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Abstract

The technique of zeta regularization is reviewed in quantum mechanics and �eld theory.
After introducing the zeta function rigorously we compute the partition function of bosonic
and fermionic harmonic oscillators in quantum mechanics and study the generating func-
tional of a quantum �eld in the presence of a source J by considering the determinant of
its corresponding di�erential quadratic operator at 1-loop order.
The invariance of the potential in the bare Lagrangian of the ϕ4 theory at the solution of
the classical equations with source J is proved and explained and the partition function
of the harmonic oscillator in �eld theory is computed and explained in the limit of high
temperature.
The link between the zeta function, the heat kernel and the Mellin transform is explained
and the equivalence between zeta and dimensional regularizations is shown and explicitly
derived for the case ϕ4 theory.
Furthemore, the transformation on the 1-loop e�ective Lagrangian is also illustrated.
Finally, the Casimir e�ect is introduced.
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The formula

1 + 1 + 1 + 1 + · · · = −1
2

has got to mean something.

Anonymous

(...) the use of the procedure of analytic continuation through the zeta function requires a
good deal of mathematical work. It is no surprise that [it] has been often associated with
mistakes and errors.

E. Elizalde and A. Romeo

We may - paraphrasing the famous sentence of George Orwell - say that 'all mathematics
is beautiful, yet some is more beautiful than the other'. But the most beautiful in all math-
ematics is the zeta function. There is no doubt about it.

Krzysztof Maslanka
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1 Introduction

Special functions have arisen constantly and systematically in mathematical and theoretical
physics throughout the XIX and XX centuries.
Indeed, the study of theoretical physics is plagued with special functions: Dirac, Legendre,
Bessel, Hankel, Hermite functions - to name a few - are abundant in the indices of most
modern treatises on physics. The most prominent ones have been the ever-present gamma
function and those which are solutions to di�erential equations that model physical systems.

The Riemann zeta function is de�ned for a complex variable s as [8]

ζ(s) :=
∞∑
n=1

1
ns

=
∏
p

1
1− p−s

The above de�nition is valid for Re(s) > 1 and it can be analytically continued to the whole
complex plane except at s = 1 where it has a simple pole with residue 1. It will be shown
that the product runs over all primes p.
It is not a solution to any physically motivated di�erential equation [1] which sets it apart
from other special functions which have a more transparent physical meaning.
Traditionally, the Riemann ζ function has had its applications in analytic number theory
and especially in the distribution of prime numbers. As such it has been regarded mostly as
a function that fell completely within the realm of pure mathematics and it was temporarily
excluded.

We will begin by studying the Γ and ζ functions. The lack of a course on special functions
at Imperial College gives us a welcome opportunity to discuss these entities thoroughly.
The exposition will be rigorous de�nition-theorem-proof style and the only essential pre-
requisites are those of complex analysis: convergence, analytic continuation, residue calculus
and Fourier and Mellin transforms.
We have limited the discussion, however, to the essential aspects of the ζ functions that
we will need for the rest of the dissertation and thus commented the beautiful connection
between number theory and the ζ function only brie�y.
The functional equation is of particular importance

ζ(s) = 2(2π)s−1Γ(1− s) sin
(sπ

2

)
ζ(1− s)

as well as the formulas

ζ(0) = −1
2
, ζ ′(0) = −1

2
log(2π)

which will be used time and again. Of course, they need a note of clari�cation. The ζ
function can be written as

ζ(s) =
1

1− 21−s

∞∑
n=1

(−1)n+1

ns
.

These two sums agree in the region where they converge. However, when Re(s) < 1 the RHS
is the step to analytic continuation and it goes to − 1

2 as s→ 0 hence ζ(0) = − 1
2 in this sense.

During the last quarter of the XX century papers from S. Hawking [4], S. Elizalde, S.
Odintsov and A. Romeo (EOR) [3] explained how the ζ regularization assigns �nite values
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to otherwise super�cially divergent sums.
This is precisely what the two above formulas for ζ(0) and ζ ′(0) accomplish.
One of the early uses of the ζ technique was made by Hendrik Casimir in 1948 to compute
the vacuum energy of two uncharged metallic plates a few micrometers apart [2].
Another of the �rst instances of the Riemann's ζ function as a summation device comes
from Hawking's paper [4]. Others before had used this device in connection with the renor-
malization of e�ective Lagrangians and vacuum energy-momentum tensors Tµν on curved
spaces applied to a scalar �eld in a de Sitter space background. What Hawking accom-
plished was to show that the ζ function could be used as a technique for yielding �nite
values to path integrals whose �elds are curved. This, in turn, amounts to saying that the
ζ function can be used to compute determinants of quadratic di�erential operators.

It is interesting to note that at a more academic level however ζ regularization is hardly ever
mentioned in undergraduate quantum mechanics books, nor is it mentioned either in Peskin
and Schroeder [6] or in Weinberg [9] which are some of the standard books on quantum
�eld theory. It is precisely in QFT where the ζ function becomes apparent as a serious
competitor to dimensional renormalization.

Let us brie�y explain how the technique works in broad strokes. The determinant of an
operator A can be written as the in�nite product of its eigenvalues λn as [3], [4], [7]

log detA = log
∏
n

λn = Tr logA =
∑
n

log λn

The ζ function arises naturally by using

ζA(s) := TrA−s =
∑
n

1
λsn
,

d

ds
ζA(s)

∣∣∣∣
s=0

= −
∑
n

log λn,

and the functional determinant of the operator can then be written as

detA = exp(−ζ ′A(0)).

When we use this de�nition we can �nd �nite values for products which are otherwise di-
vergent because the spectrum of their eigenvalues is unbounded.

Now, we have mentioned operators must be di�erential and quadratic.
In the bosonic quantum mechanical case, we take this operator to be the harmonic oscillator

AQM = − d2

dτ2
+ ω2.

Using ζ regularization we will show that the partition function of the oscillator de�ned as

Z(β) = Tr exp(−βĤ)

is given by [5]

Z(β) =
∫
dx 〈x| exp(−βH)|x〉 =

1
2 sinh(βω/2)

,

where β is a constant appearing in the partition function which accounts for the discretiza-
tion of time, i.e. β = Nε as N →∞ and ε → 0 with N being number of time slices and ε
the size of each time slice. Also, its inverse can be thought of as the temperature by setting
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imaginary time β = iT .
A slightly more exotic ζ function is needed for fermions called the Hurwitz ζ function de�ned
as [8]

ζ(s, a) =
∞∑
n=0

1
(n+ a)s

with a 6= 0,−1,−2, · · · . Since fermionic theories demand anti-commutation relations we
will need Grassmann numbers and therefore we will explain these in detail but only in so
much as is needed to compute partition functions for fermions.
The same technique applied with this ζ function to the partition function

Tre−βH =
∫
dθ∗dθ

〈
−θ|e−βH | θ

〉
e−θ

∗θ.

where θ and θ∗ are conjugate Grassmann numbers yields [5]

Z(β) = 2
∞∏
n=1

[
1 +

(
βω

π(2n− 1)

)2
]

= 2 cosh
βω

2
.

In the quantum mechanical case the eigenvalues λn are explicitly known thus the compu-
tation of ζA is relatively easy compared to the �eld theoretical case. The key step in these
cases is to relate the ζA function of the operator to the standard ζ function, for instance in
the bosonic case

ζboson(s) =
∞∑
n=1

(
nπ

β

)−2s

=
(
β

π

)2s

ζ(2s).

whereas in the fermionic case

ζfermion(s) =
∞∑
k=1

[
2π(k − 1/2)

β

]−s
=
(
β

2π

)s
ζ(s, 1/2),

We will make use of formulas for ζ(0) and ζ ′(0) showing the necessity of having discussed
the ζ function at length but more importantly also showing that in a certain sense regu-
larization in quantum theory can be thought of as a technique of complex analysis, namely
analytic continuation.

Because determinants of di�erential quadratic operators arise in �eld theory through path
integrals in the presence of a source J we have devoted a whole chapter to explain this
construction. This approach is complementary to the QFT/AQFT courses from the MSc.
The only �eld theory we shall consider is ϕ4 however it is important to note that ζ regu-
larization can be applied to more complex �eld theories and even to string theory [3]. We
shall keep this section brief and avoid topics such as Feynman diagrams whenever possible.

Equipped with all the tools we have developed in the preceding section we will see how
the ζ function can be used in �eld theory. This will be the culmination of the formulas we
have proved in Section 2, the techniques developed in Section 3 and the theory explained
in Section 4. Furthermore, this will encapsulate the spirit of the technique.

Quantum �eld theories of a scalar �eld in the presence of an external source J will be
studied. It will be shown how the generating functional or probability amplitude [6]

ZE [J ] = e−iE[J] =
〈
Ω|e−iHT |Ω

〉
J

=
∫
Dφ exp

[
i

∫
d4x(L[φ] + Jφ)

]
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can be written in Euclidean spacetime as [3], [7]

ZE [J ] =
N ′E exp {−SEuc[φ(x0), J ]}√

det
[
(−∂̄µ∂̄µ +m2 + V ′′[φ(x0)])δ(x1 − x2)

]
It is plainly visible that the determinant in the denominator already contains the seed of
the technique, namely a di�erential quadratic operator. By taking the potential to be that
of the ϕ4 theory, the operator becomes

AFT = −∂2 +m2 +
λ

2
φ2

0(x),

In contrast to the quantum mechanical case, the link to the ζA function is much more
complex and makes use of the heat kernel. With appropriate boundary conditions, the
solution to the heat equation

AxGA(x, y, t) = − ∂

∂t
GA(x, y, t)

is given by scalar product

GA(x, y, t) =
〈
x|e−tA|y

〉
=
∑
n

e−tλnψn(x)ψ∗n(y).

where λn are the eigenvalues of the operator and ψn the orthogonal eigenvectors. The trace
of the solution is ∫

d4xGA(x, x, t) =
∑
n

e−tλn = TrGA(t)

and the link with the ζA function comes from the Mellin transform [4]

ζA(s) =
∑
n

λ−sn =
1

Γ(s)

∞∫
0

dtts−1TrGA(t).

We will show that by taking into account �rst order quantum corrections, the potential in
the bare Lagrangian of the �eld theory is renormalized as

V (φcl) =
λ

4!
φ4
cl +

λ2φ4
cl

256π2

(
log

φ2
cl

M2
− 25

6

)
where φcl is the classical �eld de�ned in terms of the source J and ground state Ω as

φcl(x) = 〈Ω|φ(x)|Ω〉J = − δ

δJ(x)
E[J ] = −i δ

δJ(x)
logZ.

We will then discuss how coupling constants evolve in terms of scale dependence and by
exploring the analogy between �eld theory and statistical mechanics. Furthermore, we will
show that [7]

logZ =
1
2
ζ ′A(0) = −1

2
ωβ − log(1− e−ωβ).

is the partition function of QFT harmonic oscillator. We can push the method more by
showing

logZ =
1
2
ζ ′B(0) = V

[
M3

12π
+

π2

90β3
− M2

24β
+
βM4

32π2

(
γ + log

µβ

4π

)
+ · · ·

]
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where

B = − ∂2

∂t2
+ β2

(
−∇2 +m2 +

λ

2
φ̄2

0

)2

in the limit of high temperatue β → 0. The ζ technique will also show how the e�ective
Lagrangian is a�ected.

As a means of a check to make sure the technique yields the same results as other reg-
ularization techniques we will derive the same results by using more standard methods such
as the one-loop expansion approach. However, we will do better than this by showing that
the two techniques are equivalent and we will show this explictily for the case of ϕ4 theory.

EOR devote a substantial amount of their book on the Casimir e�ect. Consequently there
is a brief introduction to the calculation done by Casimir in the late 1940s. This will con-
stitute the more 'applied' aspect of the thesis.

The conclusion contains a clari�cation on some of the prejudices regarding the use and
ill de�niteness of the ζ function as well as a repertoire of analogous equations concerning
the distribution of the zeros of the ζ function, ζ regularization and dimensional regulariza-
tion.

The appendix contains some formulas that did not �t in the presentation and makes the
whole dissertation almost self-contained. References have been provided in each individual
chapter, including pages where the main ideas have been explored. Overall, the literature
on ζ regularization is sparse. The main sources for this dissertation have been Grosche and
Steiner, Kleinert, Ramond and the superb treatise by Elizalde, Odintsov, and Romeo.

In terms of the knowledge of physics, the only pre-requisite comes from �eld theory up
to the notes of QFT/AQFT from the MSc in QFFF.

It has been an objective to try to put results from di�erent sources in a new light, by
clarifying proofs and creating a coherent set of examples and applications which are related
to each other and which are of increasing complexity.

Finally, a few remarks which I have not been able to �nd in the literature are now made
concerning a potential relationship between ζ functions and families of elementary parti-
cles. Di�erent ζ functions come into play in quantum mechanics by computing partition
functions. As we have said above, the Riemann ζ(s) function is used in bosonic parti-
tion functions, whereas the Hurwitz ζ(s, a) function is needed for the fermionic partition
function.

Riemann ζ function⇔ bosons Hurwitz ζ function⇔ fermions

It would be an interesting subject of research to investigate how the ζ function behaves with
respect to its corresponding particle, and what kind of knowledge we can extract about the
particle given its special ζ function. For instance, a photon has an associated ζ function, and
its partition function can be computed by using known facts of this ζ function, on the other
hand, known facts about the boson might bring clari�cations to properties of this ζ function.

The celebrated Riemann hypothesis claims that all the nontrivial zeros of the Riemann
ζ function are of the form ζ( 1

2 + it) with t real. Another observation I have not been able
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to �nd would be to consider an operator which brings the ζ function to the form ζ( 1
2 + it)

and investigate the behaviour of ζ function with respect to this operator. This would mean
a 'translation' of the Riemann hypothesis and a study of its physical interpretations.
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2 Introduction to the Riemann Zeta Function

2.1 The Gamma Function Γ(s)

Often in mathematics, it is more natural to de�ne a function in terms of an integral de-
pending on a parameter rather than through power series. The Γ function is one such case.
Traditionally, it can be approached as a Weierstrass product or as a parameter-dependent
integral. The approach chosen to introduce the Γ function follows from the courses in
complex analysis such delivered by Freitag and usam [2], as well as Titchmarsch [6] and
Whitaker and Watson [7].
We adopt the notation s = σ + it which was introduced by Riemann in 1859 and which
has become the standard in the literature of the ζ function. Let us �rst de�ne the Euler Γ
function.

De�nition 1 The integral

Γ(s) :=
∫ ∞

0

dtts−1e−t (2.1)

is well de�ned and de�nes a holomorphic function in the right half complex plane, where
Re(s) = σ > 0.

The �rst lemma generalises the factorial function as follows

Lemma 1 For any n ∈ N we have Γ(n) = (n− 1)!.
Proof. Note that Γ(1) :=

∫∞
0
dte−t and by integration by parts we have

Γ(s+ 1) =
∫ ∞

0

dttse−t = −tse−t|∞0 + s

∫ ∞
0

dtts−1e−t = sΓ(s)

for any s in the right half-plane. Now, for any positive integer n, we have

Γ(n) = (n− 1)Γ(n− 1) = (n− 1)!Γ(1) = (n− 1)! (2.2)

so the result is proved.

In order to have a complete view of the Γ function we need to extend it to a meromor-
phic function in the whole complex plane.

Lemma 2 Let cn where n ∈ Z+ be a sequence of complex numbers such that the sum∑∞
n=0 |cn| converges. Furthermore, let S = {−n|n ∈ Z+ and cn 6= 0}. Then

f(s) =
∞∑
n=0

cn
s+ n

converges absolutely for s ∈ C−S and uniformly on bounded subsets of C−S. The function
f is a meromorphic function on C with simple poles at the points in S and the residues are
by given ress=−nf(s) = cn by for any −n ∈ S.
Proof. Let us start by �nding upper bounds. If |s| < R, then |s + n| ≥ |n − R| for all
n ≥ R. Therefore, we have |s+n|−1 ≤ (n−R)−1 for |s| < R and n ≥ R. From this we can
deduce that for n0 > R we have∣∣∣∣∣

∞∑
n=n0

cn
s+ n

∣∣∣∣∣ ≤
∞∑

n=n0

|cn|
|s+ n|

≤
∞∑

n=n0

|cn|
n−R

≤ 1
n−R

∞∑
n=n0

|cn|.
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As such the series
∑
n>R cn/(s+n) converges absolutely and uniformly on the disk |s| < R

and de�nes there a holomorphic function. It follows that
∑∞
n=0 cn/(s+n) is a meromorphic

function on that disk with simple poles at the points of S on the disk |s| < R. Thus,∑∞
n=0 cn/(s + n) is a meromorphic function with simple poles at the points in S and for

any −n ∈ S we can write

f(s) =
cn

s+ n
+

∑
−k∈S−{n}

ck
s+ k

=
cn

s+ n
+ g(s),

where g is holomorphic at −n. From this we see that residues are indeed ress=−nf(s) = cn.
This concludes the proof.

Equipped with this lemma we are in a position to extend the Γ function as we wanted.

Theorem 1 The Γ function extends to a meromorphic function on the complex plane.
It has simple poles at 0,−1,−2,−3, · · · . The residues of Γ at are given by

res
s=−k

Γ(s) =
(−1)k

k!
, (2.3)

for any k ∈ Z+.
Proof. Let us split the Γ function as

Γ(s) =
∫ 1

0

dtts−1e−t +
∫ ∞

1

dtts−1e−t,

the second integral converges for any complex s and it is an entire function. Let us expand
the exponential function in the �rst integral∫ 1

0

dtts−1e−t =
∫ 1

0

dtts−1
∞∑
k=0

(−1)k

k!
tk =

∞∑
k=0

(−1)k

k!

∫ 1

0

dttk+s−1 =
∞∑
k=0

(−1)k

k!
1

s+ k
,

these operations are valid for s ∈ C as the exponential function is entire and converges
uniformly on compact sets of the complex plane. The Γ function can now be written in a
form where Lemma 2 can be used, i.e.

Γ(s) =
∫ ∞

1

dtts−1e−t +
∞∑
k=0

(−1)k

k!
1

s+ k
, (2.4)

for any s in the right half-plane. By Lemma 2, the RHS de�nes a meromorphic function
on the complex plane with simple poles at 0,−1,−2,−3, · · · . The residues are given as a
direct application of the lemma.

Theorem 2 For s ∈ C any we have

Γ(s+ 1) = sΓ(s). (2.5)

Proof. This follows directly from Lemma 1 and Theorem 1.

We three-dimensional representation of the Γ function looks like
Another important function related to the Γ function, and also discovered by Euler, is the
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Figure 2.1: |Γ(x+ iy)| for −5 ≤ x ≤ 3 and −1 ≤ y ≤ 1

Beta function which we proceed to develop as follows. Let Re(p), Re(q) > 0 and in the
integral that de�nes the Γ function, make the change of variable t = u2 to obtain

Γ(p) =
∫ ∞

0

dttp−1e−t = 2
∫ ∞

0

duu2p−1e−u
2
.

In an analogous form we have

Γ(q) = 2
∫ ∞

0

dvv2q−1e−v
2

Multiplying these two together we have

Γ(p)Γ(q) = 4
∫ ∞

0

∫ ∞
0

dudve−(u2+v2)u2p−1v2q−1,

and switching to polar coordinates u = r cos θ, v = r sin θ, dudv = rdrdθ

Γ(p)Γ(q) = 4

∞∫
0

π/2∫
0

drdθ e−r
2
r2(p+q)−1 cos2p−1 θ sin2q−1 θ

=

2

∞∫
0

dr e−r
2
r2(p+q)−1


2

π/2∫
0

dθ cos2p−1 θ sin2q−1 θ


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= 2Γ(p+ q)

π/2∫
0

dθ cos2p−1 θ sin2q−1 θ

The integral can be simpli�ed by setting z = sin2 θ

2

π/2∫
0

dθ cos2p−1 θ sin2q−1 θ =

1∫
0

dz zq−1(1− z)p−1.

Next we de�ne

B(p, q) :=

1∫
0

dz zp−1(1− z)q−1

for Re(p),Re(q) > 0, and this gives the identity

B(p, q) = B(q, p) =
Γ(p)Γ(q)
Γ(p+ q)

.

We denote by B the Beta function. Moreover, if 0 < x < 1 we have

Γ(x)Γ(1− x) =
Γ(x)Γ(1− x)

Γ(1)
= B(x, 1− x) =

1∫
0

dz zx−1(1− z)−x.

We will evaluate this integral with an appropriate contour, but �rst we need to make one
last change z = u/(u+ 1) which yields

1∫
0

dz zx−1(1− z)−x =

∞∫
0

du

(u+ 1)2

ux−1

(u+ 1)x−1

(
1− u

u+ 1

)−x
=

∞∫
0

du
ux−1

1 + u
.

Lemma 3 For 0 < y < 1 we have (1.10)

∞∫
0

du
u−y

1 + u
=

π

sinπy
. (2.6)

Proof. Let us use a keyhole contour, which is accomplished by cutting the complex plane
along the positive real axis. On this region we de�ne the function

f(s) =
s−y

1 + s

with argument of s−y equal to 0 on the upper side of the cut. Furthermore, the function f
has a �rst order pole at s = −1 with residue e−iyπ. See Figure 2.2 below.
We are now to integrate this function along the path described in Figure 2.2: the path goes
along the upper side of the cut from ε > 0 to R, then along the circle CR of radius R centred
at the origin, then along the side of the cut from R to ε and at the end around the origin
via the circle Cε of radius ε also centred at the origin. An application of the Cauchy residue
theorem gives

2πie−πiy =

R∫
ε

du
u−y

1 + u
+
∮
CR

dz
z−y

1 + z
− e−2πiy

R∫
ε

du
u−y

1 + u
−
∮
Cε

dz
z−y

1 + z
.
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Figure 2.2: C = CR ∪ Cε ∪ [ε,R] ∪ [R, ε]

We can get rid of the integrals around the arcs by appropriate estimates. Note that for we
have the following

|z−y| = |e−y log z| = e−yRe(log z) = e−y log |z| = |z|−y,∣∣∣∣ z−y1 + z

∣∣∣∣ ≤ |z|−y|1 + z|
≤ |z|−y

|1− |z||
,

and the integrals can be estimated∣∣∣∣∣∣
∮
CR

dz
z−y

1 + z

∣∣∣∣∣∣ ≤ 2π
R1−y

R− 1
→

R→∞
0,

∣∣∣∣∣∣
∮
Cε

dz
z−y

1 + z

∣∣∣∣∣∣ ≤ 2π
ε1−y

1− ε
→
ε→0

0;

so that we are left with

(1− e−2πiy)

∞∫
0

du
u−y

1 + u
= 2πie−πiy.

We may re-write this to obtain the �nal result

(eπiy − e−πiy)

∞∫
0

du
u−y

1 + u
= 2πi ⇒

∞∫
0

du
u−y

1 + u
=

π

sinπy
.

This proves the claim of the lemma.

Let us now make the concluding remarks.

Theorem 3 (Euler Re�ection Formula) For all s ∈ C one has

Γ(s)Γ(1− s) =
π

sinπs
. (2.7)
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Proof. The lemma we have just proved can be written as

Γ(x)Γ(1− x) =
π

sinπ(1− x)
=

π

sinπx
,

for 0 < x < 1. However, both sides of the equation above are meromorphic, hence we have
proved the theorem.

Corollary 1 One has

Γ
(

1
2

)
=

∞∫
0

dtt−1/2e−t =

∞∫
−∞

dte−t
2

=
√
π. (2.8)

Proof. This follows by substituting s = 1/2 in the Euler re�ection formula (2.7).

Theorem 4 The Γ function has no zeroes.
Proof. Since s → sin(πs) is an entire function, the RHS of Theorem 3 has no zeroes,
therefore Γ(s) = 0 only happens where s→ Γ(1− s) has poles. However, as we have argued
before, the poles of Γ are at 0,−1,−2,−3, · · · so it follows that Γ(1− s) must have poles at
1, 2, 3, · · · . By the factorial formula, Γ(n+ 1) = n! 6= 0 and so Γ has no zeroes.

Intrinsically connected to the Γ function is the Euler γ constant. Let us �rst de�ne it
and prove its existence.

Lemma 4 If sn := 1 + 1
2 + · · · + 1

n − log n, then limn→∞ sn exists. This limit is called
the Euler γ constant.
Proof. Consider tn = 1 + 1

2 + · · ·+ 1
n−1 − log n geometrically, it represents the area of the

n− 1 regions between the upper Riemann sum and the exact value of
∫ n

1
dxx−1. Therefore

tn increases with n. We can write

tn =
n−1∑
k=1

[
1
k
− log

k + 1
k

]
, lim

n→∞tn =
∞∑
k=1

[
1
k
− log

(
1 +

1
k

)]
.

The series on the right converges to a positive constant since

0 <
1
k
− log

(
1 +

1
k

)
=

1
2k2
− 1

3k3
+

1
4k4
− · · · ≤ 1

2k2
.

Next, the following holds

sn+1 − sn =
1

n+ 1
− log

(
1 +

1
n

)
, tn+1 − tn =

1
n
− log

(
1 +

1
n

)
which means that

1
n+ 1

< log
(

1 +
1
n

)
<

1
n
⇒ sn+1 − sn < 0 < tn+1 − tn.

Convergence now follows because sn decreases monotonically whereas tn increase monoton-
ically and the di�erences are negative. Hence sn is monotonically decreasing and bounded
below thus convergent.
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The value of γ was computed by Mascheroni to be

γ = 0.57721566490153286060651209008240243104215933593992 · · ·

and of course subsequent improvements have been made.

Lemma 5 Weierstrass product of the Γ function

1
Γ(s)

= lim
n→∞

sesγ
n∏
k=1

(
1 +

s

k

)
e−s/k. (2.9)

Proof. Using the fact that (1− t/n)n → e−t as n→∞ it can be shown that

Γ(s) = lim
n→∞

n∫
0

dtts−1

(
1− t

n

)n
= lim
n→∞

1
nn

n∫
0

dtts−1(n− t)n

and integrating by parts yields

Γ(s) = lim
n→∞

1
nn

n

s

n∫
0

dtts(n− t)n−1 = lim
n→∞

1
nn

n(n− 1) · · · 1
s(s+ 1) · · · (s+ n− 1)

n∫
0

dtts+n−1

= lim
n→∞

ns

s

(
1

s+ 1

)(
2

s+ 2

)
· · ·
(

n

s+ n

)
.

Inverting both sides

1
Γ(s)

= lim
n→∞

sn−s(s+ 1)
(

1 +
s

2

)
· · ·
(

1 +
s

n

)
= lim
n→∞

sn−s
n∏
k=1

(
1 +

s

k

)
In order to be limit we need to insert the convergence factor e−s/k to obtain

1
Γ(s)

= lim
n→∞

sn−ses(1+1/2+···+1/n)
n∏
k=1

(
1 +

s

k

)
e−s/k

= lim
n→∞

es(1+1/2+···+1/n−logn)

[
s

n∏
k=1

(
1 +

s

k

)
e−s/k

]
.

However by the use of Lemma 4, we know that the sum converges γ to so that we have
shown the result (2.9).

The derivative of the Γ function at −1 is Γ′(1) = −γ, as it can be seen by taking the
logarithmic derivative of Weierstrass product (2.9)

− log Γ(s) = log s+ γs+
∞∑
k=1

[
log
(

1 +
s

k

)
− s

k

]
⇒ −Γ′(s)

Γ(s)
=

1
s

+ γ +
∞∑
k=1

[
1

k + s
− 1
k

]
and hence

Γ′(1) = −1− γ −
∞∑
k=1

[
1

k + 1
− 1
k

]
= −γ. (2.10)
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2.2 The Hurwitz Function ζ(s, a)

The Hurwitz ζ(s, a) function is initially de�ned for σ > 1 by the series

ζ(s, a) :=
∞∑
n=0

1
(n+ a)s

. (2.11)

This is provided that n + a 6= 0 and a 6= 0,−1,−2, · · · . The reason why we work with a
generalized ζ(s, a) function, rather than with the ζ(s) function itself, is because fermions
require this special kind of ζ function for their regularization. Note however that bosons
require the Riemann ζ(s, 1) = ζ(s) function. For the special case of the Riemann ζ function,
the 3-d plot looks like. The discussion presented here of the properties of the Riemann ζ
function has its foundations in Titchmarsh [5]. Although the roots of the functional equa-
tion go back to Riemann, the development of the Hurwitz ζ can be traced back to Apostol
[1] which in turn is taken from Ingham [3].

Let us now examine the properties of the Hurwitz ζ function.

Figure 2.3: |ζ( 1
2 + iy, s)| for 1 ≤ y ≤ 50 and 1

2 ≤ a ≤ 2

Proposition 1 The series ζ(s, a) for converges absolutely for σ > 1. The convergence
is uniform in every half-plane σ ≥ 1 + δ with δ > 0 so ζ(s, a) is analytic function of s in the
half-plane σ > 1.
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Proof. From the inequalities

∞∑
n=1

∣∣(n+ a)−s
∣∣ =

∞∑
n=1

(n+ a)−σ ≤
∞∑
n=1

(n+ a)−(1+δ).

all the statements follow and this proves the claim.

The analytic continuation of the ζ function to a meromorphic function in the complex
plane is more complicated than in the case of the Γ function.

