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1 Group Representations

1. Throughout R denotes the real numbers, C denotes the complex numbers,
H denotes the quaternions, and G denotes a compact group. A real represen-
tation of G is a group homomorphism G → AutR(U) from G into the group of
R-linear automorphisms of a real vector space U . A complex representation
of G is a group homomorphism G → AutC(V ) from G into the group of C-linear
automorphisms of a complex vector space V . A quaternionic representa-
tion of G is a group homomorphism G → AutH(W ) from G into the group of
H-linear automorphisms of a quaternionic vector space W .

2. We define some functors. The dual space of a complex vector space V is
the complex vector space

V ∗ := HomC(V, C).

The complexification of a real vector space U is the complex vector space

C⊗R U, i(z ⊗ u) = (iz)⊗ u.

The quarternionification of a complex vector space V is the quarternionic
vector space

H⊗C V, p(q ⊗ v) = (qp)⊗ v, p, q ∈ H, v ∈ V

where C acts on H from the right in the tensor product so that z(q⊗v) = q⊗zv
for z ∈ C. For a complex vector space V we denote by

VR

the real vector space obtained by restricting the scalars to R ⊂ C. For a
quarternionic vector space W we denote by

WC

the complex vector space obtained by restricting the scalars to C ⊂ H. Each of
these operations is functorial. and hence yields new representations from old.
For example, when G → AutC(V ) : g 7→ gV is a complex representation, the
dual representation is G → AutC(V ∗) : g 7→ (g∗V )−1.

1



Theorem 3. Let G → AutC(V ) be a complex representation. Then the follow-
ing are equivalent.

(1) V = C⊗ U is the complexification of a real representation G → AutR(U).

(2) V admits an equivariant real structure. (A real structure on a complex
vector space V is an anti linear map S : V → V such that S2(v) = v.)

(3) There is an equivariant isomorphism B : V → V ∗ such that B∗ = B.

Also the following are equivalent.

(4) V = WC is obtained from a quaterionic representation G → AutH(W ) by
restriction of the scalars.

(5) V admits an equivariant quaternionic structure. (A quaternionic struc-
ture on a complex vector space V is an anti linear map S : V → V such
that S2(v) = −v.)

(6) There is an equivariant isomorphism B : V → V ∗ such that B∗ = −B.

Proof. First we prove (1) ⇐⇒ (2) and (4) ⇐⇒ (5).

(1) =⇒ (2). The complexification V = C⊗R U of a real vector space U has the
real structure SU (z ⊗ u) = z̄ ⊗ u.

(2) =⇒ (1). A real structure S on a complex vector space V determines a real
vector space U = {u ∈ V : S(u) = u} and an isomorphism

C⊗R U → V : z ⊗ u 7→ zu.

(4) =⇒ (5). The complex vector space WC obtained from a quaternionic vector
space W by restricting the scalars to C ⊂ H has a quaternionic structure SW

defined by SW (w) = jw for w ∈ W .

(5) =⇒ (4). A complex vector space V with a quaternionic structure S deter-
mines a quaternionic vector space W via W = V and

qv = (q0 + q1i)v + (q2 + q3i)S(v), q = q0 + q1i + q2j + q3k ∈ H

where q0, q1, q2,3 ∈ R.

Since conditions (2) and (5) and conditions (3) and (6) differ only in a sign
we can treat (2) ⇐⇒ (3) and (5) ⇐⇒ (6) simultaneously. By averaging over
G we get a real valued G-invariant (·, ·) Hermitean inner product on V . Let
〈·, ·〉 denote its real part so

(v, w) = 〈v, w〉+ i〈iv, w〉, (zv, w) = z̄(v, w), (v, w) = (w, v).

For A ∈ EndR(V ) denote by A′ ∈ EndR(V ) the unique map satisfying

〈Av,w〉 = 〈v,A′w〉.

2



(2),(5) =⇒ (3),(6). By replacing (v, w) by (v, w) + (Sv, Sw) we may assume
w.l.o.g. that

(Sv, Sw) = (v, w).

Define B by
B(v, w) := (Sv, w).

