivalence.

Now it also follows that A is a set, since its identity types are equivalent
to propositions, and therefore they are propositions by Lemma 8.1.5.

Theorem 8.2.4. The type of natural numbers is a set.

Proof. We will apply Lemma 8.2.3. Note that the observational equality EqN :
N → (N → U) on N (Definition 3.2.6) is a reflexive relation by Exercise 3.3,
and moreover that EqN(n,m) is a proposition for every n,m : N (proof by
double induction). Therefore it suffices to show that∏

(m,n:N)EqN(m,n)→ (m= n).

This follows from the fact that observational equality is the least reflexive
relation, which was shown in Exercise 3.4.

64 LECTURE 8. HOMOTOPICAL COMPLEXITY

8.3 General truncation levels

Definition 8.3.1. We define is trunc : Z≥−2 → U → U by induction on
k : Z≥−2, taking

is trunc−2(A) :≡ is contr(A)

is trunck+1(A) :≡
∏

(x,y:A)is trunck(x= y).

For any type A, we say that A is k-truncated, or a k-type, if there is a term
of type is trunck(A). We say that a map f : A→ B is k-truncated if its fibers
are k-truncated.

Theorem 8.3.2. If A is a k-type, then A is also a (k + 1)-type.

Proof. We have seen in Example 8.1.2 that contractible types are propositions.
This proves the base case. For the inductive step, note that if any k-type is
also a (k + 1)-type, then any (k + 1)-type is a (k + 2)-type, since its identity
types are k-types and therefore (k + 1)-types.

Theorem 8.3.3. If e : A ' B is an equivalence, and B is a k-type, then so is
A.

Proof. We have seen in Exercise 6.3 that if B is contractible and e : A ' B is
an equivalence, then A is also contractible. This proves the base case.

For the inductive step, assume that the k-types are stable under equiva-
lences, and consider e : A ' B where B is a (k+ 1)-type. In Theorem 7.2.3 we
have seen that

ape : (x= y)→ (e(x) = e(y))

is an equivalence for any x, y. Note that e(x) = e(y) is a k-type, so by the
induction hypothesis it follows that x= y is a k-type. This proves that A is a
(k + 1)-type.

Corollary 8.3.4. If f : A→ B is an embedding, and B is a (k+ 1)-type, then
so is A.

Proof. By the assumption that f is an embedding, the action on paths

apf : (x= y)→ (f(x) = f(y))

is an equivalence for every x, y : A. Since B is assumed to be a (k+ 1)-type, it
follows that f(x) = f(y) is a k-type for every x, y : A. Therefore we conclude
by Theorem 8.3.3 that x= y is a k-type for every x, y : A. In other words, A
is a (k + 1)-type.

8.3. GENERAL TRUNCATION LEVELS 65

In the following definition we generalize the notion of contractible map.

Definition 8.3.5. We say that a map f : A→ B is k-truncated if for each
y : B the fiber fibf (y) is k-truncated.

Theorem 8.3.6. Let B be a type family over A. Then the following are
equivalent:

(i) For each x : A the type B(x) is k-truncated.

(ii) The projection map

pr1 :
(∑

(x:A)B(x)
)
→ A

is k-truncated.

Proof. By Exercises 7.3 and 6.6 we obtain equivalences

B(x) ' fibpr1(x)

for every x : A. Therefore the claim follows from Theorem 8.3.3.

Theorem 8.3.7. Let f : A→ B be a map. The following are equivalent:

(i) The map f is (k + 1)-truncated.

(ii) For each x, y : A, the map

apf : (x = y)→ (f(x) = f(y))

is k-truncated.

Proof. First we show that for any s, t : fibf (b) there is an equivalence

(s = t) ' fibapf (pr2(s) � pr2(t)−1)

We do this by Σ-induction on s and t, and then we calculate using Exercise 4.4
and basic manipulations of identifications that

((x, p) = (y, q)) '
∑

(r:x=y)trf(–)=b(r, p) = q

'
∑

(r:x=y)apf (r)−1 � p = q

'
∑

(r:x=y)apf (r) = p � q−1

≡ fibapf (p � q−1).

66 LECTURE 8. HOMOTOPICAL COMPLEXITY

By these equivalences, it follows that if apf is k-truncated, then for each
s, t : fibf (b) the identity type s = t is equivalent to a k-truncated type, and
therefore we obtain by Theorem 8.3.3 that f is (k + 1)-truncated.

For the converse, note that we have equivalences

fibapf (p) ' ((x, p) = (y, reflf(y))).

Therefore it follows that if f is (k + 1)-truncated, then the identity type
(x, p) = (y, reflf(y)) in fibf (f(y)) is k-truncated for any p : f(x) = f(y), and
therefore fibapf (p) is k-truncated by Theorem 8.3.3.

Corollary 8.3.8. A map is an embedding if and only if its fibers are proposi-
tions.

Corollary 8.3.9. A type family B over A is a subtype if and only if the
projection map

pr1 :
(∑

(x:A)B(x)
)
→ A

is an embedding.

Theorem 8.3.10. Let f :
∏

(x:A)B(x)→ C(x) be a fiberwise transformation.
Then the following are equivalent:

(i) For each x : A the map f(x) is k-truncated.

(ii) The induced map

total(f) :
(∑

(x:A)B(x)
)
→
(∑

(x:A)C(x)
)

is k-truncated.

Proof. This follows directly from Lemma 7.1.2 and Theorem 8.3.3.

Exercises

8.1 Let A be a type, and let the diagonal of A be the map δA : A→ A×A
given by λx. (x, x).

(a) Show that
is equiv(δA)↔ is prop(A).

(b) Construct an equivalence fibδA((x, y)) ' (x = y) for any x, y : A.
(c) Show that A is (k + 1)-truncated if and only if δA : A→ A×A is

k-truncated.

8.3. EXERCISES 67

8.2 (a) Let B be a type family over A. Show that if A is a k-type, and
B(x) is a k-type for each x : A, then so is

∑
(x:A)B(x). Hint: for

the base case, use Exercises 6.3 and 6.4.
(b) Show that if A and B are k-types, then so is A×B.

8.3 Show that 2 is a set by applying Lemma 8.2.3 with the observational
equality on 2 defined in Exercise 3.8.

8.4 Show that for any two sets A and B, the disjoint sum A+B is again a
set.

8.5 (Hedberg’s theorem) A type A is said to have decidable equality if
there is a term of type∏

(x,y:A)(x= y) + ¬(x= y).

For any type A, and every x, y : A, consider the type family D(x, y) :
((x= y) + ¬(x= y))→ U given by

D(x, y, inl(p)) :≡ 1

D(x, y, inr(p)) :≡ 0.

Use D to show that any type with decidable equality is a set.
8.6 Show that N and 2 have decidable equality, as defined in Exercise 8.5.
8.7 Show that if A and B have decidable equality, then so do A + B and

A×B.
8.8 Use Exercises 6.2 and 5.9 to show that if A is a retract of a k-type B,

then A is also a k-type.
8.9 A map f : A→ B between sets is said to be injective if for every x, y : A

there is a map
(f(x)→ f(y))→ (x = y).

(a) Use Exercise 8.3 to show that const02 , const12 : 1→ 2 are injective
maps.

(b) Show that between sets are injective if and only if they are embed-
dings.

(c) Show that a type A is a set if and only if the map constx : 1→ A
is an embedding for every x : A.

Lecture 9

Function extensionality

A significant part of the development of homotopy type theory involves an-
swering the following basic questions:

(i) What is the identity type of a given type A?

(ii) What is the total space of a type family B over A?

(iii) What are the fibers of a given map f : A→ B?

(iv) What does transporting a point in a given type family B over A do?

We have already characterized the identity types of Σ-types as a Σ-type of
identity types (Theorem 5.3.1), of 0 and 1 since both are propositions (Ex-
ample 8.1.2), of natural numbers N as observational equality (Theorem 8.2.4),
and also of 2 as observational equality (Exercise 8.3). In this section we will
discuss the identity type of Π-types.

9.1 Equivalent forms of function extensionality

Theorem 9.1.1. e following are equivalent:

(i) The principle of homotopy induction: for every f :
∏

(x:A)B(x) and
every type family

Γ, g :
∏

(x:A)B(x), H : f ∼ g ` P (g,H) type,

the map (∏
(g:

∏
(x:A)B(x))

∏
(H:f∼g)P (g,H)

)
→ P (f, htpy.reflf)

given by s 7→ s(f, htpy.reflf) has a section.

69

70 LECTURE 9. FUNCTION EXTENSIONALITY

(ii) The function extensionality principle: For every type family B over
A, and any two dependent functions f, g :

∏
(x:A)B(x), the canonical

map
htpy eq(f, g) : (f = g)→ (f ∼ g)

by path induction (sending reflf to λx. reflf(x)) is an equivalence. We will
write eq htpy for its inverse.

(iii) The weak function extensionality principle holds: For every type
family B over A one has(∏

(x:A)is contr(B(x))
)
→ is contr

(∏
(x:A)B(x)

)
.

Proof. To show that homotopy induction implies function extensionality, note
that from homotopy induction and Σ-induction combined, we obtain that for
any type family P over

∑
(g:

∏
(x:A) B(x)) f ∼ g, the evaluation map(∏

(t:
∑

(g:
∏

(x:A) B(x)) f∼g)
P (t)

)
→ P ((f, htpy.reflf))

has a section. In other words, the type
∑

(g:
∏

(x:A)B(x)) f ∼ g satisfies singleton

induction and therefore it is contractible. Now we conclude by Theorem 7.2.1
that the canonical map (f = g)→ (f ∼ g) is an equivalence, i.e. that function
extensionality holds.

Conversely, to prove homotopy induction from function extensionality we
again note that by function extensionality and Theorem 7.2.1 the type∑

(g:
∏

(x:A) B(x))f ∼ g

is contractible. Therefore it satisfies singleton induction, so homotopy induction
follows.

To show that function extensionality implies weak function extensionality,
suppose that each B(a) is contractible with center of contraction c(a) and
contraction Ca :

∏
(y:B(a)) c(a) = y. Then we take c :≡ λa. c(a) to be the center

of contraction of
∏

(x:A)B(x). To construct the contraction we have to define
a term of type ∏

(f :
∏

(x:A) B(x))c = f.

Let f :
∏

(x:A)B(x). By function extensionality we have a map (c ∼ f)→ (c =
f), so it suffices to construct a term of type c ∼ f . Here we take λa.Ca(f(a)).
This completes the proof that function extensionality implies weak function
extensionality.

9.1. EQUIVALENT FORMS OF FUNCTION EXTENSIONALITY 71

To prove function extensionality from weak function extensionality, observe
that it suffices by Theorem 7.2.1 to show that∑

(g:
∏

(x:A) B(x))f ∼ g

is contractible.
Since the type

∑
(b:B(x)) f(x) = b is contractible for each x : X, it

follows by our assumption of weak function extensionality that the type∏
(x:A)

∑
(b:B(x)) f(x) = b is contractible. By Exercise 6.2 it therefore suffices

to show that ∑
(g:

∏
(x:A) B(x))f ∼ g

is a retract of the type
∏

(x:A)

∑
(b:B(x)) f(x) = b. We have the functions

i :≡ indΣ(λg. λH. λx. (g(x), H(x)))

r :≡ λp. (λx. pr1(p(x)), λx. pr2(p(x))).

It remains to show that r◦i ∼ id. This homotopy is constructed by Σ-induction.
Let g :

∏
(x:A)B(x) and let H : f ∼ g. Then we have

r(i(g,H)) ≡ r(λx. (g(x), H(x)))

≡ (λx. g(x), λx.H(x))

≡ (g,H).

In other words, the homotopy r ◦ i ∼ id is given by indΣ(λg. λH. refl((g,H))).

Theorem 9.1.2. Assume function extensionality. Then for any type family
B over A one has(∏

(x:A)is trunck(B(x))
)
→ is trunck

(∏
(x:A)B(x)

)
.

Proof. The theorem is proven by induction on k ≥ −2. The base case is just
the weak function extensionality principle, which was shown to follow from
function extensionality in Theorem 9.1.1.

For the inductive hypothesis, assume that the k-types are closed under
dependent function types. Assume that B is a family of (k + 1)-types. By
function extensionality, the type f = g is equivalent to f ∼ g for any two
dependent functions f, g :

∏
(x:A)B(x). Now observe that f ∼ g is a dependent

product of k-types, and therefore it is an k-type by our inductive hypotheses.
Therefore, it follows by Theorem 8.3.3 that f = g is an k-type, and hence that∏

(x:A)B(x) is an (k + 1)-type.

72 LECTURE 9. FUNCTION EXTENSIONALITY

Corollary 9.1.3. Suppose B is a k-type. Then A→ B is also a k-type, for
any type A.

The following theorem is sometimes called the type theoretic principle
of choice. This terminology comes from the point of view of propositions
as types, where the Σ-type has the role of the existential quantifier, and the
Π-type has the role of the universal quantifier.

Theorem 9.1.4. Let C(x, y) be a type in context Γ, x : A, y : B(x). Then the
map

ϕ :
(∏

(x:A)

∑
(y:B(x))C(x, y)

)
→
(∑

(f :
∏

(x:A) B(x))

∏
(x:A)C(x, f(x))

)
given by λh. (λx. pr1(h(x)), λx. pr2(h(x))) is an equivalence.

Proof. The map ψ in the converse direction is defined by

ψ :≡ indΣ(λf. λg. λx. (f(x), g(x))).

We need to define homotopies ψ ◦ ϕ ∼ id and ϕ ◦ ψ ∼ id.
For the first homotopy, let h :

∏
(x:A)

∑
(y:B(x))C(x, y). Then we have

ψ(ϕ(h)) ≡ ψ(λx. pr1(h(x)), λx. pr2(h(x)))

≡ λx. (pr1(h(x)), pr2(h(x))).

Note that for each x : A we have an identification

(pr1(h(x)), pr2(h(x))) = h(x).

Therefore we obtain a homotopy ψ(ϕ(h)) ∼ h, but this suffices because function
extensionality now provides us with an identification ψ(ϕ(h)) = h.

The second homotopy is constructed by Σ-induction. Let f :
∏

(x:A)B(x)
and let g :

∏
(x:A)C(x, f(x)). Then we have

ϕ(ψ(f, g)) ≡ ϕ(λx. (f(x), g(x)))

≡ (λx. f(x), λx. g(x))

≡ (f, g)

where the last judgmental equality holds by the η-rule for Π-types. In other
words, the homotopy ϕ ◦ ψ ∼ id is given by

indΣ(λf. λg. refl(f,g)).

Corollary 9.1.5. For type A and any type family C over B, the map(∑
(f :A→B)

∏
(x:A)C(f(x))

)
→
(
A→

∑
(y:B)C(x)

)
given by λ(f, g). λx. (f(x), g(x)) is an equivalence.

9.2. UNIVERSAL PROPERTIES 73

9.2 Universal properties

The function extensionality principle allows us to prove universal properties:
characterizations of all maps out of (or into) a given type. Universal properties
characterize a type up to equivalence. In the following theorem we prove the
universal property of dependent pair types.

Theorem 9.2.1. Let B be a type family over A, and let X be a type. Then
the map

ev pair :
((∑

(x:A)B(x)
)
→ X

)
→
(∏

(x:A)(B(x)→ X)
)

given by f 7→ λa. λb. f((a, b)) is an equivalence.

This theorem justifies that we usually write f(a, b) rather than f((a, b)),
since f :

(∑
(x:A)B(x)

)
→ X is uniquely determined by its action on terms of

the form (a, b).

Proof. The map in the converse direction is simply

indΣ :
(∏

(x:A)(B(x)→ X)
)
→
((∑

(x:A)B(x)
)
→ X

)
.

By the computation rules for Σ-types we have

λf. reflf : ev pair ◦ indΣ ∼ id

To show that indΣ ◦ ev pair ∼ id we will also apply function extensionality.
Thus, it suffices to show that indΣ(λx. λy. f((x, y))) = f . We apply function
extensionality again, so it suffices to show that∏

(t:
∑

(x:A) B(x))indΣ

(
λx. λy. f((x, y))

)
(t) = f(t).

We obtain this homotopy by another application of Σ-induction.

Corollary 9.2.2. Let A, B, and X be types. Then the map

ev pair : (A×B → X)→ (A→ (B → X))

given by f 7→ λa. λb. f((a, b)) is an equivalence.

The universal property of identity types is sometimes called the type
theoretical Yoneda lemma: families of maps out of the identity type are
uniquely determined by their action on the reflexivity identification.

74 LECTURE 9. FUNCTION EXTENSIONALITY

Theorem 9.2.3. Let B be a type family over A, and let a : A. Then the map

ev refl :
(∏

(x:A)(a = x)→ B(x)
)
→ B(a)

given by λf. f(a, refla) is an equivalence.

Proof. The inverse ϕ is defined by path induction, taking b : B(a) to the
function f satisfying f(a, refla) ≡ b. It is immediate that ev refl ◦ ϕ ∼ id.

To see that ϕ ◦ ev refl ∼ id, let f :
∏

(x:A)(a = x) → B(x). To show that
ϕ(f(a, refla)) = f we use function extensionality (twice), so it suffices to show
that ∏

(x:A)

∏
(p:a=x)ϕ(f(a, refla), x, p) = f(x, p).

This follows by path induction on p, since ϕ(f(a, refla), a, refla) ≡ f(a, refla).

9.3 Composing with equivalences

We show in this section that a map f : A→ B is an equivalence if and only if
for any type X the precomposition map

– ◦ f : (B → X)→ (A→ X)

is an equivalence. Moreover, we will show in Theorem 9.3.3 that the ‘dependent
version’ of this statement also holds: a map f : A→ B is an equivalence if and
only if for any type family P over B, the precomposition map

– ◦ f :
(∏

(y:B)P (y)
)
→
(∏

(x:A)P (f(x))
)

is an equivalence. However, in our proof of this fact we will rely on a piece of
data that every equivalence satisfies in addition to being invertible.

Definition 9.3.1. We say that a map f : A→ B is a half-adjoint equiva-
lence, in the sense that there are

g : B → A

G : f ◦ g ∼ idB

H : g ◦ f ∼ idA

K : G · f ∼ f ·H.

We write half adj(f) for the type of such quadruples (g,G,H,K).

9.3. COMPOSING WITH EQUIVALENCES 75

To show that every equivalence is a half-adjoint equivalence, we also
introduce the notion of path-split maps.

Definition 9.3.2. We say that a map f : A → B is path-split if f has a
section, and for each x, y : A the map

apf (x, y) : (x = y)→ (f(x) = f(y))

also has a section. We write path split(f) for the type

sec(f)×
∏

(x,y:A)sec(apf (x, y)).

Theorem 9.3.3. For any map f : A→ B, the following are equivalent:

(i) f is an equivalence.

(ii) f is path-split.

(iii) f is a half-adjoint equivalence.

(iv) For any type family P over B the map(∏
(y:B)P (y)

)
→
(∏

(x:A)P (f(x))
)

given by s 7→ s ◦ f is an equivalence.

(v) For any type X the map

(B → X)→ (A→ X)

given by g 7→ g ◦ f is an equivalence.

Proof. To see that (i) implies (ii) we note that any equivalence has a section,
and its action on paths is an equivalence by Theorem 7.2.3 so again it has a
section.

To show that (ii) implies (iii), assume that f is path-split. Thus we have
(g,G) : sec(f), and the assumption that apf : (x = y)→ (f(x) = f(y)) has a
section for every x, y : A gives us a term of type∏

(x:A)fibapf (G(f(x))).

By Theorem 9.1.4 this type is equivalent to∑
(H:

∏
(x:A) g(f(x))=x)

∏
(x:A)G(f(x)) = apf (H(x)) ,

76 LECTURE 9. FUNCTION EXTENSIONALITY

so we obtain H : g ◦ f ∼ idA and K : G · f ∼ f · H, showing that f is a
half-adjoint equivalence.

To show that (iii) implies (iv), suppose that f comes equipped with
(g,G,H,K) witnessing that f is a half-adjoint equivalence. Then we define
the inverse of – ◦ f to be the map

ϕ :
(∏

(x:A)P (f(x))
)
→
(∏

(y:B)P (y)
)

given by s 7→ λy. trP (G(y), sg(y)).
To see that ϕ is a section of – ◦ f , let s :

∏
(x:A) P (f(x)). By function

extensionality it suffices to construct a homotopy ϕ(s) ◦ f ∼ s. In other words,
we have to show that

trP (G(f(x)), s(g(f(x))) = s(x)

for any x : A. Now we use the additional homotopy K from our assumption
that f is a half-adjoint equivalence. Since we have K(x) : G(f(x)) = apf (H(x))
it suffices to show that

trP (apf (H(x)) , sgf(x)) = s(x).

A simple path-induction argument yields that

trP (apf (p)) ∼ trP◦f (p)

for any path p : x = y in A, so it suffices to construct an identification

trP◦f (H(x), sgf(x)) = s(x).

We have such an identification by apdH(x)(s).
To see that ϕ is a retraction of – ◦ f , let s :

∏
(y:B) P (y). By function

extensionality it suffices to construct a homotopy ϕ(s ◦ f) ∼ s. In other words,
we have to show that

trP (G(y), sfg(y)) = s(y)

for any y : B. We have such an identification by apdG(y)(s). This completes
the proof that (iii) implies (iv).

Note that (v) is an immediate consequence of (iv), since we can just choose
P to be the constant family X.

It remains to show that (v) implies (i). Suppose that

– ◦ f : (B → X)→ (A→ X)

9.3. EXERCISES 77

is an equivalence for every type X. Then its fibers are contractible by Theo-
rem 6.3.3. In particular, choosing X ≡ A we see that the fiber

fib–◦f (idA) ≡
∑

(h:B→A)h ◦ f = idA

is contractible. Thus we obtain a function h : B → A and a homotopy
H : h ◦ f ∼ idA showing that h is a retraction of f . We will show that h is also
a section of f . To see this, we use that the fiber

fib–◦f (f) ≡
∑

(i:B→B)i ◦ f = f

is contractible (choosing X ≡ B). Of course we have (idB, reflf) in this fiber.
However we claim that there also is an identification p : (f ◦h)◦f = f , showing
that (f ◦ h, p) is in this fiber, because

(f ◦ h) ◦ f ≡ f ◦ (h ◦ f)

= f ◦ idA

≡ f

Now we conclude by the contractibility of the fiber that (idB, reflf) = (f ◦ h, p).
In particular we obtain that idB = f ◦ h, showing that h is a section of f .

Exercises

9.1 (a) Let P and Q be propositions. Show that

(P ↔ Q) ' (P ' Q).

(b) Show that P is a proposition if and only if P → P is contractible.
9.2 (a) Show that for any type A the type is contr(A) is a proposition.

(b) Show that for any type A and any k ≥ −2, the type is trunck(A) is
a proposition.

9.3 Let f : A→ B be a function.

(a) Show that if f is an equivalence, then the type
∑

(g:B→A) f ◦ g ∼ id
of sections of f is contractible.

(b) Show that if f is an equivalence, then the type
∑

(h:B→A) h ◦ f ∼ id
of retractions of f is contractible.

(c) Show that is equiv(f) is a proposition.
(d) Use Exercises 9.1 and 9.2 to show that is equiv(f) ' is contr(f).

Conclude that A ' B is a subtype of A→ B, and in particular that the
map pr1 : (A ' B)→ (A→ B) is an embedding.

78 LECTURE 9. FUNCTION EXTENSIONALITY

9.4 Show that path split(f) and half adj(f) are propositions for any map
f : A→ B.

9.5 Let f : X → Y be a map. Show that the following are equivalent:

(i) f is an equivalence.

(ii) For any type A, the map f ◦ – : XA → Y A is an equivalence.

9.6 Construct for any type A an equivalence

is invertible(idA) '
(

idA ∼ idA

)
.

9.7 (a) Show that the map

(0→ X)→ 1

given by λf. ? is an equivalence.
(b) Show that any type Y satisfying the property that the map

λf. ? : (Y → X)→ 1

is an equivalence for any X, is itself equivalent to 0.
9.8 (a) Show that the map

(A+B → X)→
(

(A→ X)× (B → X)
)

given by f 7→ (f ◦ inl, f ◦ inr) is an equivalence.
(b) Show that any type Y that is equipped with functions i : A→ Y

and j : B → Y and satisfies the condition that the map

λf. (f ◦ i, f ◦ j) : (Y → X)→
(

(A→ X)× (B → X)
)

is an equivalence for any X, is itself equivalent to A+B.
9.9 (a) Show that the map

(1→ X)→ X

given by λf. f(?) is an equivalence.
(b) Show that a type C is contractible if and only if it comes equipped

with a term c : C and satisfies the condition that the map

λf. f(c) : (C → X)→ X

is an equivalence for any X.

