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Following J.H.C. Whitehead [14] and Lima [7], a sequential spectrum E is a
sequence of based topological spaces (or simplicial sets) En and structure maps
σn : ΣEn → En+1, for all n ≥ 0. Here the suspension ΣEn = S1 ∧ En equals
the smash product with the based topological (or simplicial) circle S1. The sphere

spectrum S is the most basic example: its n-th space is the n-sphere Sn = S1∧· · ·∧
S1 and its structure maps are the resulting homeomorphisms σn : ΣSn → Sn+1.

The k-th homotopy group πk(E) is the colimit over n of the (unstable) homotopy
groups πk+n(En). As k varies, the πk(E) assemble to a graded abelian group π∗(E).
In the case of the sphere spectrum, πk(S) is the colimit of the homotopy groups
of spheres πk+n(Sn), i.e., of the homotopy classes of based maps Sk+n → Sn.
By the Freudenthal suspension theorem [5] the homomorphisms in this colimit are
isomorphisms for n ≥ k + 2, and the common limiting value πk(S) is known as the
k-th stable homotopy group of spheres.

The generalized homology theory πS
∗ (X) = π∗(S ∧ X) and the generalized co-

homology theory π−∗

S (X) = π∗ Map(X, S) associated to the sphere spectrum are
called stable homotopy and stable cohomotopy, respectively. As a consequence of
the proven Segal conjecture [3], stable cohomotopy has the exceptional property
that π−∗

S (BG+) vanishes for all ∗ < 0. Here BG is the classifying space of an
arbitrary finite group. In the Atiyah–Hirzebruch spectral sequence

E2
s,t = H−s(BG;πt(S)) =⇒ π

−(s+t)
S (BG+)

there is a complicated differential interplay between group cohomology and the
stable homotopy groups of spheres, making E∞

s,t = 0 for s + t < 0. For G = Z/p
the Segal conjecture also provides a copy of π∗(S)∧p as a direct summand in the
abutment, so each class x ∈ πk(S)∧p is represented at E∞

s,t by some coset M(x) ⊂
πt(S)∧p , with t ≥ k, called the Mahowald root invariant of x. Empirically, when x
is part of a periodic family in π∗(S)∧p detected by the n-th Morava K-theory K(n),
then M(x) is part of a family detected by the next Morava K-theory K(n + 1) [9].

A map of sequential spectra f : E → F is a sequence of based maps fn : En → Fn

commuting with the structure maps. It induces a homomorphism f∗ : π∗(E) →
π∗(F ) of homotopy groups, and is called a stable equivalence if f∗ is an isomor-
phism in each degree. The stable homotopy category is the category obtained from
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the category of spectra by inverting the stable equivalences. Let Sp denote the cat-
egory of sequential spectra, and let B (for Boardman) denote its associated stable
homotopy category. The sphere spectrum S generates B in the sense that for each
spectrum E there exists a cell spectrum Ec, which has been assembled from integer
suspensions of S in the same way that a cell complex is built from non-negative
suspensions of S0, and a stable equivalence Ec → E.

The smash product of two maps Sk+m → Sm and Sℓ+n → En composes with the
iterated structure map Sm ∧ En → Em+n to produce a map Sk+m+ℓ+n → Em+n.
With some care, especially about the ordering of the various circle factors in these
smash products, this rule induces a pairing πk(S) ⊗ πℓ(E) → πk+ℓ(E). In the case
E = S this product makes π∗(S) a graded commutative ring, and in general π∗(E)
is a graded module over π∗(S).

In the stable homotopy category B there is a functorial smash product E ∧ F of
spectra [1], well-defined up to stable equivalence, so that these commutative ring
and module structures are realized by morphisms S ∧ S → S and S ∧ E → E.
However, in the category Sp of sequential spectra there is no definition of a smash
product E∧F such that the product on S is commutative. It is at best associative,
and sequential spectra E and F may be regarded as left (or right) S-modules, but
no natural S-module structure remains on their smash product E∧F . The situation
is reminiscent of that of modules over a non-commutative ring.

To overcome this defect, modern stable homotopy theory takes place in one
of several possible modified categories Sp′ of spectra, three of which are reviewed
below. In each of these there is a smash product E∧F defined within the category of
spectra, that is so well-behaved that the sphere spectrum S admits a commutative
product S ∧ S → S in Sp′. More precisely, the smash product is a symmetric
monoidal pairing (= coherently unital, associative and commutative) with S as the
unit object. The spectra E, F are naturally modules over S with this product,
i.e., S-modules, and the smash product E ∧ F over S of two S-modules is again
an S-module, because S is commutative. Furthermore, there is a notion of stable
equivalence on Sp′, so chosen that the associated homotopy category is equivalent
to B.