Proposition 2 For σ > 1 we have the integral representation

Γ(s)ζ(s, a) =

∞∫
0

dx
xs−1e−ax

1− e−x
. (2.12)

In the case of the Riemann ζ function, that is when a = 1, we have

Γ(s)ζ(s) =

∞∫
0

dx
xs−1e−x

1− e−x
. (2.13)

Proof. First we consider the case when s is real and s > 1, then extend the result to
complex s by analytic continuation. In the integral for the Γ function we make the change
of variable x = (n+ a)t where n ≥ 0 and this yields

(n+ a)−sΓ(s) =

∞∫
0

dte−nte−atts−1.

Next, we sum over all n ≥ 0 and this gives

ζ(s, a)Γ(s) =
∞∑
n=0

∞∫
0

dte−nte−atts−1,

where the series on the right is convergent if Re(s) > 1. To �nish the proof we need to
interchange the sum and the integral signs. This interchange is valid by the theory of
Lebesgue integration; however we do not proceed to prove this more rigorously because it
would take us too far from the subject at matter. Therefore, we may write

ζ(s, a)Γ(s) =
∞∑
n=0

∞∫
0

dte−nte−atts−1 =

∞∫
0

dt

∞∑
n=0

e−nte−atts−1.

However, if Im(s) = t > 0 we have 0 < e−t < 1 and hence we may sum

∞∑
n=0

e−nt =
1

1− e−t
,

by geometric summation. Thus the integrand becomes

ζ(s, a)Γ(s) =

∞∫
0

dt

∞∑
n=0

e−nte−atts−1 =

∞∫
0

dt
e−atts−1

1− e−t
. (2.14)
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Now we have the �rst part of the argument and we need to extend this to all complex s
with Re(s) > 1. To this end, note that both members are analytic for Re(s) > 1. In order
to show that the right member is analytic we assume 1 + δ ≤ σ ≤ c where c > 1 and δ > 0.
We then have

∞∫
0

dt

∣∣∣∣e−atts−1

1− e−t

∣∣∣∣ ≤
∞∫

0

dt
e−attσ−1

1− e−t
=

 1∫
0

dt+

∞∫
1

dt

 e−attσ−1

1− e−t
.

Notice the analogy of splitting the integral as in the proof of Theorem 1.
If 0 ≤ t ≤ 1 we have tσ−1 ≤ tδ and if t ≥ 1 we have tσ−1 ≤ tc−1. Also since et − 1 ≥ t for
t ≥ 0 we then have

1∫
0

dt
e−attσ−1

1− e−t
≤

1∫
0

dt
e(1−a)ttδ

et − 1
≤ e(1−a)

1∫
0

dt tδ−1 =
e1−a

δ
,

and
∞∫

1

dt
e−attσ−1

1− e−t
≤
∞∫

1

dt
e−attc−1

1− e−t
≤
∞∫

0

dt
e−attc−1

1− e−t
= ζ(c, a)Γ(c).

This proves that the integral in the statement of the theorem converges uniformly in every
strip 1 + δ ≤ σ ≤ c, where δ > 0, and therefore represents an analytic function in every
such strip, hence also in the half-plane σ = Re(s) > 1. Therefore, by analytic continuation,
(1.14) holds for all s with Re(s) > 1.

Consider the keyhole contour C : a loop around the negative real axis as shown in Fig-
ure 2.4. The loop is made of three parts C1, C2, and C3. The C2 part is a positively
oriented circle of radius ε < 2π above the origin, and C1 and C3 are the lower and upper
edges of a cut in the z plane along the negative real axis.

Figure 2.4: C = C1 ∪ C2 ∪ C3

This can be translated into the following parametrizations: z = re−πi on C1 and z = reπi

on C3 where r varies from ε to ∞.

Proposition 3 If 0 < a ≤ 1 the function de�ned by the contour integral

Υ(s, a) =
1

2πi

∫
C

dz
zs−1eaz

1− ez
(2.15)

is an entire function of s. Moreover, we have

ζ(s, a) = Γ(1− s)Υ(s, a) (2.16)
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if Re(s) = σ > 1.
Proof. Write zs = rse−πis on C1 and zs = rseπis on C3. Let us consider an arbitrary
compact disk |s| ≤M and we proceed to prove that the integrals along C1 and C3 converge
uniformly on every such disk. Since the integrand is an entire function of s, this will prove
that the integral Υ(s, a) is entire. Along C1 we have for r ≥ 1,

|zs−1| = rσ−1|e−πi(σ−1+it)| = rσ−1eπt ≤ rM−1eπM

since |s| ≤M . The same on C3 gives

|zs−1| = rσ−1|eπi(σ−1+it)| = rσ−1e−πt ≤ rM−1eπM

also for r ≥ 1. Therefore, independently on which side of the cut we place ourselves, we
have that for r ≥ 1, ∣∣∣∣zs−1eaz

1− ez

∣∣∣∣ ≤ rM−1eπMe−ar

1− e−r
=
rM−1eπMe(1−a)r

er − 1
.

However, er − 1 > er/2 when r > log 2 so the integrand is bounded by Ω1r
M−1e−ar where

Ω1 is a constant depending on M but not on r. The integral
∫∞
ε
drrM−1e−ar converges

if ε > 0 so this proves that the integrals along C1 and C3 converge uniformly on every
compact disk |s| ≤M and hence Υ(s, a) is indeed an entire function of s.
To prove the equation of the theorem, we have to split up the integral as

2πiΥ(s, a) =

∫
C1

dz +
∫
C2

dz +
∫
C3

dz

 zs−1g(z)

where g(z) = eaz/(1− ez). According to the parametrizations we have on C1 and C3 that
g(z) = g(−r) but on the circle C2 we write z = εeiθ, where −π ≤ θ ≤ π. This gives us

2πiΥ(s, a) =

ε∫
∞

drrs−1e−iπsg(−r) + i

π∫
−π

dθεs−1e(s−1)iθεeiθg(εeiθ) +

∞∫
ε

drrs−1eiπsg(−r).

Divide by 2i and name the integrals Υ1 and Υ2

πΥ(s, a) = sin(πs)Υ1(s, ε) + Υ2(s, ε).

If we let ε→ 0 we see that

lim
ε→0

Υ1(s, ε) =

∞∫
0

dr
rs−1e−ar

1− e−r
= Γ(s)ζ(s, a),

as long as σ > 1. In |z| < 2π the function g is analytic except for a �rst order pole at
z = 0. Therefore zg(z) is analytic everywhere inside |z| < 2π and hence is bounded there,
say |g(z)| ≤ Ω2/|z|, where |z| = ε < 2π and Ω2 is a constant. We can then write

|Υ2(s, ε)| ≤ εσ

2

π∫
−π

dθ

(
e−tθ

Ω2

ε

)
≤ Ω2e

π|t|εσ−1.

When we let ε → 0 and provided that σ > 1 we �nd that Υ2(s, ε) → 0 hence we have
πΥ(s, a) = sin(πs)Γ(s)ζ(s, a). Finally, by the use of the Euler relfection formula (2.7) we
have a proof of (2.16).
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2.3 Analytic continuation and the functional equation of ζ(s, a)

Now we have to extend the previous result for complex numbers such that σ ≤ 1. In the
statement that we have just proved the functions Υ(s, a) and Γ(1− s) make sense for every
complex s, and thus we can use this equation to de�ne ζ(s, a) for σ ≤ 1.

De�nition 2 If σ ≤ 1 we de�ne ζ(s, a) by the equation

ζ(s, a) = Υ(s, a)Γ(1− s). (2.17)

This provides the analytic continuation of ζ(s, a) in the entire s plane.

Theorem 5 The function ζ(s, a) de�ned above is analytic for all s except for a simple
pole at s = 1 with residue 1.
Proof. The function Υ(s, a) is entire so the only possible singularities of ζ(s, a) must be
the poles of Γ(1 − s), and we have shown those to be the points s = 1, 2, 3, · · · . However
Theorem 1 shows that ζ(s, a) is analytic at s = 2, 3, · · · so s = 1 is the only possible pole of
ζ(s, a).
If s in an integer s = n the integrand in the contour integral for Υ(s, a) takes the same
value on both C1 and C3 and hence the integrals along C1 and C3 cancel, yielding

Υ(n, a) =
1

2πi

∫
C2

dz
zn−1eaz

1− ez
= res
z=0

zn−1eaz

1− ez
.

In this case we have s = 1 and so

Υ(1, a) = res
z=0

eaz

1− ez
= lim
z→0

zeaz

1− ez
= lim
z→0

z

1− ez
= lim
z→0

−1
ez

= −1.

Finally, the residue of ζ(s, a) at s = 1 is computed as

lim
s→1

(s− 1)ζ(s, a) = − lim
s→1

(1− s)Γ(1− s)Υ(s, a) = −Υ(1, a) lim
s→1

Γ(2− s) = Γ(1) = 1,

now the claim is complete: ζ(s, a) has a simple pole at s = 1 with residue 1.

Let us remark that since ζ(s, a) is analytic at s = 2, 3, · · · and Γ(1 − s) has poles at
these points, then (2.17) implies that Υ(s, a) vanishes at these points. Also we have proved
that the Riemann ζ(s) function is analytic everywhere except for a simple pole at s = 1
with residue 1.

Lemma 6 Let S(r) designate the region that remains when we remove from the s plane
all open circular disks of radius r, 0 < r < π with centres at z = 2nπi, n = 0,±1,±2, · · · .
Then if 0 < a ≤ 1 the function

g(s) :=
eas

1− es

is bounded in S(r).
Proof. With our usual notation: s = σ + it we consider the rectangle H(r) with the circle
at n = 0 this rectangle has an indentation as follows

H(r) = {s : |σ| ≤ 1, |t| ≤ π, |s| ≥ r} ,

as shown in Figure 2.5 below.
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Figure 2.5: The region H(r)

The set H so de�ned is compact so g is bounded on H. Also, because of the periodicity
|g(s+ 2πi)| = |g(s)|, g is bounded in the perforated in�nite strip

{s : |σ| ≤ 1, |s− 2nπi| ≥ r, n = 0,±1,±2, · · ·} .

Let us suppose that |σ| ≥ 1 and consider

|g(s)| =
∣∣∣∣ eas

1− es

∣∣∣∣ =
eaσ

|1− es|
≤ eaσ

|1− eσ|
.

We can examine the numerator and denominator for σ ≥ 1 giving |1 − eσ| = eσ − 1 and
eaσ ≤ eσ so

|g(s)| ≤ eσ

eσ − 1
=

1
1− e−σ

≤ 1
1− e−1

=
e

e− 1
.

A similar argument when σ ≤ −1 gives |1− eσ| = 1− eσ and so

|g(s)| ≤ eσ

1− eσ
≤ 1

1− eσ
≤ 1

1− e−1
=

e

e− 1
.

And therefore, as we claimed |g(s)| ≤ e/(e− 1) for |σ| ≤ 1.

De�nition 3 The periodic ζ function is de�ned as

ζperiodic(x, s) :=
∞∑
n=1

e2πinx

ns
, (2.18)

where x is real and σ > 1.

Let us remark the following properties of the periodic zeta function. It is indeed a pe-
riodic function of x with period 1 and ζperiodic(1, s) = ζ(s).
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Theorem 6 The series converges absolutely if σ > 1. If x is not an integer the series
also converges (conditionally) for σ > 0.
Proof. This is because for each �xed non-integral x the coe�cients have bounded partial
sums.

Theorem 7 (Hurwitz's formula) If 0 < a ≤ 1 and σ > 1 we have

ζ(1− s) =
Γ(s)
(2π)s

(e−πis/2ζperiodic(a, s) + eπis/2ζperiodic(−a, s)). (2.19)

If a 6= 1 this is also valid for σ > 0.
Proof. Consider the function de�ned by the contour integral

ΥN (s, a) :=
1

2πi

∮
C(N)

dz
zs−1eaz

1− ez
, (2.20)

where is the contour show in Figure 2.6 and N is an integer. It is the same keyhole contour
as that of the gamma function, only that it has been rotated for convenience.

Figure 2.6: The keyhole contour C(N)

The poles are located on the y-axis, symmetric to the origin, at multiplies of 2πi. Let us
�rst prove that if σ < 0 then limN→∞ΥN (s, a) = Υ(s, a). The method to prove this is to
show that the integral along the outer circle tends to 0 as N →∞. On the outer circle we
have z = Reiθ, −π ≤ θ ≤ π, hence

|zs−1| = |Rs−1eiθ(s−1)| = Rσ−1e−tθ ≤ Rσ−1eπ|t|.

The outter circle is inside the domain S(r) described in Lemma 6, the integrand is bounded
by Ω3e

π|t|Rσ−1 where Ω3 is the bound for |g(s)| implied by Lemma 6, hence the whole
integral is bounded by 2πeπ|t|Rσ which tends to 0 as R tends to in�nity as long as σ < 0.
Now when we replace s by 1− s we obtain

lim
N→∞

ΥN (1− s, a) = lim
N→∞

1
2πi

∮
C(N)

dz
z−seaz

1− ez
= Υ(1− s, a)
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for σ > 1. We are left with the problem of computing ΥN (1− s, a) which we proceed to do
by the use of the Cauchy residue theorem. Formally,

ΥN (1− s, a) = −
N∑

n=−N,n6=0

res
z=n

f(z) = −
N∑
n=1

{
res
z=n

f(z) + res
z=−n

f(z)
}

where f(z) is the integrand of ΥN (1− s, a) and residues are calculated as follows

res
z=n

f(z) = res
z=2nπi

(
z−seaz

1− ez

)
= lim
z→2nπi

(z − 2nπi)
z−seaz

1− ez

=
e2nπia

(2nπi)s
lim

z→2nπi

z − 2nπi
1− ez

= − e2nπia

(2nπi)s
,

which in turn gives

ΥN (1− s, a) =
N∑
n=1

e2nπia

(2nπi)s
+

N∑
n=1

e−2nπia

(2nπi)s
.

Now we make the following replacements i−s = e−πis/2 and (−i)−s = eπis/2 which allow us
to write

ΥN (1− s, a) =
e−πis/2

(2π)s

N∑
n=1

e2nπia

ns
+
eπis/2

(2π)s

N∑
n=1

e−2nπia

(2nπi)s

and we let N →∞

Υ(1− s, a) =
e−πis/2

(2π)s
ζperiodic(a, s) +

eπis/2

(2π)s
ζperiodic(−a, s).

We have thus arrived at the following result

ζ(1− s, a) = Γ(s)Υ(1− s, a) =
Γ(s)
(2π)s

{
e−πis/2ζperiodic(a, s) + eπis/2ζperiodic(−a, s)

}
.

This proves the claim.

The simplest particular case (and the most important one) is when we take a = 1 this
gives us the functional equation of the Riemann ζ function

ζ(1− s) =
Γ(s)
(2π)s

{
e−πis/2ζ(s) + eπis/2ζ(s)

}
=

Γ(s)
(2π)s

2 cos
πs

2
ζ(s). (2.21)

This is valid for σ > 1 but it also holds for all s by analytic continuation. Another useful
formulation can be obtained by switching s with 1− s

ζ(s) = 2(2π)s−1Γ(1− s) sin
πs

2
ζ(1− s). (2.22)

Let us now see the consequences of this equation. Taking s = 2n+ 1 in (2.21) when n is an
integer the cosine factor vanishes and we �nd the trivial zeroes of ζ(s)

ζ(−2n) = 0 n = 1, 2, 3, · · · . (2.23)

Later we will need to use certain other values of the Riemann ζ function which we can now
compute. In particular the value of ζ(−n, a) can be calculated if n is a non-negative integer.
Taking s = −n in the formula ζ(−s, a) = Γ(1− s)Υ(s, a) we �nd that

ζ(−n, a) = Γ(1 + n)Υ(−n, a) = n!Υ(−n, a), (2.24)
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where

Υ(−n, a) = res
z=0

(
z−n−1eaz

1− ez

)
, (2.25)

the evaluation of this residue requires special functions of its own (special type of polyno-
mials, rather) which are known as the Bernoulli polynomials.

2.4 Bernoulli numbers and the value of ζ(0)

De�nition 4 For any complex s we de�ne the functions Bn(s) as

zesz

ez − 1
=
∞∑
n=0

Bn(s)
n!

zn (2.26)

provided that |z| < 2π.

A particular case of the polynomials are the Bernoulli numbers Bn = Bn(0) i.e.

z

ez − 1
=
∞∑
n=0

Bn(0)
n!

zn. (2.27)

Lemma 7 One has the following equations Bn(s) =
∑n
k=0 (nk )Bksn−k. In particular when

s = 1 this yields Bn =
∑n
k=0 (nk )Bk.

Proof. Using a Taylor expansion and comparing coe�cients on both sides we have

∞∑
n=0

Bn(s)
n!

zn =
z

ez − 1
esz =

( ∞∑
n=0

Bn
n!
zn

)( ∞∑
n=0

sn

n!
zn

)
,

Bn(s)
n!

=
n∑
k=0

Bk
k!

sn−k

(n− k)!

and by passing n! to the RHS we obtain the lemma.

Now we can write the values of the ζ function in terms of Bernoulli numbers.

Lemma 8 For every integer n ≥ 0 we have

ζ(−n, a) = −Bn+1(a)
n+ 1

. (2.28)

Proof. This follows from the previous observation (2.24) so we just have to evaluate the
integral Υ by the Cauchy residue theorem.

Υ(−n, a) = res
z=0

(
z−n−1eaz

1− ez

)
= − res

z=0

(
z−n−2zeaz

ez − 1

)
= res
z=0

(
z−n−2

∞∑
k=0

Bk(a)
k!

zk

)
= −Bn+1(a)

(n+ 1)!
,

and multiplying by n! we have the end of the proof.
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Lemma 9 The recursion Bn(s + 1) − Bn(s) = nsn−1 is valid for Bernoulli polynomials
if n ≥ 1 and in particular for Bernoulli numbers when n > 1: Bn(0) = Bn(1).
Proof. From the identity

z
e(s+1)z

ez − 1
− z esz

ez − 1
= zesz

it follows that
∞∑
n=0

Bn(s+ 1)−Bn(s)
n!

zn =
∞∑
n=0

sn

n!
zn+1,

and as we did before, we equate coe�cients of zn to obtain the �rst statement and then set
s = 0 to obtain the second statement.

Using the de�nition, the �rst Bernoulli number is B0 = 1 and the rest can be computed by
recursion. We obtain the values listed on the table below. Building on from the Bernoulli
numbers we can construct the polynomials by the use of the lemmas, the �rst ones as

n Bn(0) Bn(s)
0 1 1
1 − 1

2 s− 1
2

2 1
6 s2 − s+ 1

6
3 0 s3 − 3

2s
2 + 1

ss
4 − 1

30 s4 − 2s3 + s2 − 1
30

5 0 · · ·

Note that for n ≥ 0 we have by setting a = 1 in (2.28)

ζ(−n) = −Bn+1

n+ 1
(2.29)

and because of the trivial zeroes of the Riemann ζ function ζ(−2n) = 0 we con�rm our
observation that the odd Bernoulli numbers are zero, i.e. B2n+1 = 0 . Also note

ζ(0) = −1
2
. (2.30)

Finally we can write a compact formula for the even values of the ζ function in terms of
Bernoulli numbers.

Theorem 8 Suppose n is a positive integer, then

ζ(2n) = (−1)n+1 (2π)2nB2n

2(2n)!
. (2.31)

Proof. This follows from the functional equation by setting s = 2n

ζ(1− 2n) = 2(2π)−2nΓ(2n) cos(πn)ζ(2n)

re-arranging we obtain

−B2n

2n
= 2(2π)−2n(2n− 1)!(−1)nζ(2n),

from which the result follows.
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Using the tabulated values given above we have the well-known Euler formulas

ζ(2) =
π2

6
, ζ(4) =

π4

90
. (2.32)

For instance the value of ζ(2) was used in the Quantum Information course in connection
to the with the result that the probability of two random intergers being coprime is

p =
1
ζ(2)

=
6
π2
,

a very uselful result in cryptography, as well as in the Cosmology course in connection
to the entropy density of a species of particles in the ultra-relativistic limit. The second
value occurs in the computation of the total energy u radiated by a blackbody in quantum
mechanics

u =
8πk4T 4

c3h3

∞∫
0

dx
x3

ex − 1
=

8πk4T 4

c3h3
3!ζ(4),

as well as in the neutrino density (Fermi distribution) in the early history of the universe

ρν =
4π
h3

∞∫
0

dx
x3

ex/(kT ) + 1
=

7π5

30h3
(kT )4.

Let us remark that no such formula for odd values is known and in fact the value of ζ(3)
remains one of the most elusive mysteries of modern mathematics. A signi�cant advance
was achieved by Roger Apery who was able to show in 1979 that it is an irrational number.

2.5 The value of ζ ′(0)

Theorem 9 One has

ζ ′(0) = −1
2

log(2π). (2.33)

Proof. We may write (2.15) and (2.16) as

ζ(s)
Γ(1− s)

=
1

2πi

∫
C

dz
(−z)s−1

ez − 1
=

1
2πi

∫
C

dz

z

(−z)s

ez − 1

where C is the same contour as that of Figure 2.4, except shifted to the positive in�nity
instead of negative in�nity and to account for this we have (−z)s = exp[s log(−z)]. Let us
di�erentiate with respect to s and then set s = 1

1
2πi

∫
C

dz

z

(−z) log(−z)
ez − 1

.

The integral on the RHS can be split as

1
2πi

ε∫
+∞

dz

z

(−z)(log z − iπ)
ez − 1

+
1

2πi

∮
|z|=ε

dz

z

(−z)(log ε+ iθ − iπ)
ez − 1

+
1

2πi

∞∫
ε

dz

z

(−z)(log z + iπ)
ez − 1
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and writing z = εei(φ+π) in the middle integral we have

−
∞∫
ε

dz

ez − 1
− log ε

2πi

∮
|z|=ε

dz

z

z

ez − 1
− 1

2πi

π∫
−π

dφ · φ z

ez − 1
,

at this point we need to evaluate all three integrals. The �rst one can be expanded as

−
∞∫
ε

dz

ez − 1
=

∞∫
ε

dz

∞∑
n=1

e−nz = −
∞∑
n=1

e−nz

−n

∣∣∣∣∣
z=∞

z=ε

= −
∞∑
n=1

(e−ε)n

n

= log(1− e−ε) = log
(
ε− ε2

2
+
ε3

6
− · · ·

)
= log ε+ log

(
1− ε

2
+ · · ·

)
.

The second integral is solved by Cauchy's integral theorem by noting that at z = 0 we have
z(ez − 1)−1 → 1, and therefore we have

− log ε
2πi

∮
|z|=ε

dz

z

z

ez − 1
= − log ε.

Finally, the third integral goes to zero as ε → 0. Putting all these facts together we have
shown that

1
2πi

∫
C

dz

z

(−z) log(−z)
ez − 1

= log ε− log ε+O(εα) = 0.

Re-arranging the functional equation (2.22)

ζ(s)
Γ(1− s)

= 2(2π)s−1ζ(1− s) sin
πs

2

and because the derivative at s = 1 is zero, as we have just shown, its logarithmic derivative

log(2π)− ζ ′(1− s)
ζ(1− s)

+
π

2
cos(πs/2)
sin(πs/2)

must also be 0 at s = 1 and consequently

log(2π) =
ζ ′(0)
ζ(0)

,

�nally yielding the result of Theorem 9 by use of (2.30).

Theorem 10 One has

ζ

(
0,

1
2

)
= 0 and ζ ′

(
0,

1
2

)
= −1

2
log 2. (2.34)

Proof. We have the following identity

ζ(s, 1/2) + ζ(s) = 2s
∞∑
n=1

[
1

(2n− 1)s
+

1
(2n)s

]
= 2sζ(s),

from which it follows that
ζ(s, 1/2) = (2s − 1)ζ(s)

and hence the �rst formula is shown. By di�erentiating the above equation with respect to
s we have the second formula of the theorem.
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2.6 The polygamma function ψ(m)(s)

A complete discussion of the digamma and polygamma functions would take us too far into
the presentation of special functions therefore we will only list the de�nitions and properties
of these functions.
The Weierstrass product can be re-written in such a form as to leave the Γ function as

Γ(s) = lim
n→∞

n!
s(s+ 1)(s+ 2) · · · (s+ n)

ns

for s 6= 0,−1,−2, · · · . Thus

log Γ(s+ 1) = log sΓ(s) = log lim
n→∞

n!
(s+ 1)(s+ 2) · · · (s+ n)

ns

= lim
n→∞

[log(n!) + s log n− log(s+ 1)− log(s+ 2)− · · · − log(s+ n)] ,

bearing in mind that the logarithm of the limit is the limit of the logarithm. Di�erentiating
with respect to s we can de�ned the digamma function ψ as

ψ(s+ 1) :=
d

ds
log Γ(s+ 1) = lim

n→∞

(
log n− 1

s+ 1
− 1
s+ 2

− · · · − 1
s+ n

)
. (2.35)

We can bring in the de�nition of the Euler constant

ψ(s+ 1) = −γ −
∞∑
n=1

(
1

s+ n
− 1
n

)
= −γ +

∞∑
n=1

s

n(s+ n)
(2.36)

where of course

ψ(1) = Γ′(1) = −γ. (2.37)

The polygamma function is a generalization of the ψ de�ned as

ψ(m)(s+ 1) :=
dm+1

dsm+1
log(s!) = (−1)m+1m!

∞∑
n=1

1
(s+ n)m+1

. (2.38)

We note that ψ(0)(s) = ψ(s). Some properties include

ψ(m)(s) =
dm+1

dsm+1
log Γ(s) =

dm+1

dsm+1
ψ(s), (2.39)

ψ(m)(1) = (−1)m+1m!ζ(m+ 1), (2.40)

and the very useful MacLaurin expansion

log Γ(s+ 1) =
∞∑
n=1

sn

n!
ψ(n−1)(1) = −γs+

∞∑
n=2

(−1)n

n
snζ(n) (2.41)

convergent for |s| < 1.
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Figure 2.7: |ψ(x+ iy)| for −5 ≤ y ≤ 2 and −1 ≤ y ≤ 1

2.7 Laurent Series of the ζ(s) function

We will lastly need to write the Laurent series of the ζ function. In order to do so, we will
use the following theorem from Titchmarsh [5], which we assume.

Theorem 11 Let f(x) be any function with a continuous derivative in the interval [a, b].
Then if [x] denotes the greatest integer not exceeding x,

∑
a<n≤b

f(x) =

b∫
a

dxf(x) +

b∫
a

dx(x− [x]− 1
2 )f ′(x) + (a− [a]− 1

2 )f(a)− (b− [b]− 1
2 )f(b).

If we take the case f(n) = n−s where a, b and n are integers and s 6= 1 then

b∑
n=a+1

n−s =
b1−s − a1−s

1− s
− s

b∫
a

dx
x− [x]− 1

2

xs+1
+

1
2

(b−s − a−s).

By setting a = 1 and letting b→∞ with σ > 1 and adding 1 to each side we have

ζ(s) = s

∞∫
1

dx
x− [x]− 1

2

xs+1
+

1
s− 1

+
1
2
. (2.42)
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This equation contains a remarkable amount of information. First, there is clearly a simple
pole at s = 1 with residue 1 (the numerator of the fraction). The RHS provides analytic
continuation up to σ = 0. Following Ivic [4] we have

Theorem 12 (Stieltjes' representation) The Laurent series of the ζ function is

ζ(s) =
1

s− 1
+ γ +

∞∑
n=1

γn(s− 1)n. (2.43)

where γn are constants independent of s.
Proof. The �rst term is explained easily as the pole is at s = 1, it is simple and the residue
is 1 as we know from Theorem 5. Furthermore

lim
s→1

[
ζ(s)− 1

s− 1

]
=

∞∫
1

dx
x− [x]− 1

2

x2
+

1
2

= lim
n→∞

 n∫
1

dx
x− [x]
x2

+ 1


= lim
n→∞

n−1∑
k=1

k

k+1∫
k

dx

x2
− log n+ 1


= lim
n→∞

(
n−1∑
k=0

1
k + 1

− log n

)
= γ,

which shows the second term and the remaining terms are regular.

We will use this formula frequently. The constants γn are known as the Stieltjes constants
and it can be shown that

γn =
(−1)n

n!
lim
m→∞

[
m∑
k=1

logn k
k
− logn+1m

n+ 1

]
, (2.44)

however, we will not be needing these. Finally note that the following equation

∞∑
n=1

(−1)n

ns
+
∞∑
n=1

1
ns

= 2
∞∑
k=1

1
(2k)s

= 21−s
∞∑
k=1

1
ks
⇔ ζ(s) =

1
1− 21−2

∞∑
n=1

(−1)n

ns
(2.45)

also provides analytic continuation for σ > 0.

2.8 Concluding remarks on the disbriution of prime numbers and

the zeros of ζ(s)

It would not be fair to end this chapter without commenting, brie�y, on the link between
the ζ function and prime numbers. The reason for doing this is twofold.
Firstly, it is precisely the connection between the continuous (ζ) and the discrete (primes)
that makes this theory so powerful and elegant.
Secondly, the ζ function is - in a certain way - deeply connected to quantum theory, and
hence this indicates that quantum theory is also connected with the primes numbers. This
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connection is be worth investigating on a research level and many papers have been pub-
lished [J. Brian Conrey The Riemann Hypothesis] on the link between primes, quantum
theory and random matrices.
We shall proceed informally.
Euler discovered that for |x| < 1 we have (1 − x)−1 = 1 + x + x2 + · · · and with x = p−s

for p 6= 1 we have
1

1− p−s
= 1 + p−s + p−2s + · · · .

