Higher Geometric Quantization

Chris Rogers

Courant Research Centre and Mathematisches Institut Universitiät Göttingen

Higher Structures 2011

Overview/Motivation

Interested in manifolds equipped with a closed, "non-degenerate" form of degree \geq 2.

symplectic manifold (M,ω)	<i>n</i> -plectic manifold (M, ω)
ω closed, non-degen. 2-form	ω closed, non-degen. $(n+1)\text{-form}$
$\omega \rightsquigarrow Lie \ algebra \ (C^\infty, \{\cdot, \cdot\})$	$\omega \rightsquigarrow L_{\infty}$ -algebra
classical mechanics	classical field theory

higher degree forms ⇒ higher analogs of structures found in symplectic geometry

Overview/Motivation

How can we quantize 2-plectic manifolds?

What would be the interesting applications and examples?

- 1. Quantizing (sub-bundles of) $(\Lambda^2 T^* X, d\theta) \rightsquigarrow (1+1)$ -QFTs.
- 2. Representation theory:
 - $G = \text{compact simple Lie group}, \nu_k = \frac{k}{12\pi} \langle \theta_L, [\theta_L, \theta_L] \rangle.$
 - "The main open question seems to be to obtain the representation theory of LG from the canonical sheaf of groupoids on G." (Brylinski 1993)
 - Relationship with quantization of quasi-Hamiltonian G-spaces? (Meinrenken 2009)
 - Relationship with bundle gerbe approach to fusion rules? (Runkel-Suszek 2011)

Geometric Quantization via Bohr-Sommerfeld

Śniatyki (1977), Guillemin-Sternberg (1983) Start with **integral** symplectic manifold (M, ω) :

 $[\omega] \in \operatorname{im} \left(H^2(M, \mathbb{Z}) \to H^2(M, \mathbb{R}) \right)$

1. Choose prequantization:

 (M, ω, L, ∇) with $\operatorname{curv}(\nabla) = i\omega$,

2. Choose **polarization** *F* of *M*:

A (singular) foliation F of M s.t. the regular leaves are Lagrangian.

3. Construct Bohr-Sommerfeld variety:

 V_{BS} = union of all Λ of F s.t. $L|_{\Lambda}$ admits global non-vanishing section σ_{Λ} with $\nabla \sigma_{\Lambda} = 0$.

4. Construct quantum state space:

$$\mathsf{Quant} = \bigoplus_{\Lambda \subseteq V_{BS}} \mathbb{C} \cdot \sigma_{\Lambda}$$

Prequantization for symplectic via Deligne cohomology

Weil (1958), Kostant (1970), Brylinski (1993)

Let
$$D_1^{\bullet} := \underline{\mathrm{U}(1)}_M \xrightarrow{dlog} \Omega_M^1$$
.

Get exact sequence:

 $0 \to H^1(M, \mathrm{U}(1)) \to H^1(M, D^\bullet_1) \to \Omega^2_{closed}(M) \to H^2(M, \mathrm{U}(1)).$

Principal U(1)-bundles with connection on integral symplectic manifold (M, ω) are classified by $H^1(M, D_1^{\bullet})$.

We **prequantize** (M, ω) by choosing a cocycle representing a class in $H^1(M, D_1^{\bullet})$:

good cover
$$\{U_i\}, g_{ij} \colon U_i \cap U_j \to U(1), \theta_i \in \Omega^1(U_i)$$

s.t. $(\delta g)_{ijk} = 1, \sqrt{-1}(\theta_j - \theta_i) = d \log g_{ij}, d\theta_i = \omega|_{U_i}$

Pre-quantum line bundle: $L = P \times_{\mathrm{U}(1)} \mathbb{C}, \quad \nabla_i = d + \sqrt{-1} \ \theta_i.$

Prequantization for 2-plectic via Deligne cohomology Brylinski (1993)

Let
$$D_2^{\bullet} := \underline{\mathrm{U}(1)}_M \xrightarrow{dlog} \Omega_M^1 \xrightarrow{d} \Omega_M^2$$
.

