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Introduction, motivation

Algebraic topology is the study of topological spaces by using algebraic invariants, such
as (co-)homology, the fundamental group or more generally homotopy groups. This lead
to a powerful machinery, which also became extremely useful to other fields of mathe-
matics. For example group cohomology (in this setting more often called Galois cohomol-
ogy) became an important tool in algebraic number theory. Modern algebraic geometry
is unimaginable without the study of the various forms of cohomology (Zarisiki, étale,
synthomic, fppf, fpqc, ...).

Originally the cohomology of a group G was introduced as the (singular) cohomology of
its classifying space |BG|, which is a connected space with fundamental group π1|BG| = G
and vanishing higher homotopy groups. In algebraic number theory this group G is most
likely the Galois group of a field extension. So we are assigning to an algebraic object G
a topological space |BG|, which we are taking an algebraic invariant of.

topological space

**
algebraic object

44

// “construction plan”

OO

// algebraic object

This looks like a long way round and one might ask, if it is possible to define group
cohomology without taking the detour over topological spaces. The idea is to use an
abstract “construction plan” BG for the topological space |BG|.

The aim of this lecture is the study of these “construction plans”, which in our case
are given by simplicial sets. So mainly we will do algebraic topology without topology.
Apart from the given example above, simplicial sets have many applications in different
fields of mathematics. The first few lectures will be about (abstract) simplicial complexes.
Compared to simplicial sets, their geometry is much easier to understand. We point out
the difficulties that arise when trying to do homotopy theory in the context of simplicial
complexes. Their disadvantages motivate the introduction of simplicial sets, which the
main part of these lecture is about.

The theory of simplicial sets is a theory of functors, so there is no way around some
techniques provided by category theory. As category theory still enjoys the reputation of
being “abstract nonsense”, which may discourage some readers, we present the necessary
tools along the way of studying simplicial sets. We intersperse short sections of the abstract
theory, which will be applied subsequently in the context of simplicial sets. Although
using the abstract language of category theory, we try to motivate every construction
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by its topological analog. Guided by the geometric realization, we develope the basic
constructions like homotopies and mapping cones in the context of simplicial sets.

After this topologically motivated introduction we begin to point out the main advan-
tages. Instead of working with simplicial sets, one can similarly define simplicial objects
in any other category. This is a very powerful feature that allows us to use simplicial tech-
niques in any field of mathematics. Probably the most important example is the category
of simplicial modules, which turns out to be equivalent to the category of chain complexes
via the Dold-Kan correspondence. Coming back to our example of above, when learning
group homology, one will most likely end up with studying homological algebra first.
Compared to simplicial modules, chain complexes seem much easier to handle. However
every tool in homological algebra has its analog in the simplicial context. There are even
simplicial constructions, that are not possible in the context of homological algebra (e.g.
deriving non-additive functors).

If time allows we will turn to the deeper homotopy theoretic relationship of simpli-
cial sets and topological spaces given by the Quillen equivalence. This involves abstract
homotopy theory using model categories. Like in homological algebra, one can define de-
rived functors, a technique which becomes more and more popular also in other fields of
mathematics.
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1 (Abstract) Simplicial complexes

Recall that an n-simplex is the convex hull of a set of n+ 1 points in the Rm, for some
m ≥ 0. A face of the simplex is the convex hull of a subset of these points. Moreover
a (geometric) simplicial complex is a set of simplices in some Rm, such that the
intersection of two simplices is a face of each simplex or empty. We can stretch a simplex
without changing its homeomorphic type. So topologically the exact coordinates in the
ambient space Rm are redundant, as long as we keep in mind how the simplices intersect.
As a preparation for simplicial sets we now introduce (abstract) simplicial complexes,
which can be thought of as “construction plans” for (geometric) simplicial complexes.
Compared to simplicial sets, they are more easily to understand geometrically. However
they have their disadvantages, which motivate the introduction of the more flexible notion
of simplicial sets.

Definition 1.1 (i) An (abstract) simplicial complex1 is a set X, together with a
set S(X) of subsets of X with

a) 0 < ]s <∞, for all s ∈ S(X).2

b) {x} ∈ S(X), for all x ∈ X.

c) ∅ 6= t ⊂ s ∈ S(X) ⇒ t ∈ S(X).

The elements of X are called vertices, the elements of S(X) simplices.

(ii) A simplicial map between simplicial complexes is a map X
f−→ Y with

f(s) ∈ S(Y ), for all s ∈ S(X).

Remark 1.2
Let X be a set.

(i) We define a simplicial complex D(X) by setting

D(X) := X, SD(X) := {{x};x ∈ X}.

It is the smallest simplicial complex with vertices X.

We call it the discrete simplicial complex with vertices X.

1As we will only deal with abstract simplicial complexes, we will just write “simplicial complex” for
short.

2Most commonly the cardinality of a set S is denoted by |S|. However to avoid confusion with a later
definition, throughout this text the cardinality will be denoted by ]S.
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Chapter 1. (Abstract) Simplicial complexes

(ii) We define another simplicial complex I(X) by setting

I(X) := X, SI(X) := {s ⊂ X; 0 < ]s <∞}.

It is the biggest simplicial complex with vertices X.

We call it the indiscrete simplicial complex with vertices X.

Example 1.3
Let n ≥ 0.

(i) The standard combinatorial n-simplex is defined as the simplicial complex
I(n), where n := {0, ..., n}. For n = 2 the space we have in mind looks like

1

0 2

where the triangle in the middle is a 2-simplex.

(ii) The boundary of I(n) is given by

∂I(n) := n, S∂I(n) := {s ⊂ n; 0 < ]s < n}.

For n = 2, we can draw the same picture as in (i) without the connecting 2-simplex.

Remark 1.4
Every simplicial complex is the union3 of its finite simplicial subcomplexes.

Indeed every simplex is finite and so lies in some finite simplicial subcomplex.

1.1 Geometric realization

In this section we describe the topological space, that an (abstract) simplicial complex
stands for. We do this by assigning a topological space to an abstract simplicial complex
in a natural way. Explicitly, given an (abstract) simplicial complex X, we define

|X| :=

{
a =

∑
x

ax · x ∈
⊕
x∈X

R · x; ax ≥ 0,
∑
x∈X

ax = 1, {x ∈ X; ax 6= 0} ∈ S(X)

}
,

where
⊕

x∈X R · x denotes the real vector space of formal linear combinations over the
elements x ∈ X.

Example 1.5
Let n ≥ 0.

3meaning that a subset of the union is a simplex, if it is a simplex in some subcomplex.

4



1.1. Geometric realization

(i) The set |I(n)| coincides with the standard (geometric) n-simplex

|∆n| := {(a0, ..., an) ∈ [0, 1]n+1; a0 + ...+ an = 1}.

(ii) The set |∂I(n)| is its boundary.

(iii) More generally, for every subcomplex X ≤ I(n), we see that |X| ≤ |I(n)| is the
union of all geometric simplices in |I(n)| corresponding to simplices in X.

Up to now |X| is only a set, that we still need to put a topology on. Every simplicial
complex X with n = ]X <∞ can be considered as a simplicial subcomplex X ≤ I(n− 1),
so it seems natural to consider |X| ⊂ |∆n−1| ⊂ Rn = RX as a subspace of the product
space. However for infinite X, we will need a finer topology than the subspace topology
|X| ⊂ RX .

Definition 1.6
Given a family of maps Fi

fi−→ X, whose domains Fi carry a topology.
The final topology on X is the topology, for which a subset U ⊂ X is open, whenever

f−1
i (U) ⊂ Fi is open, for all i.

Remark 1.7
Suppose X carries the final topology with respect to a family of maps Fi

fi−→ X.
Then the following holds.

(i) fi is continuous, for all i.

(ii) A map X
f−→ Y into a topological space Y is continuous, if and only if f ◦ fi is

continuous, for all i.

Remark 1.8
Every simplicial map X

f−→ Y induces a map

|f | : |X| −→ |Y |,
∑
x

ax · x 7−→
∑
x

ax · f(x).

Definition 1.9
The geometric realization of a simplicial complex X is defined as the set |X| together
with the following topology.

• For ]X < ∞ we give |X| ⊂
⊕
x∈X

R · x =
∏
x∈X

R = RX the subspace topology of the

product topology.

• For ]X = ∞ we give |X| the final topology with respect to all maps |F |
|j|
↪−→ |X|,

where F
j

↪−→ X is the inclusion of a finite subcomplex. That is U ⊂ |X| is open, iff
U ∩ |F | is open, for all finite F ⊂ X.
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Chapter 1. (Abstract) Simplicial complexes

Proposition 1.10

For every simplicial map X
f−→ Y , the map |f | is continuous.

Proof.

1) For ]X < ∞ the map |f | is the restriction of a linear map RX −→ RY , which is
continuous.

2) For ]X =∞, let F ⊂ X be a finite subcomplex. Then in the commutative square

|F |

��

� � // |X|
|f |
��

|f(F )| � � // |Y |

the lower horizontal map is continuous by Definition of the final topology on |Y |
and Remark 1.7 (i), because the image f(F ) ⊂ Y is a finite subcomplex. Moreover

the left vertical map is the realization of the restriction F
f |−→ f(F ), which is

continuous by 1). Hence their composition is continuous, which coincides with the
other composition. By definition of the final topology on |X| and again by Remark
1.7 (ii) also the map |f | must be continuous.

2

1.2 Simplicial approximation

Remark 1.11
Let X, Y be simplicial complexes.

Then there are far more continuous maps |X| −→ |Y | than those coming from a sim-
plicial map X −→ Y .

The circle can be modeled by the simplicial complex ∂I(2).

1

0 2

We can construct an explicit homeomorphism

h : |∂I(2)| ∼−→ S1 := {x ∈ C; |x| = 1}, a = (a0, a1, a2) 7−→ (a1 − a0) + (a2 − a0)i

|(a1 − a0) + (a2 − a0)i|
.

There is an isomorphism Z ∼−→ π1(S1, 1), sending n ∈ Z to the homotopy class of the
selfmap

pn : S1 −→ S1, x 7−→ xn.
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1.2. Simplicial approximation

However we can only find simplicial maps ∂I(2)
fn−→ ∂I(2), whose realizations |fn| preserve

the base point h−1(1) = (0, 1, 0) ∈ |∂I(2)|, which are homotopic to pn, for n = −1, 0, 1.
These are given by

f−1(k) = 2− k, f0(k) = 1, f1(k) = k, 0 ≤ k ≤ 2.

However, given n ≥ 0 we can choose another simplicial complex Xn modeling S1, given
by

Xn = Z/3n, S(Xn) = {{x}; x ∈ Z/3n} ∪ {{x, x+ 1}; x ∈ Z/3n},
and chosing the base point e1 = (0, 1, 0, ..., 0) ∈ |Xn| ⊂ R3n we see that the map of degree
n > 0 can be modeled by the simplicial map given by the canonical quotient map

Xn = Z/3n −� Z/3 = X1
∼= ∂I(2), [k] 7−→ [k].

[2] [3] [1]

[1] [4] // //

[0] [5] [0] [2]

Question 1.12

Given two simplicial complexes X, Y and a continuous map |X| f−→ |Y |. Can we always
find a simplicial complex X ′ and a homeomorphism |X ′| ∼−→ |X|, whose composition with
f is homotopic to the realization of a simplicial map?

In case the source X is a finite complex, the answer is yes. The solution lies in sub-
dividing the complex X, as we implicitly did for the circle in the example above. There
are many ways of subdividing a simplicial complex. A canonical way of doing this is the
barycentric subdivsion.

Definition 1.13
The barycentric subdivision of a simplicial complex is defined as the simplicial complex
sdBX, given by

sdBX := S(X), S(sdBX) := {{s0 ( ... ( sm}; m ≥ 0}.

Example 1.14
The barycentric subdivision of I(2) is given by

{1}

{0, 1} {1, 2}
{0, 1, 2}

{0} {0, 2} {2}
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Chapter 1. (Abstract) Simplicial complexes

with each appearing triangle being a 2-simplex.

Lemma 1.15
For every finite simplicial complex |X| is a compact Hausdorff space.

Proof. For every simplex s ∈ S(X) we let As be the preimage of 1 under the map

[0, 1]X −→ R, a 7−→
∑
x∈s

ax.

As this map is continuous and {1} ⊂ R is a closed subset, As is a closed subset of [0, 1]X . It
is precisely the set of elements a ∈ |X| with ax = 0, for all x ∈ X\s. Hence by construction
|X| =

⋃
s∈S(X) As is a finite union of closed subsets. So also |X| ⊂ [0, 1]X is closed and

therefore compact, as [0, 1]X is compact. With [0, 1]X also |X| is Hausdorff.
2

Lemma 1.16
Let X

f−→ Y be a continuous bijection from a compact space X to a Hausdorff space Y .
Then f is a homeomorphism.

Proof. Let U ⊂ X be an open subset and x ∈ U . For every y ∈ Y \f(U) there are open
subsets y ∈ Uy ⊂ Y and f(x) ∈ Vy ⊂ Y with Uy ∩ Vy = ∅, because Y is Hausdorff. As X
is compact, the open covering X = U ∪

⋃
y∈Y f

−1Uy has a finite subcovering correspondig

to elements y1, ..., yn ∈ Y . So X\U ⊂ f−1Uy1 ∪ ... ∪ f−1Uyn or equivalently Y \f(U) ⊂
Uy1 ∪ ... ∪ Uyn . Setting V := Vy1 ∩ ... ∩ Vyn , we get

V ∩ (Y \f(U)) ⊂ V ∩ (Uy1 ∪ ... ∪ Uyn) = (V ∩ Uy1) ∪ ... ∪ (V ∩ Uyn) = ∅.

In other words x ∈ V ⊂ f(U) is an open environment of x in f(U). So f(U) ⊂ Y is open,
which proves that f−1 is continuous and hence f is a homeomorphism.

2

Theorem 1.17
There is a natural homeomomorphism

hX : |sdBX|
∼−→ |X|,

∑
s∈S(X)

as · s 7−→
∑

s∈S(X),
x∈s

as
]s
· x.

Proof. For a ∈ |sdBX| we have as ≥ 0, for all s ∈ S(X). Hence∑
x∈s∈S(X)

as
]s
≥ 0, x ∈ X.

It follows that hX(a) ∈ |X|, because we also have∑
s∈S(X),
x∈s

as
]s

=
∑

s∈S(X)

]s · as
]s

=
∑

s∈S(X)

as = 1.
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1.2. Simplicial approximation

By construction h is a natural map, i.e. for every simplicial map X
f−→ Y we get a

commutative square

|sdBX|
|sdBf |

��

hX // |X|
|f |
��

|sdBY |
hY // |Y |.

We prove that hX is continuous by reduction on finite subcomplexes.

• For ]X <∞, the map hX is the restriction of a linear map between finite-dimensional
real vector spaces, hence continuous.

• For ]X = ∞, let F ⊂ sdBX be a finite subcomplex. Considering F ′ :=
⋃
s∈F s

as a finite subcomplex of X, we see that F ⊂ sdBF
′, so the canonical inclusion

factors as F
j

↪−→ sdBF
′ sdB(j′)
↪−→ sdBX with F ′

j′

↪−→ X. Using that h is natural we get
hX ◦ |sdB(j′)| ◦ |j| = |j′| ◦ hF ′ ◦ |j| and the latter is continuous by what we have just
proven. Hence hX is continuous by definition of the final topology on |sdBX|.

Next we prove that hX is bijective by constructing an inverse map. Defining ΣU :=∑
x∈U 1 · x, for U ⊂ X, every a ∈ |X| can uniquely be written as

a = a0 ·Σs0 + ...+ am ·Σsm, ∅ 6= s0, ..., sm ⊂ X, si ∩ sj = ∅, 0 < a0 < ... < am. (1.1)

We define a map |X| kX−→ |sdBX| by setting

kX(a) := (]s0 + ...+ ]sm) ·a0 · (s0∪ ...∪sm)+
∑

1≤i≤m

(]si+ ...+ ]sm) · (ai−ai−1) · (si∪ ...∪sm).

Every coefficient is greater than zero by assumption on ai. Moreover a ∈ |X| implies
s0 ∪ ... ∪ sm ∈ S(X) and hence {sm ( (sm−1 ∪ sm) ( ... ( (s0 ∪ ... ∪ sm)} ∈ S(sdBX) by
definition of sdBX. Again using a ∈ |X| we see that

(]s0 + ...+ ]sm) · a0 +
∑

1≤i≤m

(]si + ...+ ]sm) · (ai − ai−1) = a0 · ]s0 + ...+ am · ]sm = 1.

This shows that kX(a) ∈ |sdBX|, so kX is well-defined. We compute

hXkX(a) = a0 · Σ(s0 ∪ ... ∪ sm) +
∑

1≤i≤m

(ai − ai−1) · Σ(si ∪ ... ∪ sm)

= a0 · Σs0 + ...+ am · Σsm.

Similarly for b = b0 · t0 + ... + bm · tm ∈ |sdBX| with tm+1 := ∅ ( tm ( ... ( t0 ∈ S(X)
and bi > 0, we have

hX(b) = kX

(
b0

]t0
· Σt0 + ...+

bm
]tm
· Σtm

)
=
∑

0≤i≤m

(
b0

]t0
+ ...+

bi
]ti

)
· Σ(ti\ti+1),

9



Chapter 1. (Abstract) Simplicial complexes

which is an element in |X| of the form (1.1). So applying kX , we get

kXhX(b) = ]t0 ·
b0

]t0
· t0 +

∑
1≤i≤m

]ti ·
bi
]ti
· ti = b.

We have shown that hX is a bijection with h−1
X = kX .

It remains to check that also kX = h−1
X is continuous, which again can be reduced to

the finite case.

• For ]X < ∞, we also have ]sdBX < ∞. Hence |sdBX| and |X| are compact and
Hausdorff by Lemma 1.15, which using Lemma 1.16 implies that hX is a homeo-
morphism.

• For ]X = ∞ and every finite simplicial subcomplex F
j

↪−→ X we have |j| ◦ hF =
hX ◦|sdBj|, hence h−1

X ◦|j| = |sdBj|◦h
−1
F is continuous, as we have just proven. Since

X is the union of its finite simplicial subcomplexes and carries the final topology

for all these inclusions |F | j−→ |X|, Remark 1.7 (ii) implies that also h−1
X = kX is

continuous.

2

Lemma 1.18 (Lebesgue)
Let X be a compact metric space and X =

⋃
U∈U U be an open cover.

Then there is a number, called the Lebesgue number δ > 0, such that:

∀x ∈ X ∃Ux ∈ U : B<δ(x) ⊂ Ux.