Now, the Fundamental Theorem of Arithmetic states that every integer n can be expressed
uniquely as a product of only prime factors, hence∏

p

(
1 + p−s + p−2s + · · ·

)
= 1 +

1
2s

+
1
3s

+ · · ·

or equivalently,

∏
p

1
1− p−s

=
∞∑
n=1

1
ns

(2.46)

for s > 1. In fact, the above equation is usually called the Euler product or the analytic
version of the Fundamental Theorem of Arithmetic as it is its analytic equivalent. Once we
have established analytic continuation of the ζ function as we have done in this Chapter
and let s→ 1 we have the divergence of the harmonic series on the RHS which implies that
the LHS must also diverge. This can only happen if there are an in�nite number of primes.
Interesting as this may be, we can go further by manipulating the equation for s = 1 as
follows

log
∞∑
n=1

1
n

= log
∏
p

1
1− p−1

=
∑
p

log
1

1− p−1
=
∑
p

log
(

1 +
1

p− 1

)
and ex > 1 + x⇒ x > log(1 + x) so that∑

p

log
(

1 +
1

p− 1

)
<
∑
p

1
p− 1

,

e�ectively showing that
∑
p (p− 1)−1 diverges. Finally we note that (pk − 1)−1 < p−1

k−1

where pk denotes the kth prime. Hence ∑
p

1
p

(2.47)

diverges. This result was the �rst attempt to quantify the distribution of prime numbers as
it suggests that ∑

p<x

1
p
∼ log log x, (2.48)

where ∼ indicates that the ratio of the two functions tends to 1 as x→∞. This observation
of Euler's was the point of no return in analytic number theory and the distribution of prime
numbers.
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During the XIX century, several mathematicians, including Gauss and Legendre, formulated
the prime number theorem,

π(x) :=
∑
p≤x

1 ∼
x∫

2

dt

log t
∼ x

log x
, (2.49)

where π(x) denotes the number of primes less than or equal to x and the integral is called the
logarithmic integral Li. As we have seen, the zeros ζ(s) are located at s = −2,−4,−6, · · ·
but these are only the trivial zeros. Riemann de�ned the function ξ as

ξ(s) =
1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s) (2.50)

Figure 2.8: |ξ(x+ iy)| for −10 ≤ y ≤ 10 and −2 ≤ y ≤ 2

in which case the functional equations takes the elegant form

ξ(s) = ξ(1− s).

The Euler product shows that ζ(s) has no zeros in the halfplane Re(s) > 1 because a
convergent in�nite product can be zero only if one of its factors in zero. Let ρ1, ρ2, · · · be
the zeros of ξ(s). It follows from the functional equation that ζ(s) has no zeros for ρ < 0
except for the trivial ones. This is because in the functional equation (2.22) ζ(1 − s) has
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no zeros for ρ < 0, and sin(πs/2) has simple zeros at s = −2,−4, · · · and Γ(1 − s) has no
zeros.
Precisely, the trivial zeros of ζ(s) do not correspond to zeros of ξ(s) since they are cancelled
by the poles of Γ(s/2). Therefore, it follows that ξ(s) has no zeros for ρ < 0 and for ρ > 1.
The zeros ρ1, ρ2, · · · lie in the strip 0 ≤ σ ≤ 1. However, these are the zeros of ζ(s) also
since s(s− 1)Γ(s/2) has no zeros in the strip except the one at s = 1 which is cancelled by
the simple pole of ζ(s).
This proves that ζ(s) has an in�nite number of zeros ρ1, ρ2, · · · in the strip 0 ≤ σ ≤ 1 and
since

(1− 21−s)ζ(s) =
∞∑
n=1

(−1)n+1

ns
> 0

for 0 < s < 1 and ζ(0) = −1/2 6= 0 then ζ(s) has no zeros on the real axis between 0 and
1, i.e. the zeros ρ1, ρ2, · · · are all complex.
Here comes a critical observation. The zeros come in conjugate pairs: since ζ(s) is real on
the real axis and if ρ is a zero so is 1 − ρ by the functional equation then so is 1 − ρ̄. If
ρ = β + iγ then 1− ρ̄ = 1− β + iγ. Consequently the zeros either lie on ρ = 1/2 or occur
in pairs symmetrical about this line.

Figure 2.9: |ζ(x+ iy)|−1 for −2 ≤ x ≤ 2 and 0 ≤ y ≤ 50: the zeros become poles

Riemann gave a sketch of a proof of the approximation of the number N(T ) of these zeroes
for 0 < t < T as

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (2.51)
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This was subsequently showed by von Mangoldt. This equation has the same form as that of
the behaviour of the e�ective Lagrangian at 1-loop order (see Section 5.6 Equation (5.189)).
Riemann went even futher and conjectured that all the zeros are on the line Re(s) = 1

2 .
In 1914 Hardy showed that there is an in�nite number of zeros on the critical line Re(s) = 1

2
but this does not mean that all the zeros are located there.
Riemann's main accomplishement of his 1859 paper was the analytic continuation of the ζ
function and his proofs (he gave two) of the functional equation. Furthemore, by the use of
an innovative Fourier transform he showed that

log ζ(s) = s

∞∫
2

du
π(u)

u(us − 1)

which enabled him to prove the following remarkable closed analytic formula for π(x)

π(x) = R(x)− 1
2
R(x1/2)− 1

3
R(x1/3)− 1

5
R(x1/5) +

1
6
R(x1/6) + · · · =

∞∑
n=1

µ(n)
n

R(x1/n)

where µ(n) is the Moebius function de�ned as 0 if n is divisible by a prime square, 1 if n is
a product of an even number of distinct primes and −1 if n is a product of an odd number
of distinct primes and

R(x) = Li(x)−
∑

ρ:ζ(ρ)=0

Li(xρ)− log 2 +

∞∫
x

dt

t(t2 − 1) log t
,

where each term is paired with its 'twin', i.e. ρ↔ 1− ρ so that∑
ρ

Li(xρ) =
∑

Imρ>0

Li(xρ) + Li(x1−ρ).

In 1896 Hadamard and de la Vallee Poussin proved, independently and almost simultane-
ously, the prime number theorem by showing that it is equivalent to ζ(1 + it) 6= 0, i.e. no
zeros on Re(s) = 1.
Riemann's Hypothesis is equivalent to

π(x)−
x∫

2

dt

log t
= O(x1/2 log x)

as x→∞.
Finally, Hadamard also proved the product representation stated (without a valid proof)
by Riemann

ζ(s) =
eHs

2(s− 1)Γ
(
s
2 + 1

) ∏
ρ:ζ(ρ)=0

[(
1− s

ρ

)
es/ρ

]
(2.52)

where H = log 2π − 1− γ/2.
The ξ(s) function also admits a product representation

ξ(s) =
1
2

∏
ρ

(
1− s

ρ

)
.
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Let us re-write the de�nition of ξ(s) as

ξ(s) = Π
(s

2

)
(s− 1)π−s/2ζ(s)

where Π is Riemann's notation for the shifted Γ function

Π(s− 1) := Γ(s).

The logarithmic derivative of ξ(s) is on the one hand∑
ρ

d

ds
log
(

1− s

ρ

)
=
∑
ρ

1
s− ρ

and on the other hand

d

ds
log Π

(s
2

)
− 1

2
log π +

1
s− 1

+
ζ ′(s)
ζ(s)

.

Evaluating both expressions at s = 0 yields∑
ρ

1
ρ

=
1
2
γ +

1
2

log π + 1− log 2π

or ∑
Imρ>0

(
1
ρ

+
1

1− ρ

)
=

1
2

[2 + γ − log 4π] (2.53)

since Π′(0) = Γ′(1) = −γ. Note that γ − log 4π is a mathematical constant that will show
up frequently in renormalization, indicating yet another link between quantum theory and
the zeros of the ζ function. This formula can be used to compute the zeros ρ. Some of the
�rst zeros ρ = 1

2 + iti are

Figure 2.10: |ζ( 1
2 + it)| for 0 ≤ t ≤ 50

that is,
t1 = 14.134725
t2 = 21.022040
t3 = 25.010858
t4 = 30.424878
t5 = 32.935057
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3 Zeta Regularization in Quantum Mechanics

3.1 Path integral of the harmonic oscillator

One of the �rst instances where the Riemann ζ function occurs in quantum physics is in
the path integral development of the harmonic oscillator; speci�cally it takes place when
computing the partition function of the spectrum of the harmonic oscillator.
We will follow Exercise 9.2 p 312 from Peskin and Schroeder [2] and the path integral
development from Chapter 2 of Kleinert [1]. The action of the one-dimensional harmonic
oscillator is given by

S =

tf∫
ti

dtL, (3.1)

where the Lagrangian is

L =
1
2
mẋ2 − 1

2
mω2x2. (3.2)

As we know from the functional approach to quantum mechanics, the transition amplitude
is the functional integral

〈xf , tf |xi, ti〉 =
∫
DxeiS[x(t)]. (3.3)

The extremum of S, xc(t), satis�es

δS[x]
δx

∣∣∣∣
x=xc(t)

= 0. (3.4)

We now proceed to expand the action around xc(t). This indicates that xc(t) is the classical
trajectory connecting both space-time points of the amplitude and therefore it satis�es the
Euler-Lagrange equation

ẍc + ω2xc = 0. (3.5)

The solution to the equation above with conditions xc(ti) = xi and xc(tf ) = xf is

xc(t) = (sinωT )−1[xf sinω(t− ti) + xi sinω(tf − t)], (3.6)

where T = tf − ti. We next plug this solution into the action S

Sc := S[xc] =
mω

2 sinωT
[(x2

f + x2
i ) cosωT − 2xfxi]. (3.7)

As we intended originally, we now expand S[x] around x = xc to obtain

S[xc + z] = S[xc] +
∫
dtz(t)

δS[x]
δx(t)

∣∣∣∣
x=xc

+
1
2!

∫
dt1dt2z(t1)z(t2)

δ2S[x]
δx(t1)δx(t2)

∣∣∣∣
x=xc

(3.8)

where z(t) satis�es the boundary condition

z(ti) = z(tf ) = 0. (3.9)
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The expansion ends at second order because the action is in second order in x. Noting that
δS[x]/δx = 0 at x = xc we are left with the �rst and last terms only. Because the expansion
is �nite

S[xc + z] = S[xc] +
1
2!

∫
dt1dt2z(t1)z(t2)

δ2S[x]
δx(t1)δx(t2)

∣∣∣∣
x=xc

(3.10)

the problem can be solved analytically.
Let us now compute the second order functional derivative in the integrand; this can be
accomplished as follows

δ

δx(t1)

tf∫
ti

dt

[
1
2
mẋ(t)2 − 1

2
mω2x(t)2

]
= −m

(
d2

dt21
+ ω2

)
x(t1). (3.11)

Next, using the rule

δx(t1)
δx(t2)

= δ(t1 − t2) (3.12)

we obtain the following expression for the second order functional derivative

δ2S[x]
δx(t1)δx(t2)

= −m
(
d2

dt21
+ ω2

)
δ(t1 − t2). (3.13)

Plugging this back into the equation for the expansion, we can use the delta function to get
rid of the t variables

S[xc + z] = S[xc]−
m

2!

∫
dt1dt2z(t1)z(t2)δ(t1 − t2)

(
d2

dt21
+ ω2

)
= S[xc] +

m

2!

∫
dt(ż2 − ω2z2), (3.14)

where we have simpli�ed the expression by using (3.9).
A crucial point to be made is that because Dx is invariant, we may replace it by Dz and
this will give us

〈xf , tf | xi, ti〉 = eiS[xc]

∫
z(ti)=z(tf )=0

Dz exp

im
2

tf∫
ti

dt(ż2 − ω2z2)

. (3.15)

The �uctuation part (integral at z(0) = z(T ) = 0)

If :=
∫

z(0)=z(T )=0

Dz exp

im
2

T∫
0

dt(ż2 − ω2z2)

 (3.16)

is computed as follows. First, let us shift the variables so that time start at 0 and ends at
T. We Fourier expand z(t) as

z(t) =
∞∑
n=1

an sin
nπt

T
. (3.17)
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This choice satis�es the (3.9). The integral in the exponential gives

T∫
0

dt(ż2 − ω2z2) =
T

2

∞∑
n=1

a2
n

[(nπ
T

)2

− ω2

]
. (3.18)

In order to have a well-de�ned transformation we must check that the number of variables
is the same before and after the transformation. Indeed, the Fourier transformation from
y(t) to an may be thought of as a change of variables in the integration. To check this, take
the number of the time slice to be N + 1, including both t = 0 and t = T , for which there
exist N − 1 independent zk variables. Therefore, we must set an = 0 for all n > N − 1.
Next, we compute the corresponding Jacobian. Denote by tk the kth time slice when the
interval [0, T ] is split into N in�nitesimal parts, then

JN = det
∂zk
∂an

= det
(

sin
nπtk
T

)
. (3.19)

We evaluate the Jacobian for the easiest possible case, which is that of the free particle.
Therefore, let us make a digression to evaluate the above mentioned probability amplitude.

3.2 Solution of the free particle

For a free particle, the Lagrangian is L = 1
2mẋ

2. Carefully derived solutions to the free
particle can be found in Chapter 2 of Kleinert [1] as well as in Chapter 3 of Grosche and
Steiner [4]. The amplitude is computed by �rst noting that the Hamiltonian is given

H = pẋ− L =
p2

2m
, (3.20)

so that

〈xf , tf |xi, ti〉 =
〈
xf |e−iĤT |xi

〉
=
∫
dp
〈
xf | exp(−iĤT )| p

〉
〈p|xi〉

=
∫

dp

2π
eip(xf−xi)e−iTp

2/(2m) =
√

m

2πiT
exp

(
im(xf − xi)2

2T

)
(3.21)

where T = tf − ti as noted before and ε here denotes the discretization of time ε = T/N .
Similarly to the theory of functional integration we have amplitude

〈xf , tf |xi, ti〉 = lim
n→∞

( m

2πiε

)n/2 ∫
dx1 · · · dxn−1 exp

[
iε

n∑
k=1

m

2

(
xk − xk−1

ε

)2
]
. (3.22)

We now change the coordinates to zk = (m/(2ε))1/2xk so that the amplitude becomes

〈xf , tf |xi, ti〉 = lim
n→∞

( m

2πiε

)n/2(2ε
m

)(n−1)/2 ∫
dz1 · · · dzn−1 exp

[
i

n∑
k=1

(zk − zk−1)2

]
.

(3.23)

In the appendix, we prove by induction that∫
dz1 · · · dzn−1 exp

[
i

n∑
k=1

(zk − zk−1)2

]
=
[

(iπ)n−1

n

]1/2

ei(zn−z0)2/n. (3.24)
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The expression reduces to

〈xf , tf |xi, ti〉 = lim
n→∞

( m

2πiε

)n/2(2πiε
m

)(n−1)/2 1√
n
eim(xf−x0)2/(2nε)

=
√

m

2πiT
exp

[
im

2T
(xf − xi)2

]
. (3.25)

Taking (3.25) into account we arrive at

〈xf , T |xi, 0〉 =
(

1
2πiT

)1/2

exp
[
im

2T
(xf − xi)2

]
=
(

1
2πiT

)1/2

eiS[xc]. (3.26)

When we write this in terms of a path integral we obtain

eiS[xc]

∫
z(0)=z(T )=0

Dz exp

im
2

tf∫
ti

dtż2

. (3.27)

Now, from (3.18) we have

m

2

T∫
0

dtż2 → m

N∑
n=1

a2
nn

2π2

4T
(3.28)

and when we compare both path integral expressions one has the equality(
1

2πiT

)1/2

=
∫

z(0)=z(T )=0

Dz exp

im
2

tf∫
ti

dtż2


= lim
N→∞

JN

(
1

2πiε

)1/2 ∫
da1 . . . daN−1 exp

(
im

N−1∑
n=1

a2
nn

2π2

4T

)
. (3.29)

Now comes the process of evaluating the Gaussian integrals(
1

2πiT

)1/2

= lim
N→∞

JN

(
1

2πiε

)N/2 N−1∏
n=1

1
n

(
4πiT
π2

)1/2

= lim
N→∞

JN

(
1

2πiε

)N/2 1
(N − 1)!

(
4πiT
π2

)(N−1)/2

(3.30)

and from this we obtain a formula for the Jacobian

JN = 2−(N−1)/2N−N/2πN/1(N − 1)! →
N→∞

∞ (3.31)

The Jacobian is divergent, but this divergence is not relevant because JN is combined with
other divergent factors.
Let us now return to the original problem of the probability amplitude of a harmonic
oscillator. The amplitude was

〈xf , T |xi, 0〉 = lim
N→∞

JN

(
1

2πiT

)N/2
eiS[xc]

×
∫
da1 . . . daN−1 exp

[
i
mT

4

N−1∑
n=1

a2
n

{(nπ
T

)2

− ω2

}]
. (3.32)
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As we did with the free particle, we carry out the computation of the Gaussian integrals
using the formula

∫
dan exp

[
imT

4
a2
n

{(nπ
T

)2

− ω2

}]
=
(

4iT
πn2

)1/2
[

1−
(
ωT

nπ

)2
]−1/2

. (3.33)

This breaks the amplitude (3.32) into smaller parts

〈xf , tf |xi, ti〉 = lim
N→∞

JN

(
N

2πiT

)N/2
eiS[xc]

N−1∏
k=1

[
1
k

(
4iT
π

)1/2
]
N−1∏
n=1

[
1−

(
ωT

nπ

)2
]−1/2

= lim
N→∞

(
1

2πiT

)1/2

eiS[xc]
N−1∏
n=1

[
1−

(
ωT

nπ

)2
]−1/2

. (3.34)

It can be shown that this product is equal to

lim
N→∞

N∏
n=1

[
1−

(
ωT

nπ

)2
]

=
sinωT
ωT

. (3.35)

The divergence of Jn cancels the divergence of the other terms and therefore we are left with
a �nite value con�rming what we stated above concerning the irrelevance of J∞. When we
insert the value of the product we arrive at the �nal result (2.36)

〈xf , tf |xi, ti〉 =
( ω

2πi sinωT

)1/2

eiS[xc]

=
( ω

2πi sinωT

)1/2

exp
[

iω

2 sinωT
{

(x2
f + x2

i ) cosωT − 2xixf
}]
. (3.36)

3.3 The bosonic partition function

If we have a Hamiltonian Ĥ whose spectrum is bounded from below then, by adding a
positive constant to the Hamiltonian, we can make Ĥ positive de�nite, i.e.

spec(Ĥ) = {0 < E0 ≤ E1 ≤ · · · ≤ En ≤ · · ·} . (3.37)

Also we assume that the ground state is not degenerate. The spectral decomposition of

e−iĤt is

e−iĤt =
∑
n

e−iEnt |n〉 〈n| (3.38)

and this decomposition is analytic in the lower half-plane of t, where we have Ĥ |n〉 = En |n〉.
As we have done when evaluating the Gaussian integrals we introduce the Wick rotation

t = −iτ where τ is real and positive, this gives us ẋ = idx/dτ and e−iĤt = e−Ĥτ so that

i

tf∫
ti

dt

[
1
2
mẋ2 − V (x)

]
= i(−i)

τf∫
τi

dt

[
−1

2
m

(
dx

dτ

)2

− V (x)

]
= −

τf∫
τi

dt

[
1
2
m

(
dx

dτ

)2

+ V (x)

]
(3.39)
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Consequently, the path integral becomes

〈xf , tf |xi, ti〉 =
〈
xf , tf |e−Ĥ(τf−τi)|xi, ti

〉
=
∫
D̄x exp

− τf∫
τi

dτ

[
1
2
m

(
dx

dτ

)2

+ V (x)

] , (3.40)

where D̄x is the integration measure in the imaginary time τ . Equation (3.40) shows the
connection between the functional approach and statistical mechanics.
Let us now de�ne partition function [1], [2], [4], [5] of a Hamiltonian Ĥ as

Z(β) = Tre−βĤ , (3.41)

where β is a positive constant and the trace is over the Hilbert space associated with Ĥ.
This partition can be written in terms of eigenstates of energy {|En〉} with

Ĥ |En〉 = En |En〉 , 〈Em|En〉 = δmn. (3.42)

In this case

Z(β) =
∑
n

〈
En|e−βĤ |En

〉
=
∑
n

〈
En|e−βEn |En

〉
=
∑
n

e−βEn , (3.43)

or in terms of the eigenvector |x〉 of the position operator x̂,

Z(β) =
∫
dx
〈
x|e−βĤ |x

〉
. (3.44)

Initially we had an arbitrary β but if we set it to be β = iT we �nd that〈
xf |e−iĤT |xi

〉
=
〈
xf |e−βĤ |xi

〉
, (3.45)

and from this we have the path integral expression of the partition function

Z(β) =
∫
dz

∫
x(0)=x(β)=z

D̄x exp

− β∫
0

dτ

(
1
2
mẋ2 + V (x)

)
=

∫
periodic

D̄x exp

− β∫
0

dτ

(
1
2
mẋ2 + V (x)

), (3.46)

where the periodic integral indicates that the integral is over all paths which are periodic
in the interval [0, β].
When we apply this to the harmonic oscillator, the partition function is simply

Tre−βĤ =
∞∑
n=0

e−β(n+1/2)ω. (3.47)

Although there are a number of ways of evaluating the partition function, here we choose
one where the use of the ζ regularization is illustrated. Proceed as follows. Set imaginary
time τ = iT to obtain the path integral∫
z(0)=z(T )=0

Dz exp
[
i

2

∫
dtz

(
− d2

dt2
− ω2

)
z

]
→

∫
z(0)=z(β)=0

D̄z exp
[
−1

2

∫
dτ z

(
− d2

dt2
+ ω2

)
z

]
,

(3.48)
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in this case D̄z indicates the path integration measure with imaginary time. Suppose we
have an n × n Hermitian matrix M with positive-de�nite eigenvalues λk where 1 ≤ k ≤ n
then we show in the appendix that (see Rajantie [3])

n∏
k=1

 ∞∫
−∞

dxk

 exp

[
−1

2

∑
p,q

xpMpqxq

]
= πn/2

n∏
k=1

1√
λk

=
πn/2

det M
. (3.49)

This is a matrix generalization of the scalar Gaussian integral

∞∫
−∞

dx exp
(
−1

2
λx2

)
=

√
2π
λ
, λ > 0.

The next task is to de�ne the determinant of an operator O by the in�nite product of its
eigenvalues λk. This is accomplished by setting DetO =

∏
k λk. Note that Det with capital

d denotes the determinant of an operator, whereas with a small d it denotes the determinant
of a matrix, same applies for Tr and tr.

3.4 Zeta regularization solution of the bosonic partition function

Using this we can we can write the integral over imaginary time as∫
z(0)=z(β)=0

D̄z exp
[
−1

2

∫
dτ z

(
− d2

dt2
+ ω2

)
z

]
=
[
DetD

(
− d2

dτ2
+ ω2

)]−1/2

(3.50)

here the D denotes the Dirichlet boundary condition z(0) = z(β) = 0.
Similarly to what we did with (3.18) we see that the general solution

z(τ) =
1√
β

∞∑
n=1

zn sin
nπτ

β
. (3.51)

We are restricted to having the coe�cients zn real as z is a real function. We are now in
a position to write formal expressions. Knowing that the eigenvalues of the eigenfuction
sin(nπτ/β) are λn = (nπ/β)2 + ω2 we may write the determinant of the operator as

DetD

(
− d2

dτ2
+ ω2

)
=
∞∏
n=1

λn =
∞∏
n=1

[(
nπ

β

)2

+ ω2

]
=
∞∏
n=1

(
nπ

β

)2 ∞∏
m=1

[
1 +

(
βω

mπ

)2
]
.

(3.52)

It is now time to identify the �rst in�nite product with the functional determinant, i.e.

DetD

(
− d2

dτ2

)
↔

∞∏
n=1

(
nπ

β

)2

. (3.53)

Here is where the ζ function comes into play. Suppose O is an operator with positive-de�ne
eigenvalues λn. Following [1], [4], [5] in this case, we take the log

log DetO = log
∏
n

λn = Tr logO =
∑
n

log λn. (3.54)
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Now we de�ne the spectral ζ function as

ζO(s) :=
∑
n

λ−sn . (3.55)

The sum converges for su�ciently large Re(s) and ζO(s) is analytic in s in this region.
Additionally, it can be analytically continued to the whole s plane except at a possible
�nite number of points. The derivative of the spectral ζ function is linked to functional
determinant by

dζO(s)
ds

∣∣∣∣
s=0

= −
∑
n

log λn. (3.56)

And therefore the expression for DetO is

DetO = exp
[
− dζO(s)

ds

∣∣∣∣
s=0

]
. (3.57)

The operator we are interested in is O = −d2/dτ2 so this yields

ζ−d2/dτ2(s) =
∞∑
n=1

(
nπ

β

)−2s

=
(
β

π

)2s

ζ(2s). (3.58)

As we proved in Chapter 1, the ζ function is analytic over the whole complex s plane except
at the simple pole at s = 1. The values (2.30) and (2.33)

ζ(0) = −1
2

ζ ′(0) = −1
2

log(2π)

were also calculated, and we can use them now to obtain

ζ ′−d2/dτ2(0) = 2 log
(
β

π

)
ζ(0) + 2ζ ′(0) = − log(2β). (3.59)

Putting this into the expression for the determinant with Dirichlet conditions we have

DetD

(
− d2

dτ2

)
= elog(2β) = 2β (3.60)

and �nally

DetD

(
− d2

dτ2
+ ω2

)
= 2β

∞∏
p=1

[
1 +

(
βω

pπ

)2
]
. (3.61)

Note how the in�nite product now becomes �nite due to ζ(0) and ζ ′(0).
Let us go back to the partition function

Tre−βĤ =
∞∑
n=0

e−β(n+1/2)ω =

[
2β

∞∏
p=1

{
1 +

(
βω

pπ

)2
}]−1/2 [

π

ω tanh(βω/2)

]1/2

=
(

2β
π

βω
sinhβω

)−1/2 [
π

ω tanh(βω/2)

]1/2

=
1

2 sinh(βω/2)
. (3.62)
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3.5 Alternative solution

It is important to note that there is a more direct way of computing this partition function
and which is more satisfying for solvable cases such as the harmonic oscillator but which
fails under more complicated Lagrangians.
This can be done by computing

Z(β) = Tre−βĤ =
∫
dx
〈
x| exp(−βĤ)|x

〉
.

Recall that

〈xf , tf |xi, ti〉 =
( ω

2πi sinωT

)1/2

exp
[

iω

2 sinωT
{

(x2
f + x2

i ) cosωT − 2xixf
}]
,

so that

Z(β) =
(

ω

2πi(−i sinhβω)

)1/2 ∫
dx exp i

[
ω

−2i sinhβω
(2x2 coshβω − 2x2)

]
=
(

ω

2π sinhβω

)1/2(
π

ω tanhβω/2

)1/2

=
1

2 sinh(βω/2)
.

3.6 The Fermionic partition function

The quantisation of bosonic particles is done by using commutation relations, however, the
quantisation of fermionic particles require a more di�erent approach, namely that of anti-
commutation relations. This in turn requires anti-commuting numbers which are called
Grassmann numbers. We continue the presentation from [1], [4] and [5].
In analogy with the bosonic harmonic oscillator which was described by the Hamiltonian,

H = 1
2 (a†a+ aa†), (3.63)

where a and a† satisfy the commutation relations

[a, a†] = 1 [a, a] = [a†, a†] = 0. (3.64)

The Hamiltonian has eigenvalues (n+ 1
2 )ω where n is an integer with eigenvector |n〉

H |n〉 = (n+ 1
2 )ω |n〉 . (3.65)

From now we drop the hat notation in the operators whenever there is no risk for confusion
with the eigenvalue.
The prescription for the fermionic Hamiltonian is to set

H = 1
2 (c†c− cc†)ω. (3.66)

This may be thought of as a Fourier component of the Dirac Hamiltonian, which describes
relativistic fermions. However, it is evident that if c and c† were to satisfy commutation
relations then the Hamiltonian would be a constant, and therefore it is more appropriate
to consider anti-commutation relations{

c, c†
}

= 1 {c, c} =
{
c†, c†

}
= 0. (3.67)
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In this case the Hamiltonian becomes

H = 1
2

[
c†c− (1− c†c)

]
ω =

(
N − 1

2

)
ω, (3.68)

where N = c†c. The eigenvalues of N are either 0 or 1 since

N2 = c†cc†c = N ⇔ N(N − 1) = 0.

Next we need a description of the Hilbert space of the Hamiltonian. To this end, let |n〉 be
an eigenvector of H with eigenvalue n (necessarily n = 0, 1). Then the following equations
hold

H |0〉 = −ω
2
|0〉 H |1〉 =

ω

2
|1〉 (3.69)

For the sake of convenience we introduce the spin-notation

|0〉 =
(

0
1

)
, |1〉 =

(
1
0

)
. (3.70)

c† |0〉 = |1〉 c† |1〉 = 0 c |0〉 = 0 c |1〉 = |0〉 .