Get exact sequence:

$$0 \to H^2(M, \mathrm{U}(1)) \to H^2(M, D_2^{\bullet}) \to \Omega^3_{closed}(M) \to H^3(M, \mathrm{U}(1)).$$

 $H^2(M, D_1^{\bullet})$ classifies U(1)-gerbes with 2-connection.

We **prequantize** an integral 2-plectic manifold (M, ω) by choosing a cocycle representing a class in $H^2(M, D_2^{\bullet})$:

$$\begin{array}{ll} \text{good cover } \{U_i\}, \quad h_{ijk} \colon U_i \cap U_j \cap U_k \to \mathrm{U}(1), \\ A_{ij} \in \Omega^1(U_i \cap U_j), \quad B_i \in \Omega^2(U_i) \\ \text{s.t. } (\delta h)_{ijkl} = 1, \quad \sqrt{-1}(A_{jk} - A_{ik} + A_{ij}) = d\log h_{ijk}, \\ B_j - B_i = dA_{ij}, \quad dB_i = \omega|_{U_i} \end{array}$$

Pre-quantum "2-line bundle" ?

U(1)-gerbes and 2-bundles

Bartels (2004), Baez-Schreiber(2007), Wockel (2011)

A U(1)-gerbe \mathcal{G} on M is a stack locally isomorphic to \mathcal{B} U(1), the stack of principal U(1)-bundles over M. They are classified by $H^2(M, U(1))$.

We can think of G as the "sheaf of sections" of a **principal 2-bundle** on M.

A **smooth 2-space** is a small category C s.t. C_0 , C_1 , and $C_{1,s} \times_t C_1$ are smooth manifolds, and all structure maps are smooth.

Morphisms between smooth 2-spaces are **smooth functors**, and 2-morphisms are **smooth natural transformations**.

A **strict Lie 2-group** is a 2-space equipped with a smooth strict monoidal structure s.t. all objects and morphisms are invertible.

Main example: $BU(1) = U(1) \rightrightarrows *$.

Principal 2-bundles

Baez-Schreiber(2007), Wockel (2011)

Let G be a Lie 2-group. A **principal** G **2-bundle** over a manifold *M* is a smooth G 2-space P equipped with smooth functor $\pi : P \to M$ s.t. there exists a (good) open cover $\{U_i\}$ of *M* and *equivalences* of G 2-spaces $\tau_i : P_{U_i} \to U_i \times G$ with $\pi|_{U_i} = \operatorname{pr}_1 \circ \tau_i$.

A G-valued 2-cocycle on *M* consists of the following data:

- a good cover $\{U_i\}_{i \in I}$ of M,
- ▶ smooth functors g_{ij} : $U_i \cap U_j \rightarrow G$ for all $i, j \in I$,
- ▶ smooth natural isomorphisms h_{ijk} : $g_{ij} \cdot g_{jk} \Rightarrow g_{ik}$ for all $i, j, k \in I$,
- ▶ smooth natural isomorphisms $k_i : g_{ii} \Rightarrow 1_G$ for all $i \in I$,

such that for all $x \in U_{ijkl}$:

Principal 2-bundles

Sections of 2-bundles

If G = BU(1), then the functors g_{ij} are trivial, and h_{ijk} becomes a U(1)-valued Čech 2-cocycle.

Theorem (Bartels, Wockel): Principal BU(1) 2-bundles are classified by $H^2(M, U(1))$.

If the Lie 2-group G acts via automorphisms on a 2-space F, then a G-valued 2-cocycle $(U_i, g_{ij}, h_{ijk}, k_i)$ can be used to build an **associated 2-bundle** E $\rightarrow M$ whose typical fiber is F (Bartels 2004).

