
AN INTRODUCTION TO THE DERIVED CATEGORY OF

COHERENT SHEAVES

FRANCO ROTA

Abstract. In these notes we introduce the concept of derived category, with

particular attention to the derived category of coherent sheaves of a smooth
projective variety. These notes are meant to be a guide for someone approach-

ing the subject for the first time, they try to provide examples and motivation

to help intuition.

1. Introduction and motivation

Algebraic geometry in the 1950s and 1960s experienced a revolution, based
mainly on the work of A. Grothendieck, which led to the modern approach to
the subject. In fact, in those years the French school found a way to solve the foun-
dational problems of the subject, which the Italian school of the earlier century
wasn’t able to address satisfactorily. Grothendieck himself presented the idea of a
scheme over a field to generalize the notion of variety.

In those years, attention was drawn to the study of sheaves on algebraic varieties
from a categorical point of view. The following result gives a taste of the categorical
approach of those years:

Theorem 1.1 (Gabriel, [1]). Let X and Y be smooth projective varieties, then an

equivalence Φ : Coh(X)
∼−→ Coh(Y ) induces an isomorphism X ' Y .

The category of coherent sheaves on a variety proved to be an interesting object,
and some of the issues present in the study of this category led to the construction
of the derived category of coherent sheaves of a variety. Cohomology of sheaves
was one of the most powerful instruments of investigation, but presented some
peculiar features that weren’t well understood. Some of the important functors in
algebraic geometry are not exact, the construction of derived functors emphasized
the importance of resolutions of a sheaf. In the study of resolutions, the passage to
the category of complexes was pretty natural, as well as the following:

Definition 1.2. Let A be an abelian category, and Kom(A) be its category of
complexes. Let A•,B• be elements in Kom(A) and f : A• → B• be a morphism of
complexes. It induces maps

Hi(f) : Hi(A•)→ Hi(B•),

we say that f is a quasi-isomorphism if all the maps Hi(f) are isomorphisms.

Example 1.3. A resolution F • → A→ 0 of an object A in an abelian category A
induces a quasi-isomorphism of complexes:
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... 0 Fn ... F0 0 ...

... 0 ... ... A 0 ...

0 0

d

0 ε 0

Indeed, the only non vanishing cohomology object is in degree zero, and H0 of the
two complexes coincides: we have H0(F •) = F0/Imd = F0/Kerε ' A = H0(A)
since a resolution is exact.

Example 1.4. A quasi-isomorphism in Kom(A) is in general not invertible. Con-
sider as an example the category of complexes of abelian groups, and the free
resolution of Z/2Z:

... 0 Z Z 0 ...

... 0 0 Z/2Z 0 ...

0

·2

0 ε 0

The morphism ε is a quasi-isomorphism, but the only possible morphism of com-
plexes in the opposite direction is the zero map. This map induces the zero map
on cohomology, hence it’s not an inverse to ε.

Bearing in mind these examples, let us proceed in the construction of the derived
category of an abelian category.

2. Construction of the derived category of an abelian category

LetA be an abelian category (we will mainly be interested in the abelian category
A = Coh(X) of coherent sheaves on a smooth projective variety X). We build the
derived categoryD(A) by subsequent steps. We follow the construction as explained
in [2]. An alternative construction, using localizations is presented in [3].

Step 1: The context in which the construction will take place is the category
Kom(A) of complexes of objects in A. Objects in this categories are complexes

...→ Ai−1
di−1
A−−−→ Ai

diA−−→ Ai+1 → ...

such that diA ◦ d
i−1
A = 0 for all i ∈ Z (these maps are called differentials). A

morphism of complexes f : A→ B is defined to be a collection of maps fi : Ai → Bi

that commute with the differentials. Cohomology is defined in this setting as

Hi(A) =
Kerdi+1

A

ImdiA
.

In this category we also have a functor which will prove very important in the
future:

Definition 2.1. For A• ∈ Kom(A), and f a morphism in Kom(A). Define A•[1]
by setting (A•[1])i = Ai+1 and diA•[1] = (−di+1

A ), and f [1]i = f i+1. We call

T : A• 7→ A•[1] the shift functor, it defines an equivalence of abelian categories
(exercise).
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Step 2: Cohomology is still well behaved if we focus our attention to the ho-
motopy category K(A). This category has the same objects as Kom(A), and the
morphisms are equivalence classes of morphisms in Kom(A):

HomK(A) (A,B) = HomKom(A) (A,B) /∼
where two morphisms of complexes f, g : A → B are said to be equivalent if
there exists a homotopy P , i.e. a collection of maps P i : Ai → Bi−1, such that
f i − gi = P i+1diA + di−1B P i for all i.