When the basis vectors of the space have this form then the operators take the matrix
representations

c =
(

0 0
1 0

)
c† =

(
0 1
0 0

)
N =

(
1 0
0 0

)
H =

ω

2

(
1 0
0 −1

)
. (3.71)

Instead of having the bosonic commutation relation [x, p] = i we now have [x, p] = 0. The
anti-commutation relation {c, c†} = 1 is replaced by {θ, θ∗} = 0 where θ and θ∗ are anti-
commuting numbers, i.e. Grassmann numbers which we proceed to develop in further detail
in the appendix.
The Hamiltonian of the fermionic harmonic oscillator is H = (c†c−1/2)ω, with eigenvalues
±ω/2. From our previous discussion of the partition function and Grassmann numbers we
know that

Z(β) = Tre−βH =
1∑

n=0

〈
n|e−βH |n

〉
= eβω/2 + e−βω/2 = 2 cosh(βω/2). (3.72)

As with the bosonic case, we can evaluate Z(β) in two di�erent ways using the path integral
formalism. Let us start with some preliminary results. Let H be the Hamiltonian of a
fermionic harmonic oscillator, its partition function is written as

Tre−βH =
∫
dθ∗dθ

〈
−θ|e−βH | θ

〉
e−θ

∗θ. (3.73)

We can show this by the inserting (A.60) into the partition function (3.72), i.e.

Z(β) =
∑
n=0,1

〈
n|e−βH |n

〉
=
∑
n

∫
dθ∗dθ |θ〉 〈θ| e−θ

∗θ
〈
n|e−βH |n

〉
=
∑
n

∫
dθ∗dθe−θ

∗θ 〈n | θ〉
〈
θ|e−βH |n

〉
=
∑
n

∫
dθ∗dθ(1− θ∗θ) (〈n | 0〉+ 〈n | 1〉 θ)

(〈
0|e−βH |n

〉
+ θ∗

〈
1|e−βH |n

〉)
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Consequently we have

Z(β) =
∑
n

∫
dθ∗dθ(1− θ∗θ)

×
[〈

0|e−βH |n
〉
〈n | 0〉 − θ∗θ

〈
1|e−βH |n

〉
〈n | 1〉+ θ

〈
0|e−βH |n

〉
〈n | 1〉+ θ∗

〈
1|e−βH |n

〉
〈n | 0〉

]
.

(3.74)

Note now that the last term of the integrand does not contribute to the integral and therefore
we may substitute θ∗ to −θ∗ which implies that

Z(β) =
∑
n

∫
dθ∗dθ(1− θ∗θ)

×
[〈

0|e−βH |n
〉
〈n | 0〉 − θ∗θ

〈
1|e−βH |n

〉
〈n | 1〉+ θ

〈
0|e−βH |n

〉
〈n | 1〉 − θ∗

〈
1|e−βH |n

〉
〈n | 0〉

]
=
∫
dθ∗dθe−θ

∗θ
〈
−θ|e−βH | θ

〉
. (3.75)

Unlike the bosonic case, we have to impose an anti-periodic boundary over [0, β] in the trace
since the Grassmann variable is θ when τ = 0 and it is −θ when τ = β.
By invoking the expression

e−βH = lim
N→∞

(1− βH/N)N (3.76)

and inserting the completeness relation (A.60) at each step one has the following expression
for the partition function

Z(β) = lim
N→∞

∫
dθ∗dθe−θ

∗θ
〈
−θ|(1− βH/N)N | θ

〉
= lim
N→∞

∫
dθ∗dθ

N−1∏
k=1

dθ∗kdθk exp

[
−
N−1∑
n=1

θ∗nθn

]
× 〈−θ|(1− εH)| θN−1〉 〈θN−1| · · · | θ1〉 〈θ1|(1− εH)| θ〉

= lim
N→∞

∫ N∏
k=1

dθ∗kdθk exp

[
−

N∑
n=1

θ∗nθn

]
× 〈θN |(1− εH)| θN−1〉 〈θN−1| · · · | θ1〉 〈θ1|(1− εH)| − θN 〉 , (3.77)

where we have the usual conventions and we have been using all along

ε = β/N and θ = −θN = θ0, θ∗ = −θ
∗

N = −θ
∗

0 . (3.78)

Matrix elements are evaluated (up to �rst order) as

〈θk|(1− εH)| θk−1〉 = 〈θk| θk−1〉
[
1− ε 〈θk|H| θk−1〉

〈θk| θk−1〉

]
= 〈θk| θk−1〉 exp(−ε 〈θk|H| θk−1〉 / 〈θk|θk−1〉)
= eθ

∗
kθk−1e−εω(θ∗kθk−1−1/2) = eεω/2e(1−εω)θ∗kθk−1 . (3.79)

In terms of the path integral the partition function becomes (2.113)

Z(β) = lim
N→∞

eβω/2
N∏
k=1

∫
dθ∗kdθk exp

[
−

N∑
n=1

θ∗nθn

]
exp

[
(1− εω)

N∑
n=1

θ∗nθn

]

= eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗kdθk exp

[
−

N∑
n=1

{θ∗n(θn − θn−1) + εωθ∗nθn−1}

]
,
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and upon simpli�cation of the exponential [1]

Z(β) = eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗kdθk exp(−θ

†
·B · θ), (3.80)

where we have the following vector and matrix elements

θ =

 θ1

...
θN

 , θ
†

=
(
θ∗1 · · · θ∗N

)
, BN =


1 0 · · · 0 −y
y 1 0 · · · 0
0 y 1 · · · 0
...

...
...

. . .
...

0 0 · · · y 1

 , (3.81)

where y = −1 + εω.
The computation is ended by recalling that from the de�nition of the Grassmann Gaussian
integral one had

Z(β) = eβω/2 lim
N→∞

detBN = eβω/2 lim
N→∞

[
1 + (1− βω/N)N

]
= eβω/2(1 + eβω) = 2 cosh

βω

2
.

(3.82)

As with the bosonic partition function, we can arrive to the same result using the ζ function
(a generalization of it), and this will prove useful later.
Recall that we showed that

Z(β) = eβω/2 lim
N→∞

N∏
k=1

∫
dθ∗kdθk exp(−θ

†
·B · θ)

= eβω/2
∫
Dθ∗kDθk exp

− β∫
0

dτθ∗
(

(1− εω)
d

dτ
+ ω

)
θ


= eβω/2Detθ(β)=−θ(0)

(
(1− εω)

d

dτ
+ ω

)
. (3.83)

The subscript θ(β) = −θ(0) indicates that the eigenvalue should be evaluated for the
solutions of the anti-periodic boundary condition θ(β) = −θ(0).
First, we expand the orbit θ(τ) in the Fourier modes. The eigenmodes and the corresponding
eigenvalues are

exp
(
πi(2n+ 1)τ

β

)
, (1− εω)

πi(2n+ 1)
β

+ ω, (3.84)

where n runs as n = 0,±1,±2, · · · . The number of degrees of freedom is N(= β/ε) so the
coherent states are (over)complete. The presence ε in operator will account for the fact
that the in�nite contribution of the eigenvalues is �nite.

3.7 Zeta regularization solution of the fermionic partition function

Since one complex variable has two real degrees of freedom, we need to truncate the product
at −N/4 ≤ k ≤ N/4. Following this prescription, one has

Z(β) = eβω/2 lim
N→∞

N/4∏
k=−N/4

[
i(1− εω)

π(2n− 1)
β

+ ω

]
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= eβω/2e−βω/2
∞∏
k=1

[(
2π(n− 1/2)

β

)2

+ ω2

]

=
∞∏
k=1

[
π(2k − 1)

β

]2 ∞∏
n=1

[
1 +

(
βω

π(2n− 1)

)2
]

(3.85)

The trouble comes from the �rst in�nite product, Ξ, which is divergent and as such it is in
need of ζ values to become �nite. This can be accomplished as follows

log Ξ = 2
∞∑
k=1

log
[

2π(k − 1/2)
β

]
, (3.86)

and we de�ne the corresponding ζ function by (which is the Hurwitz ζ function)

ζfermion(s) =
∞∑
k=1

[
2π(k − 1/2)

β

]−s
=
(
β

2π

)s
ζ(s, 1/2), (3.87)

where (see Chapter 2, Eq 2.11)

ζ(s, a) =
∞∑
k=0

(k + a)−s,

where 0 < a < 1. This gives

Ξ = exp(−2ζ ′fermion(0)). (3.88)

So now we are left with the issue of di�erentiating the ζfermion function at s = 0 which is
done as follows [1]

ζ ′fermion(0) = log
(
β

2π

)
ζ(0, 1/2) + ζ ′(0, 1/2) = −1

2
log 2, (3.89)

since we showed in Chapter 2 (Theorem 10) that

ζ(0, 1
2 ) = 0, ζ ′(0, 1

2 ) = − 1
2 log 2.

Putting all of this together, we obtain the surprising result

Ξ = exp(−2ζ ′fermion(0)) = elog 2 = 2. (3.90)

This result indicates that Ξ is independent of β once the regularization is performed. Finally,
the partition function is evaluated using all these facts

Z(β) = 2
∞∏
n=1

[
1 +

(
βω

π(2n− 1)

)2
]

= 2 cosh
βω

2
, (3.91)

by the virtue of the formula

∞∏
n=1

[
1 +

(
x

π(2n− 1)

)2
]

= cosh
x

2
. (3.92)
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Note the similarity between (3.35) and (3.92) as well as (3.62) and (3.91) for the bosonic
and fermionic cases respectively.
Richard Feynman was an advocate of using solutions of known problems in unknown prob-
lems, quoting him 'The same equations have the same solutions'. The rationale behind this
statement is once we solve a mathematical problem, we can re-use the solution in another
physical situation. Feynman was skilled in transforming a problem into one that he could
solve. This is precisely what we have done in this case. We can prove (3.92) using path
integrals.
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4 Dimensional Regularization

4.1 Generating functional and probability amplitudes in the pres-

ence of a source J

From the quantum mechanical case we can build a generalization with several degrees of
freedom: a �eld theory. We will exclusively deal with φ4, where φ(x) is a real scalar �eld.
Let us summarize standard results from �eld theory from Peskin and Schroder [2] as well
as Rajantie [3]. The action is built from the Lagrangian

S =
∫
dxL (φ(x), ∂µφ(x)), (4.1)

where it is understood that L is the Lagrangian density. The equations of motion (EOM)
are given by the Euler-Lagrange equation

∂

∂xµ
∂L

∂(∂µφ(x))
= − ∂L

∂φ(x)
. (4.2)

From the free scalar �eld Lagrangian

L0(φ(x), ∂µφ(x)) = −1
2

(∂µ∂µφ+m2φ2) (4.3)

we can derive the Klein-Gordon equation

(∂µ∂µ −m2)φ = 0. (4.4)

When there is a source J present the vacuum amplitude has functional representation

〈0,∞|0,−∞〉J = Z[J ] = N

∫
Dφ exp

[
i

∫
dx

(
L0 + Jφ+

i

2
εφ2

)]
, (4.5)

with the arti�cial iε is added to make sure the integral converges. We can think of J as
driving force, i.e. at any time we are allowed to drive the system in any arbitrary way and
measure the response. Integrating by parts we obtain

Z[J ] =
∫

Dφ exp
[
i

∫
dx

(
L0 + Jφ+

i

2
εφ2

)]
=
∫

Dφ exp
[
i

∫
dx

(
1
2
{
φ(∂µ∂µφ−m2)φ+ iεφ2

}
+ Jφ

)]
. (4.6)

In this case, the Klein-Gordon equation becomes the slightly more generalized equation

(∂µ∂µ −m2 + iε)φc = −J. (4.7)

Working in d dimensions and de�ning the Feynman propagator as

∆(x− y) =
−1

(2π)d

∫
ddk

eik(x−y)

k2 +m2 − iε
(4.8)

the solution to the generalized Klein-Gordon equation becomes

φc(x) = −
∫
dy∆(x− y)J(y). (4.9)
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The Feynman propagator obeys

(∂µ∂µ −m2 + iε)∆(x− y) = δd(x− y). (4.10)

Hence the vacuum amplitude can be written in terms of the source J as

〈0,∞|0,−∞〉J = N exp
[
− i

2

∫
dxdyJ(x)∆(x− y)J(y)

]
(4.11)

or

Z0[J ] = Z0[0] exp
[
− i

2

∫
dxdyJ(x)∆(x− y)J(y)

]
. (4.12)

by setting 〈0,∞|0,−∞〉J := Z0[J ]. The Feynman propagator is also computed by the
functional derivative of Z0[J ]

∆(x− y) =
i

Z0[0]
δ2Z0[J ]

δJ(x)δJ(y)

∣∣∣∣
J=0

. (4.13)

In order to evaluate Z0[0] (which is the vacuum to vacuum amplitude when there is no
source) we need to introduce imaginary time x4 = t = ix0 and operator ∂̄µ∂̄

µ = ∂2
τ +∇2 so

that

Z0[0] =
∫

D̄φ exp
[

1
2

∫
dxφ(∂̄µ∂̄µ −m2)φ

]
=

1√
Det(∂̄µ∂̄µ −m2)

, (4.14)

with capital d, the determinant is the product of eigenvalues with corresponding boundary
condition. With term sources, the Lagrangian of the free complex scalar �eld takes the form

L0 = −∂µφ∗∂µφ−m2 |φ|2 + Jφ∗ + J∗φ, (4.15)

and consequently the generating functional becomes

Z0[J, J∗] =
∫

DφDφ∗ exp
[
i

∫
dx(L0 − iε |φ|2)

]
=
∫

DφDφ∗ exp
[
i

∫
dxφ∗(∂µ∂µ −m2 − iε)φ+ Jφ∗ + J∗φ

]
, (4.16)

di�erentiating we obtain the propagator

∆(x− y) =
i

Z0[0, 0]
δ2Z0[J, J∗]
δJ∗(x)δJ(y)

∣∣∣∣
J=J∗=0

. (4.17)

We may split the function by virtue of the Klein-Gordon equations (∂µ∂µ − m2)φ = −J
and (∂µ∂µ −m2)φ∗ = −J∗

Z0[J, J∗] = Z0[0, 0] exp
[
−i
∫
dxdyJ∗(x)∆(x− y)J(y)

]
(4.18)

and by using another Wick rotation we have

Z0[0, 0] =
∫

DφDφ∗ exp
[
−i
∫
dxφ∗(∂µ∂µ −m2 − iε)φ

]
=

1
Det(∂̄µ∂̄µ −m2)

. (4.19)
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The presence of a potential in the Lagrangian

L (φ, ∂µφ) = L0(φ, ∂µφ)− V (φ) (4.20)

comes at a double price: the form of the potential is limited by symmetry and renormal-
ization of the theory and this theory needs to be handled perturbatively. The potential is
usually of the form V (φ) = α

n!φ
n where α is a real number that sets the strength of the

interaction and n > 2 is an integer. As with the free theory, the generating functional is
[2], [4]

Z[J ] =
∫

Dφ exp
[
i

∫
dx

(
1
2
φ(∂µ∂µ −m2)φ− V (φ) + Jφ

)]
=
∫

Dφ exp
[
−i
∫
dxV (φ)

]
exp

[
i

∫
dx (L0(φ, ∂µφ) + Jφ)

]
= exp

[
−i
∫
dxV

(
−i δ

δJ(x)

)]∫
Dφ exp

[
i

∫
dx (L0(φ, ∂µφ) + Jφ)

]
=
∞∑
k=0

∫
dx1 · · ·

∫
dxk

(−i)k

k!
V

(
−i δ

δJ(x1)

)
· · ·V

(
−i δ

δJ(xk)

)
Z0[J ]. (4.21)

The Green function (which is the vacuum expectation of the order time product of �eld
operators)

Gn(x1, · · · , xn) := 〈0|T [φ(x1) · · ·φ(xn)]|0〉 =
(−i)nδn

δJ(x1) · · · δJ(xn)
Z[J ]

∣∣∣∣
J=0

(4.22)

is generated by the generating functional Z[J ].
However, we can see that this is the nth functional derivative of Z[J ] around J = 0 and
therefore we may plug it into the Taylor expansion of the exponential above and we obtain

Z[J ] =
∞∑
k=1

1
k!

[
n∏
i=1

∫
dxiJ(xi)

]
〈0|T [φ(x1) · · ·φ(xn)]|0〉 =

〈
0
∣∣∣∣T exp

∫
dxJ(x)φ(x)

∣∣∣∣ 0〉 .
(4.23)

Connected n-point functions are generated by

Z[J ] = exp(−W [J ]), (4.24)

and the e�ective action is de�ned by a Legendre transformation as follows

Γ[φcl] := W [J ]−
∫
dτdxiJφcl (4.25)

where

φcl := 〈φ〉J =
δW [J ]
δJ

. (4.26)

We will also see that Γ[φcl] generates 1-particle irreducible diagrams (see Bailin and Love
[1] and Ramond [4]).
It is convenient now to derive the above discussion in a formal manner and with a closer
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analogy to statistical mechanics. The generating functional of correlation functions for a
�eld theory with Lagrangian L is given by (4.5)

Z[J ] =
∫

Dφ exp
[
i

∫
d4x(L + Jφ)

]
, (4.27)

where the time variable is contained between -T and T, with T →∞(1− iε). Furthermore
we have the following

〈0|Tφ(x1)φ(x2)|0〉 = lim
T→∞(1−iε)

∫
Dφφ(x1)φ(x2) exp

[
i
∫ T
−T d

4xL
]

∫
Dφ exp

[
i
∫ T
−T d

4xL
]

= Z[J ]−1

(
−i δ

δJ(x1)

)(
−i δ

δJ(x2)

)
Z[J ]

∣∣∣∣
J=0

. (4.28)

Let us do some manipulations on the time variable; when we derived the path integral
formulation of quantum mechanics (see AQFT [3]) it was shown that the time integration
was tilted into the complex plane in the direction that would allow the contour of integration
to be rotated clockwise onto the imaginary axis. We assumed that the original in�nitesimal
rotation gives the correct imaginary in�nitesimal to produce the Feynman propagator.
Now, the wick rotation of the time coordinate t→ −ix0 yields a Euclidean 4-vector product

x2 = t2 − |x|2 → −(x0)2 − |x|2 = − |xE |2 , (4.29)

and similarly we assume that the analytic continuation of the time variables in any Green's
function of a quantum �eld theory produces a correlation function invariant under the
rotational symmetry of four-dimensional Euclidean space.

4.2 Functional energy, action and potential and the classical �eld

φcl(x)

Let us now apply this to the φ4 theory. As we know the action in this case is

S =
∫
d4x(L + Jφ) =

∫
d4x

(
1
2

(∂µφ)2 − 1
2
m2φ2 − λ

4!
φ4 + Jφ

)
, (4.30)

and performing the Wick rotation

i

∫
d4xE(LE − Jφ) = i

∫
d4xE

(
1
2

(∂Eµφ)2 +
1
2
m2φ2 − λ

4!
φ4 − Jφ

)
, (4.31)

which in turn gives the Wick-rotated generating functional

Z[J ] =
∫

Dφ exp
[
−
∫
d4xE(LE − Jφ)

]
. (4.32)

The functional LE [φ] is bounded from below and when the �eld φ has large amplitude or
large gradient the functional becomes large. These two facts would imply that LE [φ] has
the form of an energy and consequently it is a possible candidate for a statistical weight for
the �uctuations of φ.
Within this light, the Wick rotated functional Z[J ] is the partition function describing the
statistical mechanics of a macroscopic system when approximating the �uctuating variable
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as a �eld.
Finally, let us push this analogy between �eld theory and statistical mechanics further by
presenting the Green's function of φ(xE) [2]

〈φ(xE1)φ(xE2)〉 =
∫

d4kE
(2π)4

eikE ·(xE1−xE2)

k2
E +m2

, (4.33)

which is in fact the Feynman propagator evaluated in the spacelike region and this falls o�
as exp(−m|xE1 − xE2|). This correspondence between quantum �eld theory and statistical
mechanics plays an important part in understanding ultraviolet divergences.
Recalling the generating functional of correlation functions, we de�ne an energy functional
E[J ] by

Z[J ] = exp(−iE[J ]) =
∫

Dφ exp
[
i

∫
d4x(L + Jφ)

]
=
〈
Ω|e−iHT |Ω

〉
, (4.34)

with the constraints on time explained above. Note the −i factor in the exponential in
contrast to (4.24). The functional E[J ] is, as we have said before, the vacuum energy as
a function of the external source J. Let us perform the functional derivative of E[J ] with
respect to J(x)

δ

δJ(x)
E[J ] = i

δ

δJ(x)
logZ

= −
(∫

Dφ exp
[
i

∫
d4x(L + Jφ)

])−1 ∫
Dφφ(x) exp

[
i

∫
d4x(L + Jφ)

]
(4.35)

and set

δ

δJ(x)
E[J ] = −〈Ω|φ(x)|Ω〉J (4.36)

the vacuum expectation value in the presence of a source J.
Next, we de�ne
- the classical �eld as

φcl(x) = 〈Ω|φ(x)|Ω〉J , (4.37)

a weighted average over all possible �uctuations, and dependent on the source J.
- the e�ective action as the Legendre transformation of E[J ] i.e. as in (4.25)

Γ[φcl] := −E[J ]−
∫
d4x′J(x′)φcl(x′). (4.38)

By virtue of (4.36) we have the following

δ

δφcl(x)
Γ[φcl] = − δ

δφcl(x)
E[J ]−

∫
d4x′

δJ(x′)
δφcl(x)

φcl(x′)− J(x)

= −
∫
d4x′

δJ(x′)
δφcl(x)

δE[J ]
δJ(x′)

−
∫
d4x′

δJ(x′)
δφcl(x)

φcl(x′)− J(x) = −J(x) (4.39)

which means that when the source is set to zero, the equation

δ

δφcl(x)
Γ[φcl] = 0 (4.40)
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is satis�ed by the e�ective action. This equation has solutions which are the values of
〈φ(x)〉 in the stable states of the theory. It will be assumed that the possible vacuum states
are invariant under translation and Lorentz transformations. This implies a substantial
simpli�cation of (4.40) as for each possible vacuum state the corresponding solution φcl will
be independent of x, and hence it is just solving an ODE of one variable.
Thermodynamically, Γ is proportional to the volume of the spacetime region over which
the functional integral is taken, and therefore, it can be a large quantity. Consequently, in
terms of volume V and associated T of the region we may write

Γ[φcl] = −(V T )Veff(φcl), (4.41)

where Veff is the e�ective potential. In order that Γ[φcl] have an extremum we need the
following to hold

δ

δφcl
Veff(φcl) = 0. (4.42)

Each solution of (4.42) is a translation invariant state without source, i.e J = 0. Therefore,
the e�ective action (4.38) is −E in this case (Γ = −E) and consequently Veff(φcl) evaluated
at the solution of (4.42) is the energy density of the corresponding state.
The e�ective potential de�ned by (4.41) and (4.42) yields a function whose minimization
de�nes the exact vacuum sate of the �eld theory including all e�ects of quantum corrections.
The evaluation of Veff(φcl) will follow from the path integral formulation. In order to
accomplish this we will follow Peskin and Schroeder's method which in turn follows from
R. Jackiw [5] and dates back to 1974. The idea is to compute the e�ective action Γ directly
from its path integral de�nition and then obtain Veff by focusing on constant values of φcl.
Because we are using renormalized perturbation theory, the Lagrangian

L =
1
2

(∂µφ)2 − 1
2
m2

0φ
2 − λ0

4!
φ4 (4.43)

ought to be split as

L = L1 + δL , (4.44)

which is analogous to the split of the Lagrangian in renormalized φ4 theory done in AQFT,
see Rajantie [3] and Bailin and Love Chp 7.4 [1], i.e. rescaling the �eld φ = Z1/2φr where
Z is the residue in the LSZ reduction formula∫

d4x 〈Ω | Tφ(x)φ(0)|Ω〉 eip·x =
iZ

p2 −m2
+ (terms regular at p2 = m2), (4.45)

with m being the physical mass. This rescale changes the Lagrangian into

L =
1
2

(∂µφr)2 − 1
2
m2

0φ
2
r −

λ0

4!
φ4
r +

1
2
δZ(∂µφr)2 − 1

2
δmφ

2
r −

δλ
4!
φ4
r, (4.46)

by the use of δZ = Z − 1, δm = m2
0Z − m2 and δλ = λ2Z − λ where m and λ are

physically measured. The last three terms are known as the counter terms and they take
into account the in�nite and unobservable shifts between the bare parameters and the
physical parameters.
At the lowest order in perturbation theory the relationship between the source and the
classical �eld is

δL

δφ

∣∣∣∣
φ=φcl

+ J(x) = 0. (4.47)
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Because the functional Z[J ] depends on φcl through its dependence on J our goal is to
compute Γ as a function of φcl. This will be the starting point.
Next, we de�ne J1 to be the function that exactly satis�es the classical �eld equation above
for higher orders, i.e. when L = L1

δL1

δφ

∣∣∣∣
φ=φcl

+ J1(x) = 0, (4.48)

and the di�erence between both sources J and J1 will be written as (see Peskin and
Schroeder 11.4)

J(x) = J1(x) + δJ(x), (4.49)

where δJ has to be determined, order by order in perturbation theory by use of (4.37), that
is by using the equation 〈φ(x)〉J = φcl(x). We may now write (4.34) as

e−iE[J] =
∫

Dφ exp
(
i

∫
d4x(L1[φ] + J1φ)

)
exp

(
i

∫
d4x(δL [φ] + δJφ)

)
, (4.50)

where all the counter terms are in the second exponential. Let us concentrate on the �rst
exponential �rst. Expanding the exponential about φ(x) = φcl(x) + η(x) yields∫

d4x(L1[φ] + J1φ) =
∫
d4x(L1[φcl] + J1φcl) +

∫
d4xη(x)

(
δL1

δφ
+ J1

)
+

1
2!

∫
d4xd4yη(x)η(y)

(
δ2L1

δφ(x)δφ(y)

)
+

1
3!

∫
d4xd4yd4zη(x)η(y)η(z)

(
δ3L1

δφ(x)δφ(y)δφ(z)

)
+ · · · (4.51)

and it is understood that the functional derivatives of L1 are evaluated at φcl.
The second integral on the RHS vanishes by (4.48) and therefore the integral over η is a
Gaussian integral, where the perturbative corrections are given by the cubic and higher
terms.
Let us assume that the coe�cients of (4.51) (i.e. the successive functional derivatives of
L1) give well-de�ned operators. If we keep only terms up to quadratic order in η and we
only focus of the �rst integral of (4.50) we �nd that there is a pure Gaussian integral which
can be evaluated in terms of a functional determinant as we have computed in the Appendix

∫
Dη exp

[
i
(
d4x(L1[φcl] + J1φcl

)
+

1
2

∫
d4xd4yη

δ2L1

δφ(x)δφ(y)
η

]

= exp
[
i

∫
d4x(L1[φcl] + J1φcl)

](
det
[
− δ2L1

δφ(x)δφ(y)

])−1/2

, (4.52)

the lowest-order quantum correction to the e�ective action is given by the determinant. If
we now consider the second integral of (4.50) which consists of the counter terms of the
Lagrangian and expanding as we have done before we have

(δL [φcl] + δJφcl) + (δL [φcl + η]− δL [φcl] + δJη). (4.53)
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The cubic and higher order terms in η in (4.51) produce Feynman diagram expansion of
the functional integral in (4.50) in which the propagator is the inverted operator

−i
(

δ2L1

δφ(x)δφ(y)

)−1

, (4.54)

and hence when the second term in (4.53) is expanded as a Taylor series in η the successive
terms give counter term vertices which can be included in the above mentioned Feynman
diagrams. The �rst term is a constant with respect to the integral over η thus it gives
additional terms in the exponent of (4.52).
Taking (4.52) with the contributions from higher order vertices and counter terms together
we obtain an expression for the functional integral (4.50). Feynman diagrams representing
the higher order terms can be arranged in such a way that they yield the exponential of the
sum of the connected diagrams, obtaining the expression for E[J ]

−iE[J ] = i

∫
d4x(L1[φcl] + J1φcl)−

1
2

log det
[
− δ2L1

δφ(x)δφ(y)

]
+ (connected diagrams)

+ i

∫
d4x(δL [φcl] + δJφcl), (4.55)

and �nally by virtue of (4.49) and (4.38) we �nally have [2]

Γ[φcl] =
∫
d4xL1[φcl] +

i

2
log det

[
− δ2L1

δφ(x)δφ(y)

]
− i(connected diagrams) +

∫
d4x(δL [φcl]),

(4.56)

or by (4.44)

Γ[φcl] =
∫
d4xL [φcl] +

i

2
log det

[
− δ2L1

δφ(x)δφ(y)

]
− i(connected diagrams).