Then B is C-biinear and

B(v, w) = (w,Sv) = (Sw, S2v) = ±(Sw, v) = ±B(w, v)

so B∗ = ±B as required.

(3),(6) =⇒ (2),(5). Given B : V → V ∗ define an equivariant R-linear auto-
morphism A : V → V by

〈Av,w〉 = Re B(v, w)

where Re z ∈ R denotes the real part of z ∈ C. Form the polar decomposition

A = PS, P =
√

AA′, S = P−1A

so P = P ′ > 0 and S′ = S−1.

Step 1. A is anti linear. (Proof: 〈Aiv, w〉 = Re B(iv, w) = Re B(v, iw) =
〈Av, iw〉 = −〈iAv, i2w〉 = −〈iAv,w〉.)

Step 2. A′ = ±A. (Proof: 〈Av,w〉 = Re B(v, w) = ±Re B(w, v) = ±〈Aw, v〉 =
±〈w,A′v〉 = ±〈A′v, w〉.)

Step 3. AA′ is C-linear. (Proof: A and A′ = ±A are both anti linear).

Step 4. P is C-linear. (Proof: it is a power series in AA′).

Step 5. S is anti linear. (Proof: P is C-linear and A is anti linear).

Step 6. S2 = ±1. (Proof: Since A′ = ±A we have that A is normal in the
sense that AA′ = A′A. Hence B = PS = SP . But P = P ′ > 0 and S′ = S−1

by the polar decomposition so PS′ = (SP )′ = (PS)′ = B′ = ±B = ±PS so
S−1 = S′ = ±S as required.)

Steps 5 and 6 show that S is a structure map. It is equivariant as the
construction is explicit.

2 Irreducible Representations

A representation of a compact group has an invariant Hermitean inner product
so the representation is irreducible (no invariant subspace) if and only if it is
indecomposable (no invariant splitting).
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Definition 4. A complex representation G → AutC(V ) is said to be self dual
iff it is isomorphic to its complex dual V ∗ An irreducible complex representa-
tion is said to be of real type iff it satisfies the equivalent conditions (1-3) of
Theorem 3, of quaternionic type iff it satisfies the equivalent conditions (4-6)
of Theorem 3, and of complex type iff it is not self dual.

Corollary 5. A self dual irreducible complex representation is either of real
type or of quaternionic type and not both.

Proof. Suppose that B : V → V ∗ is an isomorphism. Then at least one of
the two maps B + B∗ and B − B∗ is non zero and so an isomorphism by
Schur’s Lemma. Theorem 3 says that V is of real type in the former case
and of quaternionic type in the latter case. Also by Schur’s Lemma any two
isomorphisms are non zero multiples of each other so there cannot be both a
symmetric and a skew symmetric isomorphism between V and V ∗.

Corollary 6. Abbreviate r(V ) = VR, f(W ) = WC, d(V ) = V ∗, c(U) = C⊗ U ,
and h(V ) = H⊗C V , There is a list {Um}m of real representations, a list {Vn}n

of complex representations, and a list {Wp}p of quaternionic representations
such that

(I) The list {c(U)m}m ∪ {Vn}n ∪ {V ∗
n }n ∪ {f(Wp)}p contains exactly one rep-

resentative of every irreducible complex representation.

(II) The list {Um}m∪{r(Vn)}n∪{rf(Wp)}p contains exactly one representative
of every irreducible real representation.

(III) The list {hc(Um)}m ∪{h(Vn)}n ∪{Wp}p contains exactly one representa-
tive of every irreducible quaternionic representation.

Lemma 7. For representations of G these functors satisfy the following iden-
tities:

rc = 2, cr = 1 + d, dc = c, dr = r, rd = r,

d2 = 1, hf = 2, hd = h, fh = 1 + d.

Here = means equivariant isomorphic and + means direct sum.

Proof. See [1] Proposition 6.1 page 95.