9.3. EXERCISES 79

9.10 Consider a commuting triangle

A B

X

h

f g

with H : f ∼ g ◦ h.

(a) Show that if h has a section, then sec(g) is a retract of sec(f).
(b) Show that if g has a retraction, then retr(h) is a retract of sec(f).

9.11 Let ei : Ai ' Bi be an equivalence for every i : I. Show that the map

λf. λi. ei ◦ f :
(∏

(i:I)Ai

)
→
(∏

(i:I)Bi

)
is an equivalence.

9.12 Consider a diagram of the form

A B

X
f g

(a) Show that the type
∑

(h:A→B) f ∼ g ◦ h is equivalent to the type of
fiberwise transformations∏

(x:X)fibf (x)→ fibg(x).

(b) Show that the type
∑

(h:A'B) f ∼ g ◦ h is equivalent to the type of
fiberwise equivalences∏

(x:X)fibf (x) ' fibg(x).

9.13 Consider a diagram of the form

A B

X Y.

f g

h

Show that the type
∑

(i:A→B) h ◦ f ∼ g ◦ i is equivalent to the type of
fiberwise transformations∏

(x:X)fibf (x)→ fibg(h(x)).

80 LECTURE 9. FUNCTION EXTENSIONALITY

9.14 Let A and B be sets. Show that type type A ' B of equivalences from
A to B is equivalent to the type A ∼= B of isomorphisms from A to B,
i.e. the type of quadruples (f, g,H,K) consisting of

f : A→ B

g : B → A

H : f ◦ g = idB

K : g ◦ f = idA.

Lecture 10

Homotopy pullbacks

Suppose we are given a map f : A→ B, and type families P over A, and Q
over B. Then any fiberwise map

g :
∏

(x:A)P (x)→ Q(f(x))

gives rise to a commuting square

∑
(x:A) P (x)

∑
(y:B)Q(y)

A B

totalf (g)

pr1 pr1

f

where totalf (g) is defined as λ(x, p). (f(x), g(x, y)). We will show in Theo-
rem 10.5.2 that g is a fiberwise equivalence if and only if this square is a
pullback square. This generalization of Theorem 7.1.3 is therefore abstracting
away from the notion of fiberwise equivalence, and it serves as our moti-
vating theorem to introduce pullbacks. The connection between pullbacks
and fiberwise equivalences has an important role in the descent theorem in
Lecture 14.

10.1 Cartesian squares

Recall that a square

C B

A X

q

p g

g

81

82 LECTURE 10. HOMOTOPY PULLBACKS

is said to commute if there is a homotopy H : f ◦ p ∼ g ◦ q. The pullback
property is a universal property of the upper left corner of a commuting square
(in our case C), characterizing the maps into it.

To describe the universal property of pullbacks we first need to have a
closer look at the anatomy of commuting squares.

Definition 10.1.1. A commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q can be dissected into three parts, consisting of a cospan,
a type, and a cone, where

(i) A cospan consists of three types A, X, and B, and maps f : A → X
and g : B → X.

(ii) Given a type C, a cone on the cospan A
f→ X

g← B with vertex C
consists of maps p : C → A, q : C → B and a homotopy H : f ◦ p ∼ g ◦ q.
We write

cone(C) :≡
∑

(p:C→A)

∑
(q:C→B)f ◦ p ∼ g ◦ q

for the type of cones with vertex C.

Given a cone with vertex C on a span A
f→ X

g← B and a map h : C ′ → C,
we construct a new cone with vertex C ′ in the following definition.

Definition 10.1.2. For any cone (p, q,H) with vertex C and any type C ′, we
define a map

cone map(p, q,H) : (C ′ → C)→ cone(C ′)

by h 7→ (p ◦ h, q ◦ h,H ◦ h).

Definition 10.1.3. We say that a commuting square

C B

A X

q

p g

f

10.1. CARTESIAN SQUARES 83

with H : f ◦ p ∼ g ◦ q is a pullback square, or that it is cartesian, if it
satisfies the universal property of pullbacks, which asserts that the map

cone map(p, q,H) : (C ′ → C)→ cone(C ′)

is an equivalence for every type C ′.

We often indicate the universal property with a diagram as follows:

C ′

C B

A X

q′

h

p′

q

p g

f

since the universal property states that for every cone (p′, q′, H ′) with vertex
C ′, the type of pairs (h, α) consisting of h : C ′ → C equipped with α :
cone map((p, q,H), h) = (p′, q′, H ′) is contractible by Theorem 6.3.3.

In order to see what goes on in the universal property of pullbacks, we
need to first characterize the identity type of cone(C), for any type C.

Lemma 10.1.4. Let (p, q,H) and (p′, q′, H ′) be cones on a cospan f : A →
X ← B : g, both with vertex C. Then the type (p, q,H) = (p′, q′, H ′) is
equivalent to the type of triples (K,L,M) consisting of

K : p ∼ p′

L : q ∼ q′

M : H � (g · L) ∼ (f ·K) � H ′

Remark 10.1.5. The homotopy M witnesses that the square

f ◦ p f ◦ p′

g ◦ q g ◦ q′

f ·K

H H′

g·L

of homotopies commutes. Therefore M is a homotopy of homotopies, and for
each z : C the identification M(z) witnesses that the square of identifications

f(p(z)) f(p′(z))

g(q(z)) g(q′(z))

apf (K(z))

H(z) H′(z)

apg(L(z))

84 LECTURE 10. HOMOTOPY PULLBACKS

commutes.

Proof of Lemma 10.1.4. By the fundamental theorem of identity types (Theo-
rem 7.2.1) and associativity of Σ-types (Exercise 5.10) it suffices to show that
the type∑

(p′:C→A)

∑
(q′:C→B)

∑
(H′:f◦p′∼g◦q′)

∑
(K:p∼p′)

∑
(L:q∼q′)H

� (g ·L) ∼ (f ·K) �H ′

is contractible. Now we apply Exercise 5.11 repeatedly to see that this type is
equivalent to the type∑

(p′:C→A)

∑
(K:p∼p′)

∑
(q′:C→B)

∑
(L:q∼q′)

∑
(H′:f◦p′∼g◦q′)H

� (g ·L) ∼ (f ·K) �H ′.

The types
∑

(p′:C→A) p ∼ p′ and
∑

(q′:C→B) q ∼ q′ are contractible by function
extensionality, and we have

(p, htpy.reflp) :
∑

(p′:C′→A)p ∼ p
′

(q, htpy.reflq) :
∑

(q′:C′→B)q ∼ q
′.

Thus we apply Exercise 6.4 to see that the type of tuples (p′,K, q′, L,H ′,M)
is equivalent to the type∑

(H′:f◦p′∼g◦q′)H
� htpy.reflg◦q ∼ htpy.reflf◦p � H

′.

Of course, the type H � htpy.reflg◦q ∼ htpy.reflf◦p � H
′ is equivalent to the type

H ∼ H ′, and
∑

(H′:f◦p∼g◦q)H ∼ H ′ is contractible.

As a corollary we obtain the following characterization of the universal
property of pullbacks.

Theorem 10.1.6. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q Then the following are equivalent:

(i) The square is a pullback square.

10.2. THE UNIQUE EXISTENCE OF PULLBACKS 85

(ii) For every type C ′ and every cone (p′, q′, H ′) with vertex C ′, the type of
quadruples (h,K,L,M) consisting of

h : C ′ → C

K : p ◦ h ∼ p′

L : q ◦ h ∼ q′

M : (H · h) � (g · L) ∼ (f ·K) � H ′

is contractible.

Remark 10.1.7. The homotopy M in Theorem 10.1.6 witnesses that the square

f ◦ p ◦ h f ◦ p′

g ◦ q ◦ h g ◦ q′

f ·K

H·h H′

g·L

of homotopies commutes.

10.2 The unique existence of pullbacks

Definition 10.2.1. Let f : A→ X and B → X be maps. Then we define

A×X B :≡
∑

(x:A)

∑
(y:B)f(x) = g(y)

π1 :≡ pr1 : A×X B → A

π2 :≡ pr1 ◦ pr2 : A×X B → B

π3 :≡ pr2 ◦ pr2 : f ◦ π1 ∼ g ◦ π2.

The type A×X B is called the canonical pullback of f and g.

Note that A×X B depends on f and g, although this dependency is not
visible in the notation.

Theorem 10.2.2. Given maps f : A → X and g : B → X, the commuting
square

A×X B B

A X,

π2

π1 g

f

is a pullback square.

86 LECTURE 10. HOMOTOPY PULLBACKS

Proof. Let C be a type. Our goal is to show that the map

cone map(π1, π2, π3) : (C → A×X B)→ cone(C)

is an equivalence. By double application of Theorem 9.1.4 we obtain equiva-
lences

(C → A×X B) ≡ C →
∑

(x:A)

∑
(y:B)f(x) = g(y)

'
∑

(p:C→A)

∏
(z:C)

∑
(y:B)f(p(z)) = y

'
∑

(p:C→A)

∑
(q:C→B)

∏
(z:C)f(p(z)) = g(q(z))

≡ cone(C)

The composite of these equivalences is the map

λf. (λz. pr1(f(z)), λz. pr1(pr2(f(z))), λz. pr2(pr2(f(z)))),

which is exactly the map cone map(π1, π2, π3), and since it is a composite of
equivalences it follows that it is itself an equivalence.

In the following lemma we establish the uniqueness of pullbacks up to
equivalence via a 3-for-2 property for pullbacks.

Lemma 10.2.3. Consider the squares

C B C ′ B

A X A X

q

p g

q′

p′ g

f f

with homotopies H : f ◦ p ∼ g ◦ q and H ′ : f ◦ p′ ∼ g ◦ q′. Furthermore, suppose
we have a map h : C ′ → C equipped with

K : p ◦ h ∼ p′

L : q ◦ h ∼ q′

M : (H · h) � (g · L) ∼ (f ·K) � H ′.

If any two of the following three properties hold, so does the third:

(i) C is a pullback.

(ii) C ′ is a pullback.

(iii) h is an equivalence.

10.2. THE UNIQUE EXISTENCE OF PULLBACKS 87

Proof. By the characterization of the identity type of cone(C ′) given in
Lemma 10.1.4 we obtain an identification

cone map((p, q,H), h) = (p′, q′, H ′)

from the triple (K,L,M). Let D be a type, and let k : D → C ′ be a map. We
observe that

cone map((p, q,H), (h ◦ k)) ≡ (p ◦ (h ◦ k), q ◦ (h ◦ k), H ◦ (h ◦ k))

≡ ((p ◦ h) ◦ k, (q ◦ h) ◦ k, (H ◦ h) ◦ k)

≡ cone map(cone map((p, q,H), h), k)

= cone map((p′, q′, H ′), k).

Thus we see that the triangle

(D → C ′) (D → C)

cone(D)

h◦–

cone map(p′,q′,H′) cone map(p,q,H)

commutes. Therefore it follows from the 3-for-2 property of equivalences
established in Exercise 5.5, that if any two of the following properties hold,
then so does the third:

(i) The map cone map(p, q,H) : (D → C)→ cone(D) is an equivalence,

(ii) The map cone map(p′, q′, H ′) : (D → C ′)→ cone(D) is an equivalence,

(iii) The map h ◦ – : (D → C ′)→ (D → C) is an equivalence.

Thus the 3-for-2 property for pullbacks follows from the fact that h is an
equivalence if and only if h ◦ – : (D → C ′)→ (D → C) is an equivalence for
any type D, which was established in Exercise 9.5.

Pullbacks are not only unique in the sense that any two pullbacks of the
same cospan are equivalent, they are uniquely unique in the sense that the
type of quadruples (h,K,L,M) as in Lemma 10.2.3 is contractible.

Corollary 10.2.4. Suppose both commuting squares

C B C ′ B

A X A X

q

p g

q′

p′ g

f f

88 LECTURE 10. HOMOTOPY PULLBACKS

with homotopies H : f ◦ p ∼ g ◦ q and H ′ : f ◦ p′ ∼ g ◦ q′ are pullback squares.
Then the type of quadruples (e,K,L,M) consisting of an equivalence e : C ′ ' C
equipped with

K : p ◦ e ∼ p′

L : q ◦ e ∼ q′

M : (g · L) � (H · e) ∼ (f ·K) � H ′.

is contractible.

Proof. We have seen that the type of quadruples (h,K,L,M) is equivalent to
the fiber of cone map(p, q,H) at (p′, q′, H ′). By Lemma 10.2.3 it follows that
h is an equivalence. Since is equiv(h) is a proposition (and hence contractible
as soon as it is inhabited) it follows that the type of quadruples (e,K,L,M) is
contractible.

Definition 10.2.5. Given a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q, we define the gap map

gap(p, q,H) : C → A×X B

by λz. (p(z), q(z), H(z)). Furthermore, we will write

is pullback(f, g,H) :≡ is equiv(gap(p, q,H)).

Theorem 10.2.6. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q. The following are equivalent:

(i) The square is a pullback square

10.3. FIBER PRODUCTS 89

(ii) There is a term of type

is pullback(p, q,H) :≡ is equiv(gap(p, q,H)).

Proof. Note that there are homotopies

K : π1 ◦ gap(p, q,H) ∼ p
L : π2 ◦ gap(p, q,H) ∼ q
M : (π3 · gap(p, q,H)) � (g · L) ∼ (f ·K) � H.

given by

K :≡ λz. reflp(z)

L :≡ λz. reflq(z)

M :≡ λz. right unit(H(z)) � left unit(H(z))−1.

Therefore the claim follows by Lemma 10.2.3.

10.3 Fiber products

An important special case of pullbacks occurs when the cospan is of the form

A 1 B.

In this case, the pullback is just the cartesian product.

Lemma 10.3.1. Let A and B be types. Then the square

A×B B

A 1

pr2

pr1 const?

const?

which commutes by the homotopy constrefl? is a pullback square.

Proof. By Theorem 10.2.6 it suffices to show that

gap(pr1, pr2, λ(a, b). refl?)

is an equivalence. Its inverse is the map λ(a, b, p). (a, b).

The following generalization of Lemma 10.3.1 is the reason why pullbacks
are sometimes called fiber products.

90 LECTURE 10. HOMOTOPY PULLBACKS

Theorem 10.3.2. Let P and Q be families over a type X. Then the square

∑
(x:X) P (x)×Q(x)

∑
(x:X)Q(x)

∑
(x:X) P (x) X,

λ(x,(p,q)). (x,q)

λ(x,(p,q)). (x,p) pr1

pr1

which commutes by the homotopy

H :≡ λ(x, (p, q)). reflx,

is a pullback square.

Proof. By Theorem 10.2.6 it suffices to show that the gap map is an equivalence.
The gap map is homotopic to the function

λ(x, (p, q)). ((x, p), (x, q), reflx)

is an equivalence. The inverse of this function is the map

λ((x, p), (y, q), α). (y, (trP (α, p), q)).

Corollary 10.3.3. For any f : A→ X and g : B → X, the square

∑
(x:X) fibf (x)× fibg(y) B

A X

λ(x,((a,p),(b,q))). b

λ(x,((a,p),(b,q))). a g

f

is a pullback square.

10.4 Fibers as pullbacks

Lemma 10.4.1. For any function f : A → B, and any b : B, consider the
square

fibf (b) 1

A B

const?

pr1 constb

f

which commutes by pr2 :
∏

(t:fibf (b)) f(pr1(t)) = b. This is a pullback square.

10.4. FIBERS AS PULLBACKS 91

Proof. By Theorem 10.2.6 it suffices to show that the gap map is an equivalence.
The gap map is homotopic to the function

total(λx. λp. (?, p))

The map λx. λp. (?, p) is a fiberwise equivalence by Exercise 6.4, so it induces
an equivalence on total spaces by Theorem 7.1.3.

Lemma 10.4.1 motivates the following definition of fiber sequences, which
play an important role in synthetic homotopy theory (and in algebraic topol-
ogy).

Definition 10.4.2. A fiber sequence consists of types F , E, and B with
base points x : F , y : E, and b : B, and maps

F E Bi p

preserving the base points in the sense that i(x) = y and p(y) = b, such that
the square

F E

1 B

i

p

b

is a pullback square. We often write F ↪→ E � B to indicate that we have a
fiber sequence.

Given a fiber sequence F ↪→ E � B, we call B the base space, E the
total space, and F the fiber.

Example 10.4.3. For any type family B over A and any a : A the square

B(a) 1

∑
(x:A)B(x) A

λy. (a,y)

const?

λ?. a

pr1

is a pullback square.
To see this, note that the gap map is homotopic to the function

e :≡ λy. ((a, y), refla).

This function is an equivalence by Exercise 7.5.
Thus we see that if we additionally suppose that there is a term b : B(a),

then we obtain a fiber sequence

B(a)
∑

(x:A)B(x) A.

92 LECTURE 10. HOMOTOPY PULLBACKS

10.5 Fiberwise equivalences

Lemma 10.5.1. Let f : A→ B, and let Q be a type family over B. Then the
square ∑

(x:A)Q(f(x))
∑

(y:B)Q(b)

A B

λ(x,q). (f(x),q)

pr1 pr1

f

commutes by H :≡ λ(x, q). reflf(x). This is a pullback square.

Proof. By Theorem 10.2.6 it suffices to show that the gap map is an equivalence.
The gap map is homotopic to the function

λ(x, q). (x, (f(x), q), reflf(x)).

The inverse of this map is given by λ(x, ((y, q), p)). (x, trQ(p−1, q)), and it is
straightforward to see that these maps are indeed mutual inverses.

Theorem 10.5.2. Let f : A → B, and let g :
∏

(a:A) P (a) → Q(f(a)) be a
fiberwise transformation. The following are equivalent:

(i) The commuting square

∑
(a:A) P (a)

∑
(b:B)Q(b)

A B

totalf (g)

f

is a pullback square.

(ii) g is a fiberwise equivalence.

Proof. The gap map is homotopic to the composite

∑
(x:A) P (x)

∑
(x:A)Q(f(x)) A×B

(∑
(y:B)Q(y)

)
total(g) gap′

where gap′ is the gap map for the square in Lemma 10.5.1. Since gap′ is an
equivalence, it follows by Exercise 5.5 and Theorem 7.1.3 that the gap map is
an equivalence if and only if g is a fiberwise equivalence.

10.5. FIBERWISE EQUIVALENCES 93

Lemma 10.5.3. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q, and consider the fiberwise transformation

fib(f,q,H) :
∏

(a:A)fibp(a)→ fibg(f(a))

given by λa. λ(c, u). (q(c), H(c)−1 � apf (u)). Then there is an equivalence

fibgap(p,q,H)((a, b, α)) ' fibfib(f,q,H)(a)((b, α
−1))

Proof. To obtain an equivalence of the desired type we simply concatenate
known equivalences:

fibh((a, b, α)) ≡
∑

(z:C)(p(z), q(z), H(z)) = (a, b, α)

'
∑

(z:C)

∑
(u:p(z)=a)

∑
(v:q(z)=b)H(z) � apg (v) = apf (u) � α

'
∑

((z,u):fibp(a))

∑
(v:q(z)=b)H(z)−1 � apf (u) = apg (v) � α−1

' fibϕ(a)((b, α
−1))

Corollary 10.5.4. Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q. The following are equivalent:

(i) The square is a pullback square.

(ii) The induced map on fibers

λx. λ(z, α). (q(z), H(z)−1 � apf (α)) :
∏

(x:A)fibp(x)→ fibg(f(x))

is a fiberwise equivalence.

94 LECTURE 10. HOMOTOPY PULLBACKS

Corollary 10.5.5. Consider a pullback square

C B

A X.

q

p g

f

If g is a k-truncated map, then so is p. In particular, if g is an embedding then
so is p.

Proof. Since the square is assumed to be a pullback square, it follows from
Corollary 10.5.4 that for each x : A, the fiber fibp(x) is equivalent to the fiber
fibg(f(x)), which is k-truncated. Since k-truncated types are closed under
equivalences by Theorem 8.3.3, it follows that p is a k-truncated map.

Corollary 10.5.6. Consider a commuting square

C B

A X.

q

p g

f

and suppose that g is an equivalence. Then the following are equivalent:

(i) The square is a pullback square.

(ii) The map p : C → A is an equivalence.

Proof. If the square is a pullback square, then by Theorem 10.5.2 the fibers of
p are equivalent to the fibers of g, which are contractible by Theorem 6.3.3.
Thus it follows that p is a contractible map, and hence that p is an equivalence.

If p is an equivalence, then by Theorem 6.3.3 both fibp(x) and fibg(f(x))
are contractible for any x : X. It follows by Exercise 6.3 that the induced
map fibp(x)→ fibg(f(x)) is an equivalence. Thus we apply Corollary 10.5.4 to
conclude that the square is a pullback.

Theorem 10.5.7. Consider a diagram of the form

A B

X Y.

f g

h

10.6. THE PULLBACK PASTING PROPERTY 95

Then the type of triples (i,H, p) consisting of a map i : A→ B, a homotopy
H : h ◦ f ∼ g ◦ i, and a term p witnessing that the square

A B

X Y.

f

i

g

h

is a pullback square, is equivalent to the type of fiberwise equivalences∏
(x:X)fibf (x) ' fibg(h(x)).

Corollary 10.5.8. Let h : X → Y be a map, and let P and Q be families over
X and Y , respectively. Then the type of triples (i,H, p) consisting of a map

i :
(∑

(x:X)P (x)
)
→
(∑

(y:Y)Q(y)
)
,

a homotopy H : h ◦ pr1 ∼ pr1 ◦ i, and a term p witnessing that the square∑
(x:X) P (x)

∑
(y:Y)Q(y)

X Y.

pr1

i

pr1

h

is a pullback square, is equivalent to the type of fiberwise equivalences∏
(x:X)P (x) ' Q(h(x)).

10.6 The pullback pasting property

The following theorem is also called the pasting property of pullbacks.

Theorem 10.6.1. Consider a commuting diagram of the form

A B C

X Y Z

k

f

l

g h

i j

with homotopies H : i ◦ f ∼ g ◦ k and K : j ◦ g ∼ h ◦ l, and the homotopy

(j ·H) � (K · k) : j ◦ i ◦ f ∼ h ◦ l ◦ k

96 LECTURE 10. HOMOTOPY PULLBACKS

witnessing that the outer rectangle commutes. Furthermore, suppose that the
square on the right is a pullback square. Then the following are equivalent:

(i) The square on the left is a pullback square.

(ii) The outer rectangle is a pullback square.

Proof. The commutativity of the two squares induces fiberwise transformations∏
(x:X)fibf (x)→ fibg(i(x))∏
(y:Y)fibg(y)→ fibh(j(y)).

By the assumption that the square on the right is a pullback square, it follows
from Corollary 10.5.4 that the fiberwise transformation∏

(y:Y)fibg(y)→ fibh(j(y))

is a fiberwise equivalence. Therefore it follows from 3-for-2 property of equiva-
lences that the fiberwise transformation∏

(x:X)fibf (x)→ fibg(i(x))

is a fiberwise equivalence if and only if the fiberwise transformation∏
(x:X)fibf (x)→ fibh(j(i(x)))

is a fiberwise equivalence. Now the claim follows from one more application of
Corollary 10.5.4.

10.7 The disjointness of coproducts

As an application of the theory of pullbacks, we show that coproducts are
disjoint. In this section we will write

[f, g] : A+B → X

for the unique map satisfying [f, g](inl(x)) ≡ f(x) and [f, g](inr(y)) ≡ g(y),
where f : A→ X and g : B → X. Furthermore, we will write

f + g :≡ [inl ◦ f, inr ◦ g] : A+B → X +B

for any f : A→ X and g : B → Y .

10.7. THE DISJOINTNESS OF COPRODUCTS 97

Lemma 10.7.1. Let X be a type. Then we have the pullback squares

X 1 0 1

X 2 X 2,

const?

id const02 const12

const02 const02

and we have similar pullback squares with the roles of 02 and 12 reversed.