A **global section** of E is a collection of functors $f_i: U_i \rightarrow F$, and natural isomorphisms ϕ_{ij}

Sections of 2-bundles

A morphism between global sections $\{f_i: U_i \to F\} \to \{f'_i: U_i \to F\}$ consists of natural transformations $\alpha_i: f_i \Rightarrow f'_i$ which "intertwine" ϕ_{ij} and ϕ'_{ii} . Hence global sections of E form a category.

To summarize the story so far:

- ► We prequantize an integral 2-plectic manifold (M, ω) by equipping it with a Deligne 2-cocycle, giving us BU(1) 2-cocycle (plus a 2-connection).
- We know how to construct the category of global sections of an associated 2-bundle.
- ▶ Hence, we just need to find a 2-space which"categorifies" $(\mathbb{C}, \langle \cdot, \cdot \rangle).$

Hilb categorifies $(\mathbb{C}, \langle \cdot, \cdot \rangle)$

Baez, HDA2: 2-Hilbert Spaces (1997)

Let Hilb denote the category whose objects are fin. dim. Hilbert spaces, and whose morphisms are linear maps.

$$\mathsf{Hilb} \simeq \bigsqcup_{n,m} \mathsf{Mat}_{\mathbb{C}}(n \times m) \rightrightarrows \mathbb{N}$$

Smooth action of BU(1):

Global sections of a "2-line bundle"

Given a Čech 2-cocycle h_{ijk} : $U_i \cap U_j \cap U_k \rightarrow U(1)$ on a good cover of M, we obtain a BU(1)-valued 2-cocycle $(U_i, g_{ij}, h_{ijk}, k_i)$.

A global section of the assoc. 2-line bundle $L \rightarrow M$:

 $\{f_i: U_i \to \mathsf{Hilb}\} \rightsquigarrow \mathsf{vector} \mathsf{ bundles} \{E_i = U_i \times \mathbb{C}^n \to U_i\}.$

Twisted vector bundles

Prop: The category of global sections of $L \rightarrow M$ is equivalent to the category of (h_{ijk}) -twisted complex vector bundles on M.

Now add connection data:

Let $\xi = (\{U_i\}, h_{ijk}, A_{ij}, B_i)$ be a Deligne 2-cocycle on *M*. A ξ - twisted vector bundle with connection over *M* consists of the following data:

- \mathbb{C} -vector bundles with connection: $(E_i \rightarrow U_i, \nabla_i)$,
- ► isomorphisms: $\phi_{ij} : E_j|_{U_{ij}} \xrightarrow{\sim} E_i|_{U_{ij}}$ s.t. $\phi_{ij}\nabla_j \nabla_i\phi_{ij} = \sqrt{-1} \cdot A_{ij} \otimes \phi_{ij}$

$$\bullet \ \phi_{ik}^{-1} \circ \phi_{ij} \circ \phi_{jk} = \operatorname{diag}(\underbrace{h_{ijk}, \ldots, h_{ijk}}_{n}) \text{ on } U_{ijk}.$$

A morphism $(E_i, \nabla_i, \phi_{ij}) \xrightarrow{\{f_i\}} (E'_i, \nabla'_i, \phi'_{ij})$ consists of maps:

$$f_i \colon (E_i, \nabla_i) \to (E'_i, \nabla'_i) \text{ s.t. } f_i \circ \phi_{ij} = \phi'_{ij} \circ f_j.$$

Brylinski (1998), B-C-M-M-S (2002), Karoubi (2010).

Prequantum 2-line stack

Prop: If (M, ω) is an integral 2-plectic manifold equipped with a Deligne 2-cocycle ξ with $\operatorname{curv}([\xi]) = \omega$, then there exists a stack \mathcal{L}^{ξ} over *M* whose category of global sections $\mathcal{L}^{\xi}(M)$ is equivalent to the category of ξ -twisted vector bundles on *M*.