Step 3: Now we introduce the technical feature which allows to identify quasi-
isomorphic objects. The derived category of A is the category whose objects are
complexes of elements in A,

ob(D(A)) = ob(K(A)) = ob(Kom(A)),

and morphisms are equivalence classes of roofs, i.e. diagrams of the form

C

A B

qis

(note that roofs have to be morphisms, if we want to allow quasi-isomorphisms to
be considered invertible). Two such roofs are said to be equivalent if a diagram

C

C1 C2

A B

qis

exists and commutes in K(A). It is noteworthy that commutativity is only required
up to homotopy of complexes, the more restricting requirement of commutativity
in Kom(A) would give trouble in developing the theory. It is possible to give a well
behaved composition of roofs, the details are presented in [2, Chp. 2].

Remark 2.2. In the derived category, quasi-isomorphic objects are identified. This
means that two objects are isomorphic if their cohomologies are isomorphi via maps
induced by a map of complexes. Then, it is not enough that two complexes have
the same cohomologies for them to be isomorphic.

We omit the necessary verifications related to the construction above (especially
the fact that a roof is an acceptable notion of morphism), but it’s useful to mention
an object that comes into play during these verifications and plays a central role
when we endow the derived category with a triangulated structure.

Definition 2.3. Let f : A• → B• be a morphism of complexes. Its mapping cone
C(f) is the complex

C(f)i = Ai+1 ⊕Bi and diC(f) =

(
−di+1

A 0
f i+1 diB

)
.
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Sinthetically, we write C(f) = A[1]⊕B.

Remark 2.4. By construction, the mapping cone of f : A• → B• admits natural

morphisms of complexes B•
τ−→ C(f)

π−→ A•[1], where τ is an inclusion in the second
summand, and π is projection on the first.

3. Triangulated categories

The main result in this section is that the derived category of an abelian category
has the structure of a triangulated category.

Definition 3.1. Let D be an additive category. The structure of a triangulated
category on D is given by an additive equivalence T : D → D called the shift
functor, and a set of distinguished triangles

A→ B → C → T (A)

respecting the axioms TR1-TR4 below.

Before stating the axioms, we introduce some notation. For any integer n we
will denote by A[n] the object Tn(A) for A ∈ D, and if f : A → B is a morphism
we denote by f [n] the morphism Tn(f) : A[n] → B[n]. A morphism between two
triangles consists of a commutative diagram

A B C A[1]

A′ B′ C ′ A′[1]

f g h f [1]

and it is an isomorphism when f, g and h are. Here come the axioms:
TR1.

• Any triangle of the form A
id−→ A→ 0→ A[1] is distinguished;

• any triangle isomorphic to a distinguished one is distinguished;

• any morphism A
f−→ B can be completed to a distinguished triangle

A
f−→ B → C → A[1].

TR2. The triangle

A
f−→ B

g−→ C
h−→ A[1]

is a distinguished triangle if and only if

B
g−→ C

h−→ A[1]
−f [1]−−−→ B[1]

is a distinguished triangle.
TR3. Suppose we have a diagram

A B C A[1]

A′ B′ C ′ A′[1]

f g f [1]h
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where the leftmost square is commutative. Then the diagram can be completed to
a morphism of triangles by a (not necessarily unique) h : C → C ′.
TR4. This is called the octahedral axiom, I found this formulation in some notes
by Arend Bayer. For any composition of morphisms, i.e. a commutative diagram

B

A C

u v

v ◦ u

then applying TR 1 to u,v,v ◦ u we get a diagram

U

B

A C W

V

u

v ◦ u

v

the octahedral axiom requires the vertical line to be a distinguished triangle as
well. Other representations of this diagram explain the reason for its name, see for
example [3, IV, §1].

The derived category D(A) of an abelian category can be endowed with the
structure of a triangulated category ([3, IV, §2]). We have a natural choice for the
functor T , given by the shift on Kom(A) (which descends to D(A)), and we can
specify the class of distinguished triangles using cones:

Definition 3.2. A triangle

A1 → A2 → A3 → A1[1]

in D(A) is called distinguished if it is isomorphic in D(A) to a triangle of the form

A
f−→ B

τ−→ C(f)
π−→ A[1]

for a morphism of complexes f (cfr. remark 2.4).