Proof. For the first square we observe that both squares and the outer rectangle
in the diagram

X 1 1

X 1 2.

const02

const? const02

are pullback squares. To see this, recall that the identity type 02 = 02 is
contractible by Exercise 8.3. Therefore it follows that the square on the right
is a pullback square by Exercise 10.1. The square on the left is a pullback
square by Corollary 10.5.6. Therefore the outer rectangle is a pullback square
by Theorem 10.6.1.

For the second square we observe that both squares end the outer rectangle
in the diagram

0 0 1

X 1 2.

const12

const? const02

are pullback squares. To see this, recall that the identity type 02 = 12 is
equivalent to the empty type by Exercise 8.3. Therefore it follows that the
square on the right is a pullback. It is also straightforward to verify that the
square on the left is a pullback. Therefore it follows from Theorem 10.6.1 that
the outer rectangle is a pullback.

Lemma 10.7.2. For any two types A and B, the squares

A 1 B 1

A+B 2 A+B 2

const?

inl const02

const?

inr const12

[const02 ,const12] [const02 ,const12]

are pullback squares.

98 LECTURE 10. HOMOTOPY PULLBACKS

Proof. The two cases are similar, so we only give the proof that the left square
is a pullback. The left square commutes by the homotopy

H :≡ htpy.reflconst02
.

To see that the asserted square is a pullback square we use Theorem 10.2.6
and show that the gap map is an equivalence. First we note that the gap map
is homotopic to the function e : A→ (A+B)×2 1 is defined by

λx. (inl(x), ?, refl02).

The inverse is defined by the induction principle of coproducts by

e−1(inl(x), t, α) :≡ x
e−1(inr(y), t, α) :≡ ind0(ζ(α)),

where ζ :
∏

(x,y:2)(x = y)→ Eq2(x, y) is the canonical map of the identity type
of 2 into the observational equality on 2. In the case of α : 02 = 12 we obtain
a term of Eq2(02, 12) ≡ 0. It is immediate from the computation rules that
e−1 ◦ e ≡ id.

The homotopy e ◦ e−1 ∼ id is again constructed by the induction principle
of coproducts. In the inl-case we have e(e−1(inl(x), t, α)) ≡ (inl(x), ?, refl02).
We define the identification

(inl(x), ?, refl02) = (inl(x), t, α)

by singleton induction on t : 1 and α : 02 = 02 (both of which are terms of
contractible types). Thus, it suffices to provide an identification

(inl(x), ?, refl02) = (inl(x), ?, refl02),

which we have by reflexivity. The inr-case is again automatic, since we obtain
a term of the empty type from α : 02 = 12. This completes the proof that e is
an equivalence.

Corollary 10.7.3. The maps inl : A → A + B and inr : B → A + B are
embeddings.

Proof. By the pullback squares of Lemma 10.7.2 and Corollary 10.5.5 it suffices
to show that 1→ 2 is an embedding. This is Exercise 8.9.

10.7. EXERCISES 99

Theorem 10.7.4. Coproducts are disjoint in the sense that for any two types
A and B, the commuting square

0 B

A A+B

inr

inl

is a pullback square.

Proof. Now consider the commuting diagram

0 B 1

A A+B 2.

inr const12

inl [const02 ,const12]

By Lemma 10.7.1 it follows that the outer rectangle is a pullback square. The
square on the right is a pullback square by Lemma 10.7.2. Therefore the square
on the left is a pullback square by Theorem 10.6.1.

Corollary 10.7.5. Let A and B be types. There are equivalences

(inl(x) = inl(x′)) ' (x =A x
′)

(inl(x) = inr(y′)) ' 0

(inr(y) = inl(x′)) ' 0

(inr(y) = inr(y′)) ' (y =B y′).

Proof. The cases

(inl(x) = inl(x′)) ' (x =A x
′)

(inr(y) = inr(y′)) ' (y =B y′).

follow from Corollary 10.7.3 since both inl and inr are embeddings. The
remaining cases follow from the disjointness of coproducts, proven in Theo-
rem 10.7.4.

Exercises

10.1 (a) Show that the square

(x = y) 1

1 A

consty

constx

100 LECTURE 10. HOMOTOPY PULLBACKS

is a pullback square.
(b) Show that the square

(x = y) A

1 A×A

constx

const? δA

const(x,y)

is a pullback square, where δA : A → A × A is the diagonal of A,
defined in Exercise 8.1.

10.2 In this exercise we give an alternative characterization of the notion of
k-truncated map, compared to Theorem 8.3.7. Given a map f : A→ X
define the diagonal of f to be the map δf : A → A ×X A given by
x 7→ (x, x, reflf(x)).

(a) Construct an equivalence

fibδf ((x, y, p)) ' fibapf (p)

to show that the square

fibapf (p) A

1 A×X A

constx

const? δf

const(x,y,p)

is a pullback square, for every x, y : A and p : f(x) = f(y).
(b) Show that a map f : A→ X is (k + 1)-truncated if and only if δf

is k-truncated.

Conclude that f is an embedding if and only if δf is an equivalence.
10.3 Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q. Show that the following are equivalent:

(i) The square is a pullback square.

10.7. EXERCISES 101

(ii) For every type T , the commuting square

CT BT

AT XT

q◦–

p◦– g◦–

f◦–

is a pullback square.

Note: property (ii) is really just a rephrasing of the universal property
of pullbacks.

10.4 Consider a commuting square

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q. Show that the following are equivalent:

(i) The square is a pullback square.

(ii) The square

C X

A×B X ×X

g◦q

λx. (p(x),q(x)) δX

f×g

which commutes by λz. eq pair(H(z), reflg(q(z))) is a pullback square.

10.5 Show that if

C1 B1 C2 B2

A1 X1 A2 X2

are pullback squares, then so is

C1 × C2 B1 ×B2

A1 ×A2 X1 ×X2.

102 LECTURE 10. HOMOTOPY PULLBACKS

10.6 Consider for each i : I a pullback square

Ci Bi

Ai Xi

qi

pi gi

fi

with Hi : fi ◦ pi ∼ gi ◦ qi.

(a) Show that the square

∑
(i:I)Ci

∑
(i:I)Bi

∑
(i:I)Ai

∑
(i:I)Xi

total(q)

total(p) total(g)

total(f)

which commutes by the homotopy

total(H) :≡ λ(i, c). eq pair(refli, Hi(c))

is a pullback square.
(b) Show that the commuting square∏

(i:I)Ci
∏

(i:I)Bi

∏
(i:I)Ai

∏
(i:I)Xi

is a pullback square.

10.7 Let B be a type family over A. Show that the square

∏
(x:A)B(x)

(∑
(x:A)B(x)

)A

1 AA

λf. λx. (x,f(x))

pr1◦–

constidA

is a pullback square. Conclude that the type
∏

(x:A)B(x) is equivalent
to the type sec(pr1) of sections of the projection map.

10.7. EXERCISES 103

10.8 Consider a pullback square

C B

A X,

q

p g

f

with H : f ◦ p ∼ g ◦ q, and let c1, c2 : C. Show that the square

(c1 = c2) (q(c1) = q(c2))

(p(c1) = p(c2)) f(p(c1)) = g(q(c2)),

apq

app λβ.H(c1) � apg(β)

λα. apf (α) �H(c2)

which commutes by the naturality of homotopies (Definition 6.3.1), is
again a pullback square.

10.9 Suppose that

C B

A X

q

p g

f

with H : f ◦ p ∼ g ◦ q is a pullback square. Show that the square

C A

B X

p

q f

g

with H−1 : g ◦ q ∼ f ◦ p is again a pullback square.
10.10 Consider a commuting square

C B

A X.

p

q

g

f

with H : f ◦ p ∼ g ◦ q, and let h : C → A ×X B be the map given by
h(z) :≡ (p(c), q(c), H(c)). Show that the square

fibgap(p,q,H)((a, b, α)) fibp(a)

1 fibg(f(a))

const?

λ(c,β). (c,apπ1
(β))

fib(f,g,H)

const(b,α−1)

104 LECTURE 10. HOMOTOPY PULLBACKS

10.11 Consider a commuting diagram of the form

A0 B0 C0

A1 B1 C1

A2 B2 C2

with homotopies filling the (small) squares. Construct an equivalence

(A0 ×B0 C0)×(A1×B1
C1) (A2 ×B2 C2)

' (A0 ×A1 A2)×(B0×B1
B2) (C0 ×C1 C2).

This is also known as the 3-by-3 lemma for pullbacks.

Lecture 11

The univalence axiom

11.1 Type extensionality

The univalence axiom characterizes the identity type of the universe. Roughly
speaking, it asserts that equivalent types are equal. It is considered to be an
extensionality principle for types. In the following theorem we introduce the
univalence axiom and give two more equivalent ways of stating this.

Theorem 11.1.1. The following are equivalent:

(i) The univalence axiom: for any A : U the map

equiv eq :≡ indA=(idA) :
∏

(B:U)(A= B)→ (A ' B).

is a fiberwise equivalence. If this is the case, we write eq equiv for the
inverse of equiv eq.

(ii) The type ∑
(B:U)A ' B

is contractible for each A : U .

(iii) The principle of equivalence induction: for every A : U and for every
type family

P :
∏

(B:U)(A ' B)→ Type,

the map (∏
(B:U)

∏
(e:A'B)P (B, e)

)
→ P (A, idA)

given by f 7→ f(A, idA) has a section.

105

106 LECTURE 11. THE UNIVALENCE AXIOM

Proof. The equivalence of (i) and (ii) is a direct consequence of Theorem 7.2.1.
To see that (ii) and (iii) are equivalent, note that we have a commuting triangle∏

(t:
∑

(B:U) A'B) P (t)
∏

(B:U)

∏
(e:A'B) P ((B, e))

P ((A, idA))

indΣ

ϕ

f 7→f((A,idA)) f 7→f(A,idA)

ψ

The map indΣ has a section. Therefore it follows from Exercise 5.5 that ϕ has
a section if and only if ψ has a section. By Theorem 6.1.1 it follows that ϕ
has a section if and only if

∑
(B:U)A ' B is contractible.

From now on we will assume that the univalence axiom holds.

11.2 Groups in univalent mathematics

In this section we exhibit a typical way to use the univalence axiom, showing
that isomorphic groups can be identified. This is an instance of the structure
identity principle, which is described in more detail in section 9.8 of [2]. We will
see that in order to establish the fact that isomorphic groups can be identified,
it has to be part of the definition of a group that its underlying type is a set.
This is an important observation: in many branches of algebra the objects of
study are set-level structures1.

Definition 11.2.1. A group G consists of a type G equipped with

p : is set(G)

1 : G

i : G→ G

µ : G→ (G→ G),

satisfying the group laws:

assoc :
∏

(x,y,z:G)µ(µ(x, y), z) = µ(x, µ(y, z))

left unit :
∏

(x:G)µ(1, x) = x

right unit :
∏

(x:G)µ(x, 1) = x

left inv :
∏

(x:G)µ(i(x), x) = 1

1A notable exception is that of categories, which are objects at truncation level 1, i.e. at
the level of groupoids. For more on this, see Chapter 9 of [2].

11.2. GROUPS IN UNIVALENT MATHEMATICS 107

right inv :
∏

(x:G)µ(x, i(x)) = x.

The type Grp of all small groups is defined as

Grp :≡
∑

(G:U)

∑
(p:is set(G))

∑
(1:G)

∑
(i:G→G)

∑
(µ:G→(G→G))(∏

(x,y,z:G)µ(µ(x, y), z) = µ(x, µ(y, z))
)
×(∏

(x:G)µ(1, x) = x
)
×
(∏

(x:G)µ(x, 1) = x
)
×(∏

(x:G)µ(i : x, x) = 1
)
×
(∏

(x:G)µ(x, i(x)) = x
)
.

We will usually write x−1 for i(x), and xy for µ(x, y). The binary operation µ
is also referred to as the group operation.

Example 11.2.2. An important class of examples consists of the loop space
x = x of a 1-type X, for any x : X. We will write Ω(X,x) for the loop space
of X at x. Since X is assumed to be a 1-type, it follows that the type Ω(X,x)
is a set. Then we have

reflx : Ω(X,x)

inv : Ω(X,x)→ Ω(X,x)

concat : Ω(X,x)→ (Ω(X,x)→ Ω(X,x)),

and these operations satisfy the group laws, since the group laws are just a
special case of the groupoid laws for identity types, constructed in §4.2.

Using higher inductive types we will show in Lecture 16 that every group
is of this form.

Example 11.2.3. The type Z of integers can be given the structure of a group,
with the group operation being addition. The fact that Z is a set follows from
Theorem 8.2.4 and Exercise 8.4. The group laws were shown in Exercise 5.12.

Definition 11.2.4. Let G and G′ be groups. The type hom(G,G′) of group
homomorphisms from G to G′ is defined to be the type of pairs (h, p) con-
sisting of

h : G→ G′

p :
∏

(x,y:G)f(xy) = f(x)f(y).

Remark 11.2.5. Since preservation of the group operation is a property, we
will usually write h for the group homomorphism (h, p). Moreover, from
Corollary 8.3.9 we obtain that the projection map

pr1 : hom(G,G′)→ (G→ G′)

108 LECTURE 11. THE UNIVALENCE AXIOM

is an embedding. Therefore the equality type (h, p) = (h′, p′) is equivalent to
h = h′. In other words, to show that two group homomorphisms are equal it
suffices to show that their underlying maps are equal.

Lemma 11.2.6. For any two groups G, and H, the type hom(G,H) is equiva-
lent to the type of quadruples (f, α, β, γ) consisting of

f : G→ H

α : f(1) = 1

β :
∏

(x:G)f(x−1) = f(x)−1

γ :
∏

(x,y:G)f(xy) = f(x)f(y).

Proof. It suffices to show that for any group homomorphism f : hom(G,H),
the types f(1) = 1 and (∏

(x:G)f(x−1) = f(x)−1
)

are contractible. Since G is a set, both types are propositions. Therefore it
suffices to show they are inhabited. In other words, it suffices to show that
any group homomorphism preserves the unit element and inverses. These are
just calculations, where each step is an application of a group law:

f(1) = 1f(1) f(x−1) = f(x−1)1

= (f(1)−1f(1))f(1) = f(x−1)(f(x)f(x)−1)

= f(1)−1(f(1)f(1)) = (f(x−1)f(x))f(x)−1

= f(1)−1f(11) = f(x−1x)f(x)−1

= f(1)−1f(1) = f(1)f(x)−1

= 1. = 1f(x)−1

= f(x)−1.

Definition 11.2.7. Let G be a group. Then the identity homomorphism
idG : hom(G,G) is defined to be the pair (idG, p), where

p(x, y) :≡ reflxy.

Definition 11.2.8. Let h : hom(G,H) and k : hom(H,K) be group homo-
morphisms, with proofs p and q that h and k preserve the group operation,
respectively. Then we define

k ◦ h : hom(G,K)

11.2. GROUPS IN UNIVALENT MATHEMATICS 109

to be the group homomorphism with underlying map k ◦h. This map preserves
the group operation since

k(h(xy)) k(h(x)h(y)) k(h(x))k(h(y)).

Definition 11.2.9. Let h : hom(G,H) be a group homomorphism. Then h is
said to be an isomorphism if there is a group homomorphism h−1 : hom(H,G)
such that

h−1 ◦ h = idG and h ◦ h−1 = idH.

We write G ∼= H for the type of all group isomorphisms from G to H, i.e.

G ∼= H :≡
∑

(h:hom(G,H))

∑
(k:hom(H,G))(k ◦ h = idG)× (h ◦ k = idH).

Lemma 11.2.10. The type of isomorphisms G ∼= H is equivalent to the type

e : G ' H
α : e(1) = 1

β :
∏

(x:G)e(x
−1) = e(x)−1

γ :
∏

(x,y:G)e(xy) = e(x)e(y).

Proof. The standard proof showing that if the underlying map f : G → H
of a group homomorphism is invertible then its inverse is again a group
homomorphism, also works in type theory. Since being a group homomorphism
is a property, it follows that the type of group isomorphism is equivalent to
the type of group homomorphisms of which the underlying map has an inverse.
By Exercise 9.14 it follows that the type∑

(f :hom(G,H))is invertible(f)

of group homomorphism of which the underlying map has an inverse is equiva-
lent to the type ∑

(f :hom(G,H))is equiv(f).

of group homomorphisms of which the underlying map is an equivalence.

Definition 11.2.11. Let G : Grp be a group. We define the map

iso eq :
∏

(H:Grp)(G = H)→ (G ∼= H)

by path induction, taking reflG to idG . Indeed, idG is a group isomorphism
since it is its own inverse.

110 LECTURE 11. THE UNIVALENCE AXIOM

Theorem 11.2.12. The fiberwise transformation

iso eq :
∏

(G′:Grp)(G = G′)→ (G ∼= G′)

is a fiberwise equivalence, for any group G.

Proof. We will apply Theorem 7.2.1, and show that the type∑
(G′:Grp)G ∼= G

′

is contractible. By Lemma 11.2.10 it follows that the total space
∑

(G′:Grp)(G ∼=
G′) is equivalent to the type∑

(G′:U)

∑
(p′:is set(G′))∑

(1′:G)

∑
(i′:G′→G′)

∑
(µ′:G′→(G′→G′))

∑
(L′:group laws(G′,1′,i′,µ′))∑

(e:G'G′)

(
e(1) = 1′

)
×
(∏

(x:G)e(x
−1) = i′(e(x))

)
×(∏

(x,y:G)e(xy) = µ′(e(x), e(y))
)
.

By the univalence axiom, the type
∑

(G′:U)G ' G′ is contractible. Thus we
see that the above type is equivalent to∑

(q:is set(G))

∑
(1′:G)

∑
(i′:G→G)

∑
(µ′:G→(G→G))

∑
(L:group laws(G,1′,i′,µ′))

(1 = 1′)×
(∏

(x:G)x
−1 = i′(x)

)
×
(∏

(x,y:G)xy = µ′(x, y)
)
.

Of course, the types∑
(1′:G)1 = 1′∑
(i′:G→G)

∏
(x:G)x

−1 = i′(x)∑
(µ′:G→(G→G))

(∏
(x,y:G)xy = µ′(x, y)

)
are all contractible. Moreover, being a set is a proposition, and since G is a
set the group laws are propositions too. Since G is already assumed to be a
set on which the group operations satisfy the group laws, it follows that the
types is set(G) and group laws(G, 1, i, µ) are all contractible. This concludes
the proof that the total space

∑
(G′:Grp) G ∼= G′ is contractible.

Corollary 11.2.13. The type Grp is a 1-type.

Proof. It is straightforward to see that the type of group isomorphisms G ∼= H
is a set, for any two groups G and H.

11.3. EQUIVALENCE RELATIONS 111

11.3 Equivalence relations

Definition 11.3.1. Let R : A→ (A→ Prop) be a binary relation valued in
the propositions. We say that R is an (0-)equivalence relation if R comes
equipped with

ρ :
∏

(x:A)R(x, x)

σ :
∏

(x,y:A)R(x, y)→ R(y, x)

τ :
∏

(x,y,z:A)R(x, y)→ (R(y, z)→ R(x, z)).

Given an equivalence relation R : A → (A → Prop), the equivalence class
[x]R of x : A is defined to be

[x]R :≡ R(x).

Definition 11.3.2. Let R : A→ (A→ Prop) be a 0-equivalence relation. We
define for any x, y : A a map

class eq : R(x, y)→ ([x]R = [y]R).

Construction. Let r : R(x, y). By function extensionality, the identity type
R(x) = R(y) is equivalent to the type∏

(z:A)R(x, z) = R(y, z).

Let z : A. By the univalence axiom, the type R(x, z) = R(y, z) is equivalent
to the type

R(x, z) ' R(y, z).

We have the map τy,x,z(σ(r)) : R(x, z)→ R(y, z). Since this is a map between
propositions, we only have to construct a map in the converse direction to
show that it is an equivalence. The map in the converse direction is just
τx,y,z(r) : R(y, z)→ R(x, z).

Theorem 11.3.3. Let R : A→ (A→ Prop) be a 0-equivalence relation. Then
for any x, y : A the map

class eq : R(x, y)→ ([x]R = [y]R)

is an equivalence.

112 LECTURE 11. THE UNIVALENCE AXIOM

Proof. By the 3-for-2 property of equivalences, it suffices to show that the map

λr. λz. τy,x,z(σ(r)) : R(x, y)→
∏

(z:A)R(x, z) ' R(y, z)

is an equivalence. Since this is a map between propositions, it suffices to
construct a map of type(∏

(z:A)R(x, z) ' R(y, z)
)
→ R(x, y).

This map is simply λf. σy,x(fx(ρ(x))).

Remark 11.3.4. By Theorem 11.3.3 we can begin to think of the quotient A/R
of a type A by an equivalence relation R. Classically, the quotient is described
as the set of equivalence classes, and Theorem 11.3.3 establishes that two
equivalence classes [x]R and [y]R are equal precisely when x and y are related
by R.

However, the type A → Prop may contain many more terms than just
the R-equivalence classes. Therefore we are facing the task of finding a type
theoretic description of the smallest subtype of A → Prop containing the
equivalence classes. Another to think about this is as the image of R in
A→ Prop. The construction of the (homotopy) image of a map can be done
with higher inductive types, which we will do in Lecture 16.

The notion of 0-equivalence relation which we defined in Definition 11.3.1
fits in a hierarchy of ‘n-equivalence relations’, the study of which is a research
topic on its own. However, we already know an example of a relation that
should count as an ‘∞-equivalence relation’: the identity type. Analogous to
Theorem 11.3.3, the following theorem shows that the canonical map

(x = y)→ (IdA(x) = IdA(y))

is an equivalence, for any x, y : A. In other words, IdA(x) can be thought of as
the equivalence class of x with respect to the relation IdA.

Theorem 11.3.5. Assuming the univalence axiom on U , the map

IdA : A→ (A→ U)

is an embedding, for any type A : U .

Proof. Let a : A. By function extensionality it suffices to show that the
canonical map

(a = b)→ IdA(a) ∼ IdA(b)

11.4. ESSENTIALLY SMALL TYPES AND MAPS 113

that sends refla to λx. refl(a=x) is an equivalence for every b : A, and by
univalence it therefore suffices to show that the canonical map

(a = b)→
∏

(x:A)(a = x) ' (b = x)

that sends refla to λx. id(a=x) is an equivalence for every b : B. To do this we
employ the type theoretic Yoneda lemma, Theorem 9.2.3.

By the type theoretic Yoneda lemma we have an equivalence(∏
(x:A)(b = x)→ (a = x)

)
→ (a = b)

given by λf. f(b, reflb), for every b : A. Note that any fiberwise map
∏

(x:A)(b =
x)→ (a = x) induces an equivalence of total spaces by Exercise 6.3, since their
total spaces are are both contractible by Corollary 6.3.4. It follows that we
have an equivalence

ϕb :
(∏

(x:A)(b = x) ' (a = x)
)
→ (a = b)

given by λf. f(b, reflb), for every b : A.

Note that ϕa(λx. id(a=x)) ≡ refla. Therefore it follows by another applica-
tion of Theorem 9.2.3 that the unique family of maps

αb : (a = b)→
(∏

(x:A)(b = x) ' (a = x)
)

that satisfies αa(refla) = λx. id(a=x) is a fiberwise section of ϕ. It follows that
α is a fiberwise equivalence. Now the proof is completed by reverting the
direction of the fiberwise equivalences in the codomain.

11.4 Essentially small types and maps

It is a trivial observation, but nevertheless of fundamental importance, that
by the univalence axiom the identity types of U are equivalent to types in U ,
because it provides an equivalence (A = B) ' (A ' B), and the type A ' B
is in U for any A,B : U . Since the identity types of U are equivalent to types
in U , we also say that the universe is locally small.

Definition 11.4.1. (i) A type A is said to be essentially small if there
is a type X : U and an equivalence A ' X. We write

ess small(A) :≡
∑

(X:U)A ' X.

114 LECTURE 11. THE UNIVALENCE AXIOM

(ii) A map f : A→ B is said to be essentially small if for each b : B the
fiber fibf (b) is essentially small. We write

ess small(f) :≡
∏

(b:B)ess small(fibf (b)).

(iii) A type A is said to be locally small if for every x, y : A the identity
type x = y is essentially small. We write

loc small(A) :≡
∏

(x,y:A)ess small(x = y).

Lemma 11.4.2. The type ess small(A) is a proposition for any type A.