Proof. For every x ∈ X there is an Ux ∈ U , such that x ∈ Ux. As Ux is open, we find a
δx > 0, such that B<δx/2(x) ⊂ Ux. Hence X =

⋃
x∈X B<δx(x) is an open cover, which by

compactness of X has a finite subcover corresponding to elements x1, ..., xn ∈ X. Then
δ := min{δx1 , ..., δxn} is the desired number. For if x ∈ X, there is a 1 ≤ j ≤ n with
x ∈ B<δxj

(xj). Moreover, for every y ∈ B<δ(x) we have

d(y, xj) ≤ d(y, x) + d(x, xj) < δ + δxj ≤ 2δxj ,

which implies that y ∈ B<2δxj
(xj), which by the choice of δxj is contained in Uxj .

2

Before we can prove the simplicial approximation Theorem we will need the following
key lemma. Roughly speaking it says that by iterated subdivision we can make simplices
arbitrarily small.

Lemma 1.19
Let X be a finite simplicial complex, N > 0 and a, b ∈ |sdNBX|, such that

{x ∈ sdNBX; ax > 0 or bx > 0} ∈ S(sdNBX).

Then ‖hNX(a)− hNX(b)‖1 < 2 · (1− 1
]X

)N , where ‖-‖1 is the 1-norm on |X| ⊂ RX , given by

‖v1 · x1 + ...+ vn · xn‖1 = |v1|+ ...+ |vn|, v1, ..., vn ∈ R, x1, ..., xn ∈ X.

10



1.2. Simplicial approximation

Proof. As X is finite, we can define nX := max{]s; s ∈ S(X)}. On the one hand, for
every chain of X-simplices s1 ( ... ( sn we have nX ≥ ]sn ≥ n, which proves nX ≥ nsdBX .
On the other hand, for every s = {x1, ..., xn} ∈ S(X) with n = nX we have

nX = n = ]{{x1} ( {x1, x2} ( ... ( {x1, ..., xn}} ≤ nsdBX .

So all in all nX = nsdBX .

By definition the map hX is the restriction of a linear map
⊕

s∈sdBX
R·s h̄X−→

⊕
x∈X R·x.

Let v ∈
⊕

s∈sdBX
R · s with {s ∈ sdBX; vs > 0} ∈ S(sdBX). Then v is of the form

v = v1 · {x1}+ v2 · {x1, x2}+ ...+ vn · {x1, ..., xn}, v1, ..., vn ∈ R, {x1, ..., xn} ∈ S(X).

Assuming v1 + ....+ vn = 0, we get

‖h̄X(v)‖1 =
∥∥∥v1 · x1 +

v2

2
· (x1 + x2) + ...+

vn
n
· (x1 + ...+ xn)

∥∥∥
1

=
∥∥∥(v1 +

v2

2
+ ...+

vn
n

)
· x1 +

(v2

2
+ ...+

vn
n

)
· x2 + ...+

vn
n
· xn
∥∥∥

1

=
∣∣∣v1 +

v2

2
+ ...+

vn
n

∣∣∣+
∣∣∣v2

2
+ ...+

vn
n

∣∣∣+ ...+
∣∣∣vn
n

∣∣∣
=

∣∣∣∣(1− 1

n

)
· v1 +

(
1

2
− 1

n

)
· v2 + ...+

(
1

n− 1
− 1

n

)
· vn−1

∣∣∣∣
+
∣∣∣v2

2
+ ...+

vn
n

∣∣∣+ ...+
∣∣∣vn
n

∣∣∣
≤
∣∣∣∣1− 1

n

∣∣∣∣ · |v1|+
∣∣∣∣12 − 1

n

∣∣∣∣ · |v2|+ ...+

∣∣∣∣ 1

n− 1
− 1

n

∣∣∣∣ · |vn−1|

+

(
1

2
· |v2|+ ...+

1

n
· |vn|

)
+ ...+

1

n
· |vn|

=

(
1− 1

n

)
· |v1|+ ...+

(
1− 1

n

)
· |vn| =

(
1− 1

n

)
· ‖v‖1 ≤

(
1− 1

nX

)
· ‖v‖1,

where we used v1 + ...+ vn = 0 for the fourth equality and n ≤ nX for the last inequality.
Now by assumption v := h̄N−1

X (a − b) = hN−1
X (a) − hN−1

X (b) ∈
⊕

s∈sdB(X) R · s is of the
stated form, because ∑

s∈sdN
BX

(as − bs) = 1− 1 = 0.

Hence using nX = nsdBX = ... = nsdN
BX

, we can prove by induction that

∥∥hNX(a)− hNX(b)
∥∥

1
=
∥∥h̄NX(a− b)

∥∥
1
≤
(

1− 1

nX

)
·
∥∥h̄N−1

X (a− b)
∥∥

1

≤ ... ≤
(

1− 1

nX

)N
· ‖a− b‖1.

Since a, b ∈ |sdNBX| ⊂ [0, 1]sd
N
BX , we have ‖a − b‖1 ≤ 2. Moreover nX ≤ ]X, which

concludes the proof.
2
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Chapter 1. (Abstract) Simplicial complexes

Theorem 1.20 (Simplicial Approximation)
Let X and Y be simplicial complexes and suppose X is finite. Given a continuous map

between their geometric realizations |X| f−→ |Y |.
Then there is an N ≥ 0 and a simplicial map sdNBX

g−→ Y , such that f ◦ hNX and |g|
are homotopic.

Proof. The idea is to subdivide X sufficiently many times, such that the value of f alters
inside the realization of a simplex in Y , when moving between adjacent vertices in X.
Every y ∈ Y considered as an element 1 · y ∈ |Y | has a canonically defined environment
Uy := {a ∈ |Y |; ay > 0}. It is an open subset of |Y |, because Uy ∩ |F | ⊂ RF is open, for
all finite F ⊂ Y . Geometrically every element of Uy lies in the realization of a simplex
containing y. By Lemma 1.15 the space |X| is compact, as X is finite. Its topology comes
from the metric induced by the 1-norm on RX . So by Lemma 1.18 there is a Lebesgue
number δ > 0 for the open cover |X| =

⋃
y∈Y f

−1Uy. Let N > 0, such that 2·(1− 1
]X

)N < δ.

For every x ∈ sdNBX Lebesgue’s lemma provides an element g(x) ∈ Y such that

B<δ(h
N
X(x)) ⊂ f−1Ug(x).

We claim that this defines a simplicial map sdNBX
g−→ Y . Let s ∈ S(sdBX) and choose

x ∈ s. For every x′ ∈ s we have ‖hNX(x) − hNX(x′)‖1 < 2 · (1 − 1
]X

)N < δ by Lemma 1.19.

Hence hNX(x) ∈ B<δ(h
N
X(x′)) ⊂ f−1Ug(x′). In other words (fhNX(x))g(x′) > 0 or

g(x′) ∈ {y ∈ Y ; fhNX(x)y > 0} =: sx,

which is a simplex in Y , because fhNX(x) ∈ |Y |. As x′ ∈ s was arbitrary, we have proven
that g(s) ⊂ sx ∈ S(Y ), so g(s) ∈ S(Y ).

Similarly, for every a ∈ |sdNBX| we let s := {x ∈ sdNBX; ax > 0} ∈ S(sdNBX). Then the
same argument for a instead of x shows that g(s) ⊂ {y ∈ Y ; fhNX(a)y > 0} =: sa ∈ S(Y ),
which proves that |g|(a) and fhNX(a) lie in the geometric realization of the same simplex
sa. It follows that

H : [0, 1]× |sdNBX| −→ |Y |, (1− t) · fhNX(a) + t · |g|(a)

constitutes a well-defined homotopy from fhNX to |g|.
2

1.3 Products

In our abstraction process of avoiding topology, we would like to have the notion of a
homotopy between two simplicial maps.

1) We need a model for the interval. This may be given by the simplicial complex
I(1), whose geometric realization is |I(1)| = |∆1|. The Simplicial Approximation
Theorem 1.20 suggests that we may also need to consider its iterated subdivisions.

12



1.3. Products

2) We need the notion of a product of two simplicial complexes, which should be

compatible with geometric realization, i.e. the canonical map |X×Y | (πX ,πY )−→ |X|×|Y |
should be a homeomorphism.

There is a natural product construction.

Remark 1.21
The (categorial) product X × Y of two simplicial complexes X and Y is the simplicial
complex, whose set of vertices is the cartesian product X × Y and whose simplices are

S(X × Y ) = {∅ 6= p ⊂ s× t; s ∈ S(X), t ∈ S(Y )}.

The projections X
πX←− X×Y πY−→ Y are simplicial and are universal with this property.

This means that given two simplicial maps f and g there is a unique simplicial map (f, g)
fitting in the commutative diagram

Z
f

vv

∃!(f,g)
��

g

((
X X × YπX
oo

πY
// Y.

Remark 1.22
For two simplicial complexes X and Y the two projections induce a natural map

|X × Y | (|πX |,|πY |)−→ |X| × |Y |,

which is continuous by definition of the product topology.

Unfortunately this product does not have the desired properties as the following exam-
ple demonstrates.

Example 1.23
We have I(1)× I(1) = I(1× 1), because 1× 1 ∈ SI(1× 1).

(i) This means we have six 1-simplices, four 2-simplices

s1,1 := {(0, 0), (0, 1), (1, 0)}, s1,0 := {(0, 0), (0, 1), (1, 1)},
s0,1 := {(0, 0), (1, 0), (1, 1)}, s0,0 := {(0, 1), (1, 0), (1, 1)},

and moreover one 3-simplex.

(0, 1) (1, 1)

(0, 0) (1, 0)

The geometric realization |I(1) × I(1)| is homeomorphic to the standard 3-simplex
|∆3|, which is not homeomorphic to the product |I(1)| × |I(1)| = |∆1| × |∆1|.

13



Chapter 1. (Abstract) Simplicial complexes

(ii) However there is a simplicial subcomplex P ⊂ I(1)× I(1) with same vertices, such
that the composition |P | ↪−→ |I(1)× I(1)| −→ |I(1)| × |I(1)| is a homeomorphism.
Its top dimensional simplices are s1,0 and s0,1, which are precisely those simplices of
I(1)× I(1) being totally ordered by the product order.

(0, 1) // (1, 1)

(0, 0)

OO ;;

// (1, 0)

OO

We can generalize this product construction by giving simplicial complexes an orienta-
tion in form of a partial order.

Definition 1.24
An ordered simplicial complex X is a simplicial complex X together with a partial
order on its set of vertices, restricting to a total order on each of its simplices.

An ordered simplicial map between two ordered simplicial complexes X and Y is a
simplicial map X −→ Y preserving the order.

Proposition 1.25
The (categorial) product X × Y of two ordered simplicial complexes X and Y is the
subcomplex of their product of simplicial complexes, whose simplices are those being totally
ordered by the product order.

Then |X × Y | (|πX |,|πY |)−→ |X| × |Y | is a continuous bijection.
In particular it is a homeomorphism, if X and Y are finite.

Proof. By construction the decscribed categorial product is universal for ordered simplicial
maps. To see that the map (|πX |, |πY |) is bijective, we need another description for the
set |X|.

Given two ordered simplicial complexes A,B we let Simpc(A,B) denote the set of

ordered simplicial maps A
f−→ b, which are cocontinuous. This means that f preserves

suprema, i.e. sup f(U) = f(supU), for all subsets U ⊂ A. Now suppose B is finite and let
A := I(]0, 1]), that is the ordered simplicial complex, whose vertices are elements of the
half-open unit interval ]0, 1] with the canonical partial order. We define a natural bijection

φB : |B| ∼−→ Simpc(I(]0, 1]), B)

as follows. The image of an element a = a1 · x1 + ...+ an · xn ∈ |B| with x1 < ... < xn and
a1, ..., an > 0 is the map

φB(a) :]0, 1] −→ B, ]a1 + ...+ ai−1, a1 + ...+ ai] 3 v 7−→ xi.

Vice versa, for f ∈ Simpc(I(]0, 1]), B) there are elements a1, ..., an ∈]0, 1], such that
f(]0, 1]) = {f(a1) < ... < f(a1 + ... + an)} ∈ S(B). As f preserves suprema, we can find
maximal a1, ..., an ∈]0, 1] with this property. Since f(1) = f(a1 + ... + an), this implies
a1 + ...+ an = 1, and hence a1 · f(a1) + ...+ an · f(a1 + ...+ an) ∈ |B| is a unique preimage
for f under φB.

14



1.4. Collapsing subspaces

Now for finite X and Y we obtain a commutative square

|X × Y |
φX×Y o

��

(|πX |,|πY |) // |X| × |Y |
φX×φY o

��
Simpc(I(]0, 1]), X × Y )

((πX◦-),(πY ◦-))// Simpc(I(]0, 1]), X)× Simpc(I(]0, 1]), Y ).

As the product of ordered simplicial complexes is universal for cocontinuous simplicial
maps, the lower horizontal map and hence also the upper horizontal map is a bijection.
Again finiteness of X, Y and hence X×Y implies that |X×Y | and |X|× |Y | are compact
Hausdorff spaces by Lemma 1.15, so (|πX |, |πY |) is a homeomorphism by Lemma 1.16.

As before infinite X and Y may be written as the union of its finite subcomplexes and
the commutative square

|X × Y | (|πX |,|πY |) // |X| × |Y |

⋃
F⊂X,
G⊂Y,
finite

|F ×G| ∼ //
⋃
F⊂X,
G⊂Y,
finite

|F | × |G|

shows that (|πX |, |πY |) is a continuous bijection. In general the right equality only holds
as sets, because the topology of the union is finer than the product topology.

2

Remark 1.26
Every simplicial complex X can be ordered by choosing an arbitrary total order on its
underlying set of vertices.

(i) This does not lead to a functorial construction.

(ii) But given a simplicial map X
f−→ Y , by the order-extension principle we can

choose compatible total orders on X and Y , such that f becomes an oriented sim-
plicial map.

Remark 1.27
For every simplicial complex X, its barycentric subdivision sdBX is an ordered simplicial
complex via the inclusion order.

Every simplicial map induces an ordered simplicial map between the barycentric subdi-
visions.

1.4 Collapsing subspaces

Apart from the bad bevavior of products, simplicial complexes have another flaw. Namely
geometric realization does not commute with collapsing subspaces. We will demonstrate
this with an example.

15



Chapter 1. (Abstract) Simplicial complexes

Example 1.28
Consider the bounday subcomplex ∂I(1) ⊂ I(1), whose only simplices are the subsets of
cardinality 1.

(i) We have a homeomorphism |I(1)|/|∂I(1)| ∼= S1. So if |-| would commute with quo-
tients I(1)/∂I(1) would be a very simple model of the circle.

(ii) But the quotient simplicial complex I(1)/∂I(1) consists of a single point, so it does
not model the circle.

(iii) Obviously the problem cannot be fixed by introducing orientations.

As a consequence, also the constructions of mapping cylinders and cones are getting
more complicated.

16



2 Simplicial sets

2.1 Semi-simplicial sets

We introduced the notion of an abstract simplicial complex as a “construction plan” for
a geometric simplicial complex. It was easy to imagine the geometric realization, that a
simplicial complex is standing for. But we also saw that the notion behaves badly when
it comes to forming products and collapsing subspaces.

Instead of modeling simplicial complexes, we now try to model CW-complexes. We will
do this in a “simplicial way”, meaning that we will build up the CW-complex by glueing
simplices.

Remark 2.1
Let n > 0.

(i) Then there is a homeomorphism

|∂I(n)| = ∂|∆n| ∼−→ H ∩ Sn ∼= Sn−1, b+ x 7−→ x

‖x‖
,

where b = 1
n+1
· (1, ..., 1) ∈ |I(n)| = |∆n| is the barycenter of the standard n-simplex

and H ⊂ Rn+1 is the hyperplane of elements a ∈ Rn+1 with a0 + ...+ an = 0.

(ii) It extends to a homeomorphism

|I(n)| = |∆n| ∼−→ H ∩Dn+1 ∼= Dn, b+ tx 7−→ tx

‖x‖
, 0 ≤ t ≤ 1.

In particular the inclusion |∂I(n)| ↪−→ |I(n)| is homeomorphic to Sn−1 ↪−→ Dn.

Using this identification a CW-complex is the union of spaces C =
⋃
n≥0Cn, where C0

is a discrete set of points and Cn is obtained by glueing a set of standard n-simplices
along their boundary to Cn−1, for each n > 0. More precisely suppose Xn is an index-set
of n-simplices we want to glue, for each n ≥ 0. We consider Xn as a discrete space. We
have a homeomorphism j0 : X0×|I(0)| ∼−→ C0. Moreover we get Cn by glueing Xn×|I(n)|
to Cn−1 and identifying the boundaries along a certain map Xn × |∂I(n)| gn−→ Cn−1. This

17



Chapter 2. Simplicial sets

results in a commutative square

Xn × |∂I(n)|� _

��

gn // Cn−1� _

��
Xn × |I(n)| jn // Cn.

(2.1)

Now instead of working with arbitrary continuous maps gn, we want this map to be
“simplicial” in a certain sense. Let us take a closer look at the boundary ∂I(n).

Definition 2.2 (i) For n > 0 and 0 ≤ i ≤ n the i-th coface map is the unique

monotone injection n− 1
di

↪−→ n with i /∈ di(n− 1), i.e.

di : n− 1 ↪−→ n, k 7−→
{
k, 0 ≤ k < i,
k + 1, i ≤ k ≤ n− 1.

(ii) For 0 ≤ i ≤ n the i-th codegeneracy map is the unique monotone surjection

n+ 1
si

−� n with si(i) = si(i+ 1), i.e.

si : n+ 1 ↪−→ n, k 7−→
{
k, 0 ≤ k ≤ i,
k − 1, i < k ≤ n+ 1.

These unorthodox names will become clear later.

Remark 2.3
Under the homeomorphism |I(n)| ∼= |∆n| we have the following geometric description of
di and si, where 0 ≤ i ≤ n.

(i) |I(di)| : |I(n− 1)| −→ |I(n)| corresponds to the inclusion of the i-th face of the
standard n-simplex.

(ii) |I(si)| : |I(n+ 1)| −→ |I(n)| corresponds to the surjection identifiying the dimen-
sions i and i+ 1 of the n-simplex.

In particular we also get the description

|∂I(n)| =

∣∣∣∣∣ ⋃
0≤i≤n

diI(n− 1)

∣∣∣∣∣ =
⋃

0≤i≤n

|di|(|I(n− 1)|).

Using this description of |∂I(n)| we see that every map Xn × |∂I(n)| gn−→ Cn is the
union of the maps gn ◦ (id× |di|), where 0 ≤ i ≤ n. To make gn “simplicial”, we may use

the maps Xn−1 × |I(n− 1)| jn−1−→ Cn−1 and suppose the following diagram commutes

Xn × |I(n− 1)|

id×|di|
��

di×id // Xn−1 × |I(n− 1)|
jn−1

��
Xn × |∂I(n)| gn // Cn−1,

18



2.1. Semi-simplicial sets

with certain maps Xn
di−→ Xn−1, for 0 ≤ i ≤ n. In other words we assume that the map

gn is the union of the maps jn−1 ◦ (di× id). Under this assumption an induction on n ≥ 0
shows

Cn =
∐

0≤k≤n

Xk × |I(k)|

/
(di(x), a) ∼ (x, |di|(a)), x ∈ Xk, a ∈ |I(k − 1)|, 0 ≤ i ≤ k.