Remark 3.3. The formulation of the octahedral axiom for the derived category of
an abelian category becomes an axiom about cones of morphisms.

4. Derived functors

One of the main motivations for the development of the derived category is
to get a better understanding of the behaviour of functors. A functor on the
abelian category need not be exact. If we try to extend that naively to the derived
category, we run into problems: the first tentative is to make F act on complexes
componentwise. That seems to be a good choice since homotopic complexes are
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sent to homotopic complexes if we define an extension K(F ) : K(A) → K(B) in
this way. However, if F is not an exact functor of abelian categories, it’s hard to
extend it with this procedure to the derived categries. In fact an acyclic complex
A• (i.e. an object which is zero in D(A)), may have an image K(F )(A•) which
is not acyclic. We will need to develop some techniques to extend functors that
are not exact to the derived category. The result of this process will be called
the derived functor RF of the functor F . To guarantee the existence of a derived
functor, we need to assume some sort of exactness to start with. The construction
is symmetric in the case of left or right exact functors, we will present in more
detail the construction of the right derived functor of a left exact functor, since for
this construction we need injective objects, and those are abundant in the category
of coherent sheaves which is our ultimate goal.

Definition 4.1. An abelian category A is said to have enough injectives if for all
objects A in A there exists an injection A→ I, where I is an injective object of A
(recall that I being injective means that the functor HomA (−, I) is exact).

If A contains enough injectives, every object in A admits an injective resolution.
We have already remarked that this means that any object is quasi isomorphic to a
complex of injective objects (cfr. rem. 1.3). More in general, denote by K+(A) the
category of bounded from below complexes modulo homotopy, i.e. the full additive
subcategory of K(A) whose objects are complexes Ai with Ai = 0 for i << 0. Then
we have:

Proposition 4.2. Let I ⊂ A be the full subcategory of all injectives of an abelian
category A. Consider its homotopy category K+(I). If A has enough injectives,
then for all objects A• in K+(A) there exists I• in K+(I), and a quasi-isomorphism
A• → I•. The composition of the inclusion I ⊂ A with the natural functor QA :
K+(A)→ D+(A) gives a natural exact functor ι : K+(I)→ D+(A). Under these
assumptions, this functor is an equivalence.

Now, consider a left exact functor F between abelian categoriesA and B. Assume
that A has enough injectives. By ι−1 we denote a quasi-inverse of the equivalence ι
given above, ι−1 consists in choosing a complex of injective objects quasi-isomorphic
to a given complex. We get a diagram:

K+(I) K+(A) K+(B)

D+(A) D+(B)

K(F )

QA QB

ι−1

ι

where K(F ) : K∗(A)→ K∗(B) denotes the extension of F to homotopy categories.

Definition 4.3. Let F be a left exact functor between abelian categories A and
B, and assume that A has enough injectives. The right derived functor of F is the
functor:

(4.1) RF = QB ◦K(F ) ◦ ι−1 : D+(A)→ D+(B).

Then for any complex A• ∈ D+(A) we define

RiF (A•) = Hi(RF (A•)).

The induced additive functors RiF : A → B are the higher derived functors of F .
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An example: The derived functor of Hom. Consider an object A ∈ A and
the left exact functor Hom (A, ) from A to the category of abelian groups. If A
contains enough injectives, set

Exti (A, ) = Hi ◦RHom (A, ) .

As an example, we will compute these objects and prove the following:

Proposition 4.4. In the above setting, suppose B ∈ A. Then we have natural
isomorphisms

Exti (A,B) ' HomD(A) (A,B[i])

(regard A and B as complexes concentrated in degree zero).

Proof. First, compute RHom (A,B). Using the definition, we choose an injective
resolution for B, sai I•. This complex lives in K+(I), which is naturally embed-
ded in K+(A). Then we apply the functor Hom (A, ) to I• and get a complex
(Hom

(
A, Ii

)
)i∈Z. The object RHom (A,B) is isomorphic to this complex in D(A),

therefore Exti (A,B) is computed by the cohomology of (Hom
(
A, Ii

)
)i∈Z. Consider

the diagram

... 0 A 0 ...