Proof. Let X be a type. Our goal is to show that the type∑
(Y :U)X ' Y

is a proposition. Suppose there is a type X ′ : U and an equivalence e : X ' X ′,
then the map

(X ' Y)→ (X ′ ' Y)

given by precomposing with e−1 is an equivalence. This induces an equivalence
on total spaces (∑

(Y :U)X ' Y
)
'
(∑

(Y :U)X
′ ' Y

)
However, the codomain of this equivalence is contractible by Theorem 11.1.1.
Thus it follows by Corollary 8.1.4 that the asserted type is a proposition.

Corollary 11.4.3. For each function f : A → B, the type ess small(f) is a
proposition, and for each type X the type loc small(X) is a proposition.

Proof. This follows from the fact that propositions are closed under dependent
products, established in Theorem 9.1.2.

Theorem 11.4.4. For any small type A : U there is an equivalence

map famA : (A→ U) '
(∑

(X:U)X → A
)
.

Proof. Note that we have the function

ϕ : λB.
(∑

(x:A)B(x), pr1

)
: (A→ U)→

(∑
(X:U)X → A

)
.

The fiber of this map at (X, f) is by univalence and function extensionality
equivalent to the type∑

(B:A→U)

∑
(e:(

∑
(x:A) B(x))'X)pr1 ∼ f ◦ e.

11.4. ESSENTIALLY SMALL TYPES AND MAPS 115

By Exercise 9.12 this type is equivalent to the type∑
(B:A→U)

∏
(a:A)B(a) ' fibf (a),

and by ‘type theoretic choice’, which was established in Theorem 9.1.4, this
type is equivalent to ∏

(a:A)

∑
(X:U)X ' fibf (a).

We conclude that the fiber of ϕ at (X, f) is equivalent to the type ess small(f).
However, since f : X → A is a map between small types it is essentially small.
Moreover, since being essentially small is a proposition by Lemma 11.4.2, it
follows that fibϕ((X, f)) is contractible for every f : X → A. In other words,
ϕ is a contractible map, and therefore it is an equivalence.

Remark 11.4.5. The inverse of the map

ϕ : (A→ U)→
(∑

(X:U)X → A
)
.

constructed in Theorem 11.4.4 is the map (X, f) 7→ fibf .

Theorem 11.4.6. Let f : A→ B be a map. Then there is an equivalence

ess small(f) ' is classified(f),

where is classified(f) is the type of quadruples (F, F̃ ,H, p) consisting of maps
F : B → U and F̃ : A→

∑
(X:U)X, a homotopy H : F ◦ f ∼ pr1 ◦ F̃ , such that

the commuting square

A
∑

(X:U)X

B U

F̃

f pr1

F

is a pullback square, as witnessed by p2. If f comes equipped with a term of
type is classified(f), we also say that f is classified by the universal family.

Proof. From Exercise 9.13 we obtain that the type of pairs (F̃ ,H) is equivalent
to the type of fiberwise transformations∏

(b:B)fibf (b)→ F (b).

2The universal property of the pullback is not expressible by a type. However, we may
take the type of p : is equiv(h), where h : A→ B ×U

(∑
(X:U) X

)
is the map obtained by the

universal property of the canonical pullback.

116 LECTURE 11. THE UNIVALENCE AXIOM

By Corollary 10.5.4 the square is a pullback square if and only if the induced
map ∏

(b:B)fibf (b)→ F (b)

is a fiberwise equivalence. Thus the data (F, F̃ ,H, pb) is equivalent to the
type of pairs (F, e) where e is a fiberwise equivalence from fibf to F . By
Theorem 9.1.4 the type of pairs (F, e) is equivalent to the type ess small(f).

Remark 11.4.7. For any type A (not necessarily small), and any B : A→ U ,
the square ∑

(x:A)B(x)
∑

(X:U)X

A U

pr1

λ(x,y). (B(x),y)

pr1

B

is a pullback square. Therefore it follows that for any family B : A → U of
small types, the projection map pr1 :

∑
(x:A)B(x)→ A is an essentially small

map. To see that the claim is a direct consequence of Lemma 10.5.1 we write
the asserted square in its rudimentary form:

∑
(x:A) El(B(x))

∑
(X:U) El(X)

A U .

pr1

λ(x,y). (B(x),y)

pr1

B

In the following theorem we show that a type is small if and only if its
diagonal is classified by U .

Theorem 11.4.8. Let A be a type. The following are equivalent:

(i) A is locally small.

(ii) There are maps I : A×A→ U and Ĩ : A→
∑

(X:U)X, and a homotopy

H : I ◦ δA ∼ pr1 ◦ Ĩ such that the commuting square

A
∑

(X:U)X

A×A U

Ĩ

δA pr1

I

is a pullback square.

11.4. EXERCISES 117

Proof. In Exercise 8.1 we have established that the identity type x = y is the
fiber of δA at (x, y) : A × A. Therefore it follows that A is locally small if
and only if the diagonal δA is essentially small. Now the result follows from
Theorem 11.4.6.

Exercises

11.1 Show that for any P : X → U and any p : x = y in X, we have

equiv eq(apP (p)) ∼ trP (p).

11.2 (a) Use the univalence axiom to show that the type
∑

(A:U) is contr(A)
of all contractible types in U is contractible.

(b) Use Corollaries 8.3.4 and 9.1.3 and Exercise 9.3 to show that if A
and B are (k+ 1)-types, then the type A ' B is also a (k+ 1)-type.

(c) Use univalence to show that the universe of k-types

U≤k :≡
∑

(X:U)is trunck(X)

is a (k + 1)-type, for any k ≥ −2.
(d) It follows that the universe of propositions U≤−1 is a set. However,

show that U≤−1 is not a proposition.
(e) Show that (2 ' 2) ' 2, and conclude by the univalence axiom that

the universe of sets U≤0 is not a set.
11.3 Use the univalence axiom to show that the type

∑
(P :Prop) P is con-

tractible.
11.4 Let A and B be small types.

(a) Construct an equivalence

(A→ (B → U)) '
(∑

(S:U)(S → A)× (S → B)
)

(b) We say that a relation R : A→ (B → U) is functional if it comes
equipped with a term of type

is function(R) :≡
∏

(x:A)is contr
(∑

(y:B)R(x, y)
)

For any function f : A→ B, show that the graph of f

graphf : A→ (B → U)

given by graphf (a, b) :≡ (f(a) = b) is a functional relation from A
to B.

118 LECTURE 11. THE UNIVALENCE AXIOM

(c) Construct an equivalence(∑
(R:A→(B→U))is function(R)

)
' (A→ B)

(d) Given a relation R : A→ (B → U) we define the opposite relation

Rop : B → (A→ U)

by Rop(y, x) :≡ R(x, y). Construct an equivalence(∑
(R:A→(B→U))is function(R)× is function(Rop)

)
' (A ' B).

11.5 (a) Show that any proposition is locally small.
(b) Show that any essentially small type is locally small.
(c) Show that the function type A→ X is locally small whenever A is

essentially small and X is locally small.
11.6 Let f : A→ B be a map. Show that the following are equivalent:

(i) The map f is locally small in the sense that for every x, y : A, the
action on paths of f

apf : (x = y)→ (f(x) = f(y))

is an essentially small map.

(ii) The diagonal δf of f as defined in Exercise 10.2 is classified by the
universal fibration.

Lecture 12

The circle

We have seen inductive types, in which we describe a type by its constructors
and an induction principle that allows us to construct sections of dependent
types. Inductive types are freely generated by their constructors, which describe
how we can construct their terms.

However, many familiar constructions in algebra involve the construction
of algebras by generators and relations. For example, the free abelian group
with two generators is described as the group with generators x and y, and
the relation xy = yx.

In this chapter we introduce higher inductive types, where we follow a
similar idea: to allow in the specification of inductive types not only point
constructors, but also path constructors that give us relations between the point
constructors. The ideas behind the definition of higher inductive types are
introduced by studying the simplest non-trivial example: the circle. Moreover,
we show that the loop space of the circle is equivalent to Z by constructing
the universal cover of the circle as an application of the univalence axiom.

12.1 The universal property of the circle

The circle is defined as a higher inductive type S1 that comes equipped with

base : S1

loop : base = base.

Just like for ordinary inductive types, the induction principle for higher in-
ductive types provides us with a way of constructing sections of dependent
types. However, we need to take the path constructor loop into account in the
induction principle.

119

120 LECTURE 12. THE CIRCLE

By applying a section f :
∏

(t:S1) P (t) to the base point of the circle, we
obtain a term f(base) : P (base). Moreover, using the dependent action on
paths of f of Definition 4.4.2 we also obtain for any dependent function
f :
∏

(t:S1) P (t) a path

apdf (loop) : trP (loop, f(base)) = f(base)

in the fiber P (base).

Definition 12.1.1. Let P be a type family over the circle. The dependent
action on generators is the map

dgenS1 :
(∏

(t:S1)P (t)
)
→
(∑

(y:P (base))trP (loop, y) = y
)

(12.1)

given by dgenS1(f) :≡ (f(base), apdf (loop)).

We now give the full specification of the circle.

Definition 12.1.2. The circle is a type S1 that comes equipped with

base : S1

loop : base = base,

and satisfies the induction principle of the circle, which provides for each
type family P over S1 a map

indS1 :
(∑

(y:P (base))trP (loop, y) = y
)
→
(∏

(t:S1)P (t)
)
,

and a homotopy witnessing that indS1 is a section of dgenS1

dgenS1 ◦ indS1 ∼ id

for the computation rule.

Remark 12.1.3. The induction principle of the circle provides us with a depen-
dent function f :

∏
(t:S1) P (t) equipped with an identification

(f(base), apdf (loop)) = (x, p),

for any x : P (base) and p : trP (loop, x) = x. By Theorem 5.3.1 the identi-
fication (f(base), apdf (loop)) = (x, p) is equivalently described as a pair of
identifications

α : f(base) = x

β : tr(α, apdf (loop)) = p.

Here, the transport is taken with respect to the family x 7→ trP (loop, x) = x.

12.1. THE UNIVERSAL PROPERTY OF THE CIRCLE 121

The identity type tr(α, apdf (loop)) = p is equivalent to the type

apdf (loop) � α = aptrP (loop)(α) � p.

Indeed, such an equivalence can be constructed by path induction, because
types reduce to the type apdf (loop) = p when α ≡ reflf(x). Therefore we obtain
from the computation rule of the circle an identification α : f(base) = x, and
an identification

β′ : apdf (loop) � α = aptrP (loop)(α) � p

witnessing that the square

trP (loop, f(base)) trP (loop, x)

f(base) x

apdf (loop)

aptrP (loop)(α)

p

α

commutes.

For the remainder of this section we establish the universal property of
the circle. The proof of Theorem 12.1.4 requires Lemmas 12.1.5 and 12.1.6,
which we state after we encounter their application.

Theorem 12.1.4. For each type X, the action on generators

genS1 : (S1 → X)→
∑

(x:X)x = x

given by f 7→ (f(base), apf (loop)) is an equivalence.

Proof. Let x : X and let p : x = x. By Exercise 4.3 we have an identification

tr triv(loop, x) : trWS1X
(loop, x) = x,

from which we obtain a fiberwise equivalence

ϕ :
∏

(x:X)(x = x)→ (trWS1X
(loop, x) = x)

given by p 7→ tr triv(loop, x)�p. Moreover, for any f : A→ B, and any p : x = y
there is an identification tr triv(p, f(x)) � apf (p) = apdf (p), so it follows that
the triangle

(S1 → X)

∑
(x:X) x = x

∑
(x:X) trWS1X

(loop, x) = x

genS1
dgenS1

total(ϕ)

'

indS1

122 LECTURE 12. THE CIRCLE

commutes, and the map total(ϕ) is a fiberwise equivalence by Theorem 7.1.3.
Since the triangle commutes and indS1 is a section of dgenS1 , it follows that
the composite

recS1 :≡ indS1 ◦ total(ϕ)

is a section of genS1 . Therefore it remains to show that recS1 is also a retraction
of genS1 , i.e. we have to show that for every f : S1 → X there is an identification

recS1(genS1(f)) = f.

In Lemma 12.1.5 below we establish that

(genS1(recS1(genS1(f))) = genS1(f))→ (recS1(genS1(f)) = f).

We get an identification genS1(recS1(genS1(f))) = genS1(f) from the fact that
recS1 is a section of genS1 .

Lemma 12.1.5. Let f, g : S1 → X be two dependent functions. Then there is
a map

(genS1(f) = genS1(g))→ (f = g)

Proof. Let p : genS1(f) = genS1(g). By function extensionality, it suffices to
show that f ∼ g. However, since f ∼ g is just the type

∏
(t:S1) f(t) = g(t), we

can construct such a homotopy by S1-induction. Thus, it suffices to construct
a term of type ∑

(p:f(base)=g(base))trEf,g(loop, p) = p,

where Ef,g is the family over S1 given by t 7→ f(t) = g(t).
We claim that it suffices to construct for each p : f(base) = g(base) an

equivalence(
trEf,g(loop, p) = p

)
'
(

trL(p, apf (loop)) = apg (loop)
)
,

where L is the family over X given by x 7→ x = x. To see that this suffices, we
note that such a fiberwise equivalence induces an equivalence on total spaces,
and the total space∑

(p:f(base)=g(base))trL(p, apf (loop)) = apg (loop) ,

and is equivalent to gen(f) = gen(g), of which we have assumed a term.
The asserted fiberwise equivalence that we need for this proof to go through

requires a sufficient generalization so that it can be constructed by path
induction, so it is established separately in Lemma 12.1.6 below.

12.1. THE UNIVERSAL PROPERTY OF THE CIRCLE 123

With the following lemma we complete the proof of the universal property
of the circle.

Lemma 12.1.6.

(i) Let f, g : A→ B, and let Ef,g be the family over A given by

Ef,g(x) :≡ f(x) = g(x).

Then for any p : x = x′ in A there is an equivalence

(trEf,g(p, q) = q′) ' (apf (p) � q′ = q � apg (p)).

for any q : f(x) = g(x) and q′ : f(x′) = g(x′). In other words, there is
an identification trEf,g(p, q) = q′ if and only if the square

f(x) g(x)

f(x′) g(x′)

q

apf (p) apg(p)

q′

commutes.

(ii) Let L be the family over B given by L(y) :≡ y = y, and let q : y = y′ be
an identification in B. Then there is an equivalence

(trL(q, p) = p′) ' (q � p′ = p � q).

for any p : y = y and p′ : y′ = y′. In other words, there is an identification
trL(q, p) = p′ if and only if the square

y y

y′ y′

p

q q

p′

commutes.

(iii) Let f, g : A → B, let p : x = x be a loop in A, and let q : f(x) = g(x).
Then there is an equivalence

(trEf,g(p, q) = q) ' (trL(q, apf (p)) = apg (p)).

124 LECTURE 12. THE CIRCLE

Proof. The first claim follows by path induction on p, and the second claim
follows by path induction on q. The third claim follows by combining the first
two, since the types on both sides are equivalent to the type

apf (p) � q = q � apg (p)

of witnesses that the square

f(x) g(x)

f(x) g(x)

q

apf (p) apg(p)

q

commutes.

12.2 The fundamental cover of the circle

The fundamental cover of the circle is a family of sets over the circle with
contractible total space. Classically, the fundamental cover is described as a
map R → S1 that winds the real line around the circle. In homotopy type
theory there is no analogue of such a construction.

The type of small families over S1 is just the function type S1 → U , so
in fact we may use the universal property of the circle to construct small
dependent types over the circle. By the universal property, small type families
over S1 are equivalently described as pairs (X, p) consisting of a type X : U
and an identification p : X = X. This is where the univalence axiom comes in.
By the map

eq equivX,X : (X ' X)→ (X = X)

it suffices to provide an equivalence X ' X.

Definition 12.2.1. Consider a type X and every equivalence e : X ' X.
We will construct a dependent type D(X, e) : S1 → U with an equivalence
x 7→ xD : X ' D(X, e, base) for which the square

X D(X, e, base)

X D(X, e, base)

'

e trD(X,e)(loop)

'

12.2. THE FUNDAMENTAL COVER OF THE CIRCLE 125

commutes. We also write d 7→ dX for the inverse of this equivalence, so that
the relations

(xD)X = x (e(x)D) = trD(X,e)(loop, xD)

(dX)D = d (trD(X,e)(d))X = e(dX)

hold.
The type

∑
(X:U)X ' X is also called the type of descent data for the

circle.

Construction. By Exercise 11.1 we have an identification

equiv eq(apP (loop)) = trP (loop)

for each dependent type P : S1 → U . Therefore we see that the triangle

(S1 → U)

∑
(X:U)X = X

∑
(X:U)X ' X

genS1 descS1

total(λX. equiv eqX,X)

commutes, where the map descS1 is given by P 7→ (P (base), trP (loop)) and the
bottom map is an equivalence by the univalence axiom and Theorem 7.1.3.
Now it follows by the 3-for-2 property that descS1 is an equivalence, since genS1

is an equivalence by Theorem 12.1.4. This means that for every type X and
every e : X ' X there is a type family D(X, e) : S1 → U such that

(D(X, e, base), trD(X,e)(loop)) = (X, e).

Equivalently, we have p : D(X, e, base) =X and tr(p, trD(X,e)(loop)) = e. Thus,
we obtain equiv eq(p) : D(X, e, base) ' X, for which the square

D(X, e, base) X

D(X, e, base) X

equiv eq(p)

trD(X,e)(loop) e

equiv eq(p)

commutes.

Recall from Exercise 5.7 that the successor function succ : Z → Z is an
equivalence. Its inverse is the predecessor function defined in Exercise 3.11.

126 LECTURE 12. THE CIRCLE

Definition 12.2.2. The fundamental cover of the circle is the dependent
type ES1 :≡ D(Z, succ) : S1 → U .

The picture of the fundamental cover is that of a helix over the circle.

Lemma 12.2.3. For any k : Z, there is an identification

sk : (base, kE) = (base, succ(k)E)

in the total space
∑

(t:S1) E(t).

Proof. By Theorem 5.3.1 it suffices to show that∏
(k:Z)

∑
(α:base=base)trE(α, kE) = succ(k)E .

We just take α :≡ loop. Then we have trE(α, kE) = succ(k)E by the commuting
square provided in the definition of E .

Our goal in this section is to show that the total space of the fundamental
cover is contractible. We will use the following elimination principle for the
integers.

Lemma 12.2.4. Let B be a family over Z, equipped with a term b0 : B(0),
and an equivalence

ek : B(k) ' B(succ(k))

for each k : Z. Then there is a dependent function f :
∏

(k:Z)B(k) equipped
with identifications f(0) = b0 and

f(succ(k)) = ek(f(k))

for any k : Z.

Proof. The map is defined using the induction principle for the integers, stated
in Lemma 3.3.2. First we take

f(−1) :≡ e−1(b0)

f(0) :≡ b0
f(1) :≡ e(b0).

For the induction step on the negative integers we use

λn. e−1
neg(S(n)) :

∏
(n:N)B(neg(n))→ B(neg(S(n)))

12.2. THE FUNDAMENTAL COVER OF THE CIRCLE 127

For the induction step on the positive integers we use

λn. e(pos(n)) :
∏

(n:N)B(pos(n))→ B(pos(S(n))).

The computation rules follow in a straightforward way from the computation
rules of Z-induction and the fact that e−1 is an inverse of e.

Example 12.2.5. For any type A, we obtain a map f : Z→ A from any x : A
and any equivalence e : A ' A, such that f(0) = x and the square

Z A

Z A

succ

f

e

f

commutes. In particular, if we take A ≡ (x = x) for some x : X, then for
any p : x = x we have the equivalence λq. p � q : (x = x) → (x = x). This
equivalence induces the map

k 7→ pk : Z→ (x = x).

Theorem 12.2.6. The total space
∑

(t:S1) E(t) of the fundamental cover of S1

is contractible.

Proof. We show that the total space satisfies singleton induction (i.e. we apply
Theorem 6.1.1). Let P be a family over the total space of the fundamental
cover, and let p0 : P (base, 0E). Our goal is to construct a term of type∏

(t:S1)

∏
(x:E(t))P (t, x).

We do this by induction. For the base case we must construct a term of type∏
(k:Z)P (base, kE).

Since we have the identifications sk : (base, kE) = (base, succ(k)E), we have the
equivalences

trP (sk) : P (base, kE) ' P (base, succ(k)E)

for each k : Z. Thus we obtain a dependent function f :
∏

(x:E(base)) P (base, x)
satisfying f(0E) = p0 and f(succ(k)E) = trP (sk, f(kE)), for each k : Z.

For the loop case we must show that

trQ(loop, f) = f,

128 LECTURE 12. THE CIRCLE

where Q is the family over S1 given by Q(t) :≡
∏

(x:E(t)) P (t, x). By function
extensionality it suffices to construct a homotopy, and the transport along loop
in Q computes as

trQ(loop, f)(kE) = trP (sk, f(succ−1(k)E)).

Therefore the following computation completes the proof:

trQ(loop, f)(kE) = trP (sk, f(succ−1(k)E))

= f(succ(succ−1(k))E)

= f(kE).

Corollary 12.2.7. We have a fiber sequence

Z ↪→ 1� S1.

In other words: the loop space Ω(S1) of the circle is equivalent to Z.

Proof. This follows from Theorem 12.2.6 by an application of Theorem 7.2.1.

Corollary 12.2.8. The circle is a 1-type and it is not a 0-type.

Exercises

12.1 Show that

XS1
X1

X1 X2

–◦constbase

–◦constbase –◦const?

–◦const?

is a pullback square for each type X.
12.2 In this exercise we establish the dependent universal property of the circle,

analogous to the proof of Theorem 12.1.4.

(a) Let f, g :
∏

(x:A)B(x), and let Ef,g be the family over A given by

Ef,g(x) :≡ f(x) = g(x).

Construct for any p : x = x′ in A an equivalence

(trEf,g(p, q) = q′) ' (apdf (p) � q′ = aptrB(p) (q) � apdg(p)).

for any q : f(x) = g(x) and q′ : f(x′) = g(x′).

12.2. EXERCISES 129

(b) Let B be a family over A, and for l : x =A x let Lx be the family
over B(x) given by

Lx(y) :≡ trB(l, y) = y.

Furthermore, let q : y = y′ be an identification in B(x). Construct
an equivalence

(trLx(q, p) = p′) ' (aptrB(l) (q) � p′ = p � q).

for any p : trB(l, y) = y and p′ : trB(l, y′) = y′.
(c) Let f, g :

∏
(x:A)B(x), let p : x = x be a loop in A, and let

q : f(x) = g(x). Construct an equivalence

(trEf,g(p, q) = q) ' (trLx(q, apdf (p)) = apdg(p)).

(d) Show that for any f, g :
∏

(t:S1) P (t) there is a function(
dgenS1(f) = dgenS1(g)

)
→ (f = g).

(e) Show that for any type family P over S1, the dependent action on
generators (∏

(t:S1)P (t)
)
→
∑

(u:P (base))trP (loop, u) = u

is an equivalence.

12.3 Let P : S1 → Prop be a family of propositions over the circle. Show that

P (base)→
∏

(t:S1)P (t).

In this sense the circle is connected.
12.4 Show that ∏

(x,y:S1)¬¬(x = y).

12.5 Use the fundamental cover of the circle to show that

¬
(∏

(t:S1)base = t
)
.

12.6 Show that for any type X and any x : X, the map

recS1(x, reflx) : S1 → X

is homotopic to the constant map constx.

130 LECTURE 12. THE CIRCLE

12.7 (a) Show that for every x : X, we have an equivalence(∑
(f :S1→X)f(base) = x

)
' (x = x)

(b) Show that for every t : S1, we have an equivalence(∑
(f :S1→S1)f(base) = t

)
' Z

The base point preserving map f : S1 → S1 corresponding to k : Z
is called the degree k map on the circle, and is denoted by deg(k).

(c) Show that for every t : S1, we have an equivalence(∑
(e:S1'S1)e(base) = t

)
' 2

12.8 The (twisted) double cover of the circle is defined as the type family
T :≡ D(2, neg) : S1 → U , where neg : 2 ' 2 is the negation equivalence
of Exercise 5.6.

(a) Show that ¬(
∏

(t:S1) T (t)).

(b) Construct an equivalence e : S1 '
∑

(t:S1) T (t) for which the triangle

S1
∑

(t:S1) T (t)

S1

e

deg(2) pr1

commutes.