The **pre-quantum category** $\mathcal{L}^{\xi}(M)$ has the structure of a Hilb-**module** in the sense of Yetter's "Categorical linear algebra":

$$(n, (E_i, \nabla_i, \phi_{ij})) \mapsto (\underbrace{E_i \oplus \cdots \oplus E_i}_{n}, \underbrace{\nabla_i \oplus \cdots \oplus \nabla_i}_{n}, \underbrace{\phi_{ij} \oplus \cdots \oplus \phi_{ij}}_{n}).$$

Remark: If $\mathcal{L}^{\xi}(M)$ admits a non-trivial section, then characteristic class of $\xi = (h_{ijk}, A_{ij}, B_i)$ must be torsion.

Bohr-Sommerfeld relative cohomology

 $({\it M},\omega)$ is symplectic

Recall: A **polarization** is a (singular) foliation F of M s.t. the regular leaves are Lagrangian.

Given an embedding of a leaf $\Lambda \xrightarrow{f} M$, we can consider the **relative Deligne cohomology** $H^1(\Lambda, M; D_1^{\bullet})$.

A cocycle (ζ, ξ) representing a class in $H^1(\Lambda, M; D_1^{\bullet})$ corresponds to a line bundle with connection $(L \to M, \nabla)$ equipped with a global non-vanishing section σ_{Λ} of the **pullback bundle** $f^*(L, \nabla) \to \Lambda$.

The **curvature** of $[(\zeta, \xi)]$ is a relative closed 2-form (η_{Λ}, ω) i.e. $d\eta_{\Lambda} = f^*\omega$, $d\omega = 0$, and

$$\operatorname{curv}(L) = i\omega, \quad \nabla \sigma_{\Lambda} = i\eta_{\Lambda} \otimes \sigma_{\Lambda}$$

The curvature is integral:

$$\int_{\gamma} \eta_{\Lambda} - \int_{\Sigma} \omega \in \mathbb{Z}$$

for all chains $\gamma \colon \Delta^1 \to \Lambda$, $\Sigma \colon \Delta^2 \to M$, with $\partial \gamma = 0, f(\gamma) = \partial \Sigma$.

Bohr-Sommerfeld via relative cohomology (M, ω) is symplectic

Recall: V_{BS} = union of all Λ of F s.t. $L|_{\Lambda}$ admits global non-vanishing section σ_{Λ} with $\nabla \sigma_{\Lambda} = 0$.

Prop: If $\Lambda \subseteq V_{BS}$, then $(\sigma_{\Lambda}, L, \nabla)$ represents a class in $H^1(\Lambda, M; D_1^{\bullet})$ with curvature $(0, \omega)$.

Remark: If *M* is simply-connected, then $\Lambda \subseteq V_{BS}$ iff for all 1-cycles $\gamma \colon \Delta^1 \to \Lambda$ $\int_{\Sigma} \omega \in \mathbb{Z} \quad \text{with } f(\gamma) = \partial \Sigma.$

A possible generalization?

A generalized polarization of (M, ω) is a (singular) foliation *F* of *M* s.t. each leaf Λ is equipped with a 1-form η_{Λ} satisfying $d\eta_{\Lambda} = \omega|_{\Lambda}$.

Twisted Hermitian line bundles

Let $\xi = (\{U_i\}, h_{ijk}, A_{ij}, B_i)$ be a Deligne 2-cocycle on an arbitrary manifold *M*.

Interested in particular sections of \mathcal{L}^{ξ} :

A ξ -twisted Hermitian line bundle with connection over M is a collection of Hermitian line bundles with connection $(L_i, \nabla_i) \rightarrow U_i$, with isomorphisms $\phi_{ij} \colon L_j \xrightarrow{\sim} L_i$ s.t. $\phi_{ij} \nabla_j - \nabla_i \phi_{ij} = \sqrt{-1} \cdot A_{ij} \otimes \phi_{ij}$, and $\phi_{ik}^{-1} \circ \phi_{ij} \circ \phi_{jk} = h_{ijk}$.

The 2-form $\sqrt{-1}Q = \operatorname{curv}(\nabla_i) + \sqrt{-1}B_i$ is globally well-defined on *M* and is called the **twisted curvature** of $\sigma = (L_i, \nabla_i, \phi_{ij})$.