This is indeed the expression we were seeking since Γ is a function of φcl, taking away the
J dependence. The Feynman diagrams in the expression for Γ have no external lines and
they all contain at least two loops. The last term of (4.56) gives the counter terms that
are needed for the renormalization conditions on Γ and cancel the divergences that appear
in the evaluation of the determinant and the diagrams. We shall ignore any one-particle
irreducible one-point diagram (these diagrams are cancelled by the adjustment of δJ).
As a side point, note how a calculation of the sort∫

ddk

(2π)d
log(−k2 +m2) = i

∫
ddkEuc

(2π)d
log(k2

Euc +m2) = −i ∂
∂x

∫
ddkEuc

(2π)d
(k2

Euc +m2)−x
∣∣
x=0

= −i ∂
∂x

(
1

(4π)d/2
Γ(x− d/2)

Γ(x)
1

m2(x−d/2)

)∣∣∣∣
x=0

= −imdΓ(−d/2)
(4π)d/2

(4.57)

yields

log det(∂2 +m2) = tr log(∂2 +m2) =
∑
k

log(−k2 +m2)

= (V T )
∫

d4k

(2π)4
log(k2 +m2) = −i(V T )

Γ(−d/2)
(4π)d/2

md

with V (volume) and T (time) as explained before. We could call this Γ renormalization.
More will be said about it later on.
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4.3 Derivation of ϕ4 potential at φcl(x)

In the Uni�cation course, it was shown that spontaneous symmetry breaking requires the
development of a vacuum expectation value (VEV) from the scalar �eld. Furthermore, the
VEV is determined by the minimisation of the e�ective potential,

dV

dϕcl
= 0. (4.58)

The e�ective potential is given exclusively by the potential V of the Lagrangian if no
quantum e�ects are taken into account. Perturbation theory allows us to place the quantum
terms, however this would clash with the non-perturbative nature of spontaneous symmetry
breaking. The alternative parameter is the loop expansion which we now describe.
Let us re-write the theory around (4.24) as follows. With a generating functional X of the
connected Green functions in a scalar �eld theory,

Z[J ] = exp(i~−1X[J ]) = N ′
∫

Dϕ exp
(
i~−1

∫
d4x(L + Jϕ)

)
(4.59)

with normalization constant N ′ chosen so that

Z[0] = 1 X[0] = 0. (4.60)

One-particle-irreducible Green functions Γ(n) are generated by the e�ective action Γ[ϕcl] by
the use of [1], [2], [3], [4]

Γ[ϕcl] =
∞∑
n=1

in

n!

∫
d4x1 · · ·

∫
d4xnΓ(n)(x1, · · · , xn)ϕcl(x1) · · ·ϕcl(xn), (4.61)

and we note the equation

G(N)(x1, x2, · · · , xN ) =
1
iN

δ

δJ1

δ

δJ2
· · · δ

δJN
Z[J ]

∣∣∣∣
J=0

.

In (4.59) the factor ~−1 multiplies the whole Lagrangian (not just the interaction part) each
of the V vertices in any diagram will carry a ~−1 factor and each of the I internal lines will
carry a ~ factor. Each of the E external lines in Green functions G̃(E) has a propagator.
With this information, there overall factor is

~−V+I+E = ~L+1−E , (4.62)

by virtue of L = I −V + 1 and noting that E is the number of external lines. Furthermore,
there is a factor of ~L−E in any diagram in expansion of ~−1X. The one-particle-irreducible
Green functions Γ̃(E) have no propagators, hence the multiplying factor is only ~L. This
means that the power of the ~ indicates the number of loops. When there are no loops
(L = 0) the only non-vanishing Γ̃(E) are

Γ̃(2)(p,−p) = p2 − µ2 (4.63)

and

Γ̃(4)(p1, p2, p3, p4) = −λ, (4.64)
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which gives the approximation to the potential (see Bailin and Love 4.4)

V (ϕcl) = −
∞∑
n=1

in

n!
Γ̃(n)(0, · · · , 0)ϕn

cl ⇒ V0(ϕcl) =
1
2
µ2ϕ2

cl +
1
4!
λϕ4

cl, (4.65)

as classically expected without quantum corrections. Note, however, that the role of ~ is
not central to the discussion as no assumptions about its size have been made, it is only an
expansion parameter. Bailin and Love [201] give same e�ective action Γ[ϕcl] with

Γ[ϕcl] = −i logN − 1
8
λ

∫
dx[i∆F (0)]2 − 1

2

∫
dxϕcl(x)(∂µ∂µ + µ2)ϕcl(x)

− 1
4
λi∆F (0)

∫
dxϕ2

cl(x)− 1
24
λ

∫
dxϕ4

cl(x) +O(λ2). (4.66)

The terms that contain a Feynman propagator ∆F (0) come from divergent loop integrals
and hence they do not contribute in zeroth order, consequently we may write

Γ0[ϕcl] = −1
2

∫
dxϕcl(x)(∂µ∂µ + µ2)ϕcl(x)− 1

4!
λ

∫
dxϕ4

cl(x) (4.67)

again taking into account that N = 1 implying Γ[0] = 0.
The �rst order accuracy of ~, the loop expansion that is, of the e�ective potential V and
e�ective action Γ can be computed by writing

ϕ(x) = ϕ0(x) + ϕ̃(x), (4.68)

with ϕ0 being the zeroth order approximation to ϕcl. Hence this shift in the functional
integration variable must satisfy the following EOM

(∂µ∂µ + µ2)ϕ0(x) +
λ

6
ϕ3

0(x) = J(x). (4.69)

When we plug this change into the Lagrangian density

L (ϕ) =
1
2

(∂µϕ)(∂µϕ)− 1
2
µ2ϕ2 − 1

4!
λϕ4 (4.70)

we have the following integral∫
d4x(L + Jϕ) =

∫
d4x(L (ϕ0(x)) + Jϕ0)

+
∫
d4x

(
(∂µϕ̃)(∂µϕ0)− µ2ϕ̃ϕ0 −

1
6
λϕ̃ϕ3

0 + Jϕ̃

)
+
∫
d4x

(
L2(ϕ̃, ϕ0)− 1

6
λϕ̃3ϕ0 −

1
4
λϕ̃4

)
(4.71)

with L2 accounting for all the quadratic leftovers in ϕ̃ when the shift is performed, i.e.

L2 =
1
2

(∂µϕ̃)(∂µϕ̃)− 1
2
µ2ϕ̃2 − 1

4
λϕ2

0ϕ̃
2. (4.72)

Now, since ϕ̃ minimises the classical action then the linear term in ϕ̃ of (4.71) disappears.
Our next step is to re-scale the integration variable as follows

ϕ̃ = ~1/2ϕ (4.73)
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And plug this back into (4.59) yielding

Z[J ] = N ′ exp i~−1

∫
d4x[L (ϕ0) + Jϕ0]

×
∫

Dϕ exp i
∫
d4x

(
L2(ϕ,ϕ0)− λ

6
~1/2ϕ3ϕ0 −

1
24
λ~ϕ4

)
(4.74)

We can recover a Gaussian integral out of this by noting that we are only interested in
the �rst-order corrections, hence terms proportional to ~1/2 and ~ may be discarded. This
procedure gives ∫

d4xL2(ϕ,ϕ0) = −1
2

∫
d4xd4x′ϕ(x′)A(x′, x, ϕ0)ϕ(x) (4.75)

with

A(x′, x, ϕ0) =
[
−∂x′µ∂µx + µ2 +

1
2
λϕ2

0

]
δ(x′ − x), (4.76)

�nally obtaining for the value of Z

Z[J ] ≈ N ′ exp i~−1

∫
d4x[L (ϕ0) + Jϕ0] exp

[
−1

2
tr logA(x′, x, ϕ0)

]
. (4.77)

By our conditions (4.60) and ϕ0[0] = 0 we then obtain

Z[0] = 1 ≈ N ′ exp
[
− i

2
tr logA(x′,x, 0)

]
. (4.78)

Here is where we can choose method. We will, instead of using ζ regularization, work out
the terms in the expansion.
Comparison with (4.59) shows that by keeping the same de�nition of A we then have

X0[J ] =
∫
d4x[L (ϕ0) + Jϕ0] (4.79)

and

X1[J ] =
i

2
tr log

A(x′, x, ϕ0)
A(x′, x, 0)

. (4.80)

The e�ective action is computed by expanding [1], [4]

Γ[ϕcl] = Γ0[ϕcl] + ~Γ1[ϕcl] +O(~2). (4.81)

Now, since ϕcl is a functional of J, then

ϕcl(x) =
δX[J ]
δJ(x)

, (4.82)

we have the following expansion

Γ0[ϕcl] = X0[J ]−
∫
d4xJϕ0 =

∫
d4xL (ϕ0) =

∫
d4x

(
1
2

(∂µϕcl)(∂µϕcl)−
1
2
µ2ϕ2

cl −
1
4!
λϕ4

cl

)
,

(4.83)
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which is the same as (4.67). The additional term in the expanded e�ective action is

~Γ1[ϕcl] = X0[J ]− Γ0[ϕcl]−
∫
d4xJϕcl + ~X1[J ]

=
∫
d4x[L (ϕ0) + Jϕ0]−

∫
d4x[L (ϕcl) + Jϕcl] +

i~
2

tr log
A(x′, x, ϕ0)
A(x′, x, 0)

. (4.84)

Because ϕ0 is a solution of (4.69) the di�erence of the two integrals in (4.84) is of order
(ϕ0−ϕcl)2 = O(~2), and we can interchange ϕ0 and ϕcl at this level of accuracy. Therefore

Γ1[ϕcl] =
i

2
tr log

A(x′, x, ϕcl)
A(x′, x, 0)

. (4.85)

Next, the e�ective potential V (ϕcl) can be derived from Γ[ϕcl] by setting ϕcl constant, in
which case

Γ[ϕcl] = −
∫
d4xV (ϕcl). (4.86)

Delta functions allow us to diagonalise A(x′, x, ϕcl) which is a prerequisite to properly de�ne
the logarithmic part of (4.85). This is done as follows

A(x′, x, ϕcl) =
(
−∂x′µ∂µx + µ2 +

1
2
λϕ2

cl

)
δ(x′ − x)

=
∫

d4k

(2π)4

(
−∂x′µ∂µx + µ2 +

1
2
λϕ2

cl

)
eik(x′−x)

=
∫

d4k

(2π)4

(
−k2 + µ2 +

1
2
λϕ2

cl

)
eik(x′−x)

=
∫

d4k

(2π)2

d4k′

(2π)2
eix
′k′
(
−k2 + µ2 +

1
2
λϕ2

cl

)
δ(k′ − k)e−ikx (4.87)

Hence performing log and trace operation

logA(x′, x, ϕcl) =
∫
d4kd4k′

eix
′k′

(2π)2
log
(
−k2 + µ2 +

1
2
λϕ2

cl

)
δ(k′ − k)

e−ixk

(2π)2
(4.88)

so that

tr logA =
∫
d4xd4x′δ(x′ − x) logA(x′, x, ϕcl) =

∫
d4x

∫
d4k

(2π)4
log
(
−k2 + µ2 +

1
2
λϕ2

cl

)
.

(4.89)

This the formula for the determinant of A since

Tr logA = log detA. (4.90)

Summarizing we can now state the following: the one-loop order contribution to the e�ective
potential is

V1(ϕcl) =
−i
2

∫
d4k

(2π)4
log
(−k2 + µ2 + 1

2λϕ
2
cl

−k2 + µ2

)
(4.91)



4 DIMENSIONAL REGULARIZATION 64

and while at this order, the e�ective potential is approximated by

V (ϕcl) ≈ V0(ϕcl) + V1(ϕcl) =
1
2
µ2ϕ2

cl +
1
4!
λϕ4

cl −
i

2
~
∫

d4k

(2π)4
log
(

1− 1
2

λϕ2
cl

k2 − µ2

)
, (4.92)

where, the Greek parameters are bare parameters, i.e. the ones present in the Lagrangian.
The integral term in the potential is ultraviolet divergent and it requires dimensional regu-
larization to deal with i.e. (see for instance Bailin and Love, p.80)

I(ω, µB) =
∫

d2ωk

(2π)2ω
(k2 − µ2

B + iε)−1 =
1
i

∫
d2ω 6 k
(2π)2ω

(6 k2 + µ2
B)−1

=
iµ2
B

16π2
(M2)ω−2

(
1

2− ω
+ Γ′(1) + 1− log

µ2
B

4πM2
+O(ω − 2)

)
. (4.93)

By the use of the following transformations for the bare parameters

ϕB(x) = Z1/2ϕ(x) Zµ2
B = µ2 + δµ2 Z2λB = λ+ δλ, (4.94)

we can transform the above potential (4.92) to

V (ϕcl) =
1
2
µ2ϕ2

cl +
1
4!
λϕ4

cl +
1
2
δµ2ϕ2

cl +
1
4!
δλϕ4

cl −
i

2
~
∫

d2ωk

(2π)2ω
log
(

1− 1
2

λϕ2
cl

k2 − µ2

)
,

(4.95)

with the new Greek parameters now being the renormalized parameters rather than the
bare. It is important to note, however, that these parameters have constraints imposed by
the MS scheme. In terms of Green functions, these develop singularities in ω− 2 and these
are neutralized by the counter terms which are [1]

δλ = M4−2ω

(
a0(λ̂,M/µ, ω) +

∞∑
k=1

ak(λ̂,M/µ)
(2− ω)k

)
(4.96)

δµ2 = µ2

(
b0(λ̂,M/µ, ω) +

∞∑
k=1

bk(λ̂,M/µ)
(2− ω)k

)
(4.97)

δZ = c0(λ̂,M/µ, ω) +
∞∑
k=1

ck(λ̂,M/µ)
(2− ω)k

(4.98)

with a0, b0 and c0 regular as ω → 2 and λ̂ = λM2ω−4. Because we have only simple poles,
the k -integrals only have simple poles at 2− ω. This means that ∀k > 1⇒ ak = bk = 0.
The one-point-irreducible Green functions of the renormalized theory behave as

Γ̃2(p,−p) = p2(1 + δZ1)− µ2 − δµ2
1 +

λ̂µ2

32π2

(
1

2− ω
− γ + 1− log

µ2

4πM
+O(ω − 2)

)
.

(4.99)

This can be shown by using

I4(µB) =
∫

d4k

(2π)4
(k2 − µ2

B + iε)−1 (4.100)
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and (4.93) on the Feynman propagator

∆F (0) =
∫

d4k

(2π)4
(k2 − µ2

B + iε)−1 = M2ω−4 iµ2

16π2

(
1

2− ω
− γ + 1− log

µ2

4πM
+O(ω − 2)

)
.

(4.101)

This propagator, in turn, is present in the Green function as

Γ̃2(p,−p) = p2(1 + δZ1) +
(
µ2 +

1
2
λi∆F (0) + δµ2

1

)
+O(λ2), (4.102)

as it can be seen by writing the Feynman diagrams to leading order.
The computation of Γ̃4 is lengthier but follows the same lines, eventually, since Γ̃4 is �nite
in any renormalisation scheme we have that as ω → 2 the following holds

3λλ̂
32π2

1
2− ω

− δλ2 → const, (4.103)

with

δλ =
∞∑
k=2

δλk. (4.104)

The �nite part of δλ2 is arbitrary.
Going back to our discussion of (4.96) to (4.98) now we see that the poles in 2 − ω are
neutralized by setting

a1 =
3

32π2
λ̂2, b1 =

1
32π2

λ̂. (4.105)

Therefore putting this back together in the potential one has

V (ϕcl) =
1
2
µ2ϕ2

cl

[
1 + b0 −

λ

32π2

(
3
2
− γ + log 4π

)]
+

1
4!
ϕ4

cl

[
λ+ a0 −

3λ2

32π2

(
3
2
− γ + log 4π

)]
+

1
64π2

[(
µ2 +

1
2
λϕcl

)2

log
µ2 + 1

2λϕ
2
cl

M2
− µ4 log

µ2

M2

]
. (4.106)

In turns out that in the MS scheme we may choose (see Rajantie or Bailin and Love)

δλMS =
3λλ̂
32π2

(
1

2− ω
− γ + log 4π

)
+O(λ3) (4.107)

aMS
0 =

3λ̂2

32π2
[−γ + log 4π] +O(λ3), aMS

1 =
3λ̂2

32π2
+O(λ3), (4.108)

This will get rid of the −γ + log 4π factors.
However, and here is the main objective of this comparison with the ζ function regular-
ization, we could also renormalize V (ϕcl) by writing it as a function of physical mass and



4 DIMENSIONAL REGULARIZATION 66

coupling constant. This can be accomplished by setting aphys
0 and bphys

0 such that the
following hold

d2V

dϕ2
cl

∣∣∣∣
ϕcl=0

= µ2,
d4V

dϕ4
cl

∣∣∣∣
ϕcl=M

= λ, (4.109)

In the case that µ2 is small there could be radiative corrections that generate spontaneous
symmetry breaking. Performing the second and fourth derivatives (4.109) and using

log
λM2

2µ2
= −8

3

leads to the potential [1], [4]

V (ϕcl) =
1
2
µ2ϕ2

cl +
λ

4!
ϕ4

cl +
λ2ϕ4

cl

256π2

(
log

ϕ2
cl

M2
− 25

6

)
. (4.110)

4.4 Γ-evaluation of dimensional loop integrals

Let us make a brief digression to see how one would compute integrals of the form

Υβ(k) =

∞∫
−∞

dβ`F (`, k) (4.111)

where F behaves as `−2 or `−4 for large `. The key component behind dimensional reg-
ularization is that by lowering the number of dimensions over which one integrates the
divergences trivially disappear [4]. For example as F → `β=−4 in 2-D the integral above
converges at the ultraviolet end.
The precise technique runs as follows, let

Υ(ω, k) =

∞∫
−∞

d2ω`F (`, k), (4.112)

where ω is a complex variable. We have to choose a domain where Υ has no singularities
in the ω plane. Carefully choose a function Υ′ which has well-de�ned singularities outside
the domain of convergence. By analytic continuation (yet again) Υ and Υ′ are the same
function. In order to accomplish this, we �rst establish a domain of convergence for the
loop integral in the ω plane. Then we construct a function which overlaps with the loop
integral in its domain of convergence but is de�ned in a large domain which encloses the
point ω = 2 and then take limit ω → 2.
We shall follow the steps of 't Hooft and Veltman [6] which are simpli�ed in [4]. We start
by splitting up the domain of integration as

d2ω`→ d4`d2ω−4`. (4.113)

By introducting polar coordinates and letting L be the length of the 2ω − 4 dimensional `
vector the integral becomes

Υ =
∫
d4`

∫
dΩ2ω−4

∞∫
0

dL
L2ω−5

L2 + `2 +m2
. (4.114)
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By using the familiar result from AQFT [3]∫
dΩ2ω−4 =

2πω−2

Γ(ω − 2)
(4.115)

the integral now reads

Υ =
2πω−2

Γ(ω − 2)

∫
d4`

∞∫
0

dL
L2ω−5

L2 + `2 +m2
. (4.116)

Note that our critieria is not met. This is not well-de�ned because it is divergent for ω ≥ 1
and integrating over L diverges at the lower, i.e. when ω ≤ 2. Therefore, we do not have
an overlapping region where Υ is well-de�ned. However,

L2ω−6 =
1

ω − 2
d

dL2
(L2)ω−2. (4.117)

If we use this to integrate by parts Υ yields

Υ = πω−2 ω − 2
Γ(ω − 1)

∫
d4`

∞∫
0

dL2 1
ω − 2

(L2)ω−2

(
− d

dL2

)
1

L2 + `2 +m2
+ surface term

(4.118)

ignoring the surface term and simplying

Υ =
πω−2

Γ(ω − 1)

∫
d4`

∞∫
0

dL2(L2)ω−2

(
− d

dL2

)
1

L2 + `2 +m2
. (4.119)

This is still too weak as there is no overlap: we have a divergence for ω ≤ 1 and another
one for ω ≥ 1. It would have been su�cient if the divergence has been logarithmic. This
can be cured by performing the same procedure again, that is lower the dimension

Υ =
πω−2

Γ(ω)

∫
d4`

∞∫
0

dL2(L2)ω−1

(
− d

dL2

)(
− d

dL2

)
1

L2 + `2 +m2
(4.120)

and this equation is well de�ned for 0 < ω < 1. The process of analytic continuation to the
point ω = 2 requires the using the trick

1 =
1
5

(
∂L

∂L
+
∂`µ
∂`µ

)
, (4.121)

and it is no suprise that integration by parts is the next step

Υ = −2πω−2

5Γ(ω)

∫
d4`

∞∫
0

dL2

(
`µ

∂

∂`µ
+ 2L2 ∂

∂L2
+ 1
)

(L2)ω−1

(L2 + `2 +m2)3

= − 3m2

ω − 1
2πω−2

Γ(ω)

∫
d4`

∞∫
0

dL2 (L2)ω−1

(L2 + `2 +m2)4
.
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Let us note the pole at ω = 1. In this case, Υ diverges when ω ≥ 2 therefore repeating this
again to increase the exponent of the denominator yields

Υ = − 2 · 3 · 4 ·m4

(ω − 1)(ω − 2)
πω−2

Γ(ω)

∫
d4`

∞∫
0

dL2 (L2)ω−1

(L2 + `2 +m2)5
. (4.122)

This is exactly what we aimed for. The (simple) pole is now at ω = 2 and Υ now converges.
By the means of another well known loop integral indetity (see AQFT, Peskin and Schroder,
Bailin and Love, Ramond) ∫

d2ω`

`2 +m2
= πω

Γ(1− ω)
Γ(1)

1
(m2)1−ω (4.123)

and expanding around the Γ function around the poles −n where n is an integer

Γ(−n+ ε) =
(−1)n

n!

[
1
ε

+ ψ(n+ 1) +O(ε)
]

(4.124)

so that

Γ(1− ω) =
1
2

[
1

2− ω
+ ψ(2) +O(2− ω)

]
(4.125)

and consequently,

lim
ω→2

∫
d2ω`

`2 +m2
= −π2m2

[
1

2− ω
+ ψ(2) +O(2− ω)

]
. (4.126)

Finally, we note that

ψ(n) =
n∑
k=1

1
k
− γ (4.127)

hence

ψ(2) =
3
2
− γ (4.128)

and therefore

lim
ω→2

∫
d2ω`

`2 +m2
= −π2m2

[
1

2− ω
+

3
2
− γ +O(2− ω)

]
. (4.129)

The general integral is∫
d2ω`

(2π)2ω
(`2 − µ2 + iε)−n = i(−1)n

µ2ω−2n

(4π)ω
Γ(n− ω)

Γ(n)
. (4.130)

The RHS is regular at ω = 2 and the LHS is convergent in four dimensions. Therefore
dimensional regularization has renormalised the divergent integral while leaving convergent
integrals una�ected when ω → 2. Naturally, this is due to analytic continuation.
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4.5 Expansion of Z in Eucliean spacetime

We now go back to the Euclidean space de�nition of the generating functional

ZE [J ] = NE

∫
Dφ exp

{
−
∫
d4x̄

[
1
2
∂̄µφ∂̄

µφ+
1
2
m2φ2 + V (φ)− Jφ

]}
. (4.131)

This will be evaluated by expanding the action.
In order to do this, set φ0 to be a �eld con�guration, then

SEuc[φ, J ] :=
∫
d4x̄

[
1
2
∂̄µφ∂̄

µφ+
1
2
m2φ2 + V (φ)− Jφ

]
= SEuc[φ0, J ] +

∫
d4x̄

[
δSEuc

δφ
(φ− φ0)

]
+

1
2

∫
d4x̄1d

4x̄2

[
δ2SEuc

δφ(x̄1)δφ(x̄2)
(φ(x̄1)− φ0(x̄1))(φ(x̄2)− φ0(x̄2))

]
+ · · · .

(4.132)

It is understood that the functional derivatives are evaluated at φ0. We know from AQFT
[3] that the classical limit can be recovered, by taking SEuc to be stationary at φ0 and this
implies that φ0 satis�es the classical EOM with the source term

δSEuc

δφ

∣∣∣∣
x0

= −∂̄µ∂̄µφ(x0) +m2φ(x0) + V ′[φ(x0)]− J = 0. (4.133)

Integrating by parts gives

SEuc[φ(x0), J ] =
1
2

∫
d4x̄

[
2− φ(x0)

d

dφ(x0)

]
[−Jφ(x0) + V ′[φ(x0)]], (4.134)

whereas the second derivative is an operator

δ2

δφ(x1)δφ(x2)
SEuc = δ(x̄1 − x̄2)

[
−∂̄µ∂̄µ +m2 + V ′′[φ(x1)]

]
. (4.135)

We need to make regression now on how to evaluate integrals of the sort

I :=
∫
dx exp(−α(x)) (4.136)

This can be evaluated by expanding the exponential around a point x0 where α is stationary

α(x) = α(x0) +
1
2

(x− x0)2α′′(x0) +O(x3). (4.137)

The I integral is then approximated

I = exp(−α(x0))
∫
dx exp

{
−1

2
(x− x0)2α′′(x0)

}
, (4.138)

and we can recognize this as a Gaussian integral (when the higher derivatives are ignored).
The degree of this approximation depends obviously on α. When α is smallest then the
integrand is largest and the points away from the minimum do not add a substantial con-
tribution.
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Equipped with this method we can apply it to the functional we have just arrived at a
crucially important result [4]

ZE [J ] = NE exp {−SEuc[φ(x0), J ]}
∫

Dφ exp
{
−1

2

∫
d4x̄1d

4x̄2

(
φ(x̄1)

δ2SEuc

δφ(x̄1)δφ(x̄2)
φ(x̄2)

)}
= N ′E

exp {−SEuc[φ(x0), J ]}√
det
[
(−∂̄µ∂̄µ +m2 + V ′′[φ(x0)])δ(x1 − x2)

] , (4.139)

where we have ignored the higher order terms. The precise derivation is in the Appendix.
Let us do some re-write to make this expression easier to handle, �rst the determinant,
which we will call M can be taken care of by using the identity

det M = exp(tr log M), (4.140)

so that

ZE [J ] = N ′E exp
{
−SEuc[φ(x0), J ]− 1

2
tr log(−∂̄µ∂̄µ +m2 + V ′′[φ(x0)])δ(x1 − x2)

}
,

(4.141)

the delta term accounts for the quantum perturbations (or corrections) to Z[J ], whereas
the �rst term accounts for the classical contribution. Also note that we set by convention
the determinant of an operator to be the product of its eigenvalues and that because φ0

satis�es δSEuc/δφ|x0
= 0 then it is a functional of J.