12.9 (a) Show that a type X is a set if and only if the map

λx. λt. x : X → (S1 → X)

is an equivalence.
(b) Show that a type X is a set if and only if the map

λf. f(base) : (S1 → X)→ X

is an equivalence.
12.10 Show that (S1 ' S1) ' S1 + S1. Conclude that a univalent universe

containing a circle is not a 1-type.
12.11 Show that any retract of the circle is equivalent to the circle.

12.2. EXERCISES 131

12.12 (a) Construct a fiberwise equivalence∏
(t:S1)

(
(t = t) ' Z

)
.

(b) Use Exercise 12.9 to show that (idS1 ∼ idS1) ' Z.
(c) Use Exercise 9.6 to show that

is invertible(idS1) ' Z,

and conclude that is invertible(idS1) 6' is equiv(idS1).

Lecture 13

Homotopy pushouts

We can use higher inductive types to attach cells to types. For example, when
we are given a type A, and we have a map f : S1 → A describing a circle in
A. Then we can form a new type A′ in which we attach a disc by ‘gluing’ the
boundary of the disc to the circle in A. Using higher inductive types, this
process of attaching a disc works as follows:

(i) First we add all the points of A to A′, i.e. A′ comes equipped with a map

i : A→ A′

(ii) Next, we add a new point, which is to be thought of as the center of the
disc that we’re attaching. In other words, A′ comes equipped with

pt : A′

(iii) Finally, for each point x on the circle we add a path from the center
of the disc to i(f(x)). In other words, A′ comes equipped with a path
constructor

r :
∏

(x:S1)pt = i(f(x)).

Moreover, since we’re only attaching a disc to A along f , we suppose that A′

satisfies an induction principle with respect to the constructors i, pt, and r.

The process of attaching a disc to a type A along a map f : S1 → A can be
generalized, so that we will also be able to attach cells of different shapes to a
type. This generalization is called homotopy pushouts. Homotopy pushouts
are dual to homotopy pullbacks. However, unlike pullbacks we will assume
that pushouts exist by postulating rules for higher inductive types. For the

133

134 LECTURE 13. HOMOTOPY PUSHOUTS

purpose of this course, the only higher inductive types that we add to our
type theory are the pushouts. Some of the more exotic higher inductive types,
including the Cauchy real numbers, are described in [2].

13.1 Pushouts as higher inductive types

The idea of pushouts is to glue two types A and B together using a mediating
type S and maps f : S → A and g : S → B. In other words, we start with a
diagram of the form

A S B.
f g

We call such a triple S ≡ (S, f, g) a span from A to B. A span from A to
B can be thought of as a relation from A to B, relating f(x) to g(x) for any
x : S. Indeed, an equivalence between the type of all spans and the type of
relations from A to B is established in Exercise 13.1.

Given a span S from A to B, we form the higher inductive type A tS B.
It comes equipped with the following constructors

inl : A→ A tS B
inr : B → A tS B

glue :
∏

(x:S)inl(f(x)) = inr(g(x))

and we require that it satisfies an induction principle and computation rules.
To see what the induction principle has to be, consider first a depen-

dent function s :
∏

(x:AtSB) P (x). When we evaluate this function at the
constructors, we obtain

s ◦ inl :
∏

(a:A)P (inl(a))

s ◦ inr :
∏

(b:B)P (inr(b))

apds ◦ glue :
∏

(x:S)trP (glue(x), s(f(x))) = s(g(x)).

Definition 13.1.1. Consider a span S ≡ (S, f, g) from A to B, and let P be
a family over A tS B. The dependent action on generators is defined to
be the map

dgenPS :
(∏

(x:AtSB)P (x)
)
→
(∑

(f ′:
∏

(a:A) P (inl(a)))

∑
(g′:

∏
(b:B) P (inr(b)))∏

(x:S)trP (glue(x), f ′(f(x))) = g′(g(x))
)
.

given by s 7→ (s ◦ inl, s ◦ inr, apds ◦ glue).

13.1. PUSHOUTS AS HIGHER INDUCTIVE TYPES 135

We can now fully specify homotopy pushouts.

Definition 13.1.2. Given a span S ≡ (S, f, g), the (homotopy) pushout
A tS B of S is defined to be the higher inductive type equipped with

inl : A→ A tS B
inr : B → A tS B

glue :
∏

(x:S)inl(f(x)) = inr(g(x)),

satisfying the induction principle for pushouts, which asserts that for each
type family P over A tS B the map dgenPS has a section.

Remark 13.1.3. The induction principle of the pushout A tS B provides us
with a dependent function

indS(f ′, g′, G) :
∏

(x:AtSB)P (x),

for every

f ′ :
∏

(a:A)P (inl(a))

g′ :
∏

(b:B)P (inr(b))

G :
∏

(x:S)trP (glue(x), f ′(f(x))) = g′(g(x))

Moreover, the function indS(f ′, g′, G) comes equipped with an identification

dgenS(indS(f ′, g′, G)) = (f ′, g′, G).

Writing s :≡ indS(f ′, g′, G), we see that such an identification between triples
is equivalently described by a triple (H,K,L) consisting of

H : s ◦ inl ∼ f ′

K : s ◦ inr ∼ g′

and a homotopy L witnessing that the square

trP (glue(x), s(inl(f(x)))) trP (glue(x), f ′(f(x)))

s(inr(g(x))) g′(g(x))

aptrP (glue(x))(H(x))

apds(glue(x)) G(x)

K(x)

commutes, for every x : S. These are the computation rules for pushouts.

136 LECTURE 13. HOMOTOPY PUSHOUTS

13.2 Examples of pushouts

Many interesting types can be defined as homotopy pushouts.

Definition 13.2.1. Let X be a type. We define the suspension ΣX of X
to be the pushout of the span

X 1

1 ΣX

inr

inl

Definition 13.2.2. We define the n-sphere Sn for any n : N by induction on
n, by taking

S0 :≡ 2

Sn+1 :≡ ΣSn.

Definition 13.2.3. Given a map f : A→ B, we define the cofiber cofibf of
f as the pushout

A B

1 cofibf .

f

inr

inl

The cofiber of a map is sometimes also called the mapping cone.

Example 13.2.4. The suspension ΣX of X is the cofiber of the map X → 1.

Definition 13.2.5. We define the join X ∗ Y of X and Y to be the pushout

X × Y Y

X X ∗ Y.

pr2

pr1 inr

inl

Definition 13.2.6. Suppose A and B are pointed types, with base points a0

and b0, respectively. The (binary) wedge A ∨ B of A and B is defined as
the pushout

2 A+B

1 A ∨B.

13.3. THE UNIVERSAL PROPERTY OF PUSHOUTS 137

Definition 13.2.7. Given a type I, and a family of pointed types A over
i, with base points a0(i). We define the (indexed) wedge

∨
(i:I)Ai as the

pushout

I
∑

(i:I)Ai

1
∨

(i:I)Ai.

λi. (i,a0(i))

13.3 The universal property of pushouts

Definition 13.3.1. Consider a span S ≡ (S, f, g) from A to B, and let X be
a type. A cocone with vertex X on S is a triple (i, j,H) consisting of maps
i : A→ X and j : B → X, and a homotopy H : i ◦ f ∼ j ◦ g witnessing that
the square

S B

A X

g

f j

i

commutes. We write coconeS(X) for the type of cocones on S with vertex X.

Definition 13.3.2. Consider a cocone (i, j,H) with vertex X on the span
S ≡ (S, f, g), as indicated in the following commuting square

S B

A X.

g

f j

i

For every type Y , we define the map

cocone map(i, j,H) : (X → Y)→ cocone(Y)

by f 7→ (f ◦ i, f ◦ j, f ·H).

Definition 13.3.3. A commuting square

S B

A X.

g

f j

i

138 LECTURE 13. HOMOTOPY PUSHOUTS

with H : i ◦ f ∼ j ◦ g is said to be a (homotopy) pushout square if the
cocone (i, j,H) with vertex X on the span S ≡ (S, f, g) satisfies the universal
property of pushouts, which asserts that the map

cocone map(i, j,H) : (X → Y)→ cocone(Y)

is an equivalence for any type Y . Sometimes pushout squares are also called
cocartesian squares.

Lemma 13.3.4. For any span S ≡ (S, f, g) from A to B, and any type X the
square

coconeS(X) XB

XA XS ,

π2

π1 –◦g

–◦f

which commutes by the homotopy π′3 :≡ λ(i, j,H). eq htpy(H), is a pullback
square.

Proof. The gap map coconeS(X)→ XA ×XS XB is the function

λ(i, j,H). (i, j, eq htpy(H)).

This is an equivalence by Theorem 7.1.3, since it is the induced map on total
spaces of the fiberwise equivalence eq htpy. Therefore, the square is a pullback
square by Theorem 10.2.6.

In the following theorem we establish an alternative characterization of the
universal property of pushouts.

Theorem 13.3.5. Consider a commuting square

S B

A X,

g

f j

i

with H : i ◦ f ∼ j ◦ g. The following are equivalent:

(i) The square is a pushout square.

13.3. THE UNIVERSAL PROPERTY OF PUSHOUTS 139

(ii) The square

TX TB

TA TS

–◦j

–◦i –◦g

–◦f

which commutes by the homotopy

λh. eq htpy(h ·H)

is a pullback square, for every type T .

Proof. It is straightforward to verify that the triangle

TX

cocone(T) TA ×TS TB

cocone map(i,j,H) gap(–◦i,–◦j,eq htpy(– ·H))

gap(i,j,eq htpy(H))

commutes. Since the bottom map is an equivalence by Lemma 13.3.4, it follows
that if either one of the remaining maps is an equivalence, so is the other. The
claim now follows by Theorem 10.2.6.

Example 13.3.6. By Exercise 12.1 and the second characterization of pushouts
in Theorem 13.3.5 it follows that the circle is a pushout

2 1

1 S1.

In other words, S1 ' Σ2.

Theorem 13.3.7. Consider a span S ≡ (S, f, g) from A to B. Then the
square

S B

A A tS B

g

f inr

inl

is a pushout square.

140 LECTURE 13. HOMOTOPY PUSHOUTS

Proof. Let X be a type. Our goal is to show that the map

cocone map(inl, inr, glue) : (A tS B → X)→ coconeS(X)

is an equivalence. For notational breveity we will just write genS for cocone mapS(inl, inr, glue),
because cocone mapS(inl, inr, glue) is just the action on generators.

We first note that by Exercise 4.3 there is a commuting triangle

XAtSB

coconeS(X) cocone′S(X)

genS dgenS

'

where we write

cocone′S(X) :
(∑

(f ′:A→X)

∑
(g′:A→X)∏

(x:S)trW
AtSB(X)(glue(x), f ′(f(x))) = g′(g(x))

)
.

By the induction principle for A tS B we have a section indS of dgenS . Thus
we obtain a section recS of genS . Our goal is now to show that recS is also a
retraction of genS . We establish in Lemma 13.3.8 that

(genS(recS(genS(h))) = genS(h))→ (recS(genS(h)) = h)

Then we obtain that recS is a retraction of genS by using this implication and
the fact that recS is a section of genS.

Lemma 13.3.8. Let h, h′ : A tS B → X be two functions. Then we have

(genS(h) = genS(h′))→ (h = h′).

Proof. Suppose we have genS(h) = genS(h′). This type of equalities between
triples is equivalent to the type of triples (K,L,M) consisting of

K : h ◦ inl ∼ h′ ◦ inl

L : h ◦ inr ∼ h′ ◦ inr,

and a homotopy M witnessing that the square

h ◦ inl ◦ f h′ ◦ inl ◦ f

h ◦ inr ◦ f h′ ◦ inr ◦ g

K·f

h·glue h′·glue

L·g

13.4. THE PASTING PROPERTY FOR PUSHOUTS 141

of homotopies commutes. By function extensionality, our goal is equivalent to
constructing a homotopy (i.e. a dependent function) of type∏

(t:AtSB)f(t) = g(t).

We will construct such a function by the induction principle for A tS B.
Therefore it suffices to construct

K : h ◦ inl ∼ h′ ◦ inl

L : h ◦ inr ∼ h′ ◦ inr

M ′ : trEh,h′ (glue,K) = L

The type of M ′ is equivalent to the type of M , so we obtain the requested
structure from our assumptions.

As a basic application we establish the universal property of suspensions.

Corollary 13.3.9. Let X and Y be types. Then the map

(ΣX → Y)→
∑

(y,y′:Y)X → (y = y′)

given by f 7→ (f(inl(?)), f(inr(?)), apf (glue(–))) is an equivalence.

Proof. We have equivalences

(ΣX → Y) '
∑

(y,y′:1→Y)X → (y(?) = y′(?))

'
∑

(y,y′:Y)X → (y = y′).

13.4 The pasting property for pushouts

Theorem 13.4.1. Consider the following configuration of commuting squares:

A B C

X Y Z

i

f

k

g h

j l

with homotopies H : j ◦ f ∼ g ◦ i and K : l ◦ g ∼ h ◦ k, and suppose that
the square on the left is a pushout square. Then the square on the right is a
pushout square if and only if the outer rectangle is a pushout square.

142 LECTURE 13. HOMOTOPY PUSHOUTS

Proof. Let T be a type. Taking the exponent T (–) of the entire diagram of
the statement of the theorem, we obtain the following commuting diagram

TZ T Y TX

TC TB TA.

–◦l

–◦h –◦g

–◦j

–◦f

–◦k –◦i

By the assumption that Y is the pushout of B ← A → X, it follows that
the square on the right is a pullback square. It follows by Theorem 10.6.1
that the rectangle on the left is a pullback if and only if the outer rectangle
is a pullback. Thus the statement follows by the second characterization in
Theorem 13.3.5.

Lemma 13.4.2. Consider a map f : A → B. Then the cofiber of the map
inr : B → cofibf is equivalent to the suspension ΣA of A.

Exercises

13.1 Use Theorems 9.1.4 and 11.4.4 and Corollary 9.2.2 to show that the type

span(A,B) :≡
∑

(S:U)(S → A)× (S → B)

of small spans from A to B is equivalent to the type A→ (B → U) of
small relations from A to B.

13.2 Use Theorems 9.3.3 and 13.3.5 and Corollary 10.5.6 to show that for any
commuting square

S B

A C

g

f ' j

i

where f is an equivalence, the square is a pushout square if and only
if j : B → C is an equivalence. Use this observation to conclude the
following:

(i) If X is contractible, then ΣX is contractible.

(ii) The cofiber of any equivalence is contractible.

(iii) The cofiber of a point in B (i.e. of a map of the type 1 → B) is
equivalent to B.

(iv) There is an equivalence X ' 0 ∗ X.

13.4. EXERCISES 143

(v) If X is contractible, then X ∗ Y is contractible.

(vi) If A is contractible, then there is an equivalence A ∨B ' B for any
pointed type B.

13.3 Let P and Q be propositions.

(a) Show that P ∗ Q satisfies the universal property of disjunction,
i.e. that for any proposition R, the map

(P ∗ Q→ R)→ (P → R)× (Q→ R)

given by f 7→ (f ◦ inl, f ◦ inr), is an equivalence.
(b) Use the proposition R :≡ is contr(P ∗Q) to show that P ∗Q is again

a proposition.

13.4 Let Q be a proposition, and let A be a type. Show that the following
are equivalent:

(a) The map (Q→ A)→ (0→ A) is an equivalence.
(b) The type AQ is contractible.
(c) There is a term of type Q→ is contr(A).
(d) The map inr : A→ Q ∗ A is an equivalence.

13.5 Let P be a proposition. Show that ΣP is a set, with an equivalence(
inl(?) = inr(?)

)
' P.

13.6 Show that A tS B ' B tSop
A, where Sop :≡ (S, g, f) is the opposite

span of S.
13.7 Use Exercise 10.6.b to show that if

S Y

X Z

is a pushout square, then so is

A× S A× Y

A×X A× Z

for any type A.

144 LECTURE 13. HOMOTOPY PUSHOUTS

13.8 Use Exercise 10.5 to show that if

S1 Y1 S2 Y2

X1 Z1 X2 Z2

are pushout squares, then so is

S1 + S2 Y1 + Y2

X1 +X2 Z1 + Z2.

13.9 (a) Consider a span (S, f, g) from A to B. Use Exercise 10.4 to show
that the square

S + S S

A+B A tS B

f+g

[id,id]

inr◦g

[inl,inr]

is again a pushout square.
(b) Show that ΣX ' 2 ∗ X.

13.10 Consider a commuting triangle

A B

X

h

f g

with H : f ∼ g ◦ h.

(a) Construct a map cofib(h,H) : cofibg → cofibf .
(b) Use Exercise 10.10 to show that cofibcofib(h,H) ' cofibh.

13.11 Use Exercise 12.9 to show that for n ≥ 0, X is an n-type if and only if
the map

λx. constx : X → (Sn+1 → X)

is an equivalence.
13.12 (a) Construct for every f : X → Y a function

Σf : ΣX → ΣY.

(b) Show that if f ∼ g, then Σf ∼ Σg.

13.4. EXERCISES 145

(c) Show that ΣidX ∼ idΣX

(d) Show that
Σ(g ◦ f) ∼ (Σg) ◦ (Σf).

for any f : X → Y and g : Y → Z.
13.13 Consider a commuting diagram of the form

A0 B0 C0

A1 B1 C1

A2 B2 C2

with homotopies filling the (small) squares. Use Exercise 10.11 to con-
struct an equivalence

(A0 tB0 C0) t(A1tB1C1) (A2 tB2 C2)

' (A0 tA1 A2) t(B0tB1B2) (C0 tC1 C2).

This is known as the 3-by-3 lemma for pushouts.
13.14 (a) Let I be a type, and let A be a family over I. Construct an

equivalence (∨
(i:I)

ΣAi
)
' Σ

(∨
(i:I)

Ai

)
.

(b) Show that for any type X there is an equivalence(∨
(x:X)

2
)
' X + 1.

(c) Construct an equivalence

Σ(Fin(n+ 1)) '
∨

(i:Fin(n))
S1.

13.15 Show that Fin(n+ 1) ∗ Fin(m+ 1) '
∨

(i:Fin(n·m)) S1, for any n,m : N.

Lecture 14

Descent

14.1 Type families over pushouts

Given a pushout square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g, and a family P : X → U , we obtain

P ◦ i : A→ U
P ◦ j : B → U

λx. trP (H(x)) :
∏

(x:S)P (i(f(x))) ' P (j(g(x))).

Our goal in the current section is to show that the triple (PA, PB, PS) consisting
of PA :≡ P ◦ i, PB :≡ P ◦ j, and PS :≡ λx. trP (H(x)) characterizes the family
P over X.

Definition 14.1.1. Consider a commuting square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g, where all types involved are in U . The type Desc(S) of
descent data for X, is defined defined to be the type of triples (PA, PB, PS)
consisting of

PA : A→ U

147

148 LECTURE 14. DESCENT

PB : B → U
PS :

∏
(x:S)PA(f(x)) ' PB(g(x)).

Definition 14.1.2. Given a commuting square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g, we define the map

desc famS(i, j,H) : (X → U)→ Desc(S)

by P 7→ (P ◦ i, P ◦ j, λx. trP (H(x))).

Theorem 14.1.3. Consider a pushout square

S B

A X.

g

f j

i

with H : i ◦ f ∼ j ◦ g, where all types involved are in U , and suppose we have

PA : A→ U
PB : B → U
PS :

∏
(x:S)PA(f(x)) ' PB(g(x)).

Then the function

desc famS(i, j,H) : (X → U)→ Desc(S)

is an equivalence.

Proof. By the 3-for-2 property of equivalences it suffices to construct an
equivalence ϕ : coconeS(U)→ Desc(S) such that the triangle

UX

coconeS(U) Desc(S)

cocone mapS(i,j,H) desc famS(i,j,H)

'
ϕ

14.2. THE FLATTENING LEMMA FOR PUSHOUTS 149

commutes.
Since we have equivalences

equiv eq :
(
PA(f(x)) = PB(g(x))

)
'
(
PA(f(x)) ' PB(g(x))

)
for all x : S, we obtain by Exercise 9.11 an equivalence on the dependent
products(∏

(x:S)PA(f(x)) = PB(g(x))
)
→
(∏

(x:S)PA(f(x)) ' PB(g(x))
)
.

We define ϕ to be the induced map on total spaces. Explicitly, we have

ϕ :≡ λ(PA, PB,K). (PA, PB, λx. equiv eq(K(x))).

Then ϕ is an equivalence by Theorem 7.1.3, and the triangle commutes by
Exercise 11.1.

Corollary 14.1.4. Consider descent data (PA, PB, PS) for a pushout square
as in Theorem 14.1.3. Then the type of quadruples (P, eA, eB, eS) consisting
of a family P : X → U equipped with fiberwise equivalences

eA :
∏

(a:A)PA(a) ' P (i(a))

eB :
∏

(b:B)PB(a) ' P (j(b))

and a homotopy eS witnessing that the square

PA(f(x)) P (i(f(x)))

PB(g(x)) P (j(g(x)))

eA(f(x))

PS(x) trP (H(x))

eB(g(x))

commutes, is contractible.

Proof. The fiber of this map at (PA, PB, PS) is equivalent to the type of
quadruples (P, eA, eB, eS) as described in the theorem, which are contractible
by Theorem 6.3.3.

14.2 The flattening lemma for pushouts

In this section we consider a pushout square

S B

A X.

g

f j

i

150 LECTURE 14. DESCENT

with H : i ◦ f ∼ j ◦ g, descent data

PA : A→ U
PB : B → U
PS :

∏
(x:S)PA(f(x)) ' PB(g(x)),

and a family P : X → U equipped with

eA :
∏

(a:A)PA(a) ' P (i(a))

eB :
∏

(b:B)PB(a) ' P (j(b))

and a homotopy eS witnessing that the square

PA(f(x)) P (i(f(x)))

PB(g(x)) P (j(g(x)))

eA(f(x))

PS(x) trP (H(x))

eB(g(x))

commutes.

Definition 14.2.1. We define a commuting square

∑
(x:S) PA(f(x))

∑
(b:B) PB(b)

∑
(a:A) PA(a)

∑
(x:X) P (x)

f ′

g′

j′

i′

with a homotopy H ′ : i′ ◦ f ′ ∼ j′ ◦ g′.

Construction. We define

f ′ :≡ totalf (λx. idPA(f(x)))

g′ :≡ totalg(eS)

i′ :≡ totali(eA)

j′ :≡ totalj(eB).

The remaining goal is to construct a homotopy H ′ : i′ ◦ f ′ ∼ j′ ◦ g′. Thus, we
have to show that

(i(f(x)), eA(y)) = (j(g(x)), eB(eS(y)))

14.2. THE FLATTENING LEMMA FOR PUSHOUTS 151

for any x : S and y : PA(f(x)). We have he identification

eq pair(H(x), eS(x, y)−1)

of this type.

Definition 14.2.2. We will write S ′ for the span∑
(a:A) PA(a)

∑
(x:S) PA(f(x))

∑
(b:B) PB(b).

f ′ g′

Lemma 14.2.3 (The flattening lemma). The commuting square∑
(x:S) PA(f(x))

∑
(b:B) PB(b)

∑
(a:A) PA(a)

∑
(x:X) P (x)

f ′

g′

j′

i′

is a pushout square.

Proof. We will show that the map

cocone mapS′(i
′, j′, H ′) :

((∑
(x:X)P (x)

)
→ Y

)
→ coconeS′(Y)

is an equivalence for any type Y . Let Y be a type. Note that the type coconeS′

is equivalent to the type of triples (u, v, w) consisting of

u :
∏

(a:A)PA(a)→ Y

v :
∏

(b:B)PB(b)→ Y

w :
∏

(x:S)

∏
(y:PA(f(x)))u(f(x), y) = v(g(x), eS(x, y)).

Now observe that there is an equivalence(∏
(y:PA(f(x)))u(f(x), y) = v(g(x), eS(x, y))

)
' tr(t7→P (t)→Y)(H(x), u′(f(x))) = v′(g(x))

for any u and v as above, and any x : S. By this equivalence we obtain a
commuting square((∑

(x:X) P (x)
)
→ Y

) ∏
(x:X)(P (x)→ Y)

coconeS′(Y) Ψ

indΣ

'

cocone mapS′ (i
′,j′,H′) dgenS

'

152 LECTURE 14. DESCENT

where Ψ is the type of triples (u′, v′, w′) consisting of

u′ :
∏

(a:A)P (i(a))→ Y

v′ :
∏

(b:B)P (j(b))→ Y

w′ :
∏

(x:S)tr(t7→P (t)→Y)(H(x), u′(f(x))) = v′(g(x)),

Since the dependent action on generators dgenS is an equivalence it follows by
the 3-for-2 property of equivalences that cocone mapS′(i

′, j′, H ′) is an equiva-
lence, as desired.