So far we did not care, wheather the maps jn−1 ◦ (di × id) are compatible to define the
map gn. For every 0 ≤ i < j ≤ n we have a commutative diagram

n− 2

dj−1

��

di // n− 1

dj

��
n− 1 di // n,

and djdi(n− 2) = didj−1(n− 2) = di(n− 1) ∩ dj(n− 1). In the explicit description of Cn
the map jn is the inclusion followed by the quotient map and we see that we need the
corresponding condition

didj = dj−1di, 0 ≤ i < j ≤ n. (2.2)

Definition 2.4
A semi-simplicial set or ∆-set is a collection of sets X = (Xn)n≥0, together with
so-called face maps

Xn
di−→ Xn−1, 0 ≤ i ≤ n,

satisfying (2.2).

A homomorphism of semi-simplicial sets X
f−→ Y is a collection of maps

Xn
fn−→ Yn, n ≥ 0,

such that di ◦ fn = fn−1 ◦ di, for all 0 ≤ i ≤ n.

Semi-simplicial sets were first introduced 1950 by Eilenberg-Zilber [? ], who immediately
realized that they still have a flaw. Namely, we are only able to glue an n-simplex by
identifying its boundary with a union of (n − 1)-simplices in Cn−1. But often we also
want to identify it with lower dimensional simplices (e.g. the simplest CW-model for the
n-sphere is given by glueing an n-simplex to a single point). We can come around this
problem by adding degenerate simplices toXn, which are formal n-simplices that in fact
stand for lower dimensional simplices. This means that some dimensions in their geometric
realizations coincide. Such degenerate simplices can be realized by also factoring out
along maps corresponding to the already introduced codegeneracy maps (cf. our explicit
description of Cn). So similarly to the face maps we are postulating the existence of
degeneracy maps

Xn
si−→ Xn+1, 0 ≤ i ≤ n.
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Chapter 2. Simplicial sets

Geometrically a simplex x ∈ Xn+1 lies in the image of the map si, if and only if the
dimensions i and i + 1 in its realization coincide. Of course the presence of degeneracy
maps involves a lot more relations similar to (2.2) and finally leads to the notion of
simplicial sets. Working with all these identities is a mess, but luckily there is a much
more compact definition in the language of category theory.

The careful reader may have noticed that, for each map di from dimension n − 1 to
dimension n, we required a map di in the opposite direction from dimension n to n − 1.
The same correspondence holds for si and si. The necessary relations for di were deduced
from the relations that hold for di and si. The reader familiar to category theory will
conclude that a simplicial set must be a contravariant Set-valued functor on a certain
category, whose objects are the standard n-simplices.

2.2 Categories

Definition 2.5
A category C consists of the following data.

• A class1 of objects Obj(C) (also denoted by C) and for two objects A,B ∈ C a set
of (homo-)morphisms C(A,B) (sometimes also denoted by HomC(A,B)), whose

elements will also be denoted by arrows A
f−→ B.

• For each object A ∈ C, there is a homomorphism idA ∈ C(A) := C(A,A), called the
identity on A.

• Moreover there are composition maps

C(B,C)× C(A,B) −→ C(A,C), (g, f) 7−→ g ◦ f,

satisfying the relations

h ◦ (g ◦ f) = (h ◦ g) ◦ f, f ◦ idA = f = idB ◦ f, A
f−→ B

g−→ C
h−→ D.

A functor C F−→ D between two categories C and D is given by the following data.

• A “map”2 between the classes of objects Obj(C) F−→ Obj(D).

• For each pair of objects A,B ∈ C, there is a map

C(A,B) −→ D(F (A), F (B)), f 7−→ F (f).

• It preserves the structure, i.e.

F (idA) = idF (A), F (g ◦ f) = F (f) ◦ F (g), A
f−→ B

g−→ C.

1Classes extend the notion of sets. We need this term to be able to talk about the class of all sets, which
cannot be a set itself. Further details about this problem can be found in any book about category
theory.

2A map between classes is defined in the same way as maps between sets.
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2.2. Categories

A natural transformation F
t−→ G between two functors C F,G−→ D is a family of

morphisms (F (A)
tA−→ G(A))A∈C inducing a commutative square

F (A)

F (f)
��

tA // G(A)

G(f)
��

F (B)
tB // G(B),

for all X, Y ∈ C and f ∈ C(A,B).

Example 2.6
The following are categories.

(i) The category Set has the class of sets as objects and for two sets X, Y ∈ Set, the
homomorphisms Set(X, Y ) are the maps from X to Y . Composition and identities
are defined in the usual sense.

(ii) Similarly we have T op the category of topological spaces with continuous maps as

homomorphisms. There is a functor T op U−→ Set, which assigns to a space its
underlying set. It is called a forgetful functor, because it “forgets” the topology.

(iii) Similarly we have the category Grp of groups, Ring of rings, ... All these “algebraic”
categories have an obvious forgetful functor U to the category Set.

(iv) The category Simp of simplicial complexes, whose morphisms are simplicial maps.

Next to the forgetful functor Simp U−→ Set we already constructed the geometric

realization functor Simp |-|−→ T op.

(v) We will also write CAT for the collection of categories and CAT(C,D) for the class
of functors from C to D, which are composed in the canonical manner.

However some attention is required here: Similarly as the collection of sets is not a
set, the collection of categories is not a class. In particular CAT is not a category
in the sense we just defined it.

Definition 2.7
A category is called small, if the class of objects is actually a set.

We call Cat the category of small categories with functors as morphisms.

Remark 2.8
Let I and C be categories and suppose I is small.

Then the class of functors CAT(I, C) becomes a category, whose morphisms are natural
transformations.

Definition 2.9
For a category C its opposite category Cop is the category with the same objects and
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Chapter 2. Simplicial sets

morphisms
Cop(A,B) := C(B,A), A,B ∈ Cop.

The composition is induced by the composition in C:

Cop(B,C)× Cop(A,B) −→ Cop(A,C), (g, f) 7−→ g ◦ f := f ◦C g.

A functor Cop F−→ D is also called a contravariant functor from C to D.

The most important example of contravariant functors are the Hom-functors. An ex-
ample appears in linear algebra, when assigning to a vector space its dual.

Proposition 2.10
Every C ∈ C ∈ CAT induces a functor

C(-, C) : Cop −→ Set, B 7−→ C(B,C), C(B,B′) 3 f 7−→ C(f, C) := (- ◦ f).

The construction is natural in C, meaning that (for small C) it induces a functor

C −→ CAT(Cop,Set), C 7−→ C(-, C), C(C,C ′) 3 f 7−→ C(-, f) := (f ◦ -).

Proof. Let C ∈ C.

• For every B ∈ C we have C(-, C)(idB) = idC(B,C), because

C(-, C)(idB)(f) = f ◦ idB = f = idC(B,C)(f), f ∈ C(B,C).

• Moreover for morphisms B
f−→ B′

g−→ B′′ we have by associativity

C(-, C)(g ◦ f) = (- ◦ (g ◦ f)) = ((- ◦ g) ◦ f) = C(-, C)(g) ◦ C(-, C)(f).

This proves that C(-, C) is a functor.
For the second statement let f ∈ C(C,C ′). We need to check that f defines a natural

transformation
C(-, f) := (- ◦ f) : C(-, C) −→ C(-, C ′).

This holds, because for every g ∈ C(B,B′) the diagram below commutes

C(B′, C)

C(g,C)=(-◦g)
��

C(B′,f)=(f◦-) // C(B′, C ′)
(-◦g)=C(g,C′)
��

C(B,C)
C(B,f)=(f◦-) // C(B,C ′),

because again composition is associative.
2

Probably the most important Lemma in category theory is the following one by Yoneda.
It also appears in every (modern) algebraic geometry lecture.
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2.2. Categories

Lemma 2.11 (Yoneda)
For every C ∈ C ∈ CAT and F ∈ CAT(Cop,Set), there is a bijection

d : CAT(Cop,Set)(C(-, C), F )
∼−→ F (C), t 7−→ tC(idC).

It is natural in F and C.

Proof. Every x ∈ F (C) induces a natural transformation e(x) by setting

e(x)B : C(B,C) −→ F (B), f 7−→ F (f)(x).

It remains to check that e(x) is a natural transformation, that e and d are inverse to each
other and that d is natural in F and C. Although we will provide a full proof here, we
advise the reader to do this on his own as an exercise.

Using that F is a functor, for g ∈ C(B,B′) and f ∈ C(B′, C) we get

e(x)B ◦ C(g, C)(f) = e(x)B(f ◦ g) = F (f ◦ g)(x) = F (g) ◦ F (f)(x) = F (g) ◦ e(x)B′(f),

which proves that e(x)B ◦ C(g, C) = F (g) ◦ e(x)B′ , so e(x) is in fact natural. Both con-
structions are inverse to each other:

• (d ◦ e)(x) = e(x)C(idC) = F (idC)(x) = x, for all x ∈ F (C),

• (e ◦ d)(t) = t, for all t ∈ CAT(Cop,Set)(C(-, C), F ), because for all f ∈ C(B,C)
naturality of t implies

(e ◦ d)(t)B(f) = e(d(t))B(f) = e(tC(idC))B(f) = F (f)(tC(idC)) = (F (f) ◦ tC)(idC)

= (tB ◦ C(f, C))(idC) = tB(C(f, C)(idC)) = tB(idC ◦ f) = tB(f).

Next we prove that d is natural in F and C.

• The right term is a functor in F

CAT(Cop,Set) −→ Set, F 7−→ F (C),

sending a natural transformation F
h−→ F ′ to F (C)

hC−→ F ′(C). Moreover the left
term is a functor in F by Proposition 2.10. To check that d is natural in F , we need
to prove, that

dF ◦ CAT(Cop,Set)(C(-, C), h) = hC ◦ dC .
But this holds, because for every t ∈ CAT(Cop,Set)(C(-, C), F ), we have

dF ◦ CAT(Cop,Set)(C(-, C), h)(t) = dF (h ◦ t) = (h ◦ t)C(idC) = (hC ◦ tC)(idC)

= hC(tC(idC)) = hC(dC(t)) = hC ◦ dC(t).

• The right term is a functor in C, because F is a functor. Moreover the left term
is a functor in C by Proposition 2.10 applied to C ∈ C and then to C(-, C) ∈
CAT(Cop,Set)op. To check that d is natural in C, we need to prove, that

dC ◦ CAT(Cop,Set)(C(-, g), F ) = F (g) ◦ tC , g ∈ C(C,C ′).

23



Chapter 2. Simplicial sets

But for t ∈ CAT(Cop,Set)(C(-, C), F ), we have

dC ◦ CAT(Cop,Set)(C(-, g), F )(t) = dC(CAT(Cop,Set)(C(-, g), F )(t)) = dC(t ◦ C(-, g))

= (t ◦ C(-, g))C(idC) = (tC′ ◦ C(-, g)C)(idC)

= tC′(C(C, g)(idC)) = tC′(g ◦ idC) = tC′(g)

= tC′(C(g, C)(idC′)) = (tC′ ◦ C(g, C))(idC′)

= (F (g) ◦ tC)(idC′) = (F (g) ◦ dC)(t).

2

2.3 Simplicial sets

Definition 2.12
The simplex category ∆ is defined as the category of the finite totally ordered sets
n = {0 < 1 < ... < n}, for n ≥ 0, whose morphisms are the monotone maps.

Remark 2.13
Every f ∈ ∆(m,n) can be factored as

f = dip ◦ ... ◦ di1 ◦ sj1 ◦ ... ◦ sjq ,

where {i1 < ... < ip} := n\f(m) and {j1 < ... < jq} := {j ∈ m; f(j) = f(j + 1)}.
In particular ∆ is generated by the maps di and sj. It can be shown that ∆ is completely

determined by di, sj and the following cosimplicial identities

(i) djdi = didj−1, i < j,

(ii) sjdi =


disj−1, i < j,
id, i = j, j + 1,
di−1sj, i > j + 1,

(iii) sjsi = sisj+1, i ≤ j.

Definition 2.14
The category of simplicial sets is defined as the functor category sSet := CAT(∆op,Set).

Remark 2.15
For a simplicial set X we will write

Xn := X(n), di := X(di), si := X(si), 0 ≤ i ≤ n.

For a map f ∈ ∆(m,n) we will also write f ∗ := X(f).

(i) Remark 2.13 shows that a simplicial set is completely determined by this data satis-
fying the simplicial identities, dual to the cosimplicial identities of Remark 2.13.

(ii) Similarly the category of semi-simplicial sets is the functor category CAT(∆op
inj,Set),

where ∆inj ≤ ∆ is the subcategory with same objects but only the injective maps in
∆ as morphisms.
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2.4 Geometric realization

Definition 2.16
The geometric realization of a simplicial set X is defined as the topological space

|X| :=
∐
n≥0

Xn × |I(n)|

/
(X(f)(x), a) ∼ (x, |I(f)|(a)), x ∈ Xn, a ∈ |I(m)|, f ∈ ∆(m,n),

carrying the final topology with respect to the maps (Xn × |I(n)| −→ |X|)n≥0.

Remark 2.17
Every f ∈ sSet(X, Y ) induces a continuous map |f | ∈ T op(|X|, |Y |).

In particular we get a functor sSet |-|−→ T op.

Definition 2.18
Let X ∈ sSet and n ≥ 0.

(i) A simplex x ∈ Xn is called nondegenerate, if x /∈ σXn :=
⋃n−1
i=0 si(Xn−1).

(ii) We denote by X̃n = Xn\σXn the set of nondegenerate n-simplices.

Lemma 2.19 (Eilenberg-Zilber)
Let X ∈ sSet.

Then for every x ∈ Xn there is a unique nondegenerate y ∈ Xm and a unique monotone

surjection n
s
−� m, such that x = s∗(y).

Proof. For every x ∈ Xn we consider the set of pairs y ∈ Xm and n
s
−� m with s∗(y) = x.

This set is non-empty, as it contains (y, s) := (x, idn). The set of appearing dimensions
m is bounded below by 0, so we can find a pair (y, s) with minimal m. Then y must be
nondegenerate, because otherwise we would find a pair of lower dimension.

Now suppose (y′, s′) is another pair of minimal dimension m. We take a section d for s
(i.e. a ∆-morphism d with sd = id) and compute

y = (sd)∗(y) = d∗s∗(y) = d∗(x) = d∗(s′)∗(y′) = (s′d)∗(y′).

Because y is nondegenerate s′d ∈ ∆(m,m) is injective, hence s′d = id. For every k ∈ n
we find a section d such that ds(k) = k. As observed above d is also a section for s′ and
so s′(k) = s′ds(k) = s(k) implying s = s′.

2

Proposition 2.20
For every X ∈ sSet the canonical inclusion induces a continuous bijection (not a homeo-
morphism!)

βX :
∐
n≥0

X̃n × (|I(n)|\|∂I(n)|) ∼−→ |X|.
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Proof. For (x, a) ∈ Xn × |I(n)| we let m
d

↪−→ n be the unique monotone injection with
image

d(m) = {i ∈ n; ai 6= 0}.

Then the tuple of nonzero a-coordinates defines an element b ∈ |I(m)| with |I(d)|(b) = a.
Moreover by Eilenberg-Zilber’s Lemma 2.19 there is a unique nondegenerate y ∈ X` and

a unique m
s
−� `, such that d∗(x) = s∗(y). In the geometric realization |X| we have

(x, a) = (x, |I(d)|(b)) ∼ (d∗(x), b) = (s∗(y), b) ∼ (y, |I(s)|(b)).

By definition of |I(s)|, the coordinates of |I(s)|(b) are sums of coordinates of b. So bi > 0,
for all i ∈ m, implies that also |I(s)|(b)i > 0, for all i ∈ `. Equivalently |I(s)|(b) /∈ |∂I(`)|.
This shows that βX is surjective and uniqueness of d, y and s implies that (x, a) 7−→
(y, |I(s)|(b)) defines an inverse map for βX .

2

This shows that the n-cells in the geometric realization |X| bijectively correspond to
the nondegenerate n-simplices X̃n.

2.5 Adjunctions

Adjunctions play an important role, whenever one wants to compare two different cate-
gories. In this section we will give the definition and some basic facts.

Definition 2.21
An adjunction consists of two functors G : C −→←− D : F and a bijection

C(F (X), Y ) = D(X,G(Y )),

which is natural in X and Y .

(i) The functor F is called the left adjoint to G.

(ii) The functor G is called the right adjoint to F .

Proposition 2.22
For an adjunction C(F (X), Y ) = D(X,G(Y )), we define

• ηX ∈ D(X,GF (X)) as the element corresponding to idF (X) ∈ C(F (X)).

• εY ∈ C(FG(Y ), Y ) as the element corresponding to idG(Y ) ∈ D(G(Y )).

Then η and ε are natural transformations and the adjunction bijection is given by

C(F (X), Y )
∼−→←− D(X,G(Y )),

f 7−→ G(f) ◦ ηX ,
εY ◦ F (g)←− [ g.
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Proof. We denote the natural bijection of the adjunction by φ, i.e.

φX,Y : C(F (X), Y )
∼−→ D(X,G(Y )), f 7−→ φ(f).

Naturality of φ can be expressed as follows:

(i) For all f ∈ C(Y, Y ′) and g ∈ C(F (X), Y ), we have

φX,Y ′(f ◦ g) = (φX,Y ◦ C(X, f))(g) = (D(X,G(f)) ◦ φX,Y ′)(g) = G(f) ◦ φX,Y ′(g).

(ii) For all f ∈ C(F (X ′), Y ) and g ∈ D(X,X ′), we have

φX,Y (f ◦ F (g)) = (φX,Y ◦ C(F (g), Y ))(f) = (D(g,G(Y )) ◦ φX′,Y )(f) = φX′,Y (f) ◦ g.

For all g ∈ D(X,X ′) this implies

GF (g) ◦ ηX = GF (g) ◦ φX,F (X)(idF (X)) = φX′,F (X)(F (g) ◦ idF (X))

= φX′,F (X)(idF (X′) ◦ F (g)) = φX′,F (X′)(idF (X′)) ◦ g = ηX′ ◦ g.

So η is natural. For all f ∈ C(F (X), Y ) we have by (i)

φX,Y (f) = G(f) ◦ φX,F (X)(idF (X)) = G(f) ◦ ηX .

In the same way one proves that ε is natural and that φ−1
X,Y = εY ◦ F (-).

2

Proposition 2.23
Given two functors G : C −→←− D : F and natural transformations idD

η−→ GF and
FG

ε−→ idC, such that

(i) εF (X) ◦ F (ηX) = idF (X), for all X ∈ D,

(ii) G(εY ) ◦ ηG(Y ) = idG(Y ), for all Y ∈ C.