... Ii−1 Ii Ii+1 ...

f
g

Then f defines a morphism of complexes precisely if it is a cycle, i.e. it lies in
the kernel of Hom

(
A, Ii

)
→ Hom

(
A, Ii+1

)
. Moreover, f lies in the image of

Hom
(
A, Ii−1

)
→ Hom

(
A, Ii

)
if and only if f is nullhomotopic via the homotopy

g. This shows that Exti (A,B) ' HomK(A) (A, I•[i]). Since I• is a complex of
injectives, we have (see [2, Lemma 2.39]) HomK(A) (A, I•[i]) ' HomD(A) (A, I•[i]).
But B[i] and I•[i] are isomorphic in D(A), so we proved the proposition. �

5. Examples

In the next examples we will illustrate the proposition above.

Example 1. Let A and B be two objects in an abelian category A with enough
injectives. Suppose furthermore that there exists a nontrivial extension 0 → B →
C → A → 0 of B by A. Regard A and B as complexes in D(A) concentrated
in degree zero. The only morphism of complexes between A and B[1] is the zero
morphism, the cone above that is C(0) = A[1] ⊕ B[1]. Hence we get a triangle

A
0−→ B[1]→ A[1]⊕B[1] which, after an application of TR2, becomes the triangle

B → A⊕B → A
0−→ B[1]

which corresponds to the trivial extension of A by B (cfr. [2, Ex. 1.38]). On
the other hand, Prop. 4.4 predicts the existence of a map A → B[1] for any
nontrivial extension 0 → A → C → B → 0. Indeed, denote by E• the complex
...→ 0→ B → C → 0→ ... where C is in position 0, then E• is a resolution of A
and there exists a quasi isomorphism ε : E• → A (cfr. Ex. 1.3). Moreover, there

is a morphism of complexes E•
p−→ B[1] given by the identity map in position −1,

and the zero map elsewhere. Together, these maps give a roof:
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E•

A B[1]

ε p

which is a morphism in HomD(A) (A,B[1]). The quasi-isomorphism ε does not have
an inverse in K(A): indeed, such an inverse would give an isomorphism A→ C/B
which would split the extension.

Example 2. Let’s focus on a more geometric example, we will illutrate how the lan-
guage of derived categories provides more information about the functorHom ( ,O)
than just computing the dual of a sheaf. Consider the point P in P2, and pick a
free resolution of its ideal sheaf with two linear forms:

(5.1) 0→ OP2(−2)→ OP2(−1)⊕OP2(−1)→ IP → 0

corresponding to the local situation (say that P = (0 : 0 : 1) and let S =
C[x0, x1]):

0→ S
(·x1,·x0)−−−−−→ S ⊕ S ·x0−·x1−−−−−→ (x0, x1)→ 0

We are interested in dualizing the sequence (5.1). We can compute the duals of the
objects using the ideal sheaf sequence:

0→ IP → OP2 → k(P )→ 0.

Dualizing this, we get

0 = Hom(k(P ),OP2)→ OP2 → Hom (IP ,OP2)→ Ext1 (k(P ),OP2) = 0

0→ Ext1 (IP ,OP2)→ Ext2 (k(P ),OP2)→ 0

where we obtain the vanishing of Ext1 (k(P ),OP2) in the following way: it is sup-
ported at P , since its stalks are zero at every other point. Hence, it coincides with
a skyscraper sheaf at P of the ring of its global sections Γ(Ext1 (k(P ),OP2)). By [4,
Prop. III 6.9] and since k(P ) is a skyscraper sheaf, these global sections are com-
puted by the group Ext1 (k(P ),OP2) ' H1(P2, k(P )) = 0 (by Grothendieck vanish-
ing, for example). Similar arguments allow to conclude Hom(k(P ),OP2) = 0 and
Ext2 (k(P ),OP2) = k(P ). This gives us Hom (IP ,OP2) ' OP2 and Ext1 (IP ,OP2) '
k(P ). Then, the dual of the free resolution (5.1) is the sequence:

0→ OP2 → OP2(1)⊕OP2(1)→ OP2(2)→ k(P )→ 0.

As in the previous example, this sequence defines a roof in HomD(A) (k(P ),OP2 [2]) '
Ext2 (k(P ),OP2), it is not given by any morphism of complexes. It is also notewor-
thy that knowing this extension class bears more information than just knowing
the dual of every object in the resolution, since we have a way to keep track of the
maps in the resolution.
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