14.3 Commuting cubes

Definition 14.3.1. A commuting cube

A111

A110 A101 A011

A100 A010 A001

A000,

consists of

(i) types

A111, A110, A101, A011, A100, A010, A001, A000,

(ii) maps

f111̌ : A111 → A110 f1̌01 : A101 → A001

f11̌1 : A111 → A101 f011̌ : A011 → A010

f1̌11 : A111 → A011 f01̌1 : A011 → A001

f11̌0 : A110 → A100 f1̌00 : A100 → A000

f1̌10 : A110 → A010 f01̌0 : A010 → A000

f101̌ : A101 → A100 f001̌ : A001 → A000,

14.3. COMMUTING CUBES 153

(iii) homotopies

H11̌1̌ : f11̌0 ◦ f111̌ ∼ f101̌ ◦ f11̌1 H01̌1̌ : f01̌0 ◦ f011̌ ∼ f001̌ ◦ f01̌1

H1̌11̌ : f1̌10 ◦ f111̌ ∼ f011̌ ◦ f1̌11 H1̌01̌ : f1̌00 ◦ f101̌ ∼ f001̌ ◦ f1̌01

H1̌1̌1 : f1̌01 ◦ f11̌1 ∼ f01̌1 ◦ f1̌11 H1̌1̌0 : f1̌00 ◦ f11̌0 ∼ f01̌0 ◦ f1̌10,

(iv) and a homotopy

C : (f1̌00 ·H11̌1̌) � ((H1̌01̌ · f11̌1) � (f001̌ ·H1̌1̌1))

∼ (H1̌1̌0 · f111̌) � ((f01̌0 ·H1̌11̌) � (H01̌1̌ · f1̌11))

filling the cube.

Lemma 14.3.2. Given a commuting cube as in Definition 14.3.1 we obtain a
commuting square

fibf11̌1
(x) fibf01̌1

(f1̌01(x))

fibf11̌0
(f101̌(x)) fibf01̌0

(f001̌(x))

for any x : A101.

Lemma 14.3.3. Consider a commuting cube

A111

A110 A101 A011

A100 A010 A001

A000.

If the bottom and front right squares are pullback squares, then the back left
square is a pullback if and only if the top square is.

Remark 14.3.4. By rotating the cube we also obtain:

(i) If the bottom and front left squares are pullback squares, then the back
right square is a pullback if and only if the top square is.

154 LECTURE 14. DESCENT

(ii) If the front left and front right squares are pullback, then the back left
square is a pullback if and only if the back right square is.

By combining these statements it also follows that if the front left, front right,
and bottom squares are pullback squares, then if any of the remaining three
squares are pullback squares, all of them are. Cubes that consist entirely of
pullback squares are sometimes called strongly cartesian.

14.4 The descent property for pushouts

In the previous section there was a significant role for fiberwise equivalences,
and we know by Theorem 10.5.2 and Corollary 10.5.4: fiberwise equivalences
indicate the presence of pullbacks. In this section we reformulate the results
of the previous section using pullbacks where we used fiberwise equivalences
before, to obtain new and useful results. We begin by considering the type of
descent data from the perspective of pullback squares.

Definition 14.4.1. Consider a span S from A to B, and a span S ′ from A′ to
B′. A cartesian transformationof spans from S ′ to S is a diagram of the
form

A′ S′ B′

A S B

hA

f ′ g′

hS hB

f g

with F : f ◦ hS ∼ hA ◦ f ′ and G : g ◦ hS ∼ hB ◦ g′, where both squares are
pullback squares.

The type cart(S ′,S) of cartesian transformation is the type of tuples

(hA, hS , hB, F,G, pf , pg)

where pf : is pullback(hS , hA, F) and pg : is pullback(hS , hB, G), and we write

Cart(S) :≡
∑

(A′,B′:U)

∑
(S′:span(A′,B′))cart(S ′,S).

Lemma 14.4.2. There is an equivalence

cart descS : Desc(S)→ Cart(S).

Proof. Note that by Theorem 10.5.7 it follows that the types of triples (f ′, F, pf)
and (g′, G, pg) are equivalent to the types of fiberwise equivalences∏

(x:S)fibhS (x) ' fibhA(f(x))

14.4. THE DESCENT PROPERTY FOR PUSHOUTS 155

∏
(x:S)fibhS (x) ' fibhB (g(x))

respectively. Furthermore, by Theorem 11.4.4 the types of pairs (S′, hS),
(A′, hA), and (B′, hB) are equivalent to the types S → U , A→ U , and B → U ,
respectively. Therefore it follows that the type Cart(S) is equivalent to the
type of tuples (Q,PA, ϕ, PB, PS) consisting of

Q : S → U
PA : A→ U
PB : B → U
ϕ :
∏

(x:S)Q(x) ' PA(f(x))

PS :
∏

(x:S)Q(x) ' PB(g(x)).

However, the type of ϕ is equivalent to the type PA ◦ f = Q. Thus we see that
the type of pairs (Q,ϕ) is contractible, so our claim follows.

Definition 14.4.3. We define an operation

cart mapS :
(∑

(X′:U)X
′ → X

)
→ Cart(S).

Construction. Let X ′ : U and hX : X ′ → X. Then we define the types

A′ :≡ A×X X ′

B′ :≡ B ×X X ′.

Next, we define a span S ′ :≡ (S′, f ′, g′) from A′ to B′. We take

S′ :≡ S ×A A′

f ′ :≡ π2.

To define g′, let s : S, let (a, x′, p) : A×X X ′, and let q : f(s) = a. Our goal
is to construct a term of type B ×X X ′. We have g(s) : B and x′ : X ′, so it
remains to show that j(g(s)) = hX(x′). We construct such an identification as
a concatenation

j(g(s)) i(f(s)) i(a) hX(x′).
H(s)−1 api(q) p

To summaze, the map g′ is defined as

g′ :≡ λ(s, (a, x′, p), q). (g(s), x′, H(s)−1 � (api (q) � p)).

156 LECTURE 14. DESCENT

Then we have commuting squares

A×X X ′ S ×A A′ B ×X X ′

A S B.

Moreover, these squares are pullback squares by Theorem 10.6.1.

The following theorem is analogous to Theorem 14.1.3.

Theorem 14.4.4 (The descent theorem for pushouts). The operation cart mapS
is an equivalence (∑

(X′:U)X
′ → X

)
' Cart(S)

Proof. It suffices to show that the square

X → U Desc(S)

∑
(X′:U)X

′ → X Cart(S)

desc famS(i,j,H)

map famX cart descS

cart mapS

commutes. To see that this suffices, note that the operation map famX is an
equivalence by Theorem 11.4.4, the operation desc famS(i, j,H) is an equiv-
alence by Theorem 14.1.3, and the operation cart descS is an equivalence by
Lemma 14.4.2.

To see that the square commutes, note that the composite

cart mapS ◦map famX

takes a family P : X → U to the cartesian transformation of spans

A×X P̃ S ×A
(
A×X P̃

)
B ×X P̃

A S B,

π1 π1
π1

where P̃ :≡
∑

(x:X) P (x).

The composite

cart descS ◦ desc famX

14.4. THE DESCENT PROPERTY FOR PUSHOUTS 157

takes a family P : X → U to the cartesian transformation of spans∑
(a:A) P (i(a))

∑
(s:S) P (i(f(s)))

∑
(b:B) P (j(b))

A S B

These cartesian natural transformations are equal by Lemma 10.5.1

Since cart mapS is an equivalence it follows that its fibers are contractible.
This is essentially the content of the following corollary.

Corollary 14.4.5. Consider a diagram of the form

S′

A′ S B′

A B

X

hS
f ′ g′

hA
f g

hB

i j

with homotopies

F : f ◦ hS ∼ hA ◦ f ′

G : g ◦ hS ∼ hB ◦ g′

H : i ◦ f ∼ j ◦ g,

and suppose that the bottom square is a pushout square, and the top squares are
pullback squares. Then the type of tuples ((X ′, hX), (i′, I, p), (j′, J, q), (H ′, C))
consisting of

(i) A type X ′ : U together with a morphism

hX : X ′ → X,

(ii) A map i′ : A′ → X ′, a homotopy I : i ◦ hA ∼ hX ◦ i′, and a term p
witnessing that the square

A′ X ′

A X

hA

i′

hX

i

158 LECTURE 14. DESCENT

is a pullback square.

(iii) A map j′ : B′ → X ′, a homotopy J : j ◦ hB ∼ hX ◦ j′, and a term q
witnessing that the square

B′ X ′

B X

hB

j′

hX

j

is a pullback square,

(iv) A homotopy H ′ : i′ ◦ f ′ ∼ j′ ◦ g′, and a homotopy

C : (i · F) � ((I · f ′) � (hX ·H ′)) ∼ (H · hS) � ((j ·G) � (J · g′))

witnessing that the cube

S′

A′ S B′

A X ′ B

X,

commutes,

is contractible.

The following theorem should be compared to the flattening lemma,
Lemma 14.2.3.

Theorem 14.4.6. Consider a commuting cube

S′

A′ S B′

A X ′ B

X.

f ′ g′
hS

hA

f g

j′
hB

i

hX

i′

j

14.4. THE DESCENT PROPERTY FOR PUSHOUTS 159

If each of the vertical squares is a pullback, and the bottom square is a pushout,
then the top square is a pushout.

Proof. By Corollary 10.5.4 we have fiberwise equivalences

F :
∏

(x:S)fibhS (x) ' fibhA(f(x))

G :
∏

(x:S)fibhS (x) ' fibhB (g(x))

I :
∏

(a:A)fibhA(a) ' fibhX (i(a))

J :
∏

(b:B)fibhB (b) ' fibhX (j(b)).

Moreover, since the cube commutes we obtain a fiberwise homotopy

K :
∏

(x:S)I(f(x)) ◦ F (x) ∼ J(g(x)) ◦G(x).

We define the descent data (PA, PB, PS) consisting of PA : A→ U , PB : B → U ,
and PS :

∏
(x:S) PA(f(x)) ' PB(g(x)) by

PA(a) :≡ fibhA(a)

PB(b) :≡ fibhB (b)

PS(x) :≡ G(x) ◦ F (x)−1.

We have

P :≡ fibhX
eA :≡ I
eB :≡ J
eS :≡ K.

Now consider the diagram∑
(s:S) fibhS (s)

∑
(s:S) fibhA(f(s))

∑
(b:B) fibhB (b)

∑
(a:A) fibhA(a)

∑
(a:A) fibhA(a)

∑
(x:X) fibhX (x)

Since the top and bottom map in the left square are equivalences, we obtain
from Exercise 13.2 that the left square is a pushout square. Moreover, the right
square is a pushout by Lemma 14.2.3. Therefore it follows by Theorem 13.4.1
that the outer rectangle is a pushout square.

160 LECTURE 14. DESCENT

Now consider the commuting cube∑
(s:S) fibhS (s)

∑
(a:A) fibhA(a) S′

∑
(b:B) fibhB (b)

A′
∑

(x:X) fibhX (x) B′

X ′.

We have seen that the top square is a pushout. The vertical maps are all
equivalences, so the vertical squares are all pushout squares. Thus it follows
from one more application of Theorem 13.4.1 that the bottom square is a
pushout.

Theorem 14.4.7. Consider a commuting cube of types

S′

A′ S B′

A X ′ B

X,

and suppose the vertical squares are pullback squares. Then the commuting
square

A′ tS′ B′ X ′

A tS B X

is a pullback square.

Proof. It suffices to show that the pullback

(A tS B)×X X ′

14.4. EXERCISES 161

has the universal property of the pushout. This follows by the descent theorem,
since the vertical squares in the cube

S′

A′ S B′

A (A tS B)×X X ′ B

A tS B

are pullback squares by Theorem 10.6.1.

Exercises

14.1 Use the characterization of the circle as a pushout given in Example 13.3.6
to show that the square

S1 + S1 S1

S1 S1 × S1

[id,id]

[id,id] λt. (t,base)

λt. (t,base)

is a pushout square.
14.2 Let f : A→ B be a map. The codiagonal ∇f of f is the map obtained

from the universal property of the pushout, as indicated in the diagram

A B

A B tA B

B

f

f

p
inr

idB
inl

idB

∇f

Show that fib∇f (b) ' Σ(fibf (b)) for any b : B.
14.3 Consider two maps f : A → X and g : B → X. The fiberwise join

f ∗ g is defined by the universal property of the pushout as the unique

162 LECTURE 14. DESCENT

map rendering the diagram

A×X B B

A A ∗X B

X

π1

π2

p
inr

g
inl

f

f∗g

commutative, where A ∗X B is defined as a pushout, as indicated. Con-
struct an equivalence

fibf∗g(x) ' fibf (x) ∗ fibg(x)

for any x : X.
14.4 Consider two maps f : A→ B and g : C → D. The pushout-product

f�g : (A×D) tA×C (B × C)→ B ×D

of f and g is defined by the universal property of the pushout as the
unique map rendering the diagram

A× C B × C

A×D (A×D) tA×C (B × C)

B ×D

f×idC

idA×g inr
idB×g

inl

f×idD

f�g

commutative. Construct an equivalence

fibf�g(b, d) ' fibf (b) ∗ fibg(d)

for all b : B and d : D.
14.5 Let A and B be pointed types with base points a0 : A and b0 : B. The

wedge inclusion is defined as follows by the universal property of the
wedge:

1 B

A A ∨B

A×B

inr λb. (a0,b)

inl

λa. (a,b0)

wedge inA,B

14.4. EXERCISES 163

Show that the fiber of the wedge inclusion A ∨B → A×B is equivalent
to Ω(B) ∗ Ω(A).

14.6 Let f : X ∨X → X be the map defined by the universal property of the
wedge as indicated in the diagram

1 X

X X ∨X

X.

x0

x0

p
inr

idX
inl

idX

f

Show that fibf (x0) ' ΣΩ(X).

Lecture 15

Sequential colimits

Note: This chapter currently contains only the statements of the definitions
and theorems, but no proofs. I hope to make a complete version available soon.

15.1 The universal property of sequential colimits

Type sequences are diagrams of the following form.

A0 A1 A2 · · · .f0 f1 f2

Their formal specification is as follows.

Definition 15.1.1. An (increasing) type sequence A consists of

A : N→ U
f :
∏

(n:N)An → An+1.

In this section we will introduce the sequential colimit of a type sequence.
The sequential colimit includes each of the types An, but we also identify
each x : An with its value fn(x) : An+1. Imagine that the type sequence
A0 → A1 → A2 → · · · defines a big telescope, with A0 sliding into A1, which
slides into A2, and so forth.

As usual, the sequential colimit is characterized by its universal property.

Definition 15.1.2. (i) A (sequential) cocone on a type sequence A with
vertex B consists of

h :
∏

(n:N)An → B

165

166 LECTURE 15. SEQUENTIAL COLIMITS

H :
∏

(n:N)fn ∼ fn+1 ◦Hn.

We write cocone(B) for the type of cones with vertex X.

(ii) Given a cone (h,H) with vertex B on a type sequence A we define the
map

cocone map(h,H) : (B → C)→ cocone(B)

given by f 7→ (f ◦ h, λn. λx. apf (Hn(x))).

(iii) We say that a cone (h,H) with vertexB is colimiting if cocone map(h,H)
is an equivalence for any type C.

Theorem 15.1.3. Consider a cocone (h,H) with vertex B for a type sequence
A. The following are equivalent:

(i) The cocone (h,H) is colimiting.

(ii) The cocone (h,H) is inductive in the sense that for every type family
P : B → U , the map(∏

(b:B)P (b)
)
→
∑

(h:
∏

(n:N)

∏
(x:An) P (hn(x)))∏

(n:N)

∏
(x:An)trP (Hn(x), hn(x)) = hn+1(fn(x))

given by

s 7→ (λn. s ◦ hn, λn. λx. apds(Hn(x)))

has a section.

(iii) The map in (ii) is an equivalence.

15.2 The construction of sequential colimits

We construct sequential colimits using pushouts.

Definition 15.2.1. Let A ≡ (A, f) be a type sequence. We define the type
A∞ as a pushout

Ã+ Ã Ã

Ã A∞.

[id,σA]

[id,id] inr

inl

15.3. DESCENT FOR SEQUENTIAL COLIMITS 167

Definition 15.2.2. The type A∞ comes equipped with a cocone structure
consisting of

seq in :
∏

(n:N)An → A∞

seq glue :
∏

(n:N)

∏
(x:An)inn(x) = inn+1(fn(x)).

Construction. We define

seq in(n, x) :≡ inr(n, x)

seq glue(n, x) :≡ glue(inl(n, x))−1 � glue(inr(n, x)).

Theorem 15.2.3. Consider a type sequence A, and write Ã :≡
∑

(n:N)An.
Moreover, consider the map

σA : Ã→ Ã

defined by σA(n, a) :≡ (n+ 1, fn(a)). Furthermore, consider a cocone (h,H)
with vertex B. The following are equivalent:

(i) The cocone (h,H) with vertex B is colimiting.

(ii) The defining square

Ã+ Ã Ã

Ã A∞,

[id,σA]

[id,id] λ(n,x). hn(x)

λ(n,x). hn(x)

of A∞ is a pushout square.

15.3 Descent for sequential colimits

Definition 15.3.1. The type of descent data on a type sequence A ≡ (A, f)
is defined to be

Desc(A) :≡
∑

(B:
∏

(n:N) An→U)

∏
(n:N)

∏
(x:An)Bn(x) ' Bn+1(fn(x)).

Definition 15.3.2. We define a map

desc fam : (A∞ → U)→ Desc(A)

by B 7→ (λn. λx.B(seq in(n, x)), λn. λx. trB(seq glue(n, x))).

168 LECTURE 15. SEQUENTIAL COLIMITS

Theorem 15.3.3. The map

desc fam : (A∞ → U)→ Desc(A)

is an equivalence.

Definition 15.3.4. A cartesian transformation of type sequences from A
to B is a pair (h,H) consisting of

h :
∏

(n:N)An → Bn

H :
∏

(n:N)gn ◦ hn ∼ hn+1 ◦ fn,

such that each of the squares in the diagram

A0 A1 A2 · · ·

B0 B1 B2 · · ·

h0

f0

h1

f1

h2

f2

g0 g1 g2

is a pullback square. We define

cart(A,B) :≡
∑

(h:
∏

(n:N) An→Bn)∑
(H:

∏
(n:N) gn◦hn∼hn+1◦fn)

∏
(n:N)is pullback(hn, fn, Hn),

and we write

Cart(B) :≡
∑

(A:Seq)cart(A,B).

Definition 15.3.5. We define a map

cart map(B) :
(∑

(X′:U)X
′ → X

)
→ Cart(B).

which associates to any morphism h : X ′ → X a cartesian transformation of
type sequences into B.

Theorem 15.3.6. The operation cart map(B) is an equivalence.

15.4 The flattening lemma for sequential colimits

The flattening lemma for sequential colimits essentially states that sequential
colimits commute with Σ.

15.4. THE FLATTENING LEMMA FOR SEQUENTIAL COLIMITS 169

Lemma 15.4.1. Consider

B :
∏

(n:N)An → U

g :
∏

(n:N)

∏
(x:An)Bn(x) ' Bn+1(fn(x)).

and suppose P : A∞ → U is the unique family equipped with

e :
∏

(n:N)Bn(x) ' P (seq in(n, x))

and homotopies Hn(x) witnessing that the square

Bn(x) Bn+1(fn(x))

P (seq in(n, x)) P (seq in(n+ 1, fn(x)))

gn(x)

en(x) en+1(fn(x))

trP (seq glue(n,x))

commutes. Then
∑

(t:A∞) P (t) satisfies the universal property of the sequential
colimit of the type sequence

∑
(x:A0)B0(x)

∑
(x:A1)B1(x)

∑
(x:A2)B2(x) · · · .

totalf0 (g0) totalf1 (g1) totalf2 (g2)

In the following theorem we rephrase the flattening lemma in using cartesian
transformations of type sequences.

Theorem 15.4.2. Consider a commuting diagram of the form

A0 A1 A2 · · ·

X

B0 B1 B2 · · ·

Y

If each of the vertical squares is a pullback square, and Y is the sequential
colimit of the type sequence Bn, then X is the sequential colimit of the type
sequence An.

170 LECTURE 15. SEQUENTIAL COLIMITS

Corollary 15.4.3. Consider a commuting diagram of the form

A0 A1 A2 · · ·

X

B0 B1 B2 · · ·

Y

If each of the vertical squares is a pullback square, then the square

A∞ X

B∞ Y

is a pullback square.

Exercises

15.1 Show that the sequential colimit of a type sequence

A0 A1 A2 · · ·f0 f1 f2

is equivalent to the sequential colimit of its shifted type sequence

A1 A2 A3 · · · .f1 f2 f3

15.2 Consider a type sequence

A0 A1 A2 · · ·f0 f1 f2

and suppose that fn ∼ constan+1 for some an :
∏

(n:N)An. Show that the
sequential colimit is contractible.

15.3 Define the ∞-sphere S∞ as the sequential colimit of

S0 S1 S2 · · ·f0 f1 f2

where f0 : S0 → S1 is defined by f0(02) ≡ inl(?) and f0(12) ≡ inr(?), and
fn+1 : Sn+1 → Sn+2 is defined as Σ(fn). Use Exercise 15.2 to show that
S∞ is contractible.

15.4. EXERCISES 171

15.4 Consider a type sequence

A0 A1 A2 · · ·f0 f1 f2

in which fn : An → An+1 is weakly constant in the sense that∏
(x,y:An)fn(x) = fn(y)

Show that A∞ is a mere proposition.

Lecture 16

The homotopy image of a
map

16.1 The universal property of the image of a map

Definition 16.1.1. Let f : A→ X and g : B → X be maps. We define

homX(f, g) :≡
∑

(h:A→B)f ∼ g ◦ h.

Remark 16.1.2. In other words, a term (h,H) : homX(f, g) consists of a map
h : A → B equipped with a homotopy H : f ∼ g ◦ h witnessing that the
triangle

A B

X

h

f g

commutes. Recall from Exercise 9.12 that the type homX(f, g) is equivalent
to the type ∏

(x:X)fibf (x)→ fibg(x).

Lemma 16.1.3. For any f : A→ X and any embedding m : B → X, the type
homX(f,m) is a proposition.

Proof. Since propositions are closed under equivalences by Lemma 8.1.5, it
suffices to show that the type∏

(x:X)fibf (x)→ fibm(x),

173

174 LECTURE 16. THE HOMOTOPY IMAGE OF A MAP

is a proposition. Recall from Corollary 8.3.8 that a map is an embedding if and
only if its fibers are propositions. Thus we see that the type

∏
(x:X) fibf (x)→

fibm(x) is a product of propositions, so it is a proposition by Theorem 9.1.2.

Definition 16.1.4. Consider a commuting triangle

A B

X

i

f m

with I : f ∼ m ◦ i, and where m is an embedding. We say that m has the
universal property of the image of f if the map

(i, I)∗ : homX(m,m′)→ homX(f,m′)

defined by (i, I)∗(h,H) :≡ (h◦i, I �(i·H)), is an equivalence for every embedding
m′ : B′ → X.

Remark 16.1.5. Since homX(f,m) is a proposition for every f : A→ X and
every embedding m : B → X, it follows by Exercise 9.1 that the universal
property of the image of f is equivalent to the property that the implication

homX(f,m′)→ homX(m,m′)

holds for every embedding m′ : B′ → X.

The homotopy image can be used in many important constructions. In
this lecture we discuss two applications: the propositional truncation, and set
quotients.

16.2 The propositional truncation

Note that embeddings into the unit type are just propositions. To see this,
note that∑

(A:U)

∑
(f :A→1)is emb(f) '

∑
(A:U)is emb(const?)

'
∑

(A:U)

∏
(x:1)is prop(fibconst?(x))

'
∑

(A:U)is prop(fibconst?(?))

'
∑

(A:U)is prop(A).