Then η and ε form an adjunction

C(F (X), Y )
∼−→←− D(X,G(Y )),

f 7−→ G(f) ◦ ηX ,
εY ◦ F (g)←− [ g.

Proof. For every f ∈ C(F (X), Y ) naturality of ε and (i) implies

εY ◦ F (G(f) ◦ ηX) = εY ◦ FG(f) ◦ F (ηX) = f ◦ εF (X) ◦ F (ηX) = f.

Similarly for every g ∈ D(X,G(Y )) naturality of η and (ii) implies

G(εY ◦ F (g)) ◦ ηG(X) = G(εY ) ◦GF (g) ◦ ηG(X) = G(εY ) ◦ ηY ◦ g = g.

For all f ∈ C(Y, Y ′) and g ∈ C(F (X), Y ), we have

G(f ◦ g) ◦ ηX = G(f) ◦G(g) ◦ ηX ,

which by (i) of the proof of Proposition 2.22 (i) is the same as saying that the map
G(-) ◦ ηX is natural. Similarly one checks that εY ◦ F (-) is natural. As the two maps are
inverse to each other, both are natural in X and Y .

2
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Definition 2.24
Given an adjunction C(F (X), Y ) = D(X,G(Y )).

(i) The natural transformation η is called the unit of the adjunction.

(ii) The natural transformation ε is called the counit of the adjunction.

(iii) If η and ε are both natural isomorphisms, then the adjunction is called an equiva-
lence (adjunction) between the categories C and D.

(iv) Two categories are called equivalent, if there is an equivalence adjunction between
them.

Example 2.25
Forgetful functors usually have a left adjoint:

(i) R-Mod(
⊕

x∈X R · x, Y ) = Set(X,U(Y )).

(ii) T op(D(X), Y ) = Set(X,U(Y )),

where D(X) is the set X with the discrete topology (every subset is open).

In this setting U also has a right adjoint, i.e.

Set(U(X), Y ) = T op(X, I(Y )),

where I(X) is the set X with the indiscrete topology (∅ and X are the only open
subsets).

(iii) Similarly we have ajunctions (cf. Remark 1.2)

Simp(D(X), Y ) = Set(X,U(Y )), Set(U(X), Y ) = Simp(X, I(Y )).

(iv) Similarly we have an adjunction

Cat(D(X), Y ) = Set(X,U(Y )),

where U assigns to each small category its set of objects and D(X) is the discrete
category with objects Obj(D(X)) = X and only the identities as morphisms.

2.6 The singular nerve

It turns out that the geometric realization functor sSet |-|−→ T op has a right adjoint,
which appears in every lecture on algebraic topology.

Definition 2.26
Let X be a topological space.
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The singular nerve of X is defined as the composite functor

S(X) : ∆op Uop

−→ Setop Iop

−→ Simpop |-|−→ T opop T op(-,X)−→ Set.

By construction it is a simplicial set, whose n-simplices are the singular n-simplices

Sn(X) = T op(|I(n)|, X) = T op(|∆n|, X), n ≥ 0.

Remark 2.27
The singular nerve is used to define singular homology.

(i) Recall that the singular n-chains are defined as the abelian group

Cn(X,Z) :=
⊕

σ∈Sn(X)

Z · σ.

It becomes a chain complex by defining a differential Cn(X,Z)
d−→ Cn−1(X,Z) via

d(
∑

σ∈Sn(X)

aσ · σ) =
∑

0≤i≤n

(−1)i ·
∑
σ

aσ · (σ ◦ |I(di)|)︸ ︷︷ ︸
di(σ)=

.

(ii) The n-th singular homology group of X is defined as the n-th homology group
of the singular chain complex C∗(X,A), i.e.

Hn(X,Z) = ker(Cn(X,Z)
d−→ Cn−1(X,Z))/d(Cn+1(X,Z)), n ≥ 0.

Proposition 2.28

The singular nerve induces a functor T op S−→ sSet. Together with the geometric realiza-
tion an adjunction T op(|X|, Y ) = sSet(X,S(Y )).

Proof. Recall that the geometric realization was defined as

|X| :=
∐
n≥0

Xn × |I(n)|

/
(X(f)(x), a) ∼ (x, |I(f)|(a)), x ∈ Xn, a ∈ |I(m)|, f ∈ ∆(m,n).

For every g ∈ T op(|X|, Y ) and every n ≥ 0, we get a map

φX,Y (g)n : Xn −→ T op(|I(n)|, Y ), x 7−→ g(x, -).

By construction of the geometric realization this defines a homomorphism of simplicial
sets, because for every f ∈ ∆(m,n) and x ∈ Xn we have

φX,Y ◦ f ∗(x) = g(f ∗(x), -) = g(x, |I(f)|(-)) = g(x, -) ◦ |I(f)| = f ∗ ◦ φX,Y (x).

Vice versa every t ∈ sSet(X,S(Y )) glues to a map

ψX,Y (f) : |X| −→ Y, Xn × |I(n)| 3 (x, a) 7−→ tn(x)(a),

because for every f ∈ ∆(m,n) we have

tn(f ∗(x))(a) = (tn ◦ f ∗)(x)(a) = (f ∗ ◦ tm)(x)(a) = (tm(x) ◦ |I(f)|)(a) = tm(x)(|I(f)|(a)).

By construction φX,Y and ψX,Y are inverse to each other and natural in X and Y .
2
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Remark 2.29
The definition of H∗ can be extended to arbitrary simplicial sets X ∈ sSet.

• The relation between simplicial sets and chain complexes will be studied in greater
detail later on.

• One might further study the map H∗(X,Z) −→ H∗(|X|,Z) induced by the adjunction

unit X
ηX−→ S(|X|). It can be proven, that it is a natural isomorphism. We will deduce

this from the Quillen equivalence between the model categories T op and sSet.

2.7 Isomorphisms, monomorphisms and

epimorphisms

Definition 2.30
Let C be a category and f ∈ C(B,C) a morphism.

(i) f is called a retraction, if there is a morphism g ∈ C(C,B) with fg = idC.

(ii) f is called a section, if there is a morphism g ∈ C(C,B) with gf = idB.

(iii) f is called an isomorphism, if there is a morphism g ∈ C(C,B) with gf = idB
and fg = idA.

(iv) f is called an epi(-morphism), if gf = hf implies g = h, for all g, h ∈ C(C,D).

Epimorphisms are denoted by arrows B
f
−� C.

(v) f is called a mono(-morphism), if fg = fh implies g = h, for all g, h ∈ C(A,B).

Monomorphisms are denoted by arrows B
f

↪−→ C.

Example 2.31 (i) In the categories Set, T op, Grp, Simp the monomorphisms are pre-
cisely the injective homomorphisms.

(ii) In the category Set and Grp the epimorphisms are precisely the surjective homo-
morphisms.

(iii) Every surjective continuous map is a an epimorphism in the category of Hausdorff
spaces.

The converse is false, e.g. the inclusion of the subspace Q ↪−→ R is a non-surjective
epimorphism.

(iv) Every surjective ring homomorphism is an epimorphism in the category Ring of
rings.

Again the converse is false, e.g. the homomorphism Z ↪−→ Q is a non-surjective
epimorphism.
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Remark 2.32
Let C be a category.

(i) Every retraction is an epimorphism.

(ii) Every section is a monomorphism.

(iii) Every monomorphic retraction is an isomorphism.

(iv) Every epimorphic section is an isomorphism.

Remark 2.33
Let C be a category and f ∈ C(B,C) a morphism.

(i) If C(-, B)
C(-,f)−→ C(-, C) is a natural bijection, then f is a monomorphic retraction.

(ii) If C(C, -) C(f,-)−→ C(B, -) is a natural bijection, then f is an epimorphic section.

In particular in both cases f is an isomorphism by Remark 2.32.

2.8 Simplicial standard simplices

Definition 2.34
For m ≥ 0 the simplicial standard m-simplex is defined as the simplicial set

∆m := ∆(-,m) ∈ sSet.

Proposition 2.35
There is a natural homeomorphism

em : |∆m| ∼−→ |I(m)|, ∆m
n × |I(n)| 3 (f, a) 7−→ |I(f)|(a), m ∈ ∆.

Proof. Instead of working directly with the geometric realization we will prove this by
using category theory. Let Y ∈ T op and consider the compostion c

T op(|I(m)|, Y )
T op(em,Y )−→ T op(|∆m|, Y )

φ∆m,Y−→ sSet(∆m, S(Y ))
d−→ Sm(Y ) = T op(|I(m)|, Y ),

where the map in the middle is the adjunction bijection of Proposition 2.28 and the map
on the right is Yoneda’s isomorphism of Lemma 2.11. For every g ∈ T op(|I(m)|, Y ) we
have by definition of the three maps

(d ◦ φ∆m,Y ◦ T op(em, Y ))(g) = (d ◦ φ∆m,Y )(g ◦ em) = φ∆m,Y (g ◦ em)m(idm)

= (g ◦ em)(idm, -) = g ◦ |I(idm)| = g.

This proves that c equals the identity. Since φ∆m,Y and d are bijections, also T op(em, Y )
is a bijection. Remark 2.33 implies that em is an isomorphism in T op, which is a homeo-
morphism. By the usual arguments e is natural in m ∈ ∆.

2
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2.9 Limits and colimits

Definition 2.36
Let I

X−→ C be a functor.

(i) A cone on X is a family of morphisms (C
ci−→ X(i))i∈I , such that

X(f) ◦ ci = cj, for all f ∈ I(i, j).

(ii) A limit for X is a universal cone (limX
πi−→ X(i))i∈I . That is, for every other

cone (C
ci−→ X(i))i∈I there is a unique morphism C

c−→ limX, such that

πi ◦ c = ci, for all i ∈ I.

Another common notation for the limit object is lim←−
i∈I

X(i) := lim
i∈I

X(i) := limX.

(iii) Dually a cocone on X is a family of morphisms (X(i)
ci−→ C)i∈I , such that

cj ◦X(f) = ci, for all f ∈ I(i, j).

(iv) A colimit for X is a universal cocone (X(i)
ιi−→ colim X)i∈I . That is, for every

other cocone (X(i)
ci−→ C)i∈I there is a unique morphism colim X

c−→ C, such that

c ◦ ιi = ci, for all i ∈ I.

Another common notation for the colimit object is colim
i∈I

X(i) := colim
i∈I

X(i) :=

colim X.

Remark 2.37
Let I

X−→ C be a functor.

(i) In general X may not have a limit or colimit.

(ii) If a limit/colimit of X exists, it is unique up to unique isomorphism.

(iii) Considering X as a functor Iop Xop

−→ Cop we see that every limit/cone for Xop can
be considered as a colimt/cocone for X.

There is a canonical construction for limits and colimits of Set-valued functors.

Proposition 2.38
For X ∈ CAT(I,Set) with small I ∈ Cat, the following holds.

(i) A limit of X is given by

limX :=

{
x ∈

∏
i∈I

X(i); X(f)(xi) = xj, ∀f ∈ I(i, j)

}
.

The map limX
πi−→ X(i) is the projection onto the factor X(i), for each i ∈ I.
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(ii) A colimit of X is given by

colim X :=
∐
i∈I

X(i)

/
x ∼ X(f)(x), x ∈ X(i), f ∈ I(i, j).

The map X(i)
ιi−→ colim X is the map induced by the inclusion of the disjoint

summand X(i), for each i ∈ I.

Proof.

(i) By construction (limX
πi−→ X(i))i∈I is a limit cone for X. Given another cone

(C
ci−→ X(i))i∈I we can define

c : C −→ limX, x 7−→ (ci(x))i∈I .

Then πi ◦ c = ci, for all i ∈ I, which also implies the uniqueness of c.

(ii) Again by construction (X(i)
ιi−→ colim X)i∈I is a colimit cone. Given another cocone

(X(i)
ci−→ C)i∈I the map

c : colim X −→ C, X(i) 3 x 7−→ ci(x),

is well-defined. Again uniqueness of c follows from the condition ci = c ◦ ιi, for all
i ∈ I.

2

Corollary 2.39
For X ∈ CAT(I, T op) with small I ∈ Cat, the following holds.

(i) A limit limX is given as the Set-limit together with the initial topology, which in
this case is the subspace topology of the product topology.

(ii) A colimit colim X is given as the Set-limit together with the final topology with
respect to the inclusions.

Definition 2.40
Let C ∈ CAT and S ∈ Set. Like in Example 2.25 a family of objects (Xs)s∈S ∈ CS
corresponds to a functor

X ∈ CAT(D(S), C) = Set(S,Obj(C)) = CS.

(i)
∏

s∈S Xs := limX is called a product over the set S.

(ii)
∐

s∈S Xs := colim X is called a coproduct over the set S.

Consider the empty functor D(∅) X−→ C.

(i) ∗ := limX is called a terminal or final object in C.
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(ii) ∅ := colim X is called an initial or cofinal object in C.

Remark 2.41
From the explicit construction of limits and colimits in Set, we see that the notion of
product, coproduct, ∗ and ∅ has the usual meaning.

Remark 2.42
Let I ∈ Cat and t ∈ CAT(I, C)(X, Y ).

(i) Given limits limX and limY , the universal property of limY applied to the cone

(limX
πi−→ X(i)

ti−→ Y (i))i∈I yields a unique lim t ∈ C(limX, limY ) with πi◦lim t =
ti ◦ πi, for all i ∈ I.

Note that the uniqueness implies:

a) lim idX = idlimX , for all X ∈ CAT(I,X).

b) lim(s ◦ t) = lim s ◦ lim t, for natural transformations X
t−→ Y

s−→ Z.

(ii) Suppose every functor I
X−→ C has a constructible limit limX. That is a canonical

construction of the limit for each functor X (like e.g. we have for the category Set)3.

Then the universal property for limits can be expressed as an adjunction

CAT(I, C)(constX, Y ) = C(X, limY ),

where

• const is the functor, sending an object X to the constant functor

constX : I −→ C, i 7−→ X, I(i, j) 3 f 7−→ idX .

• lim is the functor (by (i)), sending a functor Y ∈ CAT(I, C) to its (canonical)
limit.

The subsequent Proposition shows that limits and colimits of functors targetting at
functor categories can be constructed objectwise. Together with Proposition 2.38 this
provides a general construction for limits and colimits of sSet-valued functors.

Proposition 2.43

Let I, J ∈ Cat be small categories and C be an arbitrary category. Let I
X−→ CAT(J, C)

and consider the functors

Xj : I −→ C, i 7−→ X(i)(j), j ∈ J.

Then the following holds.

3Often it is assumed that every limit/colimit is constructible, which is implied by the axiom of choice
for classes. If you feel uncomfortable with that, note that in most cases the existence of limits/colimits
in a given category is verified by giving an explicit construction. So existence of limits is obtained by
proving the existence of constructible limits
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2.10. Preservation of (co-)limits

(i) If Xj has a limit limXj, for each j ∈ J , then X has a limit in CAT(J, C), given by

L : J −→ C, j 7−→ limXj, J(j, j′) 3 f 7−→ lim f.

(ii) If Xj has a colimit colim Xj, for each j ∈ J , then X has a colimit in CAT(J, C),
given by

L : J −→ C, j 7−→ colim Xj, J(j, j′) 3 f 7−→ colim f.

Proof.

(i) By Remark 2.42 L is a functor and (L
πi−→ X(i))i∈I is a cone of functors J −→

C. Given another cone of functors (C
ci−→ X(i))i∈I , we get unique morphisms

(limXj
dj−→ C(j))j∈J being compatible with the projections (L

πi−→ X(i))i∈I . Unique-
ness implies that (dj)j∈J defines a natural transformation d ∈ CAT(J, C)(L,C) and
that it is unique with the property πi ◦ d = ci, for all i ∈ I. We conclude that
(L

πi−→ X(i))i∈I is a limit cone for X.

(ii) This is dual to (i), i.e. by (i) we can construct a limit for

Xop : Iop −→ CAT(J, C)op = CAT(Jop, Cop),

which then will be a colimit for X.

2

2.10 Preservation of (co-)limits

Definition 2.44
Let F ∈ CAT(C, D) be a functor.

(i) We say F preserves limits, if for each functor I
X−→ C having a limit limX, the

cone (F (limX)
F (πi)−→ F (X(i)))i∈I is a limit cone for F ◦X.

(ii) We say F preserves colimits, if for each functor I
X−→ C having a colimit

colim X, the cocone (F (X(i))
F (ιi)−→ F (colim X))i∈I is a colimit cocone for F ◦X.

Remark 2.45
Given two functors I

X−→ C F−→ D.

(i) If there are limits for X and F ◦ X, then the universal property for lim(F ◦ X)

applied to the cone (F (limX)
F (πi)−→ F (X(i)))i∈I induces a unique map

F (limX) −→ lim(F ◦X).

It is an isomorphism, if and only if F preserves limits.
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(ii) If there are colimits for X and F ◦X, then the universal property for colim (F ◦X)

applied to the cocone (F (X(i))
F (ιi)−→ F (colim X))i∈I induces a unique map

colim (F ◦X) −→ F (colim X).

It is an isomorphism, if and only if F preserves colimits.

Proposition 2.46
For a functor X ∈ CAT(I, C) the following holds.

(i) An arbitrary cone (L
pi−→ X(i))i∈I for X is a limit cone for X, if and only if(

C(C,L)
C(C,pi)−→ C(C,X(i))

)
i∈I

is a limit cone, for all C ∈ C.

(ii) An arbitrary cocone (X(i)
ji−→ L)i∈I for X is a colimit cocone for X, if and only if(

C(X(i), C)
C(ji,C)−→ C(L,C)

)
i∈I

is a colimit cocone, for all C ∈ C.

In particular hom-functors preserve (co-)limits.

Proof.

(i) Consider the canonical map

φC : C(C,L) −→ lim C(C,X) =

{
c ∈

∏
i∈I

C(C,X(i)); X(f) ◦ ci = cj, ∀f ∈ I(i, j)

}
,

c 7−→ (c ◦ pi)i∈I ,

where the equality on the right follows from the construction of the Set-limit in
Proposition 2.38. By definition of a cone the elements of the right object are cones
with source C. Hence by definition of a limit cone the following are equivalent:

• (L
pi−→ X(i))i∈I is a limit cone.

• The map φC is bijective, for all C ∈ C.

•
(
C(C,L)

C(C,pi)−→ C(C,X(i))
)
i∈I

is a limit cone, for all C ∈ C.

(ii) This follows from (i) applied to Iop Xop

−→ Cop using Remark 2.37.

2

Corollary 2.47
For an adjunction C(F (X), Y ) = D(X,G(Y )) the following holds.

(i) G preserves limits.4

4Preservation of limits is a strong criterion for a functor being a right adjoint. Freyd’s adjoint functor
Theorem states that almost every functor preserving limits has a left adjoint. As we will not need it
here, for a precise formulation the reader again is advised to books about category theory.
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2.10. Preservation of (co-)limits

(ii) F preserves colimits.

Proof.