This makes the sphere spectrum S the initial ground “ring” for stable homotopy
theory, much like the integers Z is the initial ground ring for algebra. The cate-
gories of S-modules, resp. associative or commutative S-algebras, can be thought
of as enriched versions of the categories of Z-modules (= abelian groups), resp. as-
sociative or commutative Z-algebras (= rings). This is a fruitful point of view
for promoting ideas from algebra, algebraic geometry or number theory to the
algebraic-topological context. The Eilenberg–Mac Lane functor embeds algebra
into topology, and the enrichment amounts to a change of ground ring along the
Hurewicz map h : S → Z. The earlier theories of A∞ and E∞ ring spectra [11] pro-
vide many more examples of associative and commutative S-algebras in topology,
beyond those coming from algebra. These are therefore “brave new rings,” a term
coined by Waldhausen.

Several modern reinterpretations Sp′ of the category of spectra appeared shortly
after 1994. The principal three are (a) the S-modules MS of Elmendorf, Kriz,
Mandell and May [4], (b) the symmetric spectra SpΣ of Hovey, Shipley and Smith
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[6], and (c) the Γ-spaces ΓS∗ of Segal [13] and Lydakis [8]. The essential equivalence
of these and other approaches is discussed in [10] and [12].

(a) The S-modules of May et al. were introduced in [4]. To start, a coordinate-

free spectrum E is a rule that assigns a based space EV to each finite-dimensional
vector subspace V ⊂ R

∞, together with a compatible system of homeomorphisms
EV ∼= ΩW−V EW whenever V ⊂ W . Here W − V is the orthogonal complement
of V in W , SW−V is its one-point compactification, and ΩW−V X = F (SW−V , X)
is the mapping space. The coordinate-free sphere spectrum S is the rule with
SV = colimV ⊂W ΩW−V SW . Its 0th space S0 is also known as Q(S0).

An L-spectrum is a coordinate-free spectrum equipped with a suitable action by
the space L(1) of linear isometries R

∞ → R
∞, which is part of the linear isometries

operad L. The sphere spectrum S is canonically an L-spectrum, and there is an
operadic smash product E ∧L F of L-spectra. Finally, the S-modules are the L-
spectra E such that a natural map λ : S ∧L E → E is an isomorphism. The sphere
spectrum is an S-module, and the operadic smash product of L-spectra E ∧L F
restricts to the desired smash product E ∧F on the full subcategory of S-modules.

(b) The symmetric spectra of J. Smith et al. were introduced in [6]. First, a
symmetric sequence E is a sequence of based simplicial sets En with an action by
the symmetric group Σn, for each n ≥ 0. The sphere symmetric sequence S has
the n-fold smash product Sn = S1 ∧ · · · ∧ S1 as its n-th space, with Σn permuting
the factors. There is a symmetric monoidal pairing E ⊗F of symmetric sequences,
so defined that a map E ⊗ F → G corresponds to a set of (Σm × Σn)-equivariant
maps Em ∧Fn → Gm+n. Then S is a commutative monoid with product S⊗S → S

corresponding to the equivariant isomorphisms Sm ∧ Sn ∼= Sm+n.

A symmetric spectrum E is defined to be an S-module in symmetric sequences,
i.e., a symmetric sequence with a unital and associative action S ⊗ E → E.
Explicitly, the module action amounts to a set of (Σm × Σn)-equivariant maps
Sm ∧En → Em+n. The sphere spectrum S is then a symmetric spectrum, and the
desired smash product E∧F of two symmetric spectra is defined as the coequalizer
of two obvious maps E ⊗ S⊗F → E ⊗F . There is a notion of a stable equivalence
f : E → F of symmetric spectra, strictly more restrictive than asking that π∗(f) is
an isomorphism, so that the associated homotopy category is equivalent to B.

A variant of symmetric spectra, called orthogonal spectra [10], is obtained by
replacing the symmetric group actions by orthogonal group actions. Then the
π∗-isomorphisms are the correct weak equivalences to invert, in order to obtain a
homotopy category equivalent to B.

(c) Let Γ be the category of finite sets n+ = {0, 1, . . . , n} based at 0, for n ≥ 0,
and base-point preserving functions. Segal [13] defined a Γ-space E to be a functor
from Γ to based simplicial sets, such that E(0+) is a point. Each Γ-space can be
prolonged (degreewise) to an endofunctor of based simplicial sets, and there is an
associated sequential spectrum with n-th space E(Sn). Bousfield and Friedlan-
der [2] show that the homotopy category of Γ-spaces under stable equivalences is
equivalent to the stable homotopy category of connective spectra, i.e., spectra with
πk(E) = 0 for k < 0.

The sphere Γ-space S is the functor that takes n+ to itself, considered as a based
simplicial set. Its prolongation is the identity endofunctor, and the associated
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sequential spectrum is the sphere spectrum S. The smash product E ∧ F of two
Γ-spaces is defined so that a map E ∧ F → G of Γ-spaces amounts to a natural
transformation E(k+) ∧ F (ℓ+) → G(k+ ∧ ℓ+), for k+ and ℓ+ in Γ. This defines
a symmetric monoidal pairing on Γ-spaces, with the sphere as the unit object.
Lydakis [8] realized that this categorical construction also has good homotopical
properties, in particular that it really models the smash product of spectra.
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