Therefore, the universal property of the image of the map A→ 1 is a proposition
P satisfying the universal property of the propositional truncation:

16.2. THE PROPOSITIONAL TRUNCATION 175

Definition 16.2.1. Let A be a type, and let P be a proposition that comes
equipped with a map η : A → P . We say that η : A → P satisfies the
universal property of propositional truncation if for every proposition
Q, the precomposition map

– ◦ η : (P → Q)→ (A→ Q)

is an equivalence.

Theorem 16.2.2. Consider a commuting triangle

A B

X

i

f m

with I : f ∼ m ◦ i, and where m is an embedding. The following are equivalent:

(i) m satisfies the universal property of the image of f .

(ii) for each x : X, the proposition fibm(x) satisfies the universal property of
the propositional truncation of fibf (x).

Note that, given a family of propositions P over a type A, the type∑
(a:A) P (a) isn’t necessarily a proposition. Instead, we think of

∑
(a:A) P (a) of

the subtype of A containing the terms that satisfies P . Using the propositional
truncation we can assert that there exists a term in A that satisfies P without
requiring one to construct it.

Definition 16.2.3. Let P : A→ Prop be a family of propositions over a type
A. Then we define

∃(a:A)P (a) :≡
∥∥∥∑(a:A)P (a)

∥∥∥.
Similarly, we can define the disjuction of two propositions P and Q to

be the proposition ‖P +Q‖, which clearly satisfies the universal property of
disjunction1. In Table 16.1 we give an overview of the logical connectives on
propositions.

1Alternatively, we have shown in Exercise 13.3 that the join P ∗ Q also is a proposition
that satisfies the universal property of disjunction.

176 LECTURE 16. THE HOMOTOPY IMAGE OF A MAP

Table 16.1: Logic in type theory

Logical connective Interpretation in HoTT

> 1
⊥ 0
P ∧Q P ×Q
P ∨Q ‖P +Q‖
P → Q P → Q
P ↔ Q P ' Q
¬P P → 0
∀x.P (x)

∏
(x:A) P (x)

∃x.P (x) ‖
∑

(x:A) P (x)‖
∃!x.P (x) is contr(

∑
(x:A) P (x))

16.3 Constructing the propositional truncation

Although technically it is not necessary to construct the propositional trunca-
tion before constructing the image of a map, we do so because the construction
is simpler in this special case, and yet contains most of the essential ideas.

Lemma 16.3.1. Suppose f : A → P , where A is any type, and P is a
proposition. Then the map

(A ∗ B → P)→ (B → P)

given by h 7→ h ◦ inr is an equivalence, for any type B.

Proof. Since both types are propositions by Theorem 9.1.2 it suffices to con-
struct a map

(B → P)→ (A ∗ B → P).

Let g : B → P . Then the square

A×B B

A P

pr2

pr1 g

f

commutes since P is a proposition. Therefore we obtain a map A ∗ B → P by
the universal property of the join.

16.3. CONSTRUCTING THE PROPOSITIONAL TRUNCATION 177

The idea of the construction of the propositional truncation is that if we
are given a map f : A→ P , where P is a proposition, then it extends uniquely
along inr : A → A ∗ A to a map A ∗ A → P . This extension again extends
uniquely along inr : A ∗ A → A ∗ (A ∗ A) to a map A ∗ (A ∗ A) → P and so
on, resulting in a diagram of the form

A A ∗ A A ∗ (A ∗ A) · · ·

P

inr inr inr

Definition 16.3.2. The join powers A∗n of a type X are defined by

A∗0 :≡ 0

A∗1 :≡ A
A∗(n+1) :≡ A ∗ A∗n.

Furthermore, we define A∗∞ to be the sequential colimit of the type sequence

A∗0 A∗1 A∗2 · · · .inr inr

Our goal is now to show that A∗∞ is a proposition and satisfies the universal
property of the propositional truncation.

Lemma 16.3.3. Consider a type sequence

A0 A1 A2 · · ·f0 f1 f2

with sequential colimit A∞, and let P be a proposition. Then the map

seq in∗ : (A∞ → P)→
(∏

(n:N)An → P
)

given by h 7→ λn. (h ◦ seq inn) is an equivalence.

Proof. By the universal property of sequential colimits established in Theo-
rem 15.1.3 we obtain that cocone map is an equivalence. Note that we have a
commuting triangle

PA∞

cocone)
(∏

(n:N)An → P
)
.

cocone map seq in∗

pr1

178 LECTURE 16. THE HOMOTOPY IMAGE OF A MAP

Note that for any g :
∏

(n:N)An → P the type∏
(n:N)gn ∼ gn+1 ◦ fn

is a product of contractible types, since P is a proposition. Therefore it is
contractible by Theorem 9.1.1, and it follows by Exercise 7.5 that the projec-
tion is an equivalence. We conclude by the 3-for-2 property of equivalences
(Exercise 5.5) that seq in∗ is an equivalence.

Lemma 16.3.4. Let A be a type, and let P be a proposition. Then the function

– ◦ seq in0 : (A∗∞ → P)→ (A→ P)

is an equivalence.

Proof. We have the commuting triangle

PA
∗∞

(∏
(n:N)A

∗n → P
)

PA.

seq in∗ –◦seq in0

λh. h0

Therefore it suffices to show that the bottom map is an equivalence. Since this
is a map between propositions, it suffices to construct a map in the converse
direction. Let f : A→ P . We will construct a term of type∏

(n:N)A
∗n → P

by induction on n : N. The base case is trivial. Given a map g : A∗n → P , we
obtain a map g : A∗(n+1) → P by Lemma 16.3.1.

Lemma 16.3.5. The type A∗∞ is a proposition for any type A.

Proof. By Corollary 8.1.4 it suffices to show that A∗∞ → is contr(A∗∞), and
by Lemma 16.3.4 it suffices to show that

A→ is contr(A∗∞),

because is contr(A∗∞) is a proposition by Exercise 9.2.
Let x : A. To see that A∗∞ is contractible it suffices by Exercise 15.2 to

show that inr : A∗n → A∗(n+1) is homotopic to the constant function constinl(x).
However, we get a homotopy constinl(x) ∼ inr immediately from the path
constructor glue.

16.4. THE CONSTRUCTION OF THE IMAGE OF A MAP 179

Theorem 16.3.6. For any type A there is a type ‖A‖ that comes equipped
with a map η : A→ ‖A‖, and satisfies the universal property of propositional
truncation.

Proof. Let A be a type. Then we define ‖A‖ :≡ A∗∞, and we define η :≡
seq in0 : A → A∗∞. Then ‖A‖ is a proposition by Theorem 16.4.6, and
η : A → ‖A‖ satisfies the universal property of propositional truncation by
Lemma 16.3.4.

16.4 The construction of the image of a map

The image of a map f : A → X can be defined using the propositional
truncation:

Definition 16.4.1. For any map f : A→ X we define the image of f to be
the type

im(f) :≡
∑

(x:X)‖fibf (x)‖

and we define the image inclusion to be the projection pr1 : im(f)→ X.

However, the construction of the fiberwise join in Exercise 14.3 suggests
that we can also define the image of f as the infinite join power f∗∞, where
we repeatedly take the fiberwise join of f with itself. The reasons for defining
the image in this way are twofold: we will be able to use this construction to
show that the set-quotients of a small type are small, and second, we many
interesting types appear in this construction.

Lemma 16.4.2. Consider a map f : A→ X, an embedding m : U → X, and
h : homX(f,m). Then the map

homX(f ∗ g,m)→ homX(g,m)

is an equivalence for any g : B → X.

Proof. Note that both types are propositions, so any equivalence can be used
to prove the claim. Thus, we simply calculate

homX(f ∗ g,m) '
∏

(x:X)fibf∗g(x)→ fibm(x)

'
∏

(x:X)fibf (x) ∗ fibg(x)→ fibm(x)

'
∏

(x:X)fibg(x)→ fibm(x)

' homX(g,m).

180 LECTURE 16. THE HOMOTOPY IMAGE OF A MAP

The first equivalence holds by Exercise 9.12; the second equivalence holds by
Exercise 14.3, also using Theorem 9.3.3 and Exercise 9.5 where we established
that that pre- and postcomposing by an equivalence is an equivalence; the
third equivalence holds by Lemma 16.3.1 and Exercise 9.5; the last equivalence
again holds by Exercise 9.12.

For the construction of the image of f : A→ X we observe that if we are
given an embedding m : U → X and a map (i, I) : homX(f,m), then (i, I)
extends uniquely along inr : A → A ∗X A to a map homX(f ∗ f,m). This
extension again extends uniquely along inr : A ∗X A → A ∗X (A ∗X A) to a
map homX(f ∗ (f ∗ f),m) and so on, resulting in a diagram of the form

A A ∗X A A ∗X (A ∗X A) · · ·

U

inr inr inr

Definition 16.4.3. Suppose f : A → X is a map. Then we define the
fiberwise join powers

f∗n : A∗nX X.

Construction. Note that the operation (B, g) 7→ (A ∗X B, f ∗ g) defines an
endomorphism on the type ∑

(B:U)B → X.

We also have (0, ind0) and (A, f) of this type. For n ≥ 1 we define

A
∗(n+1)
X :≡ A ∗X A∗nX

f∗(n+1) :≡ f ∗ f∗n.

Definition 16.4.4. We define A∗∞X to be the sequential colimit of the type
sequence

A∗0X A∗1X A∗2X · · · .inr inr

Since we have a cocone

A∗0X A∗1X A∗2X · · ·

X

f∗0

inr

f∗1

inr

f∗2

we also obtain a map f∗∞ : A∗∞X → X by the universal property of A∗∞X .

16.5. SURJECTIVE MAPS 181

Lemma 16.4.5. Let f : A→ X be a map, and let m : U → X be an embedding.
Then the function

– ◦ seq in0 : homX(f∗∞,m)→ homX(f,m)

is an equivalence.

Theorem 16.4.6. For any map f : A→ X, the map f∗∞ : A∗∞X → X is an
embedding that satisfies the universal property of the image inclusion of f .

16.5 Surjective maps

Another application of the propositional truncation is the notion of surjective
map.

Definition 16.5.1. A map f : A → B is said to be surjective if there is a
term of type

is surj(f) :≡
∏

(y:B)‖fibf (b)‖.

Example 16.5.2. Any equivalence is a surjective map, and so is any map
that has a section (those are sometimes called split epimorphisms). Other
examples include the base point inclusion 1→ Sn for any n ≥ 1.

Theorem 16.5.3. Consider a commuting triangle

A B

X

q

f m

in which m is an embedding. Then m satisfies the universal property of the
image of f if and only if i : A→ B is surjective.

Theorem 16.5.4. Let f : A→ B be a map. The following are equivalent:

(i) f is an equivalence.

(ii) f is both surjective and an embedding.

182 LECTURE 16. THE HOMOTOPY IMAGE OF A MAP

Exercises

16.1 Show that

‖A‖ '
∏

(P :Prop)(A→ P)→ P

for any type A : U . This is called the impredicative encoding of the
propositional truncation.

16.2 For any B : A→ U , construct an equivalence(
∃(a:A)‖B(a)‖

)
'
∥∥∥∑(a:A)B(a)

∥∥∥
16.3 Let P0 P1 P2 · · · be a sequence of propositions.

Show that

colimn(Pn) ' ∃(n:N)Pn.

16.4 Show that the relation x, y 7→ ‖x = y‖ is an equivalence relation, on any
type.

16.5 Let f : A→ X be a map. Construct an equivalence(∑
(y:join powerX(n,A))f(x) = f∗n(y)

)
'
(∑

(y:A)f(x) = f(y)
)∗n

for any x : A.
16.6 Let f : A→ B be a map. Show that the following are equivalent:

(i) The commuting square

A ‖A‖

B ‖B‖.

f ‖f‖

is a pullback square.

(ii) There is a term of type A→ is equiv(f).

(iii) The commuting square

A×A B ×B

A B

f×f

pr1 pr1

f

is a pullback square.

16.5. EXERCISES 183

16.7 Consider a pullback square

A′ A

B′ B,

f ′

p

f

q

in which q : B′ → B is surjective. Show that if f ′ : A′ → B′ is an
embedding, then so is f : A→ B.

Lecture 17

Set quotients

17.1 The universal property of set quotients

Definition 17.1.1. Let R : A→ (A→ Prop) be an equivalence relation, for
A : U , and consider a map q : A→ B where the type B is a set, for which we
have ∏

(x,y:A)R(x, y)→ q(x) = q(y).

We will define a map

quotient restr : (B → X)→
(∑

(f :A→X)

∏
(x,y:A)R(x, y)→ (f(x) = f(y))

)
.

Construction. Let h : B → X. Then we have h ◦ q : A→ X, so it remains to
show that ∏

(x,y:A)R(x, y)→ (h(q(x)) = h(q(y)))

Consider x, y : A which are related by R. Then we have an identification
p : q(x) = q(y), so it follows that aph (p) : h(q(x)) = h(q(y)).

Definition 17.1.2. Let R : A→ (A→ Prop) be an equivalence relation, for
A : U , and consider a map q : A→ B satisfying∏

(x,y:A)R(x, y)→ q(x) = q(y),

where the type B is a set. We say that the map q : A → B satisfies the
universal property of the set quotient A/R if for any set X the map

quotient restr : (B → X)→
(∑

(f :A→X)

∏
(x,y:A)R(x, y)→ (f(x) = f(y))

)
is an equivalence.

185

186 LECTURE 17. SET QUOTIENTS

Lemma 17.1.3. Let R : A → (A → Prop) be an equivalence relation, for
A : U , and consider a commuting triangle

A U

PropA

q

R m

with H : R ∼ m ◦ q, where m is an embedding. Then we have∏
(x,y:A)R(x, y)→ (q(x) = q(y)).

Theorem 17.1.4. Let R : A → (A → Prop) be an equivalence relation, for
A : U , and consider a commuting triangle

A U

PropA

q

R m

with H : R ∼ m ◦ q, where m is an embedding. Then the following are
equivalent:

(i) The embedding m : U → PropA satisfies the universal property of the
image of R.

(ii) The map q : A → U satisfies the universal property of the set quotient
A/R.

Proof. Suppose m : U → PropA satisfies the universal property of the image
of R. Then it follows by Theorem 16.5.3 that the map q : A→ U is surjective.
Our goal is to prove that U satisfies the universal property of the set quotient
A/R.

Remark 17.1.5. Theorem 17.1.4 suggests that we can define the quotient of an
equivalence relation R on a type A as the image of a map. However, the type
PropA of which the quotient is a subtype is not a small type, even if A is a
small type. Therefore it is not clear that the quotient A/R is essentially small,
as it should be. Luckily, our construction of the image of a map allows us to
show that the image is indeed essentially small, using the fact that PropA is
locally small.

17.2. THE CONSTRUCTION OF SET QUOTIENTS 187

17.2 The construction of set quotients

Lemma 17.2.1. Consider a commuting square

A B

C D.

(i) If the square is cartesian, B and C are essentially small, and D is locally
small, then A is essentially small.

(ii) If the square is cocartesian, and A, B, and C are essentially small, then
D is essentially small.

Corollary 17.2.2. Suppose f : A → X and g : B → X are maps from
essentially small types A and B, respectively, to a locally small type X. Then
A×X B is again essentially small.

Lemma 17.2.3. Consider a type sequence

A0 A1 A2 · · ·f0 f1 f2

where each An is essentially small. Then its sequential colimit is again essen-
tially small.

Theorem 17.2.4. For any map f : A→ X from a small type A into a locally
small type X, the image im(f) is an essentially small type.

Recall that in set theory, the replacement axiom asserts that for any family
of sets {Xi}i∈I indexed by a set I, there is a set X[I] consisting of precisely
those sets x for which there exists an i ∈ I such that x ∈ Xi. In other
words: the image of a set-indexed family of sets is again a set. Without
the replacement axiom, X[I] would be a class. In the following corollary we
establish a type-theoretic analogue of the replacement axiom: the image of a
family of small types indexed by a small type is again (essentially) small.

Corollary 17.2.5. For any small type family B : A→ U , where A is small, the
image im(B) is essentially small. We call im(B) the univalent completion
of B.

188 LECTURE 17. SET QUOTIENTS

17.3 Connected components of types

17.4 Set truncation

Lemma 17.4.1. For each type A, the relation I(−1) : A→ (A→ Prop) given
by

I(−1)(x, y) :≡ ‖x = y‖

is an equivalence relation.

Proof. For every x : A we have |reflx| : ‖x = x‖, so the relation is reflexive.
To see that the relation is symmetric note that by the universal property of
propositional truncation there is a unique map ‖inv‖ : ‖x = y‖ → ‖y = x‖ for
which the square

(x = y) (y = x)

‖x = y‖ ‖y = x‖

inv

|– | |– |

‖inv‖

commutes. This shows that the relation is symmetric. Similarly, we show
by the universal property of propositional truncation that the relation is
transitive.

Definition 17.4.2. For each type A we define the set truncation

‖A‖0 :≡ A/I(−1),

and the unit of the set truncation is defined to be the quotient map.

Theorem 17.4.3. For each type A, the set truncation satisfies the universal
property of the set truncation.

Exercises

17.1 Consider an equivalence relation R : A → (A → Prop). Show that the
map |– |0 ◦ inl : A → ‖A tR A‖0 satisfies the universal property of the
quotient A/R, where A tR A is the canonical pushout∑

(x,y:A)R(x, y) A

A A tR A.

π2

π1
inr

inl

17.4. EXERCISES 189

17.2 Consider the trivial relation 1 :≡ λx. λy.1 : A→ (A→ Prop). Show that
the set quotient A/1 is a proposition satisfying the universal property of
the propositional truncation.

17.3 Show that the type of pointed 2-element sets∑
(X:U2)X

is contractible.
17.4 Define the type F of finite sets by

F :≡ im(Fin),

where Fin : N→ U is defined in Definition 3.2.5.

(a) Show that F '
∑

(n:N) UFin(n).
(b) Show that F is closed under Σ and Π.

Lecture 18

Homotopy groups of types

18.1 Pointed types

Definition 18.1.1. (i) A pointed type consists of a type X equipped with
a base point x : X. We will write U∗ for the type

∑
(X:U)X of all pointed

types.

(ii) Let (X, ∗X) be a pointed type. A pointed family over (X, ∗X) consists
of a type family P : X → U equipped with a base point ∗P : P (∗X).

(iii) Let (P, ∗P) be a pointed family over (X, ∗X). A pointed section
of (P, ∗P) consists of a dependent function f :

∏
(x:X) P (x) and an

identification p : f(∗X) = ∗P . We define the pointed Π-type to be the
type of pointed sections:

Π∗(x:X)P (x) :≡
∑

(f :
∏

(x:X) P (x))f(∗X) = ∗P

In the case of two pointed types X and Y , we may also view Y as a
pointed family over X. In this case we write X →∗ Y for the type of
pointed functions.

(iv) Given any two pointed sections f and g of a pointed family P over X,
we define the type of pointed homotopies

f ∼∗ g :≡ Π∗(x:X)f(x) = g(x),

where the family x 7→ f(x) = g(x) is equipped with the base point p � q−1.

Example 18.1.2. The circle S1 is a pointed type with base point base : S1.

191

192 LECTURE 18. HOMOTOPY GROUPS OF TYPES

Example 18.1.3. If X is a pointed type, then in the suspension of X we have
the canonical identification merid(∗X) : N = S. Therefore we do not have to
worry about whether to choose N or S as the base point of ΣX.

Remark 18.1.4. Since pointed homotopies are defined as certain pointed sections,
we can use the same definition of pointed homotopies again to consider pointed
homotopies between pointed homotopies, and so on.

Definition 18.1.5. (i) For any pointed type X, we define the pointed
identity function id∗X :≡ (idX , refl∗).

(ii) For any two pointed maps f : X →∗ Y and g : Y →∗ Z, we define the
pointed composite

g ◦∗ f :≡ (g ◦ f, apg (pf) � pg).

18.2 Loop spaces

Definition 18.2.1. Let X be a pointed type with base point x. We define
the loop space Ω(X,x) of X at x to be the pointed type x = x with base
point reflx.

Definition 18.2.2. The loop space operation Ω is functorial in the sense that

(i) For every pointed map f : X →∗ Y there is a pointed map

Ω(f) : Ω(X)→∗ Ω(Y),

defined by Ω(f)(ω) :≡ pf � apf (ω) � p−1
f , which is base point preserving

by right inv(pf).

(ii) For every pointed type X there is a pointed homotopy

Ω(id∗X) ∼∗ id∗Ω(X).

(iii) For any two pointed maps f : X →∗ Y and g : Y →∗ X, there is a
pointed homotopy witnessing that the triangle

Ω(Y)

Ω(X) Ω(Z)

Ω(g)

Ω(g◦∗f)

Ω(f)

of pointed types commutes.

18.3. HOMOTOPY GROUPS 193

Theorem 18.2.3. Consider two pointed types (X,x0) and (Y, y0). Then there
is an equivalence

(ΣX →∗ Y) ' (X →∗ Ω(Y))

Proof. Computing with the universal property of the suspension

ΣX →∗ Y '
∑

(y,y′:Y)(X → (y = y′))× (y′ = y0)

'
∑

(y:Y)X → (y = y0)

'
∑

(f :X→(y=y0))f(x0) = refly0 .

In the last equivalence we used Exercise 6.5.

18.3 Homotopy groups

In homotopy type theory we use 0-types to define groups.

Definition 18.3.1. A group G consists of a set G with a unit e : G, a
multiplication x, y 7→ x · y, and an inverse operation x 7→ x−1 satisfying the
group laws:

(x · y) · z = x · (y · z) x−1 · x = e

e · x = x x · x−1 = e.

x · e = x

Definition 18.3.2. For n ≥ 1, the n-th homotopy group of a type X at a
base point x : X consists of the type

|πn(X,x)| :≡ ‖Ωn(X,x)‖0

equipped with the group operations inherited from the path operations on
Ωn(X,x). Often we will simply write πn(X) when it is clear from the context
what the base point of X is.

For n ≡ 0 we define π0(X,x) :≡ ‖X‖0.

Example 18.3.3. In Corollary 12.2.7 we established that Ω(S1) ' Z. It follows
that

π1(S1) = Z and πn(S1) = 0 for n ≥ 2.

Furthermore, we have seen in ?? that ‖S1‖0 is contractible. Therefore we also
have π0(S1) = 0.

194 LECTURE 18. HOMOTOPY GROUPS OF TYPES

18.4 The Eckmann-Hilton argument

Given a diagram of identifications

x y

p

p′

p′′

r ⇓

r′ ⇓

in a type A, where r : p = p′ and r′ : p′ = p′′, we obtain by concatenation an
identification r � r′ : p = p′′. This operation on identifications of identifications
is sometimes called the vertical concatenation, because there is also a
horizontal concatenation operation.

Definition 18.4.1. Consider identifications of identifications r : p = p′ and
s : q = q′, where p, p′ : x = y, and q, q′ : y = z are identifications in a type A,
as indicated in the diagram

x y z.

p

p′

r ⇓

q

q′

s ⇓

We define the horizontal concatenation r �h s : p � q = p′ � q′ of r and s.

Proof. First we induct on r, so it suffices to define reflp �h s : p � q = p � q′. Next,
we induct on p, so it suffices to define reflrefly

�
h s : refly � q = refly � q′. Since

refly � q ≡ q and refly � q′ ≡ q′, we take reflrefly
�
h s :≡ s.

Lemma 18.4.2. Horizontal concatenation satisfies the left and right unit laws.

In the following lemma we establish the interchange law for horizontal
and vertical concatenation.

Lemma 18.4.3. Consider a diagram of the form

x y z.

p

p′′

r ⇓

r′ ⇓

q

q′′

s ⇓

s′ ⇓

18.5. SIMPLY CONNECTEDNESS OF THE 2-SPHERE 195

Then there is an identification

(r � r′) �h (s � s′) = (r �h s) � (r
′ �
h s
′).

Proof. We use path induction on both r and r′, followed by path induction on
p. Then it suffices to show that

(reflrefly
� reflrefly) �h (s � s′) = (reflrefly

�
h s) � (reflrefly

�
h s
′).

Using the computation rules, we see that this reduces to

s � s′ = s � s′,

which we have by reflexivity.

Theorem 18.4.4. For n ≥ 2, the n-th homotopy group is abelian.

Proof. Our goal is to show that∏
(r,s:π2(X))r · s = s · r.