Note: Twisted Hermitian line bundles are the sections of \mathcal{L}^{ξ} which trivialize the corresponding gerbe \mathcal{G} .

Relative Deligne cohomology for 2-plectic

Shahbazi (2005)

Let (M, ω) be 2-plectic. Given a map $N \xrightarrow{f} M$, we can consider the **relative Deligne cohomology** $H^2(N, M; D_2^{\bullet})$.

A cocycle (ζ, ξ) representing a class in $H^2(N, M; D_2^{\bullet})$ corresponds to a gerbe $\mathcal{G} \to M$ with 2-connection equipped with a twisted Hermitian line bundle σ_N in the category $\mathcal{L}^{f^*\xi}(N)$.

The **curvature** of $[(\zeta, \xi)]$ is a relative closed 3-form (Q_N, ω) i.e. $dQ_N = f^*\omega, d\omega = 0$, and

$$\operatorname{curv}(\mathcal{G}) = i\omega$$
, $\operatorname{Twcurv}(\sigma_N) = iQ_N$.

The curvature is integral:

$$\int_{\Gamma} Q_N - \int_{\Sigma} \omega \in \mathbb{Z}$$

for all chains $\Gamma \colon \Delta^2 \to N$, $\Sigma \colon \Delta^3 \to M$, with $\partial \Gamma = 0, f(\Gamma) = \partial \Sigma$.

Bohr-Sommerfeld for 2-plectic

Let (M, ω) be a 2-plectic manifold. A **polarization** of (M, ω) is a (singular) foliation *F* of *M* s.t. each leaf $\iota \colon \Lambda \hookrightarrow M$ is equipped with a 2-form Q_{Λ} satisfying $dQ_{\Lambda} = \iota^* \omega$.

Let (M, ω, ξ, F) be a 2-plectic manifold equipped with Deligne 2-cocycle ξ (whose curvature is ω) and a polarization *F*.

The **Bohr-Sommerfeld variety** V_{BS} is the union of all leaves Λ of F s.t. the stack $\mathcal{L}^{\iota^*\xi}$ admits a global twisted Hermitian line bundle σ_{Λ} with twisted curvature iQ_{Λ} .

Remark: If $H_2(M, \mathbb{Z}) = 0$, then $\Lambda \subset V_{BS}$ iff (Q_Λ, ω) is integral.

The quantum state category Quant

Def: Let C be a category equipped with a Hilb-module structure $(n, x) \mapsto nx$. Let S be a collection of objects of M. The **sub-module of** C **generated by** S is the full subcategory of C consisting of all objects that are isomorphic to a finite product of objects of the form $a_1x_1, a_2x_2, \ldots, a_nx_n$, where each a_i is an object of Hilb and each x_i is in S.

For a quantized 2-plectic manifold, the Hilb-module **Quant** is the submodule of $\mathcal{L}(V_{BS})$ generated by the twisted Hermitian line bundles $\{\sigma_{\Lambda}\}_{\Lambda \subset V_{BS}}$ i.e.

$$\mathsf{Quant} = \bigoplus_{\Lambda \subseteq V_{BS}} \mathsf{Hilb} \cdot \sigma_{\Lambda}$$

Example: SU(2)

•
$$M = \mathrm{SU}(2), \, \omega_k = \frac{k}{12\pi} \langle \theta_L, [\theta_L, \theta_L] \rangle$$

- Prequantize (M, ω_k) with canonical gerbe \mathcal{G}_k
- ► Polarization given by conjugacy classes C_{λ} equipped with 2-form Q_{λ} , and $\lambda \cdot w \in A_{\text{Wevl}}^k = [0, k] \cdot w$
- Q_{λ} is in V_{BS} if and only if $\lambda \cdot w$ is an integral weight.
- Isomorphism classes of Quant are correspond to f.d. representations of su(2) which decompose into irreps. V_λ with λ = 0, 1, 2, ..., (k − 1).