The concluding remark is to �nd the equivalence of these results in terms of the classical
�eld φcl and explore the corresponding e�ective action. When we work in Euclidean space,
the classical �eld was de�ned as

φcl(x̄) = − δZE
δJ(x̄)

≈ − δSE
δJ(x̄)

+O(~), (4.142)

and by using (3.57) and (3.58) we can have φcl as a function (functional, rather) of J,
however at the cost of doing it order by order in λ. The term O(~) stands for quantum
corrections. This relationship can be inverted and we can �nd J(x̄) as a function of φcl.
This inversion can be carried out to give (see Ramond)

J(x̄) = (∂̄2 −m2)φcl(x̄)− λ

3!
φ3

cl(x̄). (4.143)

An attractive (and indispensable) feature is that there are no higher terms in λ, comparison
with

0 =
δSEuc

δφ

∣∣∣∣
x0

= −∂̄µ∂̄µφ(x0) +m2φ(x0) + V ′[φ(x0)]− J (4.144)

gives

φcl(x̄) = φ0(x̄) +O(~). (4.145)

By integrating J(x) = −δΓ[φcl]/δφcl we see that to this order that

Γeff [φcl] = −
∫
d4x̄

[
1
2
φcl(∂̄2 −m2)φcl −

λ

4!
φ4

cl(x̄)
]
, (4.146)
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which is indeed an e�ective action.
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5 Zeta Regularization in Field Theory

5.1 Heat kernels and Mellin transforms

At this point we can put together some of the concepts acquired in the second and third
chapters. Firstly we will further develop the theory of quantum corrections by evaluating
the determinant of theM matrix and then see how this is related to the use of the ζ function
in quantum theory as we explained in Chapter 3. In what follows, we will extrapolate the
results found in the quantum mechanical section to �eld theory, this section borrows some
its contents from Har�eld [2], Hawking [3] and Ramond [5]. As we mentioned earlier, the
determinant in the expression (4.139)

ZE [J ] =
N ′E exp {−SEuc[φ(x0), J ]}√

det
[
(−∂̄µ∂̄µ +m2 + V ′′[φ(x0)])δ(x1 − x2)

] (5.1)

must be interpreted as the product of the eigenvalues of the operator. In order to discretize
these eigenvalues we truncate the space (by use of a box). We then multiply the resulting
eigenvalues and then let the size of the box increase to in�nity.
First we state some preliminary results that will become useful later on. As it is shown in
a course on partial di�erential equations, the heat function

G(x̄, ȳ, t) :=
∑
n

exp(−λnt)ψn(x̄)ψ∗n(ȳ) (5.2)

satis�es the heat equation

Ax̄G(x̄, ȳ, t) = − ∂

∂t
G(x̄, ȳ, t), (5.3)

where Ax̄ is taken to act on the �rst argument of G and initial condition

G(x̄, ȳ, t = 0) = δ(x̄− ȳ). (5.4)

The key step, the relationship between the heat kernel G and the ζ function is the following
result

ζA(s)Γ(s) =

∞∫
0

dtts−1

∫
d4x̄G(x̄, x̄, t), (5.5)

which we proceed to explain. Note the similarity with (1.15), this should already give us a
hint on how to proceed. The eigenfunctions ψn(x) of A satisfy the following orthogonality
relations

〈ψn, ψ∗m〉 =
∫
dxψ∗n(x)ψm(x) = δnm,

∑
n

ψ∗n(x)ψn(x′) = δ(x− x′) (5.6)

We can explain (5.5) by taking the trace of G

Tr(G) =
∫
dxG(x, x, t) =

∑
n

e−λnt (5.7)
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(remembering Tr(G) is a function of t) multiply it by e−λt and integrate it with respect to
t and then with respect to λ to obtain

∫
dλ

∞∫
0

dtTr(G)e−λt =
∑
n

∫
dλ

1
λn + λ

=
∑
n

log(λn + λ). (5.8)

The determinant of A then is written as

detA = exp

∫ dλ

∞∫
0

dt Tr(G)e−λt
∣∣
λ=0

 (5.9)

ignoring the factor that would show from the λ integration. Swapping the integrals yields

detA =
∑
n

e−λnt = −
∞∫

0

dtt−1Tr(G) (5.10)

The relationship between the trace of the heat kernel Tr(G) and the ζ function is given by
a Mellin transformation, see Hawking [3]

ζA(s) =
1

Γ(s)

∞∫
0

dtts−1Tr(G), (5.11)

which justi�es (5.5). A solution of the heat equation

−∂̄2
xG0(x̄, ȳ, t) = − ∂

∂t
G0, (5.12)

with the boundary condition G0(x̄, ȳ, t = 0) = δ(x̄− ȳ) is

G0(x̄, ȳ, t) =
1

16π2r2
exp

(
− 1

4r
(x̄− ȳ)2

)
, (5.13)

also a classic result from partial di�erential equations.
Let us generalize some of the techniques we used in Chapter 3. Consider an operator A
with positive real discrete eigenvalues λi where i runs from 1 to n and its eigenfunctions
are ψn(x) i.e. Aψi(x) = λiψi(x). From here we set

ζA(s) =
∑
n

λ−sn , (5.14)

which we call the zeta function associated to the operator A. The sum is over all the
eigenvalues and A is a real variable. If the operator A were the one-dimensional harmonic
oscillator Hamiltonian, then ζA would be the Riemann zeta function (excluding the singular
zero-point energy).
The �rst observation is that [1], [2], [3], [4] and [5]

d

ds
ζA(s)

∣∣∣∣
s=0

= −
∑
n

log λsn exp(−s log λsn)|s=0 = − log
∏
n

λn, (5.15)
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which gives the determinant

detA =
∏
n

λn = exp(−ζ ′A(0)). (5.16)

As we know from our discussion of chapter 3. The zeta-function ζA is not always singular
at s = 0 for physically interesting operators and hence the convenience of writing this
representation for detA.
Algorithmically we have a procedure to compute the determinant of A and it can be done
as follows. First we need to �nd the solution to the heat equation subject to the delta-
function initial condition (5.4). Second, once this is done we can insert the solution into the
ζ representation above and we have ζA. Finally evaluate at s = 0 and compute exp(−ζ ′

A
(0)).

5.2 Derivation of ϕ4 potential at ϕcl using ζ regularization

In our case, our operator is

A = −∂̄2 +m2 +
λ

2
φ2

0(x̄), (5.17)

where φ0(x̄) is a solution of the classical equations with source J as we discussed in Chapter
4. Also note that in (5.1) we have a V ′′ factor in the determinant which takes the form
V ′′ = (λ/2)φ2

0 in the A operator.
As we have pointed out a solution of the heat equation with the boundary condition
G0(x̄, ȳ, t = 0) = δ(x̄− ȳ) is

G0(x̄, ȳ, t) =
1

16π2r2
exp

(
− 1

4r
(x̄− ȳ)2

)
. (5.18)

However, this is only a part of the operator as we want to �nd G0(x̄, ȳ, t) subject to the
initial condition (5.4) which obeys the whole A operator[

−∂̄2 +m2 +
λ

2
φ2

0(x̄)
]
G(x̄, ȳ, t) = − ∂

∂t
G(x̄, ȳ, t). (5.19)

For arbitrary �elds φ0 we need to expand the e�ective action as (see (4.81) or Bailin and
Love, [5])

ΓE [φcl] = Γ(0)
E [φcl] + ~Γ(1)

E [φcl] + · · · , (5.20)

the ~ indicates quantum terms. Given the fact that the e�ective potential at 1 loop is of
the form [2]

Veff [φcl]
∫
d4x =

1
2

log det(−∂2 +m2
0 + λ0

2 φ
2
cl)−

1
2

log det(−∂2 +m2
0), (5.21)

as we also argued in general terms in Chapter 4 (4.56) and (4.85), allows us to write

Γ(1)
E [φcl] = −1

2
ζ ′
[−∂̄2+m2+

λ
2 φ

2
0(x̄)]

(0), (5.22)

by use of (5.1) and (5.16) combined with (5.17). Note that replacing φ0 by φcl is not a
problem as there are no new quantum errors, that is errors up to O(~). By the expansion
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of the e�ective potential we can swap m and m0. From the fact that the e�ective action
can be written as

ΓE [φcl] =
∫
d4x̄

[
V (φcl(x̄)) + F (φcl)∂̄µφcl(x̄)∂̄µφcl(x̄) + · · ·

]
(5.23)

we can compute the quantum O(~) contribution to V (φcl(x̄)) by considering a constant �eld
con�guration. That is, suppose we take φcl(x̄) = v where v is a constant independent of x̄,
then

ΓE [φcl] =
∫
d4x̄V (v), (5.24)

and ΓE is proportional to the in�nite volume element
∫
d4x̄, since the Euclidean space R4

is unbounded. This can be temporarily solved by taking the space to be the sphere S4 then
the volume is just that of the 5-dimensional sphere and hence �nite. While the radius is
�nite we need not worry about the infrared divergence. We then let the radius of the sphere
tend to in�nity.
Taking V out of the integral we have [2], [5]

V (v)
∫
d4x̄ = −1

2
ζ ′
[−∂̄2+m2+

λ
2 v

2]
(0). (5.25)

We can proceed to integrate (5.19) when v is constant this yields

G(x̄, ȳ, t) =
µ4

16π2t2
exp

[
−µ

2(x̄− ȳ)2

4t

]
exp

[(
−m2 +

λ

2
v2

)
t

µ2

]
, (5.26)

where the µ factor needs to be explained: it has dimensions of mass so that t is dimensionless.
Using the Mellin transform (5.5) we obtain

ζA(s) =
1

Γ(s)

∞∫
0

dtts−1

∫
d4x̄

µ4

16π2t2
exp

[(
−m2 +

λ

2
v2

)
t

µ2

]

=
µ4

16π2t2

(
m2 + λ

2 v
2

µ2

)2−s
Γ(s− 2)

Γ(s)

∫
d4x̄, (5.27)

the volume element
∫
d4x̄ is present because it is in (5.25) and here t has been rescaled

since the integration over t is valid when s > 2 however the ζ function is de�ned everywhere
by analytic continuation as we know from Chapter 2. Di�erentiating and comparing these
two equations we have

V (v) = − µ4

32π2

d

ds

 1
(s− 2)(s− 1)

(
m2 + λ

2 v
2

µ2

)2−s

∣∣∣∣∣∣
s=0

=
1

64π2

(
m2 +

λ

2
v2

)2
(

log
m2 + λ

2 v
2

µ2
− 3

2

)
. (5.28)

Note that we have used

Γ(s− 2)
Γ(s)

=
1

(s− 2)(s− 1)
. (5.29)



5 ZETA REGULARIZATION IN FIELD THEORY 76

Also note that applying (5.16) and working with a non-constant �eld con�guration φcl yields

log detA =
1

32π2

(
m2

0 +
λ0φ

2
cl

2

)2 [
log
(
m2

0 +
λ0φcl

2

)
− 3

2

] ∫
d4x̄. (5.30)

Equipped with this functional form of V the e�ective potential can be written as

V (φcl) =
1
2
m2φ2

cl(x̄) +
λ

4!
φ4

cl(x̄) +
~

64π2

(
m2 +

λ

2
φ2

cl(x̄)
)2
(

log
m2 + λ

2 v
2

µ2
− 3

2

)
, (5.31)

ignoring terms of order ~2. We make a pause now to examine this result. Super�cially the
�rst striking observation is that there is a strong dependence on the unknown and arbitrary
scale µ2. This would seem to imply that the potential is therefore arbitrary. However V
depends on the parameters m2 and λ which are unde�ned, except for the fact that they are
included in the classical Lagrangian.
Let us take the special massless case. This yields the following

d2V

dφ2

∣∣∣∣
φ=0

= 0. (5.32)

Now we de�ne the mass squared as the coe�cient of the terms φ2 in the Lagrangian eval-
uated at φ = 0. To �rst quantum corrections the coe�cient is zero, if it is classically zero.
The λ term is de�ned to be the coe�cient of the fourth derivative of V evaluated at some
constant point φ = M, i.e.

λ :=
d4V

dφ4

∣∣∣∣
φ=M

. (5.33)

We cannot take φ = 0 as with the mass squared factor because of the infrared divergence
coming from the logarithm. When we di�erentiate (5.31), set m2 = 0 and use (5.33) we see
that the above condition requires

log
λM2

2µ2
= −8

3
. (5.34)

In this case, we may use M2 instead of 2µ2/λ and write the result as (Bailin and Love and
[5])

V (φcl) =
λ

4!
φ4

cl(x̄) +
λ2φ4

cl

256π2

(
log

φ2
cl

M2
− 25

6

)
, (5.35)

which is exactly the same result we found in Section (4.3). This was proved by Coleman
and Weinberg in 1973 [5]. The main result that can be extracted is that we need to be
careful with how we de�ne the input parameters in the Lagrangian if we are to take into
account quantum corrections. Again, super�cially it seems that (5.35) depends on another
arbitrary scale M2, but in fact it does not. Given the normalization condition, if we change
the scale from M2 to M ′2 we simultaneously have to change at the same time λ to λ′ by
use of (5.33)

λ′ = λ+
3λ2

16π2
log

M ′

M
. (5.36)
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Therefore the potential (see Ramond)

V (φcl) =
λ′

4!
φ4

cl(x̄) +
λ′2φ4

cl

256π2

(
log

φ2
cl

M ′2
− 25

6

)
(5.37)

is indeed invariant under the representation V (λ′,M ′) = V (λ,M). This proves that the
physics behind remains unchanged but our way of interpreting the coe�cients changes.

5.3 Coupling constants

Let us now look more closely to the scaling of determinants and the coupling constants.
The ζ function technique just used allows us derive scaling properties for determinants.
First, we will need the computation of ζ function ζ

[−∂̄2+
λ
2 φ

2
cl]

(0). This can be accomplished

by taking the asymptotic expansion of G(x̄, ȳ, t) at µ2 = 1,

G(x̄, ȳ, t) = e−εt
e−(x̄−ȳ)2/(4t)

16π2t2

∞∑
n=0

an(x̄, ȳ)tn, (5.38)

with ε > 0 as a convergence factor. The boundary condition (5.4) sets the condition

a0(x̄, x̄) = 1. (5.39)

Additionally, when we insert (5.38) into the PDE (5.19) we �nd recursion relations for the
an coe�cients

(x̄− ȳ)µ
∂

∂x̄µ
a0(x̄, ȳ) = 0 (5.40)

and for n = 0, 1, 2, · · ·[
(n+ 1) + (x̄− ȳ)µ

∂

∂x̄µ

]
an+1(x̄, ȳ) =

(
∂̄2
x −

λ

2
φ2

cl + ε

)
an(x̄, ȳ). (5.41)

When we compute the �rst terms we have

a1(x̄, x̄) = −λ
2
φ2

cl + ε (5.42)

a2(x̄, x̄) =
λ2

8
φ4

cl(x̄)− λ

4
∂̄2
xφcl(x̄)− ε

2
λφ2

cl(x̄) +
ε2

2
. (5.43)

Let us now use these results. We work under a scale change A → A′ = eadA, where d is
the natural dimension of A. By the de�nition of the zeta function we have

ζA′(s) = e−adsζA(s) (5.44)

which implies that

det(eadA) = eadζ
′
A(0) detA. (5.45)

Let us illustrate this with an example. Under the transformation

xµ → x′µ = eaxµ φcl → φ′cl = e−aφcl (5.46)
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the massless classical action

SE [φcl] = −
∫
d4x̄

[
1
2
φcl∂̄

2φcl −
λ

4!
φ4

cl

]
(5.47)

is unchanged. However, the path integral corresponding to this action is not scale invariant
since in the steepest descent approximation the change in the e�ective action to quantum
order is as follows

Seff
E [φcl]→ Seff′

E [φcl] = Seff
E [φcl]− ~aζ

[−∂̄2+
λ
2 φ

2
cl]

(0). (5.48)

Plugging (5.38) into (5.3) and with the assistance of the �rst two terms a1 and a2 and
integrating out the ∂̄2 with the divergence theorem yields

ζ(0) =
1

16π2

∫
d4x̄

λ2

8
φ4

cl(x̄). (5.49)

A small digression is now required to further explain this. In 4 dimensions and in the
presence of mass the heat kernel is

G(x̄, ȳ, t) =
e−(x̄−ȳ)2/(4t)

16π2t2
exp

(
− 1

4t
|x̄− ȳ|2

)
exp

[
−
(
m2

0 +
λ0φ

2
cl

2

)
t

]
(5.50)

and like in (5.27) and (5.28)

ζ(s) =
1

16π2

(
m2

0 +
λ0φ

2
cl

2

)2−s Γ(s− 2)
Γ(s)

∫
d4x̄. (5.51)

Furthermore, note that in the more restricted case B = −∂2 + ω2 we have kernel

G(x, x′, t) =
1√
4πt

exp
(
− (x− x′)2

4t

)
exp(−ω2t) (5.52)

and the determinant of B is

log detB = − 1√
4π

∞∫
0

dtt−3/2 exp(−ω2t)
∫
d4x̄ = − ω√

4π

∫
d4x̄

∞∫
0

dte−tt−3/2

= − ω√
4π

∫
d4x̄

[
t−1/2e−t

∣∣∣∞
0
− 2π1/2

]
(5.53)

integration by parts was used in the last line. Ignoring the divergent factor we have the
simpli�cation

detB = exp
(
ω

∫
d4x̄

)
. (5.54)

We can justify the disregard of the in�nite in the integral for log detB by expressing it in
terms of Γ functions in this divergence zone by analytic continuation.

log detB = − ω√
4π

(∫
d4x̄

)
Γ
(
−1

2

)
(5.55)
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where the Γ function is de�ned in this region by analytical continuation.
Finally, the divergence of Γ(s − 2) at s = 0 cancels that the divergence of Γ(0), and this
process makes ζ(0) regular.
In terms of the e�ective action (5.48)

Seff′

E [φcl] = Seff
E [φcl]− ~a

λ2

128π2

∫
d4x̄φ4

cl(x̄). (5.56)

Consequently the e�ect of the transformation to quantum order has been to change the
coupling constant λ by the following

λ

4!
→ λ′

4!
=
λ

4!
− ~a

λ2

128π2
⇔ λ′ = λ− 3λ2

16π2
~a. (5.57)

What this is means is that the dimensionless coupling constant λ evolves as a result of
quantum e�ects. This evolution is in term of scale dependence. At large scales the coupling
constant decreases indicating that the non-interaction theory is a good approximation for
the asymptotic states. On the other hand, if the scale decreases, the coupling increases.
Independently of how small λ was at the beginning this increment might throw away the
results obtained in the perturbation of λ. Moreover, this scaling law is like the one we found
earlier, and they are both correct to quantum orders.

5.4 Partition functions in �eld theory

We recall that for any given time t a quantum mechanical system with one degree of
freedom, q and canonically conjugate momentum p, is described in terms of the spectrum
of its Hamiltonian H(p, q). From the path integral formulation we know that if the system
at an initial time ti is measured to be in the state

∣∣qi〉 , then the probability that the system

will be found in the state
∣∣qf〉 , at a �nal time tf is exactly〈
qftf

∣∣∣ qiti〉 =
〈
qf
∣∣∣ e−i(tf−ti)H ∣∣∣ qi〉 , (5.58)

and it can be written in terms of path integrals as

〈
qf
∣∣∣ e−i(tf−ti)H ∣∣∣ qi〉 =

∫
Dq

∫
Dp exp

i tf∫
ti

dt[pq̇ −H(p, q)]

, (5.59)

the factor Dq denotes integration between the initial and �nal con�gurations qi and qf ; the
dot over q denotes the derivative of q with respect to time.
Quantum �eld theory and statistical mechanics share certain common elements and precisely
this analogy will allow us to apply path integrals to the description of dynamical systems
at �nite temperature (see [1] and [4]). The �rst step, as we did in Chapter 3, is to compute
the partition function

Z = Tr[e−βH ], (5.60)

where the constant is

β = (kT )−1, (5.61)
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taking into account that the trace is taken to be the sum over all the possible con�gurations
the system is allowed to take. Note that the time is singled out. Now, the probability for
the system to be in state of energy E is identi�ed with

P = Z−1e−βH . (5.62)

The value of any function for the dynamical variable f(q, p) is given by

〈f〉 = Tr(fP ) = Z−1Tr(fe−βH). (5.63)

This does show a special similarity with zero temperature quantum mechanics and QFT
but the degree of this similarity is not fully illustrated. However, we can push the analogy
to calculate partition functions, specially this one. Let us start with a system which can be
regarded as a �eld theory in zero space dimensions.
We can compare this expression to the partition function for the same system at temperature
β−1

Z = Tr[e−βH ] =
∑
q

〈
q|e−βH |q

〉
. (5.64)

Let us draw comparisons between (5.59) and (5.64). If we set i(tf − ti) = β or alternatively
set ti = 0 and then itf = β since the origin of time is arbitrary. Next, set qf = qi which
means that the initial and �nal con�gurations are the same, and since the di�erence is a β
factor, the only requirement is that the relevant con�guration is periodic in the functional
integrals

q(β) = q(0). (5.65)

Thus the functional integration Dq is over the space of periodic functions as stressed in
Chapter 3. In this case, the sum over q in (5.59) is implicit. When we do the comparison
we can write

Z = Tr(e−βH) =
∫

Dq

∫
Dp exp

 β∫
0

dτ

(
ip
dq

dτ
−H

), (5.66)

bearing in mind again that Dq is over periodic functions.
If we take a well-behaved potential V (q) we could scale the temperature dependence purely
into the q integral. To do this, we make the following transformations

τ̄ = τβ−1, p̄ = pβ1/2, q̄ = qβ−1/2, (5.67)

then the exponent of the integrand becomes

1∫
0

dτ̄

[
ip̄
dq̄

dτ̄
− p̄2

2
− βV (β1/2q̄)

]
. (5.68)

Furthermore we can drop all the bars because the path integral measure is invariant under
the changes (5.67) thus we can write the partition function as

Z =
∫

Dq

∫
Dp exp

 1∫
0

dτ

(
ipq̇ − 1

2
p2 − βV (qβ1/2)

). (5.69)
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Next, set p′ = p− iq̇, so that the measures are equal

Dp′ = Dp, (5.70)

which in turn, by competing the square in the exponent, allows us to write

Z =
∫

Dp′ exp

−1
2

1∫
0

dτp′2

∫ Dq exp

− 1∫
0

dτ

(
1
2
q̇2 + βV (qβ1/2)

). (5.71)

As we have done repeatedly in AQFT we can ignore the p′ integral (even though it is
in�nite) because it is independent of β. We call this integral N, and the reason why it can
be ignored is because N is usually always present in the numerator and denominators of
correlation functions.
The only example we could tackle is that of an integral that can be evaluated, i.e. a Gaussian
integral. The integral becomes Gaussian when we take the harmonic oscillator potential
V (q) = 1

2ω
2q2, the partition function is

Z = N

∫
Dq exp

− 1∫
0

dτ

(
1
2
q̇2 +

1
2
β2ω2q2

). (5.72)

It is one of the very few types that can actually be integrated. By virtue of (5.65) we have

1
2

1∫
0

dτ

(
dq

dτ

)2

= −1
2

1∫
0

dτq
d2

dτ2
q, (5.73)

since the extra surface term is eliminated and therefore

Z = N

∫
Dq exp

−1
2

1∫
0

dτq

(
− d2

dτ2
+ ω2β2

)
q

. (5.74)

If we proceed by analogy with the discrete case we have

∫
Dq exp

−1
2

1∫
0

dτq

(
− d2

dτ2
+ ω2β2

)
q

 =
N ′√
DetA

, (5.75)

where N ′ is a constant, and A is the operator [1], [4], [5]

A = − d2

dτ2
+ ω2β2 (5.76)

with positive de�nite eigenvalues (it must not contain zero eigenvalues as these would create
in�nities which have to be removed). In order to prove (5.75) as we did in Chapter 3 we
need to express q(τ) in terms of its Fourier components (QFT course) then transform into
the normal modes of A and integrate each one using

∞∫
0

dqn exp
(
−1

2
anq

2
n

)
=
√

2π
an
. (5.77)
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The operator A operates on periodic functions with unit period, which can all be expanded
in terms of the complete Fourier set {e2πinτ}. The eigenvalues of A are

(4π2n2 + ω2β2); n ∈ Z. (5.78)

Note the analogy with the eigenvalues of the quantum mechanical operator (3.84).
Hence multiplying we have the determinant of the operator A,

detA =
∏
n∈Z

(4π2n2 + ω2β2). (5.79)

Setting x2 = ω2β2 yields the following

d

dx2
log detA =

∑
n∈Z

1
4π2n2 + x2

=
1
x2

+ 2
∑
n≥1

1
4π2n2 + x2

. (5.80)

Substituting the formula that was shown in the Appendix

cothπx =
1
πx

+
2x
π

∑
n≥1

1
x2 + n2

(5.81)

d

dx2
log detA =

1
2x

coth
x

2
(5.82)

and from here we can integrate to �nd

log
detA
C

=
∫
dx coth

x

2
= 2 log sinh

x

2
= 2 log sinh

ωβ

2
. (5.83)

Removing the logs we have the formula for the determinant

detA = C sinh2 ωβ

2
. (5.84)

When we clean the expression we arrive to

F = − 1
β

logZ = −D
β

+
1
2
ω +

1
β

log(1− e−ωβ), (5.85)

where D is another constant, the zero-point energy is identi�ed at 1 = e−ωβ . This formula
is called the thermodynamic potential.
Let us go back to our discussion of the ζ function. The heat equation associated with the
A operator (5.76) is (see [1], [2], [5])

G(t, t′, σ) =
∑
n∈Z

exp
{

2πin(t− t′)− (ω2β2 + 4π2n2)σ
}
, (5.86)

and recalling our Mellin transform (5.5) for the ζ function

ζA(s) =
1

Γ(s)

∞∫
0

dσσs−1

1∫
0

dt
∑
n∈Z

exp
{
−(ω2β2 + 4π2n2)σ

}
. (5.87)
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Scaling σ by ω2β2 + 4π2n2 leads nowhere as we simply come back to the expression

ζA(s) =
∑
n∈Z

1
(ω2β2 + 4π2n2)s

. (5.88)

The technique we need to use is somewhat messier, it involves expanding in powers of ωβ
then integrating and re-arranging the sums. With this in mind we have∑

n∈Z
e−4π2n2σ = 1 + 2

∑
n≥1

e−4π2n2σ, (5.89)

and integrating we have

ζA(s) = (ωβ)−2s +
2

Γ(s)

∞∑
k=0

(ωβ)2k

k!
(−1)−k

∞∑
n=1

∞∫
0

dσσs+k−1e−4π2n2σ. (5.90)

Now it is the time when we can rescale σ by 4π2n2 and we can also identify the sum over
n with the Riemann ζ function ζ(2s) =

∑∞
n=1 n

−2s, which gives

ζA(s) = (ωβ)−2s +
2

(4π2)s
ζ(2s) +

2
Γ(s)

∞∑
k=1

(ωβ)2k

k!
(−1)k

(4π2)s+k
Γ(s+ k)ζ(2s+ 2k) (5.91)

In order to di�erentiate ζA at s = 0 we note that the sum is well behaved at s = 0 and as
s → 0 a non zero term arises from the derivative of Γ−1(s). Recalling our formulas from
Chapter 2 (2.30) and (2.33),

ζ(0) = −1
2
, ζ ′(0) = −1

2
log 2π, (5.92)

and making use of the following expansions

(ωβ)−2s +
2

(4π2)s
ζ(2s) = 2(log 2 + log π − log 2π − logωβ)s+O(s2) (5.93)

as well as

2
Γ(s)

(ωβ)2k

k!
(−1)k

(4π2)s+k
Γ(s+ k)ζ(2s+ 2k) =

(−1)k

k!
21−2k

π2k
(ωβ)2kΓ(k)ζ(2k)s+O(s2) (5.94)

it follows (by di�erentiating with respect to s) that

ζ ′A(s) = −2 logωβ + 2
∞∑
k=1

(−1)k

k

(ωβ)2k

(4π2)k
ζ(2k) +O(s). (5.95)

Consequently we arrive at a neat expression for ζ ′A(0)

ζ ′A(0) = −2 log(ωβ) + 2
∞∑
k=1

(ωβ)2k(−1)kζ(2k)
k(4π2)k

. (5.96)

Recalling the formula for the even values of the Riemann ζ function in terms of Bernoulli
numbers (2.31)

ζ(2k) =
(−1)k+1(2π)2k

2(2k)!
B2k, (5.97)
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we can continue simplifying (5.96)

ζ ′A(0) = −2 log(ωβ)−
∞∑
k=1

(ωβ)2k

(2k)!
1
k
B2k. (5.98)

Using another formula from the appendix

cothx =
1
x

+ 2
∞∑
k=1

(2x)2k−1

(2k)!
B2k, (5.99)

and integrating yields ∫
dx cothx = log x+

1
2

∞∑
k=1

(2x)2k

k(2k)!
B2k, (5.100)

and �nally by comparing with (5.99) and setting x = 1
2ωβ, we obtain

ζ ′A(0) = −2 log(ωβ) + 2 log
ωβ

2
− 2 log sinh

ωβ

2
= −ωβ − 2 log(1− e−ωβ). (5.101)

Solving for Z yields

logZ =
1
2
ζ ′A(0) = −1

2
ωβ − log(1− e−ωβ), (5.102)

which is the same result we found earlier by evaluating the determinant with the eigenvalue
method. Although this technique is lengthy it will enable us to show the connection between
the ζ function and interacting quantum �eld theories in the high temperature limit as β → 0.

5.5 High temperature limit

We consider a scalar �eld φ(x) = φ(t, xi), and canonical conjugate Π(t, xi), interacting with
itself. The Hamiltonian in this case is

H =
∫
d3x

(
1
2

Π2 +
1
2

(∇φ)2 + V (φ)
)

=
∫
d3xH . (5.103)

Generalizing from the quantum mechanical case of Chapter 3, we immediately have

Z =
∫

Dπ

∫
Dφ exp


β∫

0

dt

∫
d3x

(
iΠ
∂φ

∂t
−H

), (5.104)

again taking the φ integral over �elds periodic in time φ(t, xi) = φ(t + β, xi) and keeping
the space variables unbounded. Rescaling the temperature φ→ φβ1/2 and introducing the
change

Π′ = Π− i∂φ
∂t

(5.105)

allows us to perform the Π integral

Z =
∫

Dπ

∫
Dφ exp


1∫

0

dt

∫
d3x

(
iΠ
∂φ

∂t
− 1

2
Π2 − 1

2
β2(∇φ)2 − βV (φβ1/2)

)
= N

∫
Dφ exp

−
1∫

0

dt

∫
d3x

(
1
2

(
∂φ

∂t

)2

+
1
2
β2(∇φ)2 + βV (φβ1/2)

) . (5.106)
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Note that we have a Euclidean integral. It is essential to note a feature of quantum theory:
the temperature dependence also appears in (∇φ)2. We are, of course, working in φ4 theory:

V (φ) =
1
2
m2φ2 +

λ

4!
φ4.