Since we are constructing an identification in a set, we can use the universal
property of 0-truncation on both r and s. Therefore it suffices to show that∏

(r,s:reflx0=reflx0)|r|0 · |s|0 = |s|0 · |r|0.

Now we use that |r|0 · |s|0 ≡ |r � s|0 and |s|0 · |r|0 ≡ |s � r|0, to see that it suffices
to show that r � s = s � r, for every r, s : reflx = reflx. Using the unit laws and
the interchange law, this is a simple computation:

r � s = (r �h reflx) � (reflx �h s)

= (r � reflx) �h (reflx � s)

= (reflx � r) �h (s � reflx)

= (reflx �h s) � (r �h reflx)

= s � r.

18.5 Simply connectedness of the 2-sphere

Definition 18.5.1. A pointed type X is said to be n-connected if its homo-
topy groups πi(X) are trivial for i ≤ n. A 0-connected type is also just called
connected, and a 1-connected type is also called simply connected.

196 LECTURE 18. HOMOTOPY GROUPS OF TYPES

We write ∗ for the base point of the sphere Sn.

Theorem 18.5.2. For any n : N and any family P of n-types over the (n+ 2)-
sphere Sn+2, the function (∏

(x:Sn+2)P (x)
)
→ P (∗)

given by f 7→ f(∗), is an equivalence.

Corollary 18.5.3. The 2-sphere is simply connected.

Proof. Our goal is to show that π1(S2) is contractible. In other words, we have
to show that ‖Ω(S2)‖0 is contractible. We do this by constructing a term of
type ∏

(t:S2)is contr(‖∗ = t‖0).

First we note that ∏
(t:S2)‖∗ = t‖0

is equivalent to the type ‖∗ = ∗‖0, of which we have the term |refl∗|0. Thus we
obtain a dependent function α :

∏
(t:S2)‖∗ = t‖0 equipped with α(∗) = |refl∗|0.

Now we proceed to show that∏
(t:S2)

∏
(p:‖∗=t‖0)α(t) = p

by the dependent universal property of 0-truncation. Therefore it suffices to
construct a term of type ∏

(t:S2)

∏
(p:∗=t)α(t) = |p|0.

This is immediate by path induction and the fact that α(∗) = |refl∗|0.

Exercises

18.1 Show that the type of pointed families over a pointed type (X,x) is
equivalent to the type ∑

(Y :U∗)Y →∗ X.

18.2 Given two pointed types A and X, we say that A is a (pointed) retract
of X if we have i : A →∗ X, a retraction r : X →∗ A, and a pointed
homotopy H : r ◦∗ i ∼∗ id∗.

(a) Show that if A is a pointed retract of X, then Ω(A) is a pointed
retract of Ω(X).

18.5. EXERCISES 197

(b) Show that if A is a pointed retract of X and πn(X) is a trivial
group, then πn(A) is a trivial group.

18.3 Construct by path induction a family of maps∏
(A,B:U)

∏
(a:A)

∏
(b:B)((A, a) = (B, b))→

∑
(e:A'B)e(a) = b,

and show that this map is an equivalence. In other words, an identification
of pointed types is a base point preserving equivalence.

18.4 Let (A, a) and (B, b) be two pointed types. Construct by path induction
a family of maps∏

(f,g:A→B)

∏
(p:f(a)=b)

∏
(q:g(a)=b)((f, p)= (g, q))→

∑
(H:f∼g)p = H(a) � q,

and show that this map is an equivalence. In other words, an identification
of pointed maps is a base point preserving homotopy.

18.5 Show that if A← S → B is a span of pointed types, then for any pointed
type X the square

(A tS B →∗ X) (B →∗ X)

(A→∗ X) (S →∗ X)

is a pullback square.
18.6 Let f : A→∗ B be a pointed map. Show that the following are equivalent:

(i) f is an equivalence.

(ii) For any pointed type X, the precomposition map

– ◦∗ f : (B →∗ X)→∗ (A→∗ X)

is an equivalence.

18.7 In this exercise we prove the suspension-loopspace adjunction.

(a) Construct a pointed equivalence

τX,Y : (Σ(X)→∗ Y) '∗ (X → Ω(Y))

for any two pointed spaces X and Y .
(b) Show that for any f : X →∗ X ′ and g : Y ′ →∗ Y , there is a pointed

homotopy witnessing that the square

(Σ(X ′)→∗ Y ′) (X ′ →∗ Ω(Y ′))

(Σ(X)→∗ Y) (X →∗ Ω(Y))

τX′,Y ′

h7→g◦h◦Σ(f) h7→Ω(g)◦h◦f

τX,Y

198 LECTURE 18. HOMOTOPY GROUPS OF TYPES

18.8 Show that if
C B

A X

is a pullback square of pointed types, then so is

Ω(C) Ω(B)

Ω(A) Ω(X).

18.9 (a) Show that if X is k-truncated, then its n-th homotopy group πn(X)
is trivial for each choice of base point, and each n > k.

(b) Show that if X is (k + l)-truncated, and for each 0 < i ≤ l the
(k + i)-th homotopy groups πk+i(X) are trivial for each choice of
base point, then X is k-trunctated.

It is consistent to assume that there are types for which all homotopy
groups are trivial, but which aren’t contractible nontheless. Such types
are called ∞-connected.

Lecture 19

The long exact sequence of
homotopy groups

19.1 The long exact sequence

Definition 19.1.1. A fiber sequence F ↪→ E � B consists of:

(i) Pointed types F , E, and B, with base points x0, y0, and b0 respectively,

(ii) Base point preserving maps i : F →∗ E and p : E →∗ B, with α : i(x0) =
y0 and β : p(y0) = b0,

(iii) A pointed homotopy H : constb0 ∼∗ p ◦∗ i witnessing that the square

F E

1 B,

i

p

constb0

commutes and is a pullback square.

Lemma 19.1.2. Any fiber sequence F ↪→ E � B induces a sequence of
pointed maps

Ω(F) Ω(E) Ω(B) F E B,
Ω(i) Ω(p) ∂ i p

in which every two consecutive maps form a fiber sequence.

199

200 LECTURE 19. THE LONG EXACT SEQUENCE

Proof. By taking pullback squares repeatedly, we obtain the diagram

Ω(F) 1

Ω(E) Ω(B) 1

1 F E

1 B.

Ω(i) constreflb0

Ω(p)

∂ consty0

constx0

i

p

constb0

Definition 19.1.3. We say that a consecutive pair of pointed maps between
pointed sets

A B C
f g

is exact at B if we have(
∃(a:A) f(a) = b

)
↔ (g(b) = c)

for any b : B.

Remark 19.1.4. If a pair of consecutive pointed maps between pointed sets

A B C
f g

is exact at B, it directly that im(f) = fibg(c). Indeed, such a pair of pointed
maps is exact at B if and only if there is an equivalence e : im(f) ' fibg(c)
such that the triangle

im(f) fibg(c)

B

e

commutes. In other words, im(f) and fibg(c) are equal as subsets of B.

Lemma 19.1.5. Suppose F ↪→ E � B is a fiber sequence. Then the sequence

‖F‖0 ‖E‖0 ‖B‖0
‖i‖0 ‖p‖0

is exact at ‖E‖0.

19.1. THE LONG EXACT SEQUENCE 201

Proof. To show that the image im‖i‖0 is the fiber fib‖p‖0(|b0|0), it suffices to
construct a fiberwise equivalence∏

(x:‖E‖0)

∥∥fib‖i‖0(x)
∥∥
−1
' ‖p‖0(x) = |b0|0.

By the universal property of 0-truncation it suffices to show that∏
(x:E)

∥∥fib‖i‖0(|x|0)
∥∥
−1
' ‖p‖0(|x|0) = |b0|0.

First we note that

‖p‖0(|x|0) = |b0|0 ' |p(x)|0 = |b0|0
' ‖p(x) = b0‖−1.

Next, we note that

fib‖i‖0(|x|0) '
∑

(y:‖F‖0)‖i‖0(y) = |x|0
'
∥∥∥∑(y:F)‖i‖0(|y|0) = |x|0

∥∥∥
0

'
∥∥∥∑(y:F)|i(y)|0 = |x|0

∥∥∥
0

'
∥∥∥∑(y:F)‖i(y) = x‖−1

∥∥∥
0
.

Therefore it follows that∥∥fib‖i‖0(|x|0)
∥∥
−1
'
∥∥∥∑(y:F)‖i(y) = x‖−1

∥∥∥
−1

'
∥∥∥∑(y:F)i(y) = x

∥∥∥
−1

Now it suffices to show that
(∑

(y:F) i(y) = x
)
' p(x) = b0. This follows by

the pasting lemma of pullbacks

(p(x) = b0) 1

F E

1 B

202 LECTURE 19. THE LONG EXACT SEQUENCE

Theorem 19.1.6. Any fiber sequence F ↪→ E � B induces a long exact
sequence on homotopy groups

· · ·

πn(F) πn(E) πn(B)

π1(F) π1(E) π1(B)

π0(F) π0(E) π0(B)

πn(i) πn(p)

π1(i) π1(p)

π0(i) π0(p)

19.2 The Hopf fibration

Our goal in this section is to construct the Hopf fibration, i.e. a fiber sequence

S1 ↪→ S3 � S2.

This fiber sequence involves the complex multiplication of the unit sphere in
the complex number, which is a circle. Viewing the circle as a subspace of the
complex numbers, we write 1 for the base point of the circle.

Definition 19.2.1. We define the complex multiplication operation

µC : S1 → (S1 → S1).

Construction. By the universal property of the circle, it is equialent to define

µC(1) : S1 → S1

apµC (loop) : µC(1) = µC(1).

The function µC(1) is multiplication by 1, which is the identity function. The
type of apµC (loop) is equivalent to the type of homotopies

idS1 ∼ idS1 .

We construct this homotopy by induction on S1. Therefore it suffices to
construct

p : 1 = 1

q : trL(loop, p) = p

19.2. THE HOPF FIBRATION 203

Lemma 19.2.2. The complex multiplication operation µC on the circle satisfies
the unit laws

left unitC(x) : µC(1, x) = x

right unitC(x) : µC(x, 1) = x

coh unitC : left unitC(1) = right unitC(1),

and the functions µC(x, –) and µC(– , y) are equivalences for each x : S1 and
y : S1, respectively.

Lemma 19.2.3. Both commuting squares in the diagram

S1 S1 × S1 S1

1 S1 1

µC

pr1 pr2

are pullback squares.

Corollary 19.2.4. There is a fiber sequence

S1 ↪→ S1 ∗ S1 � S2.

Lemma 19.2.5. The join operation is associative

Proof.

A A× C A× C

A×B A×B × C A× C

B B × C C

Corollary 19.2.6. There is an equivalence S1 ∗ S1 ' S3.

Theorem 19.2.7. There is a fiber sequence S1 ↪→ S3 � S2.

Lemma 19.2.8. Suppose f : G→ H is a group homomorphism, such that the
sequence

0 G H 0
f

is exact at G and H, where we write 0 for the trivial group consisting of just
the unit element. Then f is a group isomorphism.

204 LECTURE 19. THE LONG EXACT SEQUENCE

Corollary 19.2.9. We have π2(S2) = Z, and for k > 2 we have πk(S2) =
πk(S3).

Exercises

19.1 Give the 0-sphere S0 the structure of an H-space.
19.2 For any pointed type A, give Ω(A) the structure of an H-space.
19.3 Show that the type of (small) fiber sequences is equivalent to the type of

quadruples (B,P, b0, x0), consisting of

B : U
P : B → U
b0 : B

x0 : P (b0).

Bibliography

[1] G. Brunerie. “On the homotopy groups of spheres in homotopy type
theory”. In: ArXiv e-prints (June 2016). arXiv: 1606.05916 [math.AT].

[2] The Univalent Foundations Program. Homotopy Type Theory: Univalent
Foundations of Mathematics. Institute for Advanced Study: https://
homotopytypetheory.org/book, 2013.

205

http://arxiv.org/abs/1606.05916
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book

Index

0-equivalence relation, see equiva-
lence relation

3-by-3 lemma
for pullbacks, 104
for pushouts, 145

3-for-2 property
of equivalences, 42
of pullbacks, 86

0, see empty type
1, see unit type
2, see booleans

action on generators
for the circle, 121

action on paths
fibers of, 100

addition
on N, 12

α-conversion, 2
anti-reflexive, 25
→-formation, 9
associativity

of dependent function composi-
tion, 13

of function composition, 10
attaching cells, 133

base, 119, 120
base point, 91
base space

of fiber sequence, 91

β-rule, 8, 9

bi-invertible map, see equivalence

booleans, 17

canonical pullback, 85, 85

cart map

cart mapS , 155

is an equivalence, 156

cart(S,S ′), 154

cart descS , 154

cartesian product, 19

as pullback, 89

cartesian square, 83

cartesian transformation

of spans, 154

center of contraction, 45

circle, 119, 120, 133, 161

is a 1-type, 128

S1 ' Σ2, 139

class eq, 111

classified by the universal family,
115

closed term, 2

closed type, 2

cocartesian square, 138

cocone, 137

cocone map, 137

coconeS(X), 137

as a pullback, 138

207

208 INDEX

codiagonal, 161
cofibf , 136
cofiber, 136
commuting cube, 152
commuting square, 82
composition

of dependent functions, 13
associativity, 13

of functions, 10
associativity, 10

computation rules
for pushouts, 135
of booleans, 17
of cartesian product, 19
of coproduct, 17
of N, 12
of Σ-types, 18
of the circle, 120
of unit type, 16

cone
on a cospan, 82

cone map, 82
cone(–), 82
constant family, 4
constant function, 14
context, 1

empty context, 2
contractible

map, 47
is an equivalence, 47

type, 45
equivalence with 1, 50
identity types of, 50
retracts of, 50
3-for-2, 50

weak function extensionality, 70
conversion rule

term, 3, 5
variable, 3

conversion rules

α-conversion, 2

coproduct, 17, 96

is symmetric, 42

cospan, 82

dependent action on generators

for pushouts, 134

for the circle, 120

dependent action on paths, 120

dependent function type, 7

dependent pair type, see Σ-type

Desc(S), 147

desc famS , 148

is an equivalence, 148

descS1 , 125

descent, 81

descent data, 147

for the circle, 125

descent theorem

for pushouts, 156

dgenS , 134

dgenS1 , 120

diagonal

of a map, 100

fibers of, 100

of a type, 116

fibers of, 100

disjoint sum, see coproduct

disjointness

of coproducts, 99

divisibility relation, 25

double negation translation

disjunction, 18

ES1 , 126

El, 20

embedding, 56, 173, 174

coproduct inclusions, 98

diagonal is an equivalence, 100

equivalences are embeddings, 56

INDEX 209

pullbacks of embeddings, 94
empty context, 2
empty type, 16
eq equiv, 105
Eq2, 25
eq htpy, 70
EqN, 22
eq pair, 40
A ' B, 39

as relation, 118
truncatedness, 117

equiv eq, 105, 117
equivalence, 39

homotopic maps, 42
invertibility of, 39
is a contractible map, 48
is an embedding, 56
post-composition, 78
pullback of, 94
3-for-2 property, 42

equivalence class, 111
equivalence induction, 105
equivalence relation, 111, 183, 184

observational equality on N, 24
ess small(A), 113
ess small(f), 114
essentially small, 184

is a proposition, 114
map, 114
type, 113

is locally small, 118
η-rule, 8, 9
evaluation, 8, 9
exponent, 9
extensionality principle

types, 105

factorial function, 14
family

constant family, 4

fiber of, 4
of finite types, 22
of types, 2
trivial family, 4
universal family, 20

family of small types, 21
fiber, 47

as pullback, 90
of a family, 4
of fiber sequence, 91

fiber product, 89
fiber sequence, 91
fiberwise equivalence, 81, 92
fiberwise join, 161
fiberwise transformation, 92
fibrant replacement, 51
Fin, 22
finite types, 22
first projection map, 18
flattening lemma

for pushouts, 151, 158
function

addition on N, 12
constant function, 14
factorial function, 14
max, 14
min, 14
multiplication on N, 14
power function on N, 14
successor on N, 11
swap, 14

function extensionality, 70
function type, 9
fundamental cover

of the circle, 124, 126

gap map, 88
genS , 140
genS1 , 121
generic judgment, 2

210 INDEX

glue, 134, 135

graph

of a function, 117

graphs, 21

group, 106

group homomorphism, 107

composition, 108

identity homomorphism, 108

isomorphism, 109

group laws, 106

group operation, 107

group operations

on Z, 25

groupoid laws

of homotopies, 37

Grp, 107

is a 1-type, 110

half-adjoint equivalence, 74

half adj(f), 74

helix, 126

higher inductive type, 112, 119

higher inductive types, 133, 135

homotopy, 37

iterated, 37

naturality, 48

whiskering operations, 38

homotopy fiber, see fiber

homotopy induction, 69

htpy eq, 70

identity function, 4, 10

is an equivalence, 40

identity type

as pullback, 99

contractibility of total space, 46

is an embedding, 112

of a Σ-type, 40

of cone(C), 83

of coproducts, 99

of the circle, 128

universe, 105

image, 112, 179

induction principle

for equivalences, 105

for pushouts, 135

of booleans, 17, 25

of cartesian products, 19

of coproduct, 17

of empty type, 16

of N, 11, 25

of the circle, 120

of unit type, 16

of Z, 23

∞-equivalence relation, 112

inl
for pushouts, 134, 135

inr
for pushouts, 134, 135

interchange rule, 5

invertible map, 39

is classified(f), 115

is equiv, 39

is function(R), 117

is invertible, 39

is pullback, 88

iso eq, 109

isomorphism

of groups, 109

join, 136

X ∗ Y , 136

judgmental equality

conversion rules, 3

equivalence relation, 3

of terms, 1

of types, 1

λ-abstraction, 7, 9

left unit law, see unit laws

INDEX 211

loc small(A), 114
locally small, 116, 184

map, 118
type, 114

loop, 119, 120
loop space, 107

mapping cone, 136
maximum function, 14
minimum function, 14
multiplication

on N, 14

N, 11
n-equivalence relation, 112
n-sphere, 136
∇f , 161
negation

of a type, 17
negation function

is an equivalence, 42
not (¬), see negation, of a type

observational equality
on 2, 25

is least reflexive relation, 25
is reflexive, 25

on N, 22, 25
is an equivalence relation, 24
is least reflexive relation, 24
is preserved by functions, 24

Rop, 118
opposite relation, 118
order relation, 25

pair eq, 40
pairing function, 18
pasting property

for pushouts, 141
of pullbacks, 95

path constructor, 119

path-split, 75
path split(f), 75
Π-type

as pullback, 102
Π-type, 7
plus (+), see coproduct
pointed types, 21
power function on N, 14
pre-image, see fiber
predecessor function, 25
primitive judgment, 1

equal terms of a type in context,
1

equal types in context, 1
term of a type in context, 1
type in context, 1

product
of types, 19

projection map
second projection, 19

projection maps
first projection, 18

proposition
is locally small, 118

propositions as types
conjunction, 19
disjunction, 18

pullback
3-for-2 property, 86
cartesian products of pullbacks,

101
gap map, 88
Π-type of pullbacks, 102
Σ-type of pullbacks, 102

pullback square, 81, 83
characterized by fiberwise equiv-

alence, 93
universal property, 101

pushout, 135
pasting property, 141

212 INDEX

universal property, 139
pushout square, 138
pushout-product, 162

quotient, 112

reflexive graphs, 21
reflexive relation, 24
relation, 134

anti-reflexive, 25
divisibility, 25
functional, 117
opposite relation, 118
order, 25

retr(f), 39
retract

identity types of, 42
of a type, 39

retraction, 39
right unit law, see unit laws
rule

α-conversion, 2
→-formation, 9
β-rule, 8, 9
η-rule, 8, 9
evaluation, 8, 9
interchange, 5
λ-abstraction, 7, 9
Π-formation, 7
substitution, 4
term conversion, 3, 5
variable conversion, 3
variable renaming, 2
variable rule, 4, 10
weakening, 3

S1, 119, 120
sec(f), 39
second projection map, 19
section

of a map, 39

set quotient, 183
Σ-type, 18

associativity of, 42
identity types of, 40

Σ-type
as pullback of universal family,

116
singleton induction, 45
small type, 20
Sn, 136
span, 134
strongly cartesian cube, 154
structure identity principle, 106
structured types, 21
substitution, 4

as pullback, 92
successor function

of N, 11
on Z, 23

is an equivalence, 42
suspension, 136

as cofiber, 136
swap function, 14

is an equivalence, 40
ΣX, 136

term, 1
term conversion rule, 3, 5
times (×), see cartesian product
total space

of fiber sequence, 91
transport, 117
trivial family, 4
truncated, 71

map
by truncatedness of diagonal,

100
pullbacks of truncated maps,

94
type, 1

INDEX 213

type encoding Ǎ, 21

U , 20

U≤k, 117

uniquely uniqueness

of pullbacks, 87

unit laws

dependent function composition,
13

for function composition, 13

of function composition, 11

unit type, 16

contractibility, 46

?, 16

univalence axiom, 105

families over S1, 124

univeral property

of propositional truncation, 175

universal family, 20

universal property

of pullbacks, 83

of pullbacks (characterization),
84

of pushouts, 138, 138

of set quotients, 183

of suspensions, 141

of the circle, 121

of the image, 174

universe, 20

of contractible types, 117

of k-types, 117

of propositions, 117

of sets, 117

variable conversion rules, 3

variable declaration, 2

variable renaming, 2

variable rule, 4, 10

vertex

of a cone, 82

weak function extensionality, 70
weakening, 3
(binary) wedge, 136
(indexed) wedge, 137
wedge inclusion, 162
well-formed term, 1
well-formed type, 1
whiskering operations

of homotopies, 38

Yoneda lemma, 113

Z
as retract of N× N, 43
fundamental cover of S1, 126
group laws, 43
is a group, 107

zero term, 11

	Contents
	Syllabus
	Essential course information
	Course description
	Course material
	Organization

	Dependent type theory
	The primitive judgments of type theory
	Renaming variables
	Inference rules governing judgmental equality
	Structural rules of type theory
	Exercises

	Dependent function types and the natural numbers
	Dependent function types
	Function types
	The natural numbers
	Exercises

	Inductive types and the universe
	Inductive types
	The universe
	The type of integers
	Exercises

	Identity types
	The inductive definition of identity types
	The groupoid structure of types
	The action on paths of functions
	Transport
	Exercises

	Equivalences
	Homotopies
	Bi-invertible maps
	The identity type of a dependent pair type
	Exercises

	Contractible types and contractible maps
	Contractible types
	Contractible maps
	Equivalences are contractible maps
	Exercises

	The fundamental theorem of identity types
	Fiberwise equivalences
	The fundamental theorem
	Exercises

	The hierarchy of homotopical complexity
	Propositions and subtypes
	Sets
	General truncation levels
	Exercises

	Function extensionality
	Equivalent forms of function extensionality
	Universal properties
	Composing with equivalences
	Exercises

	Homotopy pullbacks
	Cartesian squares
	The unique existence of pullbacks
	Fiber products
	Fibers as pullbacks
	Fiberwise equivalences
	The pullback pasting property
	The disjointness of coproducts
	Exercises

	The univalence axiom
	Type extensionality
	Groups in univalent mathematics
	Equivalence relations
	Essentially small types and maps
	Exercises

	The circle
	The universal property of the circle
	The fundamental cover of the circle
	Exercises

	Homotopy pushouts
	Pushouts as higher inductive types
	Examples of pushouts
	The universal property of pushouts
	The pasting property for pushouts
	Exercises

	Descent
	Type families over pushouts
	The flattening lemma for pushouts
	Commuting cubes
	The descent property for pushouts
	Exercises

	Sequential colimits
	The universal property of sequential colimits
	The construction of sequential colimits
	Descent for sequential colimits
	The flattening lemma for sequential colimits
	Exercises

	The homotopy image of a map
	The universal property of the image of a map
	The propositional truncation
	Constructing the propositional truncation
	The construction of the image of a map
	Surjective maps
	Exercises

	Set quotients
	The universal property of set quotients
	The construction of set quotients
	Connected components of types
	Set truncation
	Exercises

	Homotopy groups of types
	Pointed types
	Loop spaces
	Homotopy groups
	The Eckmann-Hilton argument
	Simply connectedness of the 2-sphere
	Exercises

	The long exact sequence of homotopy groups
	The long exact sequence
	The Hopf fibration
	Exercises

	Bibliography
	Index