(i) Given a limit cone (limY
πi−→ Y (i))i∈I , Proposition 2.46 implies that(

C(F (X), limY )
C(F (X),πi)−→ C(F (X), Y (i))

)
i∈I

is a limit cone, for all X ∈ D. Using the adjunction bijection, it is isomorphic to the
cone (

D(X,G(limY ))
D(X,G(πi))−→ D(X,G(Y (i)))

)
i∈I

,

which is therefore also a limit cone, for all X ∈ D. Equivalently (G(limY )
G(πi)−→

G(Y (i)))i∈I is a limit cone by Proposition 2.46 again.

(ii) This is dual to (i).

2

Given a functor J
X−→ CAT(I, C), where I, J ∈ Cat and C has constructible limits. Then

by Remark 2.42 the limit induces a right adjoint functor CAT(I, C) limI−→ C and using that
limits in functor categories are computed degreewise by Proposition 2.43 we get a natural
isomorphism

lim
i∈I

lim
j∈J

X(j)(i) = lim
I

(lim
j∈J

X(j))
∼−→ lim

j∈J
(lim
I
X)(j) = lim

j∈J
lim
i∈I

X(j)(i).

Dually also colimits preserve colimits. One might wonder, if also the natural transforma-
tion

colim
j∈J

lim
i∈I

X(j)(i) = colim
j∈J

(lim
I
X)(j) −→ lim

I
(colim

j∈J
X(j)) = lim

i∈I
colim
j∈J

X(j)(i)

is an isomorphism. In general this is false for the most categories. However under certain
conditions on I and J this is true in the category Set.

Proposition 2.48
Given two small categories I, J ∈ Cat, such that

(i) I is finite, i.e. has finitely many objects and morphisms.

(ii) J is filtered, i.e.

a) For all i, j ∈ J there are morphisms i −→ k ←− j, for some object k ∈ J .

b) For all morphisms f, g ∈ J(i, j) there is a morphism h ∈ J(j, k) with hf = hg.

Then for every functor J
X−→ CAT(I,Set) the natural map below is bijective

colim
j∈J

lim
i∈I

X(j)(i)
∼−→ lim

i∈I
colim
j∈J

X(j)(i).
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Proof. First we claim that for every functor J
S−→ Set we have

ιj(s) = ιj′(s
′) ⇐⇒ ∃j f−→ k

f ′←− j′ : S(f)(s) = S(f ′)(s′), ∀ s ∈ S(j), s′ ∈ S(j′).

Using the explicit construction for the colimit given in Proposition 2.38

colim X :=
∐
i∈J

S(j)

/
s ∼ S(f)(s), s ∈ S(i), f ∈ J(i, j),

it follows that the given condition on s, s′ implies that s ∼ s′ and hence ιj(s) = ιj′(s
′).

Moreover the condition holds for s′ = S(f)(s) with j
f−→ j′ by setting f ′ = idj′ . So

it remains to prove that the condition defines an equivalence relation. By definition the
defined relation is reflexive and symmetric. For transitivity, suppose we are given maps

j
f−→ k

f ′←− j′
g′−→ `

g′′←− j′′

and s ∈ S(j), s′ ∈ S(j′), s′′ ∈ S(j′′) with S(f)(s) = S(f ′)(s′) and S(g′)(s′) = S(g′′)(s′′).
Using that J is filtered there are morphisms

j

f
��

j′

g′

��

f ′ // k

∃a
��

j′′
g′′ // ` ∃b //m

∃c

��
n,

such that c(af ′) = c(bg′) and hence

S(caf)(s) = S(ca)S(f)(s) = S(ca)S(f ′)(s′) = S(caf)(s′)

= S(cbg′)(s′) = S(cb)S(g′)(s′) = S(cb)S(g′′)(s′′) = S(cbg′′)(s′′),

which proves transivity.
Now we return to our problem of question.

• For surjectivity of the map let x ∈ limi∈I colim j∈J X(j)(i). Then using the explicit
description of limits in colimits in Set, we can consider x as a tuple

x = (xi)i∈I ∈
∏
i∈I

colim
j∈J

X(j)(i),

with xi = ιji(yi), for some yi ∈ X(ji)(i), for each i ∈ I. Using that J is filtered,

by induction on ]I < ∞ we find an object j ∈ J and morphisms ji
fi−→ j, for each

i ∈ I. So replacing each yi by its image (fi)∗(yi) we may assume that yi ∈ X(j)(i),
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for each i ∈ I. Now for every g ∈ I(i, i′) we have g∗(xi) = xi′ and by our explicit
description of the colimits over J , there are J-morphisms f, f ′ ∈ J(j, k), such that

f∗g∗(yi) = f ′∗(yi′).

Using that J is filtered, there is a J-morphism h ∈ J(k, `), such that hf = hf ′ and
hence

g∗(hf)∗(yi) = (hf)∗g∗(yi) = (hf ′)∗(yi′).

So by replacing every yi by its image (hf)∗(yi), we may assume that g∗(yi) = yi′ .
Doing this for all g ∈ Mor(i, i′) one after another, we may assume that (yi) ∈
limi∈I X(j)(i) and since

x = (xi)i = (ιjyi)i

the tuple ι(yi)i ∈ colim j∈J limi∈I X(j)(i) defines a preimage for x.

• For injectivity let x, x′ ∈ colim j∈J limi∈I X(j)(i) being mapped to the same element.
Then x and x′ are represented by elements y = (yi)i ∈ limi∈I X(j)(i) and y′ =
(y′i)i ∈ limi∈I X(j′)(i) respectively. As before we may assume that j = j′. As x
and x′ are mapped to the same element ιj(yi) = ιj′(y

′
i), for all i ∈ I. So by our

explicit description of J-colimits, there are J-morphisms fi, f
′
i ∈ J(j, ki), such that

(fi)∗(yi) = (f ′i)∗(y
′
i), for all i ∈ I. Using that I is finite and J is filtered, there

is an object ` ∈ J and morphisms gi ∈ J(ki, `). Moreover we may assume that
all the maps gifi and gif

′
i coincide. In other words there are maps h, h′ ∈ J(j, `),

such that h∗(yi) = (h′)∗(yi), for all i ∈ I. Equivalently h∗(y) = (h′)∗(y
′) and hence

x = ιj(y) = ιj(y
′) = x′ by our description of J-colimits.

2

2.11 Comma categories

Definition 2.49
Given a two functors C F−→ E G←− D, the comma category F ↓ G is the following
category.

• Its objects are tuples (C,D, α), where C ∈ C, D ∈ D and α ∈ E(F (C), G(D)).

• Its morphisms are defined as

F ↓ G((C,D, α), (C ′, D′, α′)) = {(f, g) ∈ C(C,C ′)×D(D,D′); G(g)◦α = α′◦F (f)}

and composition is induced by that of C and D.

(i) If ∗ F−→ E is the functor sending the only object ∗ to E, we write E/G := F ↓ G
and X for the object (∗, X,E ηX−→ G(X)).

If moreover G is the identity functor on E = C, we write E/E := F/E and call it
the slice or under-category of E-objects under E.
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Chapter 2. Simplicial sets

(ii) Dually if ∗ G−→ E is the functor sending ∗ to E, we write F/E := F ↓ G and X for

the object (X, ∗, F (X)
εX−→ E).

If moreover F is the identity functor on E = C, we write E/E := F/E and call it
the coslice or over-category of E-objects over E.

Remark 2.50
Given F ∈ CAT(C, E), every f ∈ E(E,E ′) induces a functor

f∗ : F/E −→ F/E ′, X = (F (X)
εX−→ E) 7−→ f∗X = (F (X)

εX−→ E
f−→ E ′).

In particular for small C we get a functor E F/-−→ Cat.
Moreover there is a functor

F/E −→ C, (F (X)
εX−→ E) 7−→ X.

Lemma 2.51 (co-Yoneda Lemma)
For I ∈ Cat, we will denote the Yoneda functor of Proposition 2.10 by the same letter

I : I −→ CAT(Iop,Set), i 7−→ I(-, i).

Then for X ∈ CAT(Iop,Set) the the following holds.

(i) The category I/X can be described as follows:

Obj(I/X) =
∐
i∈I

X(i), I/X(x, y) = {f ∈ I(i, j); f ∗(y) = x}, x ∈ X(i), y ∈ X(j).

(ii) The maps I(-, i)
εi−→ X induce a natural isomorphism colim

i∈I/X
εi : colim

i∈I/X
I(-, i)

∼−→ X.

In this case ‘natural’ means every f ∈ CAT(Iop,Set)(X, Y ) induces a commutative
diagram

colim
i∈I/X

I(-, i)

colim i ιf∗(i)
��

colim i εi // X

f

��
colim
i∈I/Y

I(-, i)
colim i εi // Y.

Proof.

(i) Using Yoneda’s isomorphism

CAT(Iop,Set)(I(-, i), X) = X(i), i ∈ I,

an object i = (I(-, i)
εi−→ X) ∈ I/C corresponds to an element xi ∈ X(i), for some

i ∈ I. Moreover for f ∈ I(i, j) we have

f ∈ I/X(i, j) ⇐⇒ εj ◦ f = εi ⇐⇒ f ∗(xj) = xi.
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(ii) Using the description of I/X from (i), for every Y ∈ CAT(Iop,Set) we get

CAT(Iop,Set)(colim
i∈I/X

I(-, i), Y )
∼−→ lim

i∈I/X
CAT(Iop,Set)(I(-, i), Y )

∼−→ lim
i∈I/X

Y (i)

={y ∈
∏

x∈X(i),
i∈I

Y (i); f ∗(yx′,i′) = yx,i = yf∗(x′),i ∀f ∈ I/X((x, i), (x′, i′))}

={t ∈
∏
i∈I

Set(X(i), Y (i)); f ∗ ◦ tj = ti ◦ f ∗, ∀f ∈ I(i, j)}

=CAT(Iop,Set)(X, Y ).

The first isomorphism is the canonical one induced by composition with the inclusion
maps (cf. Remark 2.45), using that hom-functors preserve limits by Proposition
2.46. Next we have Yoneda’s isomorphism of Lemma 2.11. The explicit description of
limits in Set given in Proposition 2.38 gives the next equality. Rewriting the product
gives the next description, which by definition is the set of natural transformations.

We claim that composition of the upper isomorphism with the map given by compo-
sition with colim i εi : colim i∈I/X I(-, i) −→ X is the identity. Given f ∈ CAT(Iop,Set)(X, Y )
the map f ◦ εi corresponding to x ∈ X(i) sends g ∈ I(j, i) to fj ◦ g∗(x). As Yoneda’s
isomorphism is given by evaluation at g = idi, we get fi ◦ id∗(x) = fi(x). This
proves the claim, which implies that also composition by colim i εi is bijective, for
all Y ∈ CAT(Iop,Set). So colim i εi is an isomorphism by Remark 2.33.

2

2.12 Internal homomorphisms

Remark 2.52
There is a bijection

Set(X × Y, Z) = Set(X,Set(Y, Z)), f 7−→ [x 7−→ f(x, -)],

which is natural in X, Y, Z ∈ Set.
In particular the functor (-× Y ) is left adjoint to the functor Set(Y, -).

We want to construct a similar natural bijection for the category of simplicial sets.

Definition 2.53
The simplicial set of internal homomorphisms between X, Y ∈ sSet is defined as

sSet(X, Y ) := sSet(∆• ×X, Y ) : ∆op −→ Set, n 7−→ sSet(∆n ×X, Y ).

Proposition 2.54
There is a bijection

sSet(X × Y, Z) = sSet(X, sSet(Y, Z)),

which is natural in X, Y, Z ∈ sSet.
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Proof. By Lemma 2.51 there is a natural isomorphism ε : colimm∈∆/X ∆m ∼−→ X. The
natural map

δ : colim
m∈∆/X

(∆m × Y )
∼−→ (colim

m∈∆/X
∆m)× Y, Y ∈ sSet

is an isomorphism. Indeed by Proposition 2.43 colimits in functor categories are computed
dimensionwise and evaluated at n ∈ ∆ the corresponding map δn is a bijection. Indeed
by Remark 2.52 (-× Yn) is a left adjoint and thus preserves colimits by Corollary 2.47.

Now the desired isomorphism is given as the composition of isomorphisms

sSet(X × Y, Z)

oε∗

��

sSet(X, sSet(Y, Z))

sSet((colim
m∈∆/X

∆m)× Y, Z)

oδ∗

��

sSet(X, sSet(∆• × Y, Z))

oε∗

��
sSet(colim

m∈∆/X
(∆m × Y ), Z)

o

��

sSet(colim
m∈∆/X

∆m, sSet(∆• × Y, Z))

o

��
lim

m∈∆/X
sSet(∆m × Y, Z) lim

m∈∆/X
sSet(∆m, sSet(∆• × Y, Z)).∼oo

Here the lower vertical maps are the natural maps, which are isomorphisms as hom-
functors preserve limits. The lower horizontal isomorphism is the Yoneda isomorphism of
Lemma 2.11. By construction all isomorphisms are natural in X, Y and Z.

2

2.13 Ordered simplicial complexes as simplicial sets

Definition 2.55
Let X ∈ Simpo be an ordered simplicial complex.

The nerve of X is defined as the composite functor

BX : ∆op I−→ Simpo
Simpo(-,X)−→ Set, n 7−→ BnX.

Remark 2.56 (i) The nerve induces a functor Simpo
B−→ sSet.

As hom-functors preserve limits by Proposition 2.46, so does B by Proposition 2.43.

(ii) The Yoneda embedding ∆ −→ sSet coincides with the composition

∆
I−→ Simpo

B−→ sSet.

Definition 2.57
A simplicial set X ∈ sSet is called finite, if the set of nondgenerate simplices is finite.
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Remark 2.58 (i) Every simplicial set is the union of its finite simplicial subsets.

(ii) The geometric realization |X| of a finite simplicial set X is compact, since Proposi-
tion 2.20 yields a surjection ∐

n≥0

X̃n × |I(n)| −� |X|,

and the left space is compact being a finite disjoint union of compact spaces.

Proposition 2.59
For every ordered simplicial complex X ∈ Simpo there is a natural homeomorphism

eX : |BX| = |Simpo(I(-), X)| ∼−→ |X|, Simpo(I(n), X)× |I(n)| 3 (f, a) 7−→ |f |(a).

Proof. Unfortunately this is not as easy as the proof for the simplicial standard simplex
given in Proposition 2.35. There are bijections

imX : B̃nX = {f ∈ Simpo(I(n), X); f injective} ∼−→ {s ∈ S(X); ]s = n+ 1}, n ≥ 0,

f 7−→ f(n).

inducing the upper bijection in the commutative diagram of sets below5.∐
n≥0

B̃nX × (|I(n)|\|∂I(n)|)

βBX o
��

∐
n imX×id

∼
//
∐
n≥0

{s ∈ S(X); ]s = n+ 1} × (|I(n)|\|∂I(n)|)

|BX| eX // |X|.

Moreover the left vertical map is the continuous bijection of Proposition 2.20 and it follows
that the lower horizontal map must be a bijection, too.

Now for every finite F ∈ Simpo, the set
∐

n≥0 B̃nF ∼= S(F ) is finite and hence BF is a
finite simplicial set, so |BF | is compact and eF is a homeomorphism by Lemma 1.16. For
general X ∈ Simpo we consider the usual commutative square

colim
F⊂X,
F finite

|BF |

o
��

colim F eF
∼

// colim
F⊂X,
F finite

|F |

o
��

|BX| eX // |X|.

As the colimit here is a union of sets containing each other6, it is preserved by Simpo
B−→

sSet (this is false for arbitrary colimits!). Moreover sSet |-|−→ T op preserves arbitrary col-
imits, as it is a left adjoint. This proves that the left vertical map is a homeomorphism. By
definition of the final topology on |X| and the description of colimits in T op of Corollary
2.39, also the right vertical map is a homeomorphism. The colimit of homeomorphism is
a homeomorphism (its inverse is the colimit of the inverse maps), so the upper horizontal
map is a homeomorphism. Finally it follows that also the lower horizontal map is one.

2

5To simplify the notation we will skip the forgetful functor T op U−→ Set.
6In particular it is a filtered colimit.
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Proposition 2.60
There is a natural continuous bijection

(|πX |, |πY |) : |X × Y | −→ |X| × |Y |, X, Y ∈ sSet,

which is a homeomorphism, if X and Y are finite.

Proof. For every m,n ≥ 0 we have a commutative diagram

|∆m ×∆n|
(|π1|,|π2|)

��

|BI(m)×BI(n)| |B(I(m)× I(n))||(Bπ1,Bπ2)|
∼

oo

(|Bπ1|,|Bπ2|)
��

eI(m)×I(n)

∼
// |I(m)× I(n)|
(|π1|,|π2|) o

��
|∆m| × |∆n| |BI(m)| × |BI(n)|

eI(m)×eI(n)

∼
// |I(m)| × |I(n)|,

where the upper horizontal map in the middle is a homeomorphism, because B preserves
products by Remark 2.84 (i). The right two horizontal maps are homeomorphisms by
Proposition 2.59 and the right vertical map is a homeomorphism by Proposition 1.25. As
the diagram commutes also the vertical map in the middle and the left vertical map are
homeomorphisms.

The general statement follows from the commutative diagram of sets (not spaces!)

colim
m∈∆/X

colim
n∈∆/Y

|∆m ×∆n|

o

��

∼ // |(colim
m∈∆/X

∆m)× (colim
n∈∆/Y

∆n)|

��

∼ // |X × Y |

(|πX |,|πY |)

��
colim
m∈∆/X

colim
n∈∆/Y

|∆m| × |∆n| ∼ // |(colim
m∈∆/X

∆m)| × |(colim
n∈∆/Y

∆n)| ∼ // |X| × |Y |,

where the right two isomorphisms are induced by the co-Yoneda isomorphism of Lemma
2.51 and the left two horizontal maps are isomorphisms, because all appearing functors
are left adjoints (targetting to Set) and thus commute with colimits.

As in the case of simplicial complexes treated in Proposition 1.25 the lower left hori-
zontal map does not need to be a homeomorphism, for infinite X and Y .

2

Remark 2.61
For a (locally) compact space Y ∈ T op, there is an adjunction

T op(X × Y, Z) = T op(X, T op(Y, Z)),

where T op(Y, Z) is the set T op(Y, Z) together with the compact open topology. A
subset U ⊂ T op(Y, Z) is open, if it is the union of finite intersections of sets

N(C,U) := {f ∈ T op(Y, Z); f(C) ⊂ U}, C ⊂ Y compact, U ⊂ Z open.

In particular (-× Y ) commutes with arbitrary colimits.
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Corollary 2.62
We can use this to extend the proof of Proposition 2.60 to get a homeomorphism

(|πX |, |πY |) : |X × Y | ∼−→ |X| × |Y |, X, Y ∈ sSet,

if at least one of the simplicial sets X and Y is finite.