Corollary 8. Say that a complex representation has an irreducible real form
iff it is the complexification of an irreducible real representation. Then an irre-
ducible complex representation V is of

(I) real type if and only if V has irreducible real form,

(II) complex type if and only if V ⊕ V ∗ has irreducible real form,

(III) quaternionic type if and only if V ⊕ V has irreducible real form.
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Proof. In part (I) of Corollary 6 the representations in the list {c(U)m}m are
of real type, those in the list {Vn}n ∪ {V ∗

n }n are of complex type and those in
the list {f(Wp)}p are of quaternionic type. By Theorem 7) If V = c(Um) then
V is the complexification of U = Um. For V = Vn or V = V ∗

n From 1 + d = cr
in Theorem 7) we get Vn ⊕ V ∗

n = (1 + d)Vn = cr(Vn) is the complexification
of U = r(Vn). we get that V ⊕ V ∗ is the complexification of U = r(V ). For
V = f(Wp) and 2 = cr in Theorem 7) we get that V ⊕V is the complexification
of U = rf(Wp). In each case U is irreducible by part (II) of Theorem ??.
These values of U exhaust the real irreducible representations so this proves the
converse as well.

Corollary 9. In the notation of Corollary 6 the commutator algebras of the
irredcucible real representations are given by

EndR(Um)G = R, EndR(r(Vn))G = C, EndR(rf(Wp))G = H.

Proof. See [1] Theorem 6.7 page 99.

Corollary 10. Let G → AutC(V ) : g 7→ gV be an irreducible real representation
and χV : G → C be the character of V , i.e.

χV (g) := Trace(gV ).

Then ∫
G

χ(g2) dg =

 1 ⇐⇒ V is of real type,
0 ⇐⇒ V is of complex type,

−1 ⇐⇒ V is of quaternionic type.

(The integral is with respect to Haar measure.)

Proof. See [1] Proposition 6.8 page 100.

3 Matrix Representations

We formulate the above in the language of matrices.

11. The classical algebraic groups are the general linear group GLn(F), the
special linear group SLn(F), the orthogonal group On(F), the special orthogonal
group GLn(F), and the symplectic group Spn(F) as follows.

GLn(F) := {A ∈ Fn×n : det(A) 6= 0},

SLn(F) := {A ∈ Fn×n : det(A) = 1},

On(F) := {A ∈ GLn(F) : A−1 = tA},

SOn(F) := {A ∈ SLn(F) : A−1 = tA},

Spn(F) := {A ∈ GLn(F) : A−1 = −J tAJ}.
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In the definition of Spn(F), n is even and J is block diagonal with 2× 2 blocks(
0 −1
1 0

)
on the diagonal. In order that

GLn(F) = AutF(Fn)

we identify the elements of Fn with column vectors where matrices act on the
left and the scalars act on the right (so that Hn is a right vector space over H).
Then we have inclusions

GLn(R) ⊂ GLn(C) ⊂ GLn(H)

corresponding to complexification and quaternionification and inclusions

GLn(C) ⊂ GL2n(R), GLn(H) ⊂ GL2n(C)

given by restriction of the scalars, i.e. replacing each entry x + yi in a complex

matrix by the 2× 2 real matrix
(

x −y
y x

)
and replacing each entry u + vj in

a quaternionic matrix by the 2× 2 complex matrix
(

u −v
v̄ ū

)
.

12. The classical compact groups are the unitary group U(n), the special
unitary group SU(n), the real orthogonal group O(n), the real special orthogonal
group SO(n), and the quaternionic unitary group Sp(n) as follows.

U(n) := {A ∈ GLn(C) : A−1 = tĀ},

SU(n) := SLn(C) ∩U(n),

O(n) := On(R),

SO(n) := SOn(R),

Sp(n) := {A ∈ GLn(H) : A−1 = tĀ}.

There is an isomorphism

Sp(n) = U(2n) ∩ Sp2n(C).

(See [2] Exercise 7.4 page 99.) Every complex representation G → AutC(V )
preserves a Hermitean form and hence is conjugate to a homomorphism

G → U(n).

A complex representation satisfies conditions (1-3) of Theorem 3 if and only if
it can be represented by real matrices, i.e. if and only if it is conjugate to a
homomorphism

G → O(n) ⊂ U(n).

A complex representation satisfies conditions (4-6) of Theorem 3 if and only if
can be represented by quaternionic matrices, i.e. if and only if it is conjugate
to a homomorphism

G → Sp(n) ⊂ U(2n).
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