The technique for approximate integrals of this sort at second order developped in Chapter
4 Section 4.5 readily gives

S[φ, J ] = S[φ0, J ] +
∫
dt

∫
d3x

(
(φ− φ0)

δS

δφ

∣∣∣∣
φ0

)
+

1
2

∫
dt

∫
d3x

(
(φ− φ0)2 δ

2S

δφ2

∣∣∣∣
φ0

)
+ · · · ,

(5.107)

where φ0 satis�es the classical equation of motion

δS

δφ

∣∣∣∣
φ0

= −∂
2φ0

∂t2
− β2∇2φ0 +m2β2φ0 +

λ

3!
β3φ3

0 + Jβ3/2 = 0. (5.108)

By taking the new operator B to be

B =
δ2S

δφ2
0

= − ∂2

∂t2
− β2∇2 +m2β2 +

λ

2
β2φ2

0 (5.109)

and shifting the integration variable from φ to φ− φ0 we obtain

Z = Ne−S[φ0,J]

∫
Dφ exp

−1
2

1∫
0

dt

∫
d3xφ

(
− ∂2

∂t2
− β2∇2 +m2β2 +

λ

2
β3φ2

0

)
φ


=
N ′e−S[φ0,J]

√
detB

= N ′e−S[φ0,J](detB)−1/2 = N ′e−S[φ0,J] exp
(

1
2
ζ ′B(0)

)
, (5.110)

with N ′ unknown. As before, with the non-interacting massless case, we will only consider
constant φ0 which will give information about the part of the one loop correction which
does not depend on derivatives of φ0 [Ramond]. Scaling backwards the classical equation
of motion gives φ0(t, xi) = β1/2φ̄0(βt, xi) where φ̄0 is indepedent of β. In order to do this,
we need to split up the operator B in two parts

B = − ∂2

∂t2
+ β2C2 (5.111)

with C being β independent

C = −∇2 +m2 +
λ

2
φ̄2

0. (5.112)

The �rst step is to go back to the C -operated heat equation

CxGC(xi, yi, σ) = − ∂

∂σ
GC(xi, yi, σ) (5.113)

where Cx indicates that we are operating on x. The boundary condition is as usual

GC(xi, yi, σ = 0) = δ(xi − yi). (5.114)
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The solution we had for four dimensions can easily be generalized to d dimensions yielding

GC(xi, yi, σ) =
µd

(4πσ)d/2
exp

{
− µ

4σ
(xi − yi)2

}
exp

{
−
(
m2 +

λ

2
φ̄2

0

)
σ

µ2

}
, (5.115)

where µ has the purpose of making σ dimensionless, i.e. it has mass dimension. As we

argued for the quantum mechanical case, the eigenvalues for − ∂2

∂t2 over periodic functions
are 4π2n2 hence the heat kernel is essentially the same as (5.86)

GB(t, xi, t′, yi, σ) =
µd

(4πσ)d/2
exp

{
−µ

2

4σ
(xi − yi)2 −M2β2 σ

µ2

}
×

∞∑
n=−∞

exp
{
−4π2n2

µ2β2
σ + 2πin(t− t′)

}
(5.116)

where

M2 = m2 +
λ

2
φ̄2

0. (5.117)

The trace of the kernel then becomes

TrGB =
∫
dµxGB(t, x, t′, x, σ) =

1∫
0

dt

∫
ddxGB(0, x, 0, x, σ)

=
µd

(4πσ)d/2
e−M

2β2σ/µ2

1∫
0

dt

∫
ddx

∞∑
n=−∞

e−4π2n2σ/(µ2β2). (5.118)

Finally, putting this in the Mellin transform

ζB(s) =
1

Γ(s)

∞∫
0

dσσs−1TrGB(σ)

=
1

Γ(s)
µd

(4π)d/2
e−M

2β2σ/µ2

∞∫
0

dσσs−1−d/2
1∫

0

dt

∫
ddx

∞∑
n=−∞

e−(4π2n2/(µ2β2))σ

(5.119)

We note the following two points: (1) d = 0 is the quantum mechanical result and (2) the
volume V =

∫
ddx can be regularized by constraining the system to be a �nite box. Scaling

by µ2β2σ → σ simpli�es the exponential in the sum

ζB(s) =
V

Γ(s)
(µβ)2s

(4πβ2)d/2

∞∫
0

dσσs−1−d/2
∞∑

n=−∞
e−(4π2n2+M2β2)σ. (5.120)

As we did in (5.89) we split up the in�nite sum as

∞∑
n=−∞

e−4π2n2σ = 1 + 2
∞∑
n=1

e−4π2n2σ, (5.121)
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and then we have for ζB(s)

ζB(s) =
V (µβ)2s

(4πβ2)d/2
1

Γ(s)

 ∞∫
0

dσσs−1−d/2e−M
2β2σ + 2

∞∫
0

dσσs−1−d/2e−M
2β2σ

∞∑
n=1

e−4π2n2


=

V (µβ)2s

(4πβ2)d/2
1

Γ(s)

Γ(s− d/2) + 2

∞∫
0

dσσs−1−d/2
∞∑
n=1

e−(4π2n2+M2β2)σ

 (5.122)

Specialising to d = 3 we set the task of �nding the limit of high temperature β → 0.

ζB(s) =
VM3

8π3/2

( µ
M

)2s Γ(s− 3
2 )

Γ(s)

+ 2V
(
π

β2

)3/2 (µβ)2s

Γ(s)

∞∑
k=0

(βM)2k

k!
(−1)k

(2π)2k+2s
Γ(s− 3

2 + k)ζ(2s+ 2k − 3) (5.123)

Ramond [5] leaves the evaluation of these terms as an exercise and I welcome the opportunity
to provide my solution. We shall make use of

Γ(s)−1 = s+O(s2), (5.124)

Γ
(

1
2

)
=
√
π (5.125)

Γ
(
s− u

2

)
= Γ

(
−u

2

)
+ Γ

(
−u

2

)
ψ(0)

(
−u

2

)
s+O(s2) (5.126)

and

VM3

8π3/2

( µ
M

)2s

=
VM3

8π3/2
+
(
M3V

4π3/2
log

µ

M

)
s+O(s2), (5.127)

VM3

8π3/2

( µ
M

)2s Γ
(
s− 3

2

)
Γ(s)

=
VM3

6π
s+O(s2), (5.128)

d

ds

VM3

8π3/2

( µ
M

)2s Γ
(
s− 3

2

)
Γ(s)

=
VM3

6π
+O(s). (5.129)

The �rst term of the sum is very similar, except that it needs

ζ(2s− 3) = ζ(−3) + 2ζ ′(−3)s+O(s2) (5.130)

(αβ)±s = 1± s log(αβ) +O(s2) (5.131)

ζ(−3) =
1

120
(5.132)
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yielding

π2V

45β3
s+

π2V

45β3

[
2 logµβ + 240ζ(−3) + π2ψ(0)

(
−3

2

)
− 2 log π − 2 log 2 + γ

]
s+O(s3)

(5.133)

di�erentiating with respect to s gives

π2V

45β3
. (5.134)

The third term (the second term in the sum, that is) requires ζ(−1) = − 1
12 and the same

technique gives

−VM
2

12β
. (5.135)

The term at k = 2

ζB(s) =
VM3

8π3/2

( µ
M

)2s Γ(s− 3
2 )

Γ(s)
+ 2V

(
π

β2

)3/2 (µβ)2s

Γ(s)
(βM)2·2

k!
(−1)2

(2π)2·2+2s

× Γ(s− 3
2 + 2)ζ(2s+ 2 · 2− 3) (5.136)

is more delicate as at s = 0 we have a singularity coming from ζ(1). This can be evaluated
as follows by expanding each factor separately

2V π3/2β−3 (µβ)2s

Γ(s)
(βM)4

2
1

(2π)4+2s
Γ(s+ 1

2 ) =
M4V β

16π2
s+

M4V β

16π2

×
[
γ − 2 log 2− 2 log π + log µβ + ψ(0)

(
0,

1
2

)]
s2

+O(s3). (5.137)

We make use of the Laurent expansion of ζ(s) instead of the Taylor expansion to account
for the simple pole at s = 0

ζ(2s+ 1) =
1
2s

+ γ − 2γ1s+O(s2), (5.138)

where γ1 is a constant. Then multiplying these two expansions together

2V π3/2β−3 (µβ)2s

Γ(s)
(βM)4

2
1

(2π)4+2s
Γ(s+ 1

2 )ζ(2s+ 1) =
M4V β

32π2
+
M4V β

32π2

(
γ + log

µβ

4π

)
s

+O(s2). (5.139)

Di�erentiating with respect to s we have

d

ds

(
2V π3/2β−3 (µβ)2s

Γ(s)
(βM)4

2
1

(2π)4+2s
Γ(s+ 1

2 )ζ(2s+ 1)
)

=
M4V β

16π2

(
γ + log

µβ

4π

)
+O(s).

(5.140)

Therefore we have

logZ =
1
2
ζ ′B(0) = V

[
M3

12π
+

π2

90β3
− M2

24β
+
βM4

32π2

(
γ + log

µβ

4π

)
+ · · ·

]
(5.141)

which amounts to a free energy per unit volume [5]

F

V
= − M3

12πβ
− π3

90β4
+

M2

24β2
− M4

32π2

(
γ + log

µβ

4π

)
+ · · · (5.142)

in the limit of high temperature β → 0.



5 ZETA REGULARIZATION IN FIELD THEORY 89

5.6 Equivalence of ζ and dimensional regularization in ϕ4 theory

Let us now �rst summarize the features of the ζ regularization technique. We shall start
with with situations where we do not know explicitly the eigenvalues of a non-negative
self-adjoint operator A

Aψn(x) = λnψn(x). (5.143)

In these cases, we consider the heat equation

∂

∂t
GA(x, y, t) +AGA(x, y, t) = 0 (5.144)

where A is taken to act on the �rst argument of GA. The initial condition is

GA(x, y, 0) = δ(x− y). (5.145)

The expression GA is the heat kernel and it accounts for the di�usion over a region of
spacetime of a unit of heat placed at y at t = 0, i.e.

GA(x, y, t) =
〈
x|e−tA|y

〉
=
∑
n

e−tλnψn(x)ψ∗n(y). (5.146)

When we set x = y and we integrate over spacetime we obtain∫
d4xGA(x, x, t) =

∑
n

e−λnt = Tr[GA(t)]. (5.147)

The ζ function of A is connected to TrGA(t) by the Mellin transform

ζA(s) =
∑
n

λ−sn =
1

Γ(s)

∞∫
0

dtts−1TrGA(t), (5.148)

with the understanding that zero modes are not taken in the sum.
If we make the transformation A→ A′ = α−1A. The eigenvalues of A become λn → α−1λn
and also the scale µ becomes µ′. The new ζA is

ζA′/(µ′)2(s) = α2s

(
µ′

µ

)2s

ζA/µ2(s). (5.149)

Accordingly we obtain

log det
(
A′/(µ′)2

)
= − d

ds
ζA′/(µ′)2(s)

∣∣∣∣
s=0

= log det(A/µ2)− logα2ζA/µ2(0)− log
(
µ′

µ

)2

ζA/µ2(0),

the presence of ζA/µ2(0) indicates that detA is modi�ed by the transformation.

Going back to the heat kernel [1], [2] and [5] TrGA(t) =
∑
n e
−tλn and multplying it by

e−tm
2
and then integrating over t

∞∫
0

dte−tm
2
TrGA(t) =

∑
n

(λn +m2)−1. (5.150)
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Performing another integration, this time with respect to m2, and swapping the integrals
yields

∞∫
0

dm2

∞∫
0

dte−tm
2
TrGA(t) =

∞∫
0

dtt−1TrGA(t) =
∑
n

log(λn +m2)
∣∣m=∞
m=0

. (5.151)

Ignoring the upper limit we have arrived at

log detA =
∑
n

log λn = −
∞∫

0

dtt−1TrGA(t). (5.152)

We need aslo, a formality, the introduction of a cuto� ε for evaluating log detA, i.e.

− lim
ε→0+

∞∫
ε

dtt−1TrGA(t), (5.153)

this is called the proper-time cuto�. This procedure necessitates the evaluation of the above
integral by asympotitic expansion of TrGA(t).
However, if the determinant needs ζ regularization then

log detA = −ζ ′A(0) = − d

ds

 1
Γ(s)

∞∫
0

dtts−1TrGA(t)


s=0

(5.154)

An expansion around s = 0 of 1/Γ(s) using Weierstrass product

1
Γ(s)

= seγs
∞∏
n=1

(
1 +

s

n

)
e−s/n = s(1 + γs) +O(s2) (5.155)

and the polygamma function ψ(0)(s)

Γ′(s)
Γ(s)

=
d

ds
log Γ(s) = ψ(0)(s) (5.156)

d

ds

1
Γ(s)

=
ψ(0)(s)

Γ(s)
= s(1 + γs)

(
−1
s
− γ + ζ(2)s+

1
2
ψ(2)(1)s2 +O(s3)

)
= −1− 2γs+O(s2) (5.157)

by the use of

ψ(0)(s+ 1) = log Γ(s+ 1) = −γs+
∞∑
n=2

(−1)n

n
snζ(n) (5.158)

gives

log detA = lim
s→0

(1 + 2γs)

∞∫
0

dtts−1TrGA(t) + s(1 + γs)

∞∫
0

dtts−1 log tTrGA(t)

 . (5.159)
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Note how the above expression for log detA without ζ function would follow if we ignored
the divergent intrgral for s = 0.
The comparision begins by now trying to obtain the same answer for log detA from dimen-
sional regularization. To this end, we generalize the heat equation to 2ω + 1 dimensions
noting that pole is now shifted to 2ω = 4. One way to do this is to take the product of the
initial 4 dimensional spacetime with 2ω − 4 �at dimensions. In this case, the heat kernel
TrGA(t) is changed by a factor of (4πt)2−ω hence

log detA = − 1
(4π)ω−2

∞∫
0

dtt1−ωTrGA(t) = −(4π)2−ωΓ(2− ω)ζA(ω − 2). (5.160)

A �nal expansion around ω = 2 by the use of

−(4π)2−ωΓ(2− ω) =
1

ω − 2
+ γ − log 4π +O(ω − 2) (5.161)

and

ζA(ω − 2) = ζA(0)− ζ ′A(0)(ω − 2) +O((ω − 2)2) (5.162)

yields

log detA =
ζA(0)
ω − 2

+ (γ − log 4π)ζA(0)− ζ ′A(0) +O(ω − 2). (5.163)

This encapsulates a fundamental result which has been at the core of the ζ and dimensional
regularizations [1], namely there is a pole at 2ω = 4 with residue ζA(0) and �nite part
−ζ ′A(0) + (γ − log 4π)ζA(0). Consequently, there is an equivalence (agreement is a better
word) between the values of logZ derived by ζ and dimensional regularization. This equiv-
alence is up to a multiple of ζA(0) which can be absorbed in the normalization constant.
For the sake of completeness we �nish the summary of the ζ technique by following the tech-
nique described in [1] but omitting their use of the spacetime metric. When we evaluate
path integrals in curved spacetimes we compute exressions of the form

Z[φ] =
∫

Dφ exp(iS[φ]), (5.164)

where Dφ is a measure on the space of matter �eld and S[φ] is the classical action. Certain
boundary (or periodicity) conditions are satis�ed by φ. For example, for temperature
T = 1/β the boson �elds are periodic in imaginary time on some boundary at large distance,
with period β. Then Z is the partition function from statistical mechanics. The leading
contriubtion to the path integral will come from �eld con�gurations near the background
φ0 which satis�es the classical equations in addition to the boundary conditions. Setting
φ = φ0 + φ̃ the action can be expanded about the background �elds

S[φ] = S[φ0] + S22[φ̃] + · · · (5.165)

where S22[φ̃] is quadratic in the �uctuations of φ. Therefore we have

logZ = iS[φ0] + log
∫

D φ̃ exp(iS22[φ̃]) + · · · (5.166)
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The quadratic term is also of the form

S22[φ̃] = −1
2

∫
d4xφ̃A2φ̃ (5.167)

with A2 a second order di�erential operator constructed from the background �eld. (Note
that in fermionic �elds the operator would be of �rst order). The condition on the metric
for A2 to be real (elliptic) and self-adjoint is that the background metric be Eucliean.
These attributes of A2 will guarantee the existence of a complete set of eigenfuction ψn and
spectrum λn such that

A2φn = λnφn, (5.168)

with orthogonality ∫
d4xφnφm = δnm. (5.169)

The �eld �uctuation φ̃ can be expressed as

φ̃ =
∑
n

θnφn (5.170)

where the measure on the �eld can be written in terms of these θn coe�cients

Dφ =
∏
n

µdθn. (5.171)

Here µ is a normalization constant with mass dimension. Putting all of this together yields

Z[φ̃] :=
∫

Dφ exp(iS22[φ̃]) =
∏
n

∫
µdθn exp

(
−1

2
λnθ

2
n

)

=
∏
n

µ

(
2π
λn

)1/2

=
[
det
(

1
2πµ2

A2

)]−1/2

. (5.172)

This means that the quadratic contribution in the �eld �uctuations is computed by evalu-
ating a determinant. The issue is that the convergence of the product is not obvious, let
alone guaranteed, therefore making this expression sensible is a di�cult problem. Finally,
the free energy is proportional to the log of Z which by the use of

detA2 = exp(ζ ′A2
(0)) (5.173)

becomes

logZ[φ̃] =
1
2
ζ ′A2

(0) +
1
2

log
(

1
2πµ2

)
ζA2(0). (5.174)

Finally, let us summarize how the e�ective Lagrangian is a�ected by ζ regularization through
the e�ective action for scalar �elds ϕ4. Following [1], let us consider a 2-dimensional space-
time area S with a constant electromagnetic �eld with �eld strength

(Fµν) =
(

0 B
−B 0

)
(5.175)
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and potential

(Ax, Ay) = (0, Bx). (5.176)

The quadratic di�erential operator we are interested in is

−∆2 = −(∂µ − iAµ)(∂µ − iAµ) = −∂2
x − (∂y − iBx)2, (5.177)

−∆2 commutes with the second component of the momentum p̂y = −i∂y, hence taking the
eigenvalues py of p̂y we have

−∆2 = −∂2
x +B2

(
x− py

B

)2

. (5.178)

We can already see the form of the Hamiltonian of the harmonic oscillator shapping up. In
fact, the change of variables x→ x′ = x−py/B gives twice this Hamiltonian with frequency
|B|. Consequently, in this case, the eigenvalues are

λpy,n = 2|B|
(
n+

1
2

)
. (5.179)

Note that the independence of py indicates that all the levels are degenerate. Let us now
produce the heat kernel

Tr [G−∆2+m2(t)] =
∑

λ∈(−∆2)

e−t(λ+m2) =
SB

4π
e−tm

2 ∑
n≥0

e−tB(2n+1) =
SB

4π
e−tm

2
csch(tB)

(5.180)

because the degeneracy is SB
2π and we take B to be positive. Note that when B → 0 we

have csch(tB) ∼ (tB)−1 so that the free heat kernel becomes

Tr [G−∆2+m2(t)] ∼
B→0

SB

4π
e−tm

2
(tB)−1 =

1
4πt

e−tm
2
S. (5.181)

The ζ−∆2+m2 then becomes

ζ−∆2+m2(s) =
SB

2π

∞∑
n=0

[
2B
(
n+

1
2

)
+m2

]−s
=
SB

2π
(2B)−sζ

(
s,

1
2

+
m2

2B

)
, (5.182)

where we have a Hurwitz ζ function. The 1-loop e�ective Lagrangian is

L
(1)
eff =

1
S
S

(1)
eff =

1
2S

log Det(−∆2 +m2) = − 1
2S
ζ ′−∆2+m2(0). (5.183)

A similar argument as that used in the proof of Theorem 9 of Chapter 2 shows that

ζ (0, v) =
1
2
− v (5.184)

and

d

ds
ζ(s, v)

∣∣∣∣
s=0

= ζ ′(0, v) = log Γ(v)− 1
2

log 2π, (5.185)
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in fact, note how at v = 1 we have the formula of Theorem 9. Hence

L
(1)
eff = π−12−2B

[
log(2B)ζ

(
0,
m2 +B

2B

)
− ζ ′

(
0,
m2 +B

2B

)]
= π−12−2B

[
log(2B)

(
1
2
− m2 +B

2B

)
− log Γ

(
m2 +B

2B

)
+

1
2

log 2π
]

=
B

8π

[
log 2π − 2 log Γ

(
m2 +B

2B

)
−m2 log 2B

]
(5.186)

The physically interesting limits occur as m→ 0 and B → 0 for which we have

lim
m→0

L
(1)
eff =

B

8π
log 2. (5.187)

The limit as B → 0 necessitates the Stirling formula (A.88) for log Γ(s+ 1) which is proved
in the Appendix

log Γ(s+ 1) =
1
2

log 2π +
(
s+

1
2

)
log s− s+

1
12s
− 1

360s3
+

1
1260ss

− · · · (5.188)

so that

lim
B→0

L
(1)
eff = − 1

16π
(m2 logm2 −m2). (5.189)

This concludes our summary of the ζ technique.
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6 Casimir E�ect

6.1 Experimental setup

Hendrik Casimir and Dirk Polder discovered the existence of the Casimir e�ect in 1948.
The Casimir e�ect is a force arising from a quantized �eld. For instance two uncharged
metallic plates in a vacuum, placed a few micrometers apart, without any external elec-
tromagnetic �eld, a�ect the virtual photons which constitute the �eld, and generate a net
force [1]: either an attraction or a repulsion depending on the speci�c arrangement of the
two plates.

Figure 6.1: Two uncharged metallic plates in a vacuum, placed a few micrometers apart

The strength of the force falls o� rapidly with distance thus it is only measurable when
the distance between the objects is extremely small. We shall describe and compute the
Casimir e�ect in terms of the zero-point energy of a quantized �eld in the intervening space
between the objects instead of expressing it in terms of virtual particles interacting with
the objects.
The Casimir e�ect can be understood by the idea that the presence of conducting metals
alters the vacuum expectation value of the energy of the second quantized electromagnetic
�eld [2].

6.2 ζ regulator

Using E = ω/2 we can determine the vacuum expectation value of the energy of the
electromagnetic �eld in the cavity to be

〈E〉 =
1
2

∑
n

En (6.1)

with the sum running over all possible values of n accounting for the standing waves. Note
that this sum is divergent. Each energy level En depends on the shape consequently En(s)
is the energy level, and 〈E(s)〉 is the vacuum expectation value.
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Figure 6.2: Virtual particles interacting with the plates

The force at point P on the wall of the cavity is equal to the change in the vacuum energy
if the shape Ω of the wall is perturbed in�nitesimally, say by δΩ, at point P, i.e.

F (P) = − δ 〈E(Ω)〉
δΩ

∣∣∣∣
P

(6.2)

Casimir considered the space between a pair of conducting metal plates at distance r apart.
In this case, the standing waves can be calculated, since the transverse component of the
electric �eld and the normal component of the magnetic �eld must vanish on the surface of
a conductor.
Ignoring the polarization and the magnetic components and assuming the parallel plates lie
in the x-y plane, the standing waves are

ψn(xi, t) = e−iωntei(kxx+kyy) sin(knz) (6.3)

where ψ stands for the electric component of the electromagnetic �eld. Here, kx and ky are
the wave vectors in directions parallel to the plates, and

kn =
nπ

a
(6.4)

is the wave-vector perpendicular to the plates. Here, n is an integer, resulting from the
requirement that ψ vanish on the metal plates. The energy of this wave is

ωn =

√
k2
x + k2

y +
n2π2

r2
. (6.5)

The vacuum energy is then the sum over all possible excitation modes

〈E〉 =
1
2

∫
dkxdky
(2π)2

2
∞∑
n=1

Aωn (6.6)

where A is the area of the metal plates, and a factor of 2 is introduced for the two possible
polarizations of the wave. This expression is divergent, so we introduce a ζ regulator to
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make the expression �nite, and in the end will be remove this regulator. The ζ regulated
version of the energy per unit-area of the plate is

〈E(s)〉
A

=
∫
dkxdky
(2π)2

∞∑
n=1

ωn |ωn|−s. (6.7)

This integral is �nite for s > 3. The sum has a pole at s = 3, however it may be analytically
continued to s = 0, where the expression is �nite. We have

〈E(s)〉
A

=
∫
dkxdky
(2π)2

∞∑
n=1

(
k2
x + k2

y +
n2π2

r2

)1/2 ∣∣∣∣k2
x + k2

y +
n2π2

r2

∣∣∣∣−s/2

=
1

4π2

∫
dkxdky

∞∑
n=1

∣∣∣∣k2
x + k2

y +
n2π2

r2

∣∣∣∣(1−s)/2. (6.8)

We now introduce polar coordinates κ2 = k2
x + k2

y and dkxdky = κdκdθ

〈E(s)〉
A

=
1

4π2

∑
n

∞∫
0

2π∫
0

dκdθκ

∣∣∣∣κ2 +
n2π2

r2

∣∣∣∣(1−s)/2 =
1

4π2

∑
n

∞∫
0

2πdκκ
∣∣∣∣κ2 +

n2π2

r2

∣∣∣∣(1−s)/2

=
1

2π

∑
n

(
|n|2

r2

)(3−s)/2
π3−s

s− 3
= − 1

2r3−s
π2−s

3− s
∑
n

|n|3−s. (6.9)

At s = 0 we have the Riemann ζ function and ζ(−3) = 1
120 from Chapter 1

〈E〉
A

= lim
s→0

〈E(s)〉
A

= − 1
2r3

π2

3
ζ(−3) = − π2

6r3

1
120

= − π2

720r3
. (6.10)

Note that in terms of the Planck constant and the speed of light the above translates to [3]

〈E〉
A

= − ~cπ2

720r3
. (6.11)

The Casimir force per unit area FCas/A for idealized, perfectly conducting plates with
vacuum between them is

FCas

A
= − d

dr

〈E〉
A

= − ~cπ2

240r4
. (6.12)

The minus sign indicates that the force is attractive, also it decreases faster than gravity
due to the r4 in the denominator.

6.3 Experimental evidence

The original form of the experiment, described above, successfully demonstrated the force
to within 15% of the value predicted by the theory [4].
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7 Conclusion

We have seen that the task of computing the generating functional Z[J ]

Z[J ] = exp(−iE[J ]) =
∫

Dφ exp
[
i

∫
d4x(L + Jφ)

]
=
〈
Ω|e−iHT |Ω

〉
, (7.1)

of a scalar �eld theory with source J is reduced to

−iE[J ] = i

∫
d4x(L1[φcl] + J1φcl)−

1
2

log det
[
− δ2L1

δφ(x)δφ(y)

]
+ (connected diagrams)

+ i

∫
d4x(δL [φcl] + δJφcl), (7.2)

where the classical �eld is taken to be

φcl(x) = 〈Ω|φ(x)|Ω〉J = − δ

δJ(x)
E[J ]. (7.3)

The lowest order quantum corrections to to the e�ective potential Γ[φcl] is given by the
functional determinant because the Feynman diagrams contributing to it have no external
lines and the simplest ones turn out to have two loops hence [3]

Γ[φcl] := −E[J ]−
∫
d4x′J(x′)φcl(x′) = Γ(0)

E [φcl] + ~Γ(1)
E [φcl] + · · · = i

2
log det

[
− δ2L1

δφ(x)δφ(y)

]
.

(7.4)

For the ϕ4 scalar theory, the operator in the integral above is the di�erential quadratic
operator [1], [2] and [3]

A = − δ2L1

δφ(x)δφ(y)
= −∂̄µ∂̄µ +m2 + V ′′[φcl] (7.5)

where the bar indicates that we have passed to Eucliean spacetime coordinates. This is an
essential step since it guarantees that A will be a real and self-adjoint operator.
The determinant of this operator can be achieved through dimensional regularization by
evaluating integrals of the type [1]

I(ω, µB) =
∫

d2ωk

(2π)2ω
(k2 − µ2

B + iε)−1

=
iµ2
B

16π2
(M2)ω−2

(
1

2− ω
+ Γ′(1) + 1− log

µ2
B

4πM2
+O(ω − 2)

)
. (7.6)

which are computed by extensive use of the Γ function and in paricular using clever tech-
niques of analytic continuation. This is a generalization of the integral

lim
ω→2

∫
d2ω`

`2 +m2
= −π2m2

[
1

2− ω
+

3
2
− γ +O(2− ω)

]
. (7.7)

However, the underlying mathematical restructure of these computations required the use
of Γ′(1) = −γ which is a signal that the Riemann ζ function is behind the scenes.
By the ζ technique we can show that

Z = Ne−S[φ0,J] exp
(

1
2
ζ ′A(0)

)
(7.8)
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on in terms of the e�ective action

Γ(1)
E [φcl] = −1

2
ζ ′A(0), (7.9)

Furthermore the equivalence between dimensional and ζ regularization is manifest in [2]

log detA =
ζA(0)
ω − 2

+ (γ − log 4π)ζA(0)− ζ ′A(0) +O(ω − 2). (7.10)

Note that the last term in the last two equations is not important as it can be absorbed in
the normalization constant.
This should not be surprising as the analytic continuation of both the Γ and ζ function are
intrinsically linked through the functional equation. This has enabled us to show in two
very di�erent techniques (yet, necessarily equivalent from a mathematical point of view) for
instance that

V (φcl) =
λ

4!
φ4

cl(x̄) +
λ2φ4

cl

256π2

(
log

φ2
cl

M2
− 25

6

)
. (7.11)

The latter technique has certain - conceputal and computational - advantages over the for-
mer which we proceed to explain now. According to Elizalde, Odintsov, and Romeo there
is somewhat of a distaste in using ζ function regulazation in important scienti�c journals
and prefer to use dimensional regularization because the former procedure seems ambiguous
and ill de�ned.

Quoting these authors [2]:
The situation is such that, what is in fact a most elegant, well de�ned, and unique - in
many aspects - regularization method, may look now to the non-specialist as just one more
among many possible regularization procedures, plagued with di�culties and illde�niteness.