Remark 2.63 (i) There is no space of internal homomorphisms in the category T op of
topological spaces generalizing the construction of Remark 2.61.

(ii) However there is a subcategory CGHaus ≤ T op, which has this property. It can be
shown that the geometric realization of every simplicial set is infact an object in
CGHaus.

(iii) One can show that sSet |-|−→ CGHaus preserves finite products. Infact it even pre-
serves finite limits (i.e. limits over finite categories), which can be proven in the
same way as Propositions 1.25 and Proposition 2.60.

2.14 Homotopies

Definition 2.64 (i) A simplicial homotopy from f ∈ sSet(X, Y ) to g ∈ sSet(X, Y ),
written f '

h
g, is a morphism h ∈ sSet(∆1 ×X, Y ) such that

∆0 ×X = X

d1×id
��

f

��
∆1 ×X h // Y.

∆0 ×X = X

d0×id

OO

g

DD

Note that di corresponds to the inclusion of the subset {1 − i} ⊂ 1. This is why d1

corresponds to f and d0 to g.

(ii) A simplicial homotopy equivalence is a map f ∈ sSet(X, Y ), for which we
have a g ∈ sSet(Y,X) with idX ' gf and idY ' fg.

(iii) A simplicial deformation section is a section s ∈ sSet(X, Y ) having a retrac-
tion r ∈ sSet(Y,X) and a simplicial homotopy idX '

h
sr. It is called a strong

simplicial deformation section, if h fits in a commutative diagram

∆1 × Y
id×s

��

πY // Y

s

��
∆1 ×X h // X.

We also call X a (strong) simplicial deformation retract of Y .
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(iv) A simplicial deformation retraction is a retraction r ∈ sSet(X, Y ) having a
section s ∈ sSet(Y,X) and a simplicial homotopy idY '

h
sr. It is called a strong

simplicial deformation retraction, if h fits in a commutative diagram

∆1 ×X
id×r

��

h // X

r

��
∆1 × Y πX // Y.

Remark 2.65
As ∆1 is a finite simplicial set, by Corollary 2.62 every simplicial homotopy f '

h
g induces

a homotopy |f | '
|h|
|g| in the topological sense.

(i) In particular every simplicial homotopy equivalence resp. (strong) simplicial defor-
mation section/retraction induces a homotopy equivalence resp. (strong) deforma-
tion section/retraction after realization.

(ii) In contrast to homotopies between continuous maps, ‘'’ is not an equivalence rela-
tion on sSet(X, Y ), for general X, Y . It is reflexive, but need neither be transitive
nor symmetric. We will later introduce fibrant simplicial sets Y , for which ‘'’ de-
fines an equivalence relation.

Definition 2.66
Let f ∈ sSet(X, Y ).

(i) The mapping cylinder of f is defined as

M(f) := (∆1 ×X) +X Y = colim (∆1 ×X d0×idX←− ∆0 ×X = X
f−→ Y ).

(ii) The mapping cone of f is defined as

C(f) := ∗+X M(f) = colim (∗ ←− X = ∆0 ×X d1×idX−→ ∆1 ×X
ι∆1×X−→ M(f)).

Remark 2.67

We have seen that sSet |-|−→ T op by Corollary 2.62 behaves well with the appearing prod-
ucts. Moreover by Corollary 2.47 it also preserves arbitrary colimits, as it is a left adjoint
by Proposition 2.28. So we have natural homeomorphisms

(i) |M(f)| = |(∆1×X)+X Y |
∼←− |∆1×X|+|X| |Y |

∼−→ (|∆1|×|X|)+|X| |Y | = M(|f |).

(ii) |C(f)| = | ∗+XM(f)| = | ∗ |+|X| |M(f)| ∼= ∗+|X|M(|f |) = C(|f |).

Proposition 2.68
Every f ∈ sSet(X, Y ) has a natural factorization

f : X
d1

−→ ∆1 ×X
ι∆1×X−→ M(f)

(fπX)∪id−→ Y.

Denoting f ′ := ι∆1×Xd
1 and f ′ := (fπX) ∪ id, the following holds.
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(i) f ′ is a monomorphism,

(ii) f ′′ has a section ιY and there is a homotopy h ∈ sSet(∆1 × M(f),M(f)) with
idM(f) '

h
ιY f

′′ inducing a commutative diagram

∆1 × Y
πY

��

id×ιY // ∆1 ×M(f)

h
��

id×f ′′ // ∆1 × Y
πY

��
Y

ιY //M(f)
f ′′ // Y.

In particular f ′′ is a strong deformation retraction and ιY is a strong deformation
section.

Proof.

(i) Monomorphisms in sSet are simply dimensionwise injections.

(ii) There is a homomorphism of simplicial sets

V : ∆1 ×∆1 −→ ∆1, ∆1
n ×∆1

n 3 (s, t) 7−→ V (s, t) : [k 7−→ max{s(k), t(k)}].

inducing a commutative diagram

∆1 × (∆1 ×X)

V×id
��

∆1 ×Xd0
oo

πX

��

id×f // ∆1 × Y
πY

��
∆1 ×X Xd0

oo f // Y,

because

(V × id)d0(f, x) = (V × id)(1, f, x) = (1, x) = d0πX(f, x), (f, x) ∈ ∆1
n ×Xn.

Taking the colimit induces a homomorphism

h : ∆1 ×M(f)
∼←−M(∆1 × f) = (∆1 ×∆1 ×X) +∆1×X (∆1 × Y ) −→M(f).

which by construction has all the desired properties.

2

2.15 Connected components

Definition 2.69
The set of connected components of an X ∈ sSet is defined as

π0X := colim X = colim

(
X1

d0 //

d1

// X0

)
.

We call X connected, if π0X = ∗.

47
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Proposition 2.70 (i) A simplicial set X is connected, if and only if any two 0-simplices
x, y ∈ X0 can be connected by a chain of 1-simplices c1, ..., cn ∈ X1, i.e.

x
d0←− [ c1

d17−→ d1(c1) = d0(c2)
d0←− [ ... d0←− [ cn

d17−→ d1(cn) = y.

In this case |X| is path-connected.

(ii) For general X ∈ sSet we get a natural bijection π0|X|
∼−→ π0X.

Proof.

(i) By definition X is connected, if and only if [x] = [y] in π0X, for all x, y ∈ X0. By
definition of π0X, this is the case precisely if there is a chain as described.

Now given (x, a), (y, b) ∈
∐

n≥0Xn × |I(n)| corresponding to two elements in |X|.
Supposing (x, a) ∈ Xn × |I(n)| we define

p : [0, 1] −→ |I(n)|, t 7−→ t · [0] + (1− t) · a,

where [0] ∈ |I(n)| is the element with [0]0 = 1. This defines a path from (x, a) to
(x, [0]). In the same way we construct a path q from (y, [0]) to (y, b). Let 0

ι−→ n
denote the canonical inclusion. Then in |X| we have

(x, [0]) = (x, ι∗[0]) ∼ (ι∗x, [0]).

By (i) there is a chain c1, ..., cn ∈ X1 linking ι∗x and ι∗y. It corresponds to a chain
of maps c1, ..., cn ∈ sSet(∆1, X)

∼−→ X1 by using Yoneda’s isomorphism. Naturality
of Yoneda’s isomorphism implies that the realization |ci| is a path linking the two
elements (d0(ci), [0]), (d1(ci), [0]) ∈ X0×|I(0)|. So glueing |ci| ∈ T op(|∆1|, |X|) with
p and q gives rise to a path from (x, a) to (y, b):

[0, n+ 2] −→ |X|, t 7−→


p(t), t ∈ [0, 1],
|c2i+1|(2i+ 2− t), t ∈ [2i+ 1, 2i+ 2],
|c2i|(t− 2i), t ∈ [2i, 2i+ 1],
q(t− n− 1), t ∈ [n+ 1, n+ 2].

This proves that |X| is path-connected, i.e. π0|X| = ∗.

(ii) Realization of the unit X
ηX−→ constπ0X of the colimit adjunction of Remark 2.42

induces the continuous map

|X| −→ | constπ0X| = π0X, Xn × |I(n)| 3 (x, a) 7−→ [ι∗x].

The right object is the discrete space π0X, proving that the map is surjective. Hence
applying π0 induces a natural surjection π0|X| −→ π0X and the argument of (i)
shows that it is also injective.

2
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Remark 2.71
For X, Y ∈ sSet, we have by definition

sSet(X, Y )0 = sSet(∆1 ×X, Y ).

Hence π0sSet(X, Y ) is the set of homomorphisms sSet(X, Y ) modulo the equivalence
relation spanned by ‘'’.

This defines a category with same objects as sSet, that we will simply denote by π0sSet.

2.16 Skeleton and coskeleton

Definition 2.72
Let X ∈ Simp and n ≥ 0.

The n-skeleton of X is the simplicial complex sknX with the same vertices, but

S(sknX) := {s ∈ S(X); ]s ≤ n+ 1}.

Remark 2.73 (i) sknX ⊂ X is the subcomplex of all simplices of dimension ≤ n.

(ii) Simp skn−→ Simp is a functor.

(iii) ∂I(n) = skn−1I(n).

We will later need an extension of this construction to simplicial sets.

Definition 2.74
Let n ≥ 0.

(i) ∆≤n
in
↪−→ ∆ is the inclusion of the full subcategory with objects 0, ..., n.

(ii) snSet := CAT(∆op
≤n,Set).

(iii) The n-skeleton of X ∈ sSet is defined as

sknX := colim
m∈in/(in)∗X

∆m ∈ sSet.

(iv) The n-coskeleton of X ∈ sSet is defined as

cosknX := sSet(skn∆•, X) : ∆op −→ Set, m 7−→ sSet(skn∆m, X).

Proposition 2.75
For every n ≥ 0 there are adjunctions

sSet((in)!X, Y ) = snSet(X, (in)∗Y ), snSet((in)∗Y, Z) = sSet(Y, (in)∗Z),

where
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• (in)!X := colim
m∈∆≤n/X

∆m is called the left Kan extension of X along in,

• (in)∗Y := Y ◦ in,

• (in)∗Z := snSet((in)∗∆•, Z) is called the right Kan extension of X along in.

We have skn = (in)!(in)∗ and coskn = (in)∗(in)∗ and get an adjunction

sSet(sknX, Y ) = sSet(X, cosknY ).

Moreover counit of the first and unit of the second adjunction induce natural transforma-
tions

sknX = (in)!(in)∗X
εX−→ X, Y

ηY−→ (in)∗(in)∗Y = cosknY, X, Y ∈ sSet.

Proof. Using that Hom-functors preserve limits by Proposition 2.46 and twice Yoneda’s
isomorphism 2.11 we get the adjunction

sSet((in)!X, Y ) = sSet( colim
m∈∆≤n/X

∆m, Y )
∼−→ lim

m∈∆≤n/X
sSet(∆m, Y )

∼−→ lim
m∈∆≤n/X

Ym

=

y ∈
∏

x∈Xm,
0≤m≤n

Ym; g∗yx′ = yx = yg∗x′ , g ∈ ∆≤n(x, x′)

 = snSet(X, Y ).

Using the the isomorphism ε : colimm∈∆/X ∆m ∼−→ X of the co-Yoneda Lemma 2.51, we
get the other adjunction as the composition

snSet((in)∗X, Y )

ε∗ o
��

sSet(X, (in)∗Y )

ε∗ o
��

snSet(colim
m∈∆/X

(in)∗∆m, Y )

o
��

sSet(colim
m∈∆/X

∆m, snSet((in)∗∆•, Y ))

o
��

lim
m∈∆/X

snSet((in)∗∆m, Y ) ∼ // lim
m∈∆/X

sSet(∆m, snSet((in)∗∆•, Y )),

where the vertical maps are isomorphisms, because hom-functors preserve (co-)limits by
Proposition 2.46 and the lower horizontal map is Yoneda’s isomorphism of Lemma 2.11.
Moreover (in)∗ preserves (co-)limits, as colimits in functor categories are constructed di-
mensionwise by Proposition 2.43. By definition we have skn = (in)!(in)∗ and

cosknY = sSet(skn∆•, Y ) = snSet((in)∗∆•, (in)∗Y ) = (in)∗(in)∗Y, Y ∈ sSet.

2
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Proposition 2.76
For X ∈ sSet there are natural cocartesian squares (meaning that the lower right object
is the colimit of the rest of the diagram)

X̃n × ∂∆n
� _

��

// skn−1X

��
X̃n ×∆n // sknX,

where ∂∆n = B∂I(n) and the horizontal maps send (x, f) to f ∗x and the vertical maps
are the canonical maps.

Proof. By Proposition 2.46 we can equivalently prove that, for every Y ∈ sSet, applying
sSet(-, Y ) yields a cartesian square

sSet(sknX, Y )

��

// sSet(X̃n × ∂∆n, Y )

��

sSet(skn−1X, Y ) // sSet(X̃n ×∆n, Y ),

which by using the adjunction bijections of Proposition 2.75 is naturally isomorphic to
the diagram

snSet((in)∗X, (in)∗Y )

��

// Set(X̃n, Yn)

��

sn−1Set((in−1)∗X, (in−1)∗Y ) // Set(X̃n, sSet(∂∆n, Y )).

The left vertical map sends f = (f0, ..., fn) to the tuple (f0, ..., fn−1), while the upper
horizontal map sends f to the restriction of fn to X̃n. Now composition with the natural
surjection

d :=
∐

0≤i≤n

di :
∐

0≤i≤n

∆n−1 =
∐

0≤i≤n

BI(n− 1) −� B∂I(n) = ∂∆n,

yields an injection

d∗ : Set(X̃n, sSet(∂∆n, Y )) ↪−→ Set(X̃n,
∏
i

sSet(∆n−1, Y ))
∼−→

∏
0≤i≤n

Set(X̃n, Yn−1).

By construction the lower horizontal map in the last diagram composed with d∗ sends f
to (fn−1di)i, while the composition with the right vertical map sends f to (dif)i. Using
the explicit description of Set-limits of Proposition 2.38 the pullback is the set

{(f0, ..., fn−1, f̃n) ∈ sn−1Set((in−1)∗X, (in−1)∗Y )×Set(X̃n, Yn); dif̃n = fn−1di 0 ≤ i ≤ n},

whose elements uniquely glue together to a natural transformation snSet((in)∗X, (in)∗Y ).
Indeed since by definition

Xn = X̃n ∪
⋃

0≤i≤n−1

siXn−1,
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we can define

fn(x) :=

{
sifn(x), x ∈ siXn−1,

f̃n(x), x ∈ X̃n,

which is well-defined, because (f0, ..., fn−1) is a natural transformation. The glueing pro-
cess defines an inverse map to the map restriction maps induced by the upper left two
maps of the diagram. This concludes the proof.

2

Corollary 2.77
For X ∈ sSet and n ≥ 0, the counit εX : sknX ↪−→ X is injective.

So sknX ⊂ X is the simplicial subset generated by all nondegenerate simplices of di-
mension ≤ n. Moreover:

(i) (sknX)m = Xm, for all 0 ≤ m ≤ n.

(ii) colim
n≥0

sknX =
⋃
n≥0

sknX = X.

(iii) sknX/skn−1X ∼= (X̃n × (∆n/∂∆n))/(X̃n × ∗) =
∨
x∈X̃

Sn.

Corollary 2.78
The geometric realization |X| of a simplicial set X ∈ sSet is a CW-complex.

Proof. The geometric realization functor is a left adjoint. So we get cocartesian squares

X̃n × |∂∆n|� _

��

// |skn−1X|

��
X̃n × |∆n| // |sknX|.

In other words |sknX| is obtained from |skn−1X| by glueing the set of nondegenerate
simplices and

|X| = colim
n≥0

|sknX| =
⋃
n≥0

|sknX|.

2

The following proposition shows, that the nerve functor behaves well with the two
skeleton constructions.

Proposition 2.79

sknBX ∼= BskX , X ∈ Simp, n ≥ 0.
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Proof. By naturality of the counit map skn = (in)!(in)∗
ε−→ idsSet the inclusion sknX

ιn
↪−→

Xn induces a commutative square

sknBsknX

sknB(ιn)
��

εBsknX // BsknX

B(ιn)
��

sknBX
εBX // BX.

By definition of sknX and the nerve functor Simpo
B−→ sSet, we have an isomorphism

(in)∗BsknX = Simpo(I(n), sknX)
∼−→ Simpo(I(n), X) = (in)∗BX.

Applying the functor (in)! yields the left vertical map, which is therefore an isomorphism,
too. Moreover for the nondegenerate simplices we have

˜BmsknX = {f ∈ Simpp(I(m), sknX); f injective} = ∅, m > n.

So in the diagram of Proposition 2.76, the left vertical map is an isomorphism. As the
diagram is a pushout square, also the right vertical map is an isomorphism and we obtain
isomorphisms

εBsknX : sknBsknX
∼−→ skn+1BsknX

∼−→ ...
∼−→ BsknX,

proving that also the upper horizontal map in the commutative square is an isomorphism.

2

Corollary 2.80
For every n ≥ 0, the simplicial standard n-simplex ∆n is n-skeletal, i.e. skn∆n ∼−→ ∆n.

Proof. Since sknI(n)
∼−→ I(n), Proposition 2.79 yields a commutative square of isomor-

phisms

sknBsknI(n)

��

εBsknI(n) // BsknI(n)

��
skn∆n = sknBI(n)

εBI(n) // BI(n) = ∆n.

Alternatively, we can use that the category ∆/∆n has a final object f := (∆n ε=id−→ ∆n),
inducing an isomorphism ιf and a factorization of the identity map

id : ∆n ιf−→ colim
m∈∆n

∆m ε∆n−→ ∆n.

2

Remark 2.81
Let X ∈ sSet and n ≥ 0.

Then using Corollary 2.77 we get
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(i) (cosknX)m = sSet(skn∆m, X) = sSet(∆m, X) = Xm, 0 ≤ m ≤ n.

(ii) X
∼−→ lim

n≥0
cosknX.

The map X
ηX−→ cosknX is not surjective in general. Defining the simplicial subset

cosk′nX := ηX(X) ≤ cosknX, we get a tower

X −� ... −� cosk′1X −� cosk′0X,

satisfying (i) and (ii), that is closely related to the Postnikov-tower. It can be shown that
for a pointed space ∗ ∈ X ∈ T op the fibre Fn of the map cosk′nS(X) −� cosk′n−1S(X)
satisfies

πm(|Fn|, ∗) ∼=
{
πn(X, ∗), m = n,
1, m 6= n.

Similar properties hold for any fibrant simplicial set, that we will introduce later.

2.17 Small categories as simplicial sets

Remark 2.82
Every partially ordered set P can be considered as a category P with objects P and homo-
morphisms

P (x, y) :=

{
{≤}, x ≤ y,
∅, x 6≤ y.

Indeed there is only one way to define the composition maps, which are well-defined as
‘≤’ is transitive. As it is reflexive, every object has an identity morphism.

This construction defines a functor ∆ ↪−→ Cat. By construction we have

Cat(m,n) = ∆(m,n), m, n ∈ ∆,

which means that ∆ is a full subcategory of Cat.

Definition 2.83
Let C ∈ Cat be an ordered simplicial complex.

The nerve of C is defined as the composite functor

BC : ∆op −→ Cat Cat(-,X)−→ Set, n 7−→ BnX.

Remark 2.84 (i) The nerve induces a functor Cat B−→ sSet.
As hom-functors preserve limits by Proposition 2.46, so does B by Proposition 2.43.

(ii) Again the Yoneda embedding ∆ −→ sSet coincides with the composition

∆
I−→ Cat B−→ sSet.
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Remark 2.85
For C ∈ Cat we have by construction

• B0C = Cat(0, C) = Set(0, U(C)) = Obj(C),

• B1C = Cat(1, C) =
∐

x0,x1∈C

C(x0, x1) =: Mor(C).

• BnC =
∐

x0,...xn∈C

C(x0, x1)× ...× C(xn−1, xn), for all n ≥ 0.

Moreover the face and degeneracy maps are given by

• di(f1, ..., fn) =


(f2, ..., fn), i = 0,
(f1, ..., fifi+1, ..., fn), 0 < i < n,
(f1, ..., fn−1), i = n.

• si(f1, ..., fn) = (f1, ..., fi, id, fi+1, ..., fn), 0 ≤ i ≤ n.

Remark 2.86
Every group G ∈ Grp (or more generally every monoid) gives rise to a category G with a
single object ∗ and homomorphisms G(∗) = G. Composition is defined by multiplication
in G and the neutral element forms the identity morphism.

(i) By definition of categories and groups, a homomorphisms f ∈ Grp(G,H) bijectively
corresponds to a functor

f : G −→ H, ∗ 7−→ ∗, G(∗) = G
f−→ H = H(∗).

In particular we can view Grp as a full subcategory of Cat.

(ii) In the context of group (co-)homology the nerve BG is better known as the bar
construction of G. Using the comparison of the homotopy categories of T op and
sSet we will see that

H∗(G,Z) = H∗(BG,Z)
∼−→ H∗(|BG|,Z),

where the first equality is by definition and the second isomorphism will be induced
by the unit map BG

ηBG−→ S|BG|.

Proposition 2.87

The nerve functor Cat B−→ sSet is fully faithful, meaning that for all C,D ∈ Cat it
induces a bijection

B : Cat(C,D)
∼−→ sSet(BC,BD), F 7−→ B(F ).

Proof. We define the maps

ti : 1 −→ n, 0 7−→ i− 1, 1 7−→ i, 1 ≤ i ≤ n,
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and let ti := (ti)∗ ∈ Set(Xn, X1) denote the corresponding map, for X ∈ sSet. Then for
all C ∈ Cat using Remark 2.85 we get

ti(f1, ..., fn) = fi, (f1, ..., fn) ∈ BnC.

In particular, for all X ∈ sSet and g ∈ sSet(X,BC) we get

gn(x) = (t1gn, ..., tngn)(x) = (g1t1, ..., g1tn)(x) = (g1t1(x), ..., g1tn(x)), x ∈ Xn, n > 1.

So g is completely determined by g0 and g1. Moreover it follows that every g ∈ sSet(BC,BD)

defines a functor C
G−→ D by setting

g0 : Obj(C) −→ Obj(D), g1 : Mor(C) −→ Mor(D).

Indeed:

• G(f1 ◦ f2) = g1d1(f1, f2) = d1g2(f1, f2) = d1(g1(f1), g1(f2)) = G(f1) ◦G(f2),

• G(idx) = g1s0(x) = s0g0(x) = idG(x), x ∈ C.

We have proven that there is a bijection

Cat(C,D)
∼−→←− sSet(BC,BD),

F 7−→ BF,

G←− [ g.

2

While in general it is often tedious to explicitly construct homotopies between two
homomorphisms of simplicial sets, there is an easy description, when the simplicial sets
are the nerves of categories. Like the categories Set and sSet also the category Cat has
an object of internal homomorphism.

Remark 2.88
There is a natural bijection

Cat(X × Y, Z) = Cat(X, Cat(Y, Z)), f 7−→ [x 7−→ f(x, -)],

where we recall that Cat(Y, Z) is the category of functors Y −→ Z with natural transfor-
mations as homomorphisms.

Proposition 2.89
For F0, F1 ∈ Cat(C,D) the set of simplicial homotopies BF1 '

h
BF0 bijectively corresponds

to the set of natural transformations Cat(C,D)(F1, F0).
In particular every adjunction C(F (X), Y ) = D(X,G(Y )) induces a simplicial homo-

topy equivalence

BF : BD
'−→←− BC : BG.
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Proof. There is a commutative diagram

sSet(B0×BC,BD)

di
��

∼ // sSet(B(0× C), BD)

di
��

Cat(0× C,D) = Cat(0, Cat(C,D))B
∼
oo

di
��

sSet(B1×BC,BD) ∼ // sSet(B(1× C), BD) Cat(1× C,D) = Cat(1, Cat(C,D)),B
∼
oo

where the vertical maps are induced by the map 0
di−→ 1, for i = 0, 1. The left two

horizontal maps are bijections, because B preserves products by Remark 2.84, the right
two horizontal maps are the bijections of Proposition 2.87 and the right two horizontal
maps are those of Remark 2.88. In particular using Bn = ∆n we get a bijection

{h ∈ sSet(∆1 ×BD,BD); BF1 '
h
BF0} = {h ∈ sSet(∆1 ×BC,BD); di(h) = Fi}

= {t ∈ Cat(1, Cat(C,D)); di(t) = Fi}
= Cat(C,D)(F1, F0).

2
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3 Abstract homotopy theory

3.1 Localizations of categories

Given a category C ∈ CAT and a class of morphisms in C preserving the structure “very
well”, but not as well as isomorphisms.

Example 3.1 (i) T op and homotopy equivalences.

(ii) sSet and maps X
f−→ Y , such that |X| |f |−→ |Y | is a homotopy equivalence.

(iii) T op and weak homotopy equivalences, i.e. maps X
f−→ Y with

π0f : π0X
∼−→ π0Y, πnf : πn(X, x)

∼−→ πn(Y, f(x)), x ∈ X, n > 0.

(iv) Chain complexes and quasi-isomorphisms, i.e. chain maps X
f−→ Y with

H∗f : H∗X
∼−→ H∗Y.

We want to study the objects in C modulo such equivalences.

Definition 3.2
Let C ∈ CAT and S ⊂ Mor(C) a subclass of morphisms.

Then C γ−→ S−1C is called a localization of C at S, if the following holds.

(i) γ(S) ⊂ Mor(S−1C)×, i.e. γ sends S to isomorphisms.

(ii) It is universal with respect to property (i). This means, that for all F ∈ CAT(C,D)
with F (S) ⊂ Mor(D)×, there is a unique functor inducing a commutative diagram

C
γ
��

F // D

S−1C.
∃!F̃

<<

Example 3.3
For a commutative monoid M ∈Mon and a submonoid S ≤M , we define a monoid

S−1M := (M × S)/ ∼, (m, s) ∼ (m′, s′) ⇐⇒ ∃t ∈ S : m+ s′ + t = m′ + s+ t.
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Chapter 3. Abstract homotopy theory

Then S−1M is generated by the images of M × 0 and 0× S. The identity

(s, 0) + (0, s) = (s, s) ∼ (0, 0), s ∈ S,

shows that S−1M is the monoid obtained from M = M × 0 by adding formal inverses
s−1 = (0, s) for s ∈ S.

In particular the map M −→ S−1M , sending m to (m, 0) is a localization for M
considered as a category with one object.

Remark 3.4
In general localizations are very hard to construct and may not exist, if C is not small.

Definition 3.5
A category with weak equivalences consists of a category C ∈ CAT and a subclass of
morphisms wC ⊂ Mor(C), so-called weak equivalences (wes.) (written “

'−→”), such
that:

(i) Mor(C)× ⊂ wC.

(ii) The 2-of-3 axiom holds, i.e. for all A,B,C ∈ C and every commutative triangle

A

gf ��

f // B

g

��
C,

if 2 of the 3 morphisms are wes., so is the third.

Its homotopy category for C, if it exists, is defined as the localization Ho(C) = (wC)−1C.

Remark 3.6 (i) For every functor F ∈ CAT(C,D) the pair (C, F−1Mor(D)×) is a cat-
egory with weak equivalences.

(ii) Let C ∈ CAT and suppose S ⊂ Mor(C) admits a localization C γ−→ S−1C.

Then S := γ−1Mor(S−1C)× defines a category with weak equivalences (C, S) with

Ho(C) = S
−1C = S−1C.

3.2 Weak factorization systems

Definition 3.7
Let C ∈ CAT and ` ∈ C(A,B), r ∈ C(C,D).

If for any commutative square

A

`
��

// C

r
��

B //

∃d
99

D

there exists a diagonal d making the diagram commutative, then one says, that
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3.2. Weak factorization systems

(i) ` has the left lifting property (LLP) with respect to r and

(ii) r has the right lifting property (RLP) with respect to `.

For a subclass S ⊂ Mor(C) define

(i) LLP (S) := {f ∈ Mor(C); f has the LLP w.r.t. all s ∈ S},

(ii) RLP (S) := {f ∈ Mor(C); f has the RLP w.r.t. all s ∈ S}.

Definition 3.8
Let C ∈ CAT and L,R ⊂ Mor(C).

Then (L,R) is a weak factorization system on C, if

(i) Mor(C) = R ◦ L,

(ii) L = LLP (R) and R = RLP (L).

Example 3.9
The pair (Epi,Mono) forms a weak factorization system on the category Set:

(i) Every map X
f−→ Y can be factored as X

f
−� f(X) ↪−→ Y .

(ii) Every lifting problem

A

e
����

u // C� _
m
��

B

∃d
>>

v
// D

has a solution d sending b = e(a) to u(a). This is well-defined, because e(a) = e(a′)
implies

mu(a) = ve(a) = ve(a′) = mu(a′),

and hence u(a) = u(a′), as m is injective. By construction de = u and hence mde =
mu = ve implies also md = e, as e is surjective.

Note that in this case the diagonal d is unique. Similarly one shows that (Epi,Mono) is
also a weak factorization system on Grp or R-Mod, for R ∈ Ring.

Remark 3.10
On every category C there are two trivial weak factorization systems (Mor(C)×,Mor(C))
and (Mor(C),Mor(C)×), where Mor(C)× is the class of isomorphisms in C:

(i) Every map f ∈ C(X, Y ) can be factored as f ◦ idX (resp. idY ◦ f).

(ii) Every lifting problem

A

`
��

u // C

r
��

B

∃d
>>

v
// D,

can be solved by d := u`−1, when ` is an isomorphism (resp. by d := r−1v, when r
is an isomorphism).
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Chapter 3. Abstract homotopy theory

3.3 Model categories

Definition 3.11
Let C be a finitely complete and finitely cocomplete category, i.e. there are limits and
colimits for functors I −→ C, where I ∈ Cat has only finitely many objects and morphisms.

A model structure on C consists of three subclasses wC, fib C, cof C ⊂ Mor(C), such
that:

(i) (C, wC) is a category with weak equivalences.

(ii) (cof C ∩ wC, fib C) and (cof C, wC ∩ fib C) are weak factorization systems.

The tuple (C, wC, fib C, cof C) is also called a model category.
We fix the following notation.

• The morphisms in fib C are called fibrations and written as “−_”.

• The morphisms in cof C are called cofibrations and written as “�−→”.

• A (co-)fibration is called trivial, if it is also a weak equivalence.

We will show, that every model category has a homotopy category. One begins by

formalizing the idea of a cylinder [0, 1] × X and of homotopies [0, 1] × X
h−→ Y in

the context of a model category. Then the proof is quite technical, but inspired by the
constructions in the category of topological spaces.

Constructing model structures is often very hard. Given a right adjoint functor C G−→ D
mapping into a model category D, it is often possible to construct an induced model
structure on C with wC := G−1wD and fib C := G−1fibD. Many important examples can
be constructed in this way.

However the remaining problem is to construct at least one archetypical model category
to begin with. This is the/a canonical model structure on the category of simplicial sets,
for which weak equivalences are maps becoming homotopy equivalences after geometric
realization. By the technique using right adjoint functors, we will get model structures
for Example 3.1 (iii) and (iv).

We will proceed by first constructing the model structure on the category of simplicial
sets. It will take us the next few lectures to achieve this goal.

3.4 Stability of the lifting property

Before coming to the construction of weak factorization systems, we will need some stabilty
properties of the lifting property.

Definition 3.12
Let C be a category.
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3.4. Stability of the lifting property

(i) A retract of a morphism f ∈ C(A,B) is a retract of f in the category CAT(1, C) of
morphisms in C. This means a retract of f is a morphism f ′ ∈ C(A′, B′) inducing a
commutative diagam

A′

f ′

��

idA′

((// A

f
��

// A′

f ′

��
B′

idB′

66// B // B′.

(ii) For C ⊂ Mor(C) we denote by retr(C) the class of retracts of morphisms in C.

(iii) A set of morphisms C ⊂ Mor(C) is closed under retracts, if retr(C) ⊂ C.

Lemma 3.13
Let M ⊂ Mor(C) be a class of morphisms in a category C ∈ CAT.

Then the following holds:

(i) LLP (M) contains every isomorphism of C.

(ii) LLP (M) is closed under composition.

(iii) Let Z0
c0−→ Z1

c1−→ ... be a tower of morphisms in LLP (M).

Then also Z0
ι0−→ colim n≥0 Zn lies in LLP (M).

(iv) LLP (M) is closed under retracts.

(v) LLP (M) is closed under pushouts along arbitrary morphisms in C.

(vi) LLP (M) is closed under arbitrary coproducts.

By duality we have similar properties for RLP (M).

Proof.

(i) A lifting problem

A

` o
��

u // C

m∈M
��

B

∃d
99

v
// D

is solved by d := u`−1.

(ii) Let A,B,C ∈ C and A
f−→ B

g−→ C be two morphisms in LLP (M). For any
(X

m−→ Y ) ∈M admitting a commutative square

A

f
��

// X

m∈M

��

B

∃df
66

g
��
C

∃dg

==

// Y
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Chapter 3. Abstract homotopy theory

there are morphisms df and dg (depending on df ) preserving the commutativity of
the square, because f, g ∈ LLP (M). Hence dg is a diagonal for the outer square and
hence g ◦ f ∈ LLP (M).

(iii) Given such a tower (Zn)n≥0. For any (X
m−→ Y ) ∈M and any commutative diagram

Z0

ι0

��

u // X

m∈M
��

colim
n≥0

Zn
v // Y

we inductively construct maps Zn
dn−→ X, for n ≥ 0. Set d0 = u and for any n ≥ 0

we get a diagonal dn+1, because cn ∈ LLP (M).

Zn

cn

��

dn // X

m

��
Zn+1

∃dn+1

55

ιn+1

// colim
n≥0

Zn v
// Y

Since by construction dn+1cn = dn, for all n ≥ 0, the universal property of colimits
yields a map d := colim n≥0 dn satisfying the required properties.

(iv) Consider a commutative diagram

A

e

��

idA

**
sA

// A′

e′

��

rA
// A

e

��

u // X

m∈M
��

B

idB

44
sB // B′

rB // B
v // Y,

where e′ ∈ LLP (M). We want to show, that there is a diagonal d ∈ C(B,X), making
the right square commute. Since e′ ∈ LLP (M), we have a diagonal d′, such that

A′

e′

��

rA // A u // X

m∈M
��

B′

∃d′
77

rB
// B v

// Y

commutes. Define d = d′sB and compute

de = d′sBe = d′e′sA = urAsA = u, md = md′sB = vrBsB = v,

hence d is a diagonal of the desired form.
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3.4. Stability of the lifting property

(v) Let A,B,C ∈ C and A
f−→ C and e ∈ LLP (M). Consider a commutative diagram

A

e
��

f // C

ιC
��

u // X

m∈M
��

B ιB
// B +A C v

// Y.

Since e ∈ LLP (M) there is a diagonal B
d′−→ X for the outer square, i.e. d′◦e = u◦f

and r ◦ d′ = v ◦ ιC . Applying the universal property of pushouts to the first identity
yields a diagonal for the right square d := d′ ∪ u ∈ C(B +X C,X):

• dιC = u by construction,

• mdιC = mu = vιC and mdιB = md′ = vιB and hence md = v by the universal
property of pushouts again.

(vi) Let I ∈ Set and (Ai
ei−→ Bi) ∈ LLP (M) for any i ∈ I. Let e denote the coproduct

of all ei. Consider a commutative square (on the right)

Ai

ei

��

ιi //
∐

i∈I Ai

e

��

// X

m∈M
��

Bi
ιi //
∐

i∈I Bi
// Y.

For any i ∈ I there is a diagonal Bi
di−→ X for the outer square. Then d =

∐
i∈I di

we have d ◦ e = u is a diagonal for the right square.

2

Corollary 3.14
Let C ∈ CAT and L,R ⊂ Mor(C).

Then (L,R) is a weak factorization system, if and only if the following holds:

(i) Mor(C) = R ◦ L.

(ii) L ⊂ LLP (R).

(iii) L and R are closed under retracts.

Proof. Suppose (L,R) is a weak factorization system. Then (i) and (ii) holds, because
L = LLP (R). Furthermore LLP (R) resp. RLP (L) are closed under retractions by (iii)
of the preceding Lemma resp. its dual.

Vice versa assume the above hypotheses for (L,R). We have to show, that L = LLP (R)
and R = RLP (L). Let c ∈ C(X, Y )∩ ∈ LLP (R) be arbitrary. Then c can be factored as

X
`

�−→ Z
r−_ Y , where ` ∈ L and r ∈ R. Since c ∈ LLP (R) we find a diagonal

X

c
��

// ` // Z

r
_��

Y

d

>>

Y,
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Chapter 3. Abstract homotopy theory

showing that c is a retract of `. Hence LLP (R) ⊂ L ⊂ LLP (R) and so L = LLP (R).
Dually one gets R = RLP (L).

2

Using the preceding Corollary we may deduce Quillen’s original defintion of a closed
model category.

Corollary 3.15
Let C be a category together with three classes of morphisms wC, fib C, cof C ⊂ Mor(C).

Then C is a model category, if and only if the following holds1.

(CM1) C is closed under finite limits and colimits.

(CM2) wC satisfies the 2-of-3 axiom.

(CM3) The classes wC, fib C, cof C are closed under retracts.

(CM4) cof C ⊂ LLP (fib C ∩ wC) and cof C ∩ wC ⊂ LLP (fib C).

(CM5) MorC = fib C ◦ (cof C ∩ wC) = (fib C ∩ wC) ◦ cof C.