The rest of this conclusion is based on their defense of the ζ function regularization proce-
dure.
Let us suppose we have a proper-time Hamiltonian H of a quantum system with boundary
conditions in a background �eld. This is equivalent to a di�erential operator A with corre-
sponding boundary conditions. Irrespective of whether the spectrum of A may be computed
explictily or not, to any such operator, we can de�ne ζA rigorously as

ζA(s) = TrA−s. (7.12)

As we have seen several times, when the eigenvalues λn of A form a discrete set and can be
computed explicitly (i.e. the eigenvalues of H with boundary conditions and background
�eld) we obtain

ζA(s) =
∑
n

λ−sn . (7.13)

Next, comes the classi�cation of the eigenvalues. If the are of the form an then we consider
the Riemann ζ function and if there are of the form a(n + b) we consider the Hurwitz ζ
function.
Depending on our physical magnitude of interest, we have to compute the ζ function at a
particular value of s. In �eld theory and quantum mechanics we have used s = 0 but for
example in the vacuum energy of the Casimir e�ect, which is the sum over the spectrum

ECas =
1
2

∑
n

λn (7.14)
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we have used s = −3 yielding

ECas = − 1
2r3

A
π2

3
ζ(−3). (7.15)

In general, series of the form (7.14) are divergent and this will call for analytic continuation
through the ζ function. In this view, as we stressed in the Introduction, this regularization
is a special case of the mathematical concept analytic continuation. Since this concept is
de�ned uniquely and rigorously then so is the regularization procedure.

Let us work out a �nal example taken from Lang's Elliptic Functions [5]. When we compute
the Casimir e�ect of a piecewise uniform closed string, inevitably we will run into a clearly
in�nite sum

∞∑
n=0

(n+ β). (7.16)

The eigenvalues in the sum λn = n + β are the transverse oscillatons of the string. As we
have pointed out above, this will necessitate the Hurwitz zeta function,

ζA(s) =
∞∑
n=0

(n+ β)−s, (7.17)

which is valid for Re(s) > 1 but can be analytically continued as a meromorphic function
to the whole complex plane. This was the jewel result of Chapter 2. Having said this, the
ζ regularization procedure assigns unambiguously the value

∞∑
n=0

(n+ β) = ζ(−1, β) (7.18)

to our sum (7.16). A mistake would be to write

∞∑
n=0

(n+ β) = ζ(−1) + βζ(0) (7.19)

which yields a di�erent result. X. Li, X. Shi and J. Zhang showed [6] in 1991 the necessity
of using the Hurwitz ζ function instead of the Riemann ζ function.

The ζ regularization method can be viewed as one of many possibilities of analytic con-
tinuation in order to make sense in�nite sums. When considered under this light, it shares
some similarities with dimensional regularization. It has been argued that the two methods
also share similar faults. However, we introduce ζ regularization to solve the problem of the
dependence of the regularized result on the kind of extra dimensions added in dimensional
regularization. It is a fact that a function may not have two di�erent analytic continua-
tions but the number of ways of de�ning di�erent analytic continuations in endless. What
remains to be studied is the use that one can make of them. This does not imply, however,
that ζ regularization su�ers from the same problem as dimensional regularization.

There exist endless analytical regularization procedures and both ζ and dimensional meth-
ods are but two examples. In the latter one may change any exponent at any place with
the condition that he recovers the starting expression for a particular value of exponent.
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A problem that arises in ζ regularization, however, is that the point at which the ζ function
must be evaluated is (precisely) a pole of the analytic continuation. According to Elizalde,
Odintsov, and Romeo [2] one eventually has to use renormalization group techniques to
solve this issue.

These authors also ask the rethoric question: which regularization does Nature use?
The elegance and uniqueness of the ζ technique makes it a plausible candidate.

Analogies

The numbers N(T ) of zeros in the critical strip 0 ≤ σ ≤ 1 is

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ) (7.20)

and the behaviour of the 1-loop e�ective Lagrangian as B → 0 is

lim
B→0

L
(1)
eff = − 1

16π
(m2 logm2 −m2). (7.21)

The Laurent expansion of log detA around ω = 2 is

log detA =
ζA(0)
ω − 2

+ (γ − log 4π)ζA(0)− ζ ′A(0) +O(ω − 2). (7.22)

where as the sum of the zeros ρ of the Riemann ζ function is∑
Imρ>0

(
1
ρ

+
1

1− ρ

)
=

1
2

[2 + γ − log 4π]. (7.23)

This similar equations indicate that there might be a connection between the distribution of
the zeros of the ζ function and the behaviour of the quantum �eld theories worth exploring.
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A Appendix

A.1 Generalized Gaussian integrals

Claim 1: The following holds∫
dx1 · · ·

∫
dxn exp

[
iλ
{

(x1 − a)2 + (x2 − x1)2 + · · ·+ (b− xn)2
}]

(A.1)

=

√
inπn

(n+ 1)λn
exp

[
iλ

n+ 1
(b− a)2

]
(A.2)

Proof. (by induction)
Assume it is true for n and show it is true for n+ 1∫

dx1 · · ·
∫
dxn+1 exp

[
iλ
{

(x1 − a)2 + (x2 − x1)2 + · · ·+ (b− xn)2
}]

=

√
inπn

(n+ 1)λn

∫
dxn+1 exp

[
iλ

n+ 1
(xn+1 − a)2

]
exp[iλ(b− xn+1)2]

=
(

inπn

(n+ 1)λn

)2 ∫
dxn+1 exp

[
iλ

{
1

n+ 1
(xn+1 − a)2 + (b− xn+1)2

}]
, (A.3)

the exponential in the integrand can be worked out as followsb by setting xn+1 − a = y

1
n+ 1

(xn+1 − a)2 + (b− xn+1)2 =
n+ 2
n+ 1

y2 − 2y(b− a) + (b− a)2

=
n+ 2
n+ 1

[
y − n+ 1

n+ 2
(b− a)

]2

+
1

n+ 2
(b− a)2.

Finally, let λ− ((n+ 1)/(n+ 2))(b− a) = z so that the integral becomes√
inπn

(n+ 1)λn

∫
dz exp

[
iλ
n+ 2
n+ 1

z2 +
iλ

n+ 2
(b− a)2

]
=

√
in+1πn+1

(n+ 1 + 1)λn+1
exp

[
iλ

n+ 2
(b− a)2

]
,

(A.4)

and this concludes the proof by induction.

Claim 2: If M is a symmetric N ×N matrix with real-valued elements Mij and q and J
are N component vectors with components qi and Ji respectively, then

Z(J) =
∫
dNq exp

(
−1

2
qTMq + JTq

)
=

(2π)N/2√
det M

exp
(

1
2
JTM−1J

)
(A.5)

Proof. The process is to diagonalize the matrix M as M = ΛM̃ΛT where the following
relations hold

ΛTΛ = 1 det Λ = 1 M̃ =

 m̃1 · · · 0
...

. . .
...

0 · · · m̃N

 , (A.6)
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the integral becomes

Z(J) =
∫
dNq exp

(
−1

2
qTΛM̃ΛTq + JTq

)
, (A.7)

next we de�ne the following q̃ = ΛTq and J̃ = ΛTJ from which it follows that dNq =
dN q̃ det Λ = dN q̃ and

Z(J) =
∫
dNq exp

(
−1

2
q̃TM̃q̃ + J̃T q̃

)
=
∫
dN q̃i exp

[∑
i

−1
2
m̃iq̃

2
i + J̃iq̃i

]

=
N∏
i=1

 ∞∫
−∞

dN q̃i exp

[∑
i

−1
2
m̃iq̃

2
i + J̃iq̃i

] =
N∏
i=1

(√
2π
m̃i

exp

[
J̃2
i

2m̃i

])

= (2π)N/2
(∏

i

m̃i

)−1/2

exp

(∑
i

J2
i

2m̃i

)
. (A.8)

Finally we note that the inverse of the diagonal matrix is

M̃−1 =

 m̃−1
1 · · · 0
...

. . .
...

0 · · · m̃−1
N

 (A.9)

and therefore the last product is the determinant of the matrix∏
i

m̃i = det M̃ = det M, (A.10)

and consequently the result follows

Z(J) =
(2π)N/2√

det M
exp

(
1
2
J̃TM−1J̃

)
=

(2π)N/2√
det M

exp
(

1
2
JTM−1J

)
. (A.11)

Claim 3: One has the following

ZE [J ] = NE exp {−SEuc[φ(x0), J ]}
∫
Dφ exp

{
−1

2

∫
d4x1d

4x2

(
φ(x1)

δ2SEuc

δφ(x1)δφ(x2)
φ(x2)

)}
= N ′E

exp {−SEuc[φ(x0), J ]}√
det
[
(−∂̄µ∂̄µ +m2 + V ′′[φ(x0)])δ(x1 − x2)

] . (A.12)

Proof.
This follows from Claim 2 with the action

SE [φ, J ] =
∫
d4x̄

[
1
2
∂̄µφ∂̄

µφ+
1
2
m2φ2 + V (φ)− Jφ

]
(A.13)

as expanded on (4.136) and using

δ2

δφ(x1)δφ(x2)
SEuc = δ(x̄1 − x̄2)

[
−∂̄µ∂̄µ +m2 + V ′′[φ(x1)]

]
(A.14)
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ZE [J ] = NE exp {−SEuc[φ(x0), J ]}
∫
Dφ exp

{
−1

2

∫
d4x1d

4x2

(
φ(x1)

δ2SEuc

δφ(x1)δφ(x2)
φ(x2)

)}
(A.15)

and this proves the claim.

The formulas

cothx =
1
x

+ 2
∞∑
k=1

(2x)2k

(2k)k
B2k, cothπx =

1
πx

+
2x
π

∑
n≥1

1
x2 + n2

(A.16)

are almost always quoted as Gradshteyn and Ryzhik, p.35. They represent the Laurent
series. There is very little added value in reproducing the proofs here.

A.2 Grassman Numbers

Let us introduce some notation �rst. The following presentation about Grassmann numbers
follows the notes of A. Rajantie and Peskin and Schroeder. Ordinary commuting numbers
will be denoted c-numbers (these can be real or complex). Now let n generators {θ1, · · · , θn}
satisfy the anti-commutation relations

{θi, θj} = 0 ∀i, j. (A.17)

Then the set of the linear combinations of {θi} with the c-number coe�cient is called the
Grassmann number and the algebra generated by {θi} is called the Grassmann algebra,
denoted by Λn. Let us taken an arbitrary element g of this algebra expand it as

g(θ) = g0 +
n∑
i=1

giθi +
∑
i<j

gijθiθj + · · · =
∑

0≤k≤n

1
k!

∑
{i}

gi1,··· ,ikθi1 · · · θik, (A.18)

where g0, gi, gij , · · · and gi1,··· ,ik are c-numbers that are anti-symmetric under the exchange
of two indices. Additionally, we can write g as

g(θ) =
∑
ki=0,1

g̃k1,··· ,kn
θk11 · · · θkn

n . (A.19)

It is impossible for the set of Grassmann numbers to be an ordered set because the generator
θk does not have a magnitude. The only number that is both c-number and Grassmann
number is zero, moreover, a Grassmann number commutes with a c-number. From the
discussion above it follows that

θ2
k = 0 (A.20)

θk1θk2 · · · θkn = εk1k2···knθ1θ2 · · · θn (A.21)

θk1θk2 · · · θkm
= 0 (m > n). (A.22)

The tensor εk1k2···kn is the Levi-Civita symbol, de�ned as

εk1k2···kn
=

 +1 if{k1 · · · kn} is an even permutation of {1 · · ·n}
−1 if{k1 · · · kn} is an odd permutation of {1 · · ·n}

0 otherwise
(A.23)
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Functions of Grassmann numbers are de�ned in terms of Taylor expansions of the function.
If n = 1 we have the simple expression

eθ = 1 + θ (A.24)

since terms O(θ2) are zero.
Our next step is to develop the theory of di�erentiation and integration of Grassmann
variables, this theory has a few surprising facts, for instance di�erentiation is the same
process as integration.
We assume that the di�erential operator acts on a function from the left, let θi and θj be
two Grassmann variables then

∂θj
∂θi

=
∂

∂θi
θj = δij . (A.25)

Similarly, we assume that the di�erential operator anti-commutes with θk. The product
rule has the slightly di�erent form

∂

∂θi
(θjθk) =

∂θj
∂θi

θk − θj
∂θk
∂θi

= δijθk − δikθj . (A.26)

Moreover, the following properties hold

∂

∂θi

∂

∂θj
+

∂

∂θj

∂

∂θi
= 0⇒ ∂2

∂θ2
i

= 0, (A.27)

the last equation is termed nil-potency and �nally

∂

∂θi
θj + θj

∂

∂θi
= δij . (A.28)

Let us now move to integration. To this end, we adopt the notation D for di�erentiation
with respect to a Grassmann variable and ∫ for integration. Let us suppose that these
operations satisfy the relations

∫ D = D ∫ = 0, D(A) = 0⇒ ∫(BA) = ∫(B)A, (A.29)

where A and B are arbitrary functions of Grassmann variables. The �rst part of the �rst
equation implies that the integral of a derivative gives a surface term and it is set to zero,
whereas the second part implies that the derivative of an integral vanishes. The last equation
implies that if the derivative of the function is zero then it can be taken out the integral.
The relations are satis�ed when D is proportional to ∫ and for normalization purposes we
set ∫ = D and write ∫

dθg(θ) =
∂f(θ)
∂θ

. (A.30)

From the previous de�nition it follows that∫
dθ =

∂1
∂θ

= 0,
∫
dθ θ =

∂θ

∂θ
= 1. (A.31)

∫
dθ1dθ2 · · · dθn g(θ1θ2 · · · θn) =

∂

∂θ1

∂

∂θ2
· · · ∂

∂θn
g(θ1θ2 · · · θn). (A.32)
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In a theory where di�erentiation is equivalent to integration we would expect some strange
behaviour. In order to see this behaviour we consider the simpler case when we have only
one generator and we change variables θ′ = aθ where a is a complex number, then one has∫

dθg(θ) =
∂g(θ)
∂θ

=
∂g(θ′/a)
∂θ′/a

= a

∫
dθ′g(θ′/a) (A.33)

which implies that dθ′ = (1/a)dθ. The extension to the general case with n generators
yields θi → θ′i = aijθj and hence∫

dθ1dθ2 · · · dθn g(θ) =
∂

∂θ1

∂

∂θ2
· · · ∂

∂θn
g(θ)

=
n∑

ki=1

∂θ′k1
∂θ1
· · ·

∂θ′kn

∂θn

∂

∂θ′k1
· · · ∂

∂θ′kn

g(a−1θ′)

=
n∑

ki=1

εk1···kn
ak11 · · · aknn

∂

∂θ′k1
· · · ∂

∂θ′kn

g(a−1θ′)

= det a
∫
dθ′1 · · · dθ′ng(a−1θ′). (A.34)

Consequently the measure has the Jacobian

dθ1dθ2 · · · dθn = (det a)dθ′1 · · · dθ′n. (A.35)

In the case of a single variable, the delta function of a Grassmann variable is de�ned in a
similar fashion as with c-numbers de�ned as∫

dθ δ(θ − z)g(θ) = g(z). (A.36)

However, in the case of Grassmann variables we can obtain a closed expression for the delta
function. If we set g(z) = a+ bz in the de�nition of the delta function we have∫

dθ δ(θ − z)(a+ bθ) = a+ bz (A.37)

and this means that

δ(θ − z) = θ − z. (A.38)

Again, we can extend this to n generators if we are careful about the order of the variables

δn(θ − z) = (θn − zn) · · · (θ2 − z2)(θ1 − z1). (A.39)

We can �nd the integral of the delta function by considering complex Grassmann variables
which we proceed to develop later. Consider∫

dξ eiξθ =
∫
dξ (1 + iξθ) = iθ (A.40)

so that we have

δ(θ) = θ = −i
∫
dξ eiξθ. (A.41)
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One of the most crucial developments of the Grassmann variables is the Grassmann Gaussian
integral which will be fundamental when developing the path integral formalism of fermions.
Let us evaluate the following integral

I =
∫
dθ∗1dθ1 · · · dθ∗ndθn exp

∑
ij

θ∗iMijθj

 (A.42)

where it is important to stress that {θi} and {θ∗i } are two independent sets of Grassmann
variables. Since Grassmann variables θi and θ

∗
i anti-commute we can take the n×n c-number

matrix M to be anti-symmetric. The formula for the transformation of the measure solves
the problem of the computation. Set θ′i =

∑
jMijθj this yields

I = detM
∫
dθ∗1dθ

′
1 · · · dθ∗ndθ′n exp

(
−
∑
i

θ∗i θ
′
i

)
= detM

[∫
dθ∗dθ(1 + θ′θ∗)

]n
= detM.

(A.43)

Complex conjugation is de�ned as

(θi)∗ = θ∗i , (θ∗i )∗ = θi. (A.44)

In the case of Grassmann variables we have

(θiθj)∗ = θ∗j θ
∗
i . (A.45)

The reasoning behind (2.94) is that the real c-number θiθ
∗
i does not satisfy (θiθ∗i )∗ = θiθ

∗
i .

Let us recall that the annihilation and creation operators c and c† satisfy the anti-commutation
relations {c, c†} = 1 and {c, c} = {c†, c†} = 0 and that the number operator N = c†c has
eigenvectors |0〉 and |1〉. We are now in a position to study the Hilbert space Ω spanned by
these vectors, i.e.

Ω = span {|0〉 , |1〉} . (A.46)

An arbitrary vector |ω〉 ∈ Ω can be written in the form

|ω〉 = |0〉ω0 + |1〉ω1, (A.47)

with ωi ∈ C where i = 1, 2.
Next we de�ne the coherent states

|θ〉 = |0〉+ |1〉 θ 〈θ| = 〈0|+ θ∗ 〈1| (A.48)

where θ and θ∗ are Grassmann numbers.
The coherent states are eigenstates of c and c† respectively, that is

c |θ〉 = |0〉 θ = |θ〉 θ, 〈θ| c† = θ∗ 〈0| = θ∗ 〈θ| . (A.49)

It can be shown fairly easily that the following identities hold

〈θ′ | θ〉 = 1 + θ′∗θ = eθ
′∗θ, (A.50)

〈θ | g〉 = g0 + θ∗g1, (A.51)
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〈
θ |c†| g

〉
= 〈θ | 1〉 g0 = θ∗g0 = θ∗ 〈θ | g〉 , (A.52)

〈θ |c| g〉 = 〈θ | 0〉 g1 =
∂

∂θ∗
〈θ | g〉 . (A.53)

Finally, we show how matrix elements are represented and the completeness relation. Let

p(c, c†) = p00 + p10c
† + p01c+ p11c

†c, pij ∈ C (A.54)

be an arbitrary function of c and c†.
The complex matrix elements of p can be written in terms of scalar products as

〈0 |p| 0〉 = p00, 〈0 |p| 1〉 = p01, 〈1 |p| 0〉 = p10, 〈1 |p| 1〉 = p00 + p11. (A.55)

From these scalar products we can form the more general product

〈θ |p| θ′〉 = (p00 + θ∗p10 + p01θ
′ + θ∗θ′p11)eθ

∗θ′ . (A.56)

Moreover, one has∫
dθ∗dθ |θ〉 〈θ| e−θ

∗θ =
∫
dθ∗dθ (|0〉+ |1〉 θ) (〈0|+ θ∗ 〈1|) (1− θ∗θ) (A.57)

〈
θ |c†| g

〉
= 〈θ | 1〉 g0 = θ∗g0 = θ∗ 〈θ | g〉 , (A.58)

〈θ |c| g〉 = 〈θ | 0〉 g1 =
∂

∂θ∗
〈θ | g〉 . (A.59)

and therefore the completeness relation is∫
dθ∗dθ |θ〉 〈θ| e−θ

∗θ = I. (A.60)

A.3 The Mellin Transform and the series expansion of log Γ(s+ 1)

We shall follow Titchmarsh's Theory of Functions and Withaker and Watson's Modern
Analysis. The Mellin transform connects two functions f(x) and Ψ(s) in the following way

Ψ(s) =

∞∫
0

dxf(x)xs−1, f(x) =
1

2πi

σ+i∞∫
σ−i∞

dsΨ(s)x−s. (A.61)

For example if we take f to be f(x) = e−x then clearly Ψ(s) = Γ(s) for σ > 0. We can also
recover our formula relating the Γ and ζ functions by using f(x) = (ex−1)−1 in which case
Ψ(s) = Γ(s)ζ(s) for σ > 1. From the Weierstrass product we can write(

1 +
z

a

) ∞∏
n=1

{
e−z/n

(
1 +

z

a+ n

)}
= e−γz

Γ(a)
Γ(z + a)

(A.62)

and take the principal values of the logarithms to be

log
(

1 +
z

a

)
+ log

∞∏
n=1

{
e−z/n

(
1 +

z

a+ n

)}
=
∞∑
n=1

{
e−z/n

(
1 +

z

a+ n

)}
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=
∞∑
n=1

{(
−az

n(a+ n)

)
+
∞∑
m=2

(−1)m−1

m

z

(a+ n)m

}
+
∞∑
n=1

{(
−az

n(a+ n)

)
+
∞∑
m=1

(−1)m−1

m

zm

am

}
,

(A.63)

and the absolute convergence of the series is assured for |z| < a since

∞∑
n=1

{
a|z|

n(a+ n)
− log

(
1− |z|

a+ n

)
+
|z|
a+ n

}
(A.64)

converges. Now, taking logarithms we have

log
e−γzΓ(a)
Γ(z + a)

=
z

a
−
∞∑
n=1

az

n(a+ n)
+
∞∑
m=2

(−1)m−1

m
zmζ(m, a). (A.65)

Next, we need to consider

− 1
2πi

∮
C

ds
πzs

s sinπs
ζ(s, a) (A.66)

where the contour C is like Figure 2.4 except that it encloses the points s = 2, 3, 4, · · · but
not the points 1, 0,−1,−2, · · · . The residue of this integral at s = m ≥ 2 is given by

res
s=m

πzs

s sinπs
ζ(s, a) = lim

s→m
(s−m)

πzs

s sinπs
ζ(s, a)

=
πzm

m
ζ(m, a) lim

s→m

s−m
sinπs

=
(−1)m

m
zmζ(m, a). (A.67)

Since ζ(s, a) = O(1) as σ →∞ then the integral converges if |z| < 1. By Cauchy's residue
theorem we can change the sum involving the ζ(m, a) term for the integral

log
e−γzΓ(a)
Γ(z + a)

=
z

a
−
∞∑
n=1

az

n(a+ n)
− 1

2πi

∮
C

ds
πzs

s sinπs
ζ(s, a). (A.68)

Taking the exponential outside the logarithm and using the well known formula

d

dz
log Γ(z + 1) := ψ(0)(z + 1) =

∞∑
n=1

z

n(n+ x)
− γ (A.69)

we see that

log
Γ(a)

Γ(z + a)
= −zΓ′(a)

Γ(a)
− 1

2πi

∮
C

ds
πzs

s sinπs
ζ(s, a) (A.70)

We now let D be a semicircle of large radius N with center at s = 3
2 , the semicircle lying

on the right of the line σ = 3
2 . On this semicirle, ζ(s, a) = O(1) as well as |z| < 1 and

−π + δ ≤ arg z ≤ π − δ where δ > 0 and

πzs

s sinπs
= O(|z|σe−δ|t|) (A.71)
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therefore

lim
N→∞

∫
D(N)

ds
πzs

s sinπs
ζ(s, a) = 0. (A.72)

It follows immediately that if |arg z| ≤ π − δ, and |z| < 1 then

log
Γ(a)

Γ(z + a)
= −zΓ′(a)

Γ(a)
+

1
2πi

3/2+i∞∫
3/2−i∞

ds
πzs

s sinπs
ζ(s, a) (A.73)

However, the above integral de�nes an analytic function of z for all values of |z| if |arg z| ≤
π− δ then by analytic continuation is valid for all values of |z| when |arg z| ≤ π− δ. Let us
consider a cuto� on this integral of the sort

log
Γ(a)

Γ(z + a)
= −zΓ′(a)

Γ(a)
+

1
2πi

3/2±iR∫
−n−1/2±iR

ds
πzs

s sinπs
ζ(s, a) (A.74)

where n is a �xed integer and R→∞. As we have seeen the integrand is O(|z|σe−δRRτ(σ))
where −n − 1

2 ≤ σ ≤ 3
2 and thus irrespective of which sign we take in the limits of the

integral, the integral goes to zero as R→∞.
Applying Cauchy's residue theorem again yields

log
Γ(a)

Γ(z + a)
= −zΓ′(a)

Γ(a)
+

1
2πi

−n−1/2+i∞∫
−n−1/2−i∞

ds
πzs

s sinπs
ζ(s, a) +

n∑
m=−1

res
s=−m

πzs

s sinπs
ζ(s, a).

(A.75)

On this new path of integration we have∣∣∣∣ πzs

s sinπs
ζ(s, a)

∣∣∣∣ < Kz−n−1/2e−δ|t|τ(−n−1/2)|t|, (A.76)

with K independent of both z and t and τ(σ) the function used above. Moreover, since

∞∫
−∞

dte−δ|t|τ(−n−1/2)t <∞ (A.77)

we obtain

log
Γ(a)

Γ(z + a)
= −zΓ′(a)

Γ(a)
+

n∑
m=−1

res
s=−m

πzs

s sinπs
ζ(s, a) +O(z−n−1/2) (A.78)

provided that |z| is large. We next need to compute the residues at s = 0 and s = −1. Both
computations require the expansions around s = 0 and s = −1 as follows

ζ(s, a) = ζ(0, a) + ζ ′(0, a)s+O(s2) =
1
2
− a+ ζ ′(0, a)s+O(s2) (A.79)

zs = 1 + s log z +O(s2) (A.80)
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π

sinπs
=

1
s

+ ζ(2)s+O(s2) (A.81)

so that

1
s

(1 + ζ(2)2 + · · · )(1 + s log z + · · · )
(

1
2
− a+ sζ ′(0, a) + · · ·

)
(A.82)

and the residue at s = 0 is given by

res
s=0

πzs

s sinπs
ζ(s, a) =

(
1
2
− a
)

log z + ζ ′(0, a) =
(

1
2
− a
)

log z + log Γ(a)− 1
2

log 2π.

(A.83)

For the residue at s = −1 we use the following expansions

ζ(s, a) =
1

s− 1
− Γ′(a)

Γ(a)
+O(s− 1) (A.84)

zs = z + (s− 1)z log z +O((s− 1)2) (A.85)

π

sinπs
= − 1

s− 1
− ζ(2)(s− 1) +O((s− 1)2) (A.86)

so that the same technique yields

res
s=−1

πzs

s sinπs
ζ(s, a) = −z log z + z + z

Γ′(a)
Γ(a)

. (A.87)

Finally, if |z| is large and |arg z| ≤ π − δ we have

log Γ(z + a) =
(
z + a− 1

2

)
log z − z +

1
2

log 2π +
n∑
k=1

(−1)k−1 B′k+2(a)
k(k + 1)(k + 2)

z−k

+O(z−n−1/2). (A.88)

where we have used (1.25)

res
s=−m

πzs

s sinπs
ζ(s, a) =

(−1)mz−m

−m
ζ(−m, a) =

(−1)mz−m

m

Bm+1(a)
m+ 1

(A.89)

and assumed a result on Bernoulli numbers

Bm+1(a) =
B′m+2(a)

(m+ 1)(m+ 2)
. (A.90)

As a side remark, note that specializing for the case a = 1 of the Riemann ζ function and
replacing s by 1− s we have

Γ′(1 + x)
Γ(1 + x)

− log x = − 1
2i

σ+i∞∫
σ−i∞

ds
ζ(1− s)
sinπs

xs, (A.91)
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Using an inverse Mellin transform with

f(x) =
Γ′(1 + x)
Γ(1 + x)

− log x, Ψ(s) = −πζ(1− s)
sinπs

(A.92)

we obtain (again swapping 1− s for s)

ζ(s) = − sinπs
π

∞∫
0

dsx−s
{

Γ′(1 + x)
Γ(1 + x)

− log x
}

(A.93)

valid for 0 < σ < 1, a formula known as Kloosterman's equation. With the assistance of

Γ′(x)
Γ(x)

= log x− 1
2x
− 2

∞∫
0

dt
t

(t2 + x2)(e2πt − 1)
(A.94)

we can write

Γ′(1 + x)
Γ(1 + x)

− log x =
Γ′(x)
Γ(x)

+
1
x
− log x (A.95)

=
1

2x
− 2

∞∫
0

dt
t

(t2 + x2)(e2πt − 1)
= −2

∞∫
0

dt
t

t2 + x2

(
1

e2πt − 1
− 1

2πt

)
. (A.96)

Following Titchmarsh we have

ζ(s) =
2 sinπs
π

∞∫
0

dxx−s
∞∫

0

dt
t

t2 + x2

(
1

e2πt − 1
− 1

2πt

)

=
2 sinπs
π

∞∫
0

dt

(
1

e2πt − 1
− 1

2πt

)
t

∞∫
0

x−s

t2 + x2

=
sinπs
cos πs2

∞∫
0

dt

(
1

e2πt − 1
− 1

2πt

)
t−s

= 2(2π)s−1 sin
πs

2

∞∫
0

dt

(
1

eu − 1
− 1
u

)
u−s

= 2(2π)s−1 sin
πs

2
Γ(1− s)ζ(1− s), (A.97)

i.e. the functional equation of the Riemann ζ function.
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