Proof. Axiom (CM1) is the general hypothesis in the Definition 3.11 of model categories.
(CM2) is equivalent to (C, wC) being a category with weak equivalences. By Corollary
3.14 (cof C ∩ wC, fib C) and (cof C, wC ∩ fib C) are weak factorization systems, if and only
if (CM3) - (CM5) hold. Indeed (CM5) and (CM3) imply that (trivial) (co-)fibrations
are closed under retracts. Vice versa if trivial fibrations and cofibrations are closed under
retracts, so are weak equivalences, since they can be factored into a trivial cofibration
followed by a trivial cofibration.

2

3.5 Construction of weak factorization systems

Part of the construction of a model category is the construction of a weak factorization
system. We will present Quillen’s small object argument, which is probably the most
powerful tool for building factorization systems.

Proposition 3.16
Let C be a category with finite coproducts.

Then there is a canonical weak factorization system (retr(I), R) on C, where

(i) I is the class of inclusions X
ιX
↪−→ X + Y , where X, Y ∈ C,

(ii) R is the class of retractions.

1This is what Quillen originally called a closed model category. He skipped (CM3) in his definition of
a model category.
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3.5. Construction of weak factorization systems

Proof. Every morphism X
f−→ Y can be factored as

X

ιX ##

f // Y

X + Y,
f∪idY

;;

and f ∪ idY is a retraction with a section given by the inclusion ιY . Every lifting problem

X� _
ιX
��

a // A

r
����

X + Y

d

66

(ra)∪b
// B,

s

dd

is solved by the morphism d = a ∪ (sb), because

dιX = a, rd = (ra) ∪ (rsb) = (ra) ∪ b.

By Lemma 3.13 LLP (R) is closed under retracts and thus also retracts of inclusions have
the left lifting property to retractions.

Using Corollary 3.14 it remains to prove, that R is closed under retracts. Suppose we
are given a commutative diagram

A′

r′

��

idA′

((
sA
// A

r

��

rA
// A′

r′

��

A

r
����

B′

idB′

66
sB // B

rB // B′, B.

s

dd

Define s′ = rAssB ∈ C(B′, A′). Then we have

r′s′ = r′rAssB = rBrssB = rBsB = idB′ ,

showing that r′ is a retraction with section s′.
2

Example 3.17
In the category Set we have (retr(I), R) = (Mono,Epi).

Indeed every inclusion is an injection and every injection A
m
↪−→ B is isomorphic to the

inclusion A
ιA−→ A+ (B\m(A)), so I = Mono. Using that Mono = RLP (Epi) by Example

3.9, Lemma 3.13 implies that

I = Mono = retr(Mono) = retr(I).

Moreover the axiom of choice is equivalent to R = Epi.
So we have constructed two non-trivial weak factorization systems (Epi,Mono) and

(Mono,Epi) on Set.
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Chapter 3. Abstract homotopy theory

Definition 3.18
Let C ∈ CAT and C ⊂ Mor(C).

A C-cell complex relative to X ∈ C is an object Z ∈ C obtained by inductively
glueing C-cells to X, i.e.

(i) Z = colim n≥0 Zn, for some X = Z0 −→ Z1 −→ ....

(ii) Zn+1 is a pushout

∐
iDi∐

i ιici
��

∐
i fi // Zn

��∐
iEi

// Zn+1,

Di

ci∈C
��

fi // Zn

Ei,

Remark 3.19
The notion generalizes the construction of CW-complexes. More precisely in the category
T op, form the set

C := {Sn ↪−→ Dn; n ≥ 0}.

Then a C-cell complex relative to X ∈ T op is a space Z obtained by inductively glueing
cells to X.

In particular a C-cell complex relative to ∅ is a usual CW-complex.

Theorem 3.20 (Quillen’s small object argument)
Let C ∈ CAT and C ⊂ Mor(C), such that

(i) C is cocomplete.

(ii) C is a set.

(iii) For every (D → E) ∈ C its domain D is ω-compact2 (also called small), i.e.
C(D, -) commutes with colimits over (N0,≤).

Then every morphism X
g−→ Y has a factorization

X

c   

g // Y

Z,
f

??

where f ∈ RLP (C) and c is a C-cell complex relative to X.

Proof. Given a morphism X
g−→ Y in C. For any n ∈ N0 we inductively construct a

sequence
X = Z0

c0−→ Z1
c1−→ Z2

c2−→ ...

2The term ω-compact refers to the smallest infinite ordinal ω. One can extend the notion of compactness
to higher ordinals κ to allow more objects appearing as a domain of maps in C.
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3.5. Construction of weak factorization systems

and morphisms Zn
fn−→ Y for any n ≥ 0 commuting with the maps of this tower. This is

done by attaching “cells” coming from maps in C to X. We will precise this idea in the
following.

Let Z0 = X and f0 = g. For a given Zn let C/fn denote the set of all commutative
squares

D

C3c
��

// Zn

fn
��

E // Y.

This is a set, because C is a set and C(D,Zn) and C(E, Y ) are sets, for all (D
c−→ E) ∈ C.

Define Zn+1 as the pushout ∐
C/fn

D∐
C/fn

ιcc

��

// Zn

=:cn

��
fn

��

∐
C/fn

E

11

// Zn+1

∃!fn+1

&&
Y.

Using the universal property of colimits, we get a factorization

X

c:=ι0
&&

g // Y

Z := colim
n≥0

Zn.

colim n≥0 fn=:f

88

To show, that f ∈ RLP (C) consider a commutative diagram

D

C3c
��

u // Z

f
��

E
v // Y.

Because D is ω-compact we have a natural bijection

colim
n≥0

C(D,Zn)
∼−→ C(D, colim

n≥0
Zn) = C(D,Z).

This means the map u ∈ C(D,Z) comes from a map un ∈ C(D,Zn) with n ≥ 0, i.e.
u = ιn ◦ un. Hence fn ◦ un = (f ◦ ιn) ◦ un = f ◦ (ιn ◦ un) = f ◦ u = v ◦ c, meaning that
c ∈ C/fn is in the indexing set for the construction of the pushout Zn+1. So considering
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v′ : E
ιc
↪−→

∐
C/fn

E −→ Zn+1 we obtain a commutative diagram

D

u

((

c

��

un
// Zn

cn
��

ιn
// Z

f

��

Zn+1

fn+1

&&

ιn+1

88

E

v′
88

v
// Y.

In particular the diagonal d := ιn+1v
′ solves the lifting problem.

2

Corollary 3.21
Let C ∈ CAT and C ⊂ Mor(C) a set of morphisms admitting the small object argument.
Then

(i) (LLP (RLP (C)), RLP (C)) is a weak factorization system in C.

(ii) LLP (RLP (C)) is precisely the class of retracts of relative C cell complexes in C.

Proof.

(i) Clearly C ⊂ LLP (RLP (C)). By Lemma 3.13 LLP (RLP (C)) contains every iden-
tity morphism and is closed under coproducts, pushouts and directed limits. This
implies LLP (RLP (C)) contains every relative C-cell complex. Hence the small ob-
ject argument shows, that Mor(C) = RLP (C)◦LLP (RLP (C)). By definition every
` ∈ LLP (RLP (C)) has the LLP for any map in RLP (C). But this is also equivalent
to the fact, that every map in RLP (C) has the RLP for any map LLP (RLP (C)).

(ii) Since C ⊂ LLP (RLP (C)) and LLP (RLP (C)) by Lemma 3.13 is closed under
pushouts, filtered colimits and retractions, we have, that every retraction of a relative
C-cell complex lies in LLP (RLP (C)).

The other way round let (X
f−→ Y ) ∈ LLP (RLP (C)). By the small object argu-

ment we find a factorization

X

c   

f // Y

Y ′,

r

>>

where c is a relative C-cell complex and r ∈ RLP (C). Since c ∈ C ⊂ LLP (RLP (C))
we find a diagonal in the diagram

X

f
��

c // Y ′

r
��

Y

∃d
>>

Y,

showing that f is a retraction of the cell complex c.
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3.5. Construction of weak factorization systems

2

Proposition 3.22 (i) Every finite set F is ω-compact in Set.

(ii) Every finite simplicial set F ∈ sSet is ω-compact in sSet.

Proof. Note that the category 0 −→ 1 −→ ... is filtered.

(i) Given a sequence of sets
S0 −→ S1 −→ ...

that we consider a sequence of constant functors D(F ) −→ Set, by Proposition 2.48
we get the natural isomorphism

colim
n≥0

∏
x∈F

Sn
∼ //

∏
x∈F

colim
n≥0

Sn

colim
n≥0

Set(F, Sn) ∼ // Set(F, colim
n≥0

Sn).

(ii) Using Proposition 2.76 finiteness of F implies that there is an n ≥ 0, such that
εF : sknF

∼−→ F . Moreover all the sets F0, ..., Fn are finite. Then there is a chain of
isomorphisms

sSet(F, Y )
∼−→ sSet(sknF, Y ) = sSet( colim

m∈(in)/(in)∗F
∆m, Y )

∼−→ lim
m∈(in)/(in)∗F

sSet(∆m, Y )
∼−→ lim

m∈(in)/(in)∗F
Ym,

where the first isomorphism is induced by the isomorphism εF , the second holds by
Definition 2.74 of the skeleton, the third map is an isomorphism as hom-functors
preserve limits by Proposition 2.46 and the fourth one is Yoneda’s isomorphism. So
the object on the right is the limit of the functor

m ∈ (in)/(in)∗F −→ ∆op Y−→ Set

and the assertion again follows from Proposition 2.48, because the category (in)/(in)∗F
is finite.

2

Remark 3.23
However a compact topological space does not need to be ω-compact in T op.
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Chapter 3. Abstract homotopy theory

3.6 Lifting properties and adjunctions

Remark 3.24
Given an adjunction between two categories C and D

C(F (X), Y ) = D(X,G(Y )).

Let ` ∈ D(D,D′) and r ∈ C(C,C ′).
Then the following lifting propblems are equivalent

F (D)

F (`)

��

a // C

r

��
F (D′)

d

<<

b
// C ′,

D

`
��

a′ // G(C)

G(r)

��
D′

d′
<<

b′
// G(C ′),

where a′, b′ and d′ corresponds to a, b and d under the adjunction bijection.
In particular the two axioms for structured adjunctions are equivalent.

Proposition 3.25
Let A,B and C be categories with functors

Bop × C F−→ A, A× B ⊗−→ C, Aop × C G−→ B.

and natural bijections

A(A,F (B,C)) = C(A⊗B,C) = B(B,G(A,C)), A ∈ A, B ∈ B, C ∈ C.

Let a ∈ A(A,A′), b ∈ B(B,B′) and c ∈ C(C,C ′).
Then the following three lifting problems are equivalent.

A

a

��

u′1 // F (B′, C)

(b∗,c∗)
��

A′

∃d′
44

(u′2,u
′
3)

// F (B,C)×F (B,C′) F (B′, C ′),

(A⊗B′) +(A⊗B) (A′ ⊗B)

(a⊗id)∪(id⊗b)
��

u1∪u2 // C

c

��
A′ ⊗B′

∃d

44

u3

// C ′.

B

b
��

u′′2 // G(A′, C)

(a∗,c∗)
��

B′

∃d′′
33

(u′′1 ,u
′′
3 )

// G(A,C)×G(A,C′) G(A′, C ′).

where

• u′1, u′2, u′3 correspond to u1, u2, u3 under the first bijection and

• u′′1, u′′2, u′′3 correspond to u1, u2, u3 under the second bijection.
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In other words, we have a chain of equivalences

a ∈ LLP (b∗, c∗) ⇐⇒ (b∗, c∗) ∈ RLP (a)

⇐⇒ (a⊗ id) ∪ (id⊗ b) ∈ LLP (c) ⇐⇒ c ∈ RLP ((a⊗ id) ∪ (id⊗ b))
⇐⇒ (a∗, c∗) ∈ RLP (b) ⇐⇒ b ∈ LLP (a∗, c∗)

Proof. This holds, because

• a diagonal d′ corresponds to a diagonal d under the first bijection and

• a diagonal d′′ corresponds to a diagonal d under the second bijection.

Equivalently every solution of one of the lifting problems induces a solution for the other
two problems.

2

Corollary 3.26
For C ∈ CAT with arbitrary coproducts and products, there are natural bijections

Set(S, C(X, Y )) = C(SX, Y ) = C(X, Y S), S ∈ Set, X, Y ∈ C,

where SX :=
∐

s∈S X and XS :=
∏

s∈S X.
Suppose moreover that C carries a weak factorization system (L,R).
Then for c ∈ C(A,B) ∩ L,m ∈ Set(S, T ) ∩Mono and f ∈ C(C,D) ∩R we have:

(i) C(B,C)
(c∗,f∗)
−� C(A,C)×C(A,D) C(B,D),

(ii) (SB +SA
TA

mid∪idc−→ TB) ∈ L,

(iii) (CT (m∗,f∗)−→ CS ×DS DT ) ∈ R.

Proof. The natural bijections follow from the universal property of (co-)products.

(i) For all such c and f surjectivity of the map (c∗, f∗) is equivalent to the existence of
a diagonal d in every commutative square

A

c
��

u // C

f
��

B

∃d
>>

v
// D.

Indeed each such commutative square bijectively corresponds to an element

(u, v) ∈ C(A,C)×C(A,D) C(B,D)

by the explicit construction of limits in the category Set. Hence (u, v) has a preimage

(c∗, f∗) : d 7−→ (dc, fd),

if and only if there is a solution for the lifting problem.
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(ii) Using that (Mono,Epi) is a weak factorization system on Set and (L,R) one on C,
Proposition 3.25 applied to the given natural bijection yields

(c∗, f∗) ∈ Epi = RLP (Mono), for all c ∈ L and f ∈ R,

⇐⇒ (c∗, f∗) ∈ RLP (m), for all c ∈ L, f ∈ R and m ∈ Mono(Set),
⇐⇒ (mid ∪ idc) ∈ LLP (f), for all c ∈ L, f ∈ R and m ∈ Mono(Set),
⇐⇒ (mid ∪ idc) ∈ LLP (R) = L, for all c ∈ L, f ∈ R and m ∈ Mono(Set).
This shows that (ii) is equivalent to (i).

(iii) Similarly one checks that (iii) is equivalent to (i).

2

3.7 Towards the standard model structure on

simplicial sets

Definition 3.27
Let f ∈ sSet(X, Y ).

(i) f is called a cofibration, if it is a monomorphism.

(ii) f is called a fibration, if it has the LLP with respect to all maps

ditc := (di×id)∪(id×c) : ∆0×B+∆0×A∆1×A −→ ∆1×B, A
c

�−→ B, i = 0, 1.

(iii) f is called a weak equivalence, if it induces bijections

f ∗ : π0sSet(Y, T )
∼−→ π0sSet(X,T ), T −_ ∗.

(iv) An anodyne extension is an element in LLP (fib sSet).

Remark 3.28
The definition of weak equivalences might seem a bit awkward. However:

(i) Every simplicial homotopy equivalence is a weak equivalence.

(ii) We will later see that f ∈ sSet(X, Y ) is a weak equivalence, if and only if its
geometric realization |f | is a homotopy equivalence.

Theorem 3.29
There are two weak factorization systems on the category sSet

(cof sSet, RLP (cof sSet)), (LLP (fib sSet), fib sSet).

Moreover the following holds.
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3.7. Towards the standard model structure on simplicial sets

(i) cof sSet = LLP (RLP ({∂∆n = skn−1∆n ε
↪−→ ∆n; n ≥ 0})),

(ii) fib sSet = RLP ({∆0 ×∆n +∆0×∂∆n ∆1 × ∂∆n ditε−→ ∆1 ×∆n; n ≥ 0, i = 0, 1}),

Proof. The domains of the maps

∂∆n ε
↪−→ ∆n, ∆0 ×∆n +∆0×∂∆n ∆1 × ∂∆n ditι−→ ∆1 ×∆n, n ≥ 0, i = 0, 1

are finite (i.e. have only finitely many nondegenerate simplices) and hence ω-compact by
Proposition 3.22. So by Corollary 3.21 we get two induced weak factorization systems.
As one of the structure class of morphisms in a weak factorization system determines the
other one, the equalities (i) and (ii) imply that these are the weak factorization systems
we are looking for.

(i) Using that (Mono,Set) is a weak factorization system on Set by Example 3.17 and
that colimits in sSet are constructed dimensionwise by Proposition 2.43, it follows
that cof sSet = MonosSet is closed under pushouts, sequential colimits and retracts
by Lemma 3.13. In particular cof sSet also contains all retracts of relative cof sSet-
cell complexes. Now the map ∂∆n ↪−→ ∆n is injective and thus a cofibration, for all
n ≥ 0. This shows the inclusion

L := LLP (RLP ({∂∆n ε
↪−→ ∆n; n ≥ 0})) ⊂ cof sSet,

because L consists of retracts of relative cell complexes by Corollary 3.21.

For the other inclusion let c ∈ sSet(A,B) ∩ cof sSet. Note first that cn restricts to

an injection Ãn
c̃n
↪−→ B̃n. Indeed supposing cn(a) /∈ B̃n, we have cn(a) = si(b), for

some b ∈ Bn−1 and 0 ≤ i ≤ n− 1. Then

cn(sidia) = sidicn(a) = sidisi(b) = si(b) = cn(a)

and injectivity of cn implies a = sidia /∈ Ãn.

Next we claim that there is a cocartesian square

Ãn∆n +Ãn∂∆n
B̃n∂∆n

(cid)∪(idε)
��

// skn−1B +skn−1A A

��
B̃n∆n // sknB +sknA A,

for all n ≥ −1, where for the case n = −1 we define sk−1X := ∅ for any simplicial
set X ∈ sSet.
To prove the claim we consider the commutative diagram

skn−1B skn−1Aoo // A

B̃n∂∆n

OO

��

Ãn∂∆noo

OO

��

// Ãn∆n

OO

B̃n∆n Ãn∆noo Ãn∆n,
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where the vertical maps are those of Proposition 2.76, the left horizontal maps are
induced by c̃n and the right horizontal maps are the canonical inclusions.

• By Proposition 2.76, taking colimits vertically yields a diagram

sknB ←− sknA −→ A,

of which again we may take the colimit of.

• Similarly taking colimits horizontally yields a diagram

B̃n∆n ←− Ãn∆n +Ãn∂∆n
B̃n∂∆n (cid)∪(idε)−→ skn−1B +skn−1A A,

of which we may take the colimit of.

Now if I is the category 2← 1→ 0, then the big diagram above can be considered
as a functor in

CAT(I × I, sSet) = CAT(I, CAT(I, sSet)).
By the dual version of Remark 2.42 (ii) taking the colimit is a left adjoint and
so preserves colimits by Corollary 2.47. So the construction of colimits in functor
categories given in Proposition 2.43 tells us, that we end up with the same object,
no matter if we take the colimit vertically or horizontally first. This means

colim

(
B̃n∆n ←− Ãn∆n +Ãn∂∆n

B̃n∂∆n (cid)∪(idε)−→ skn−1B +skn−1A A

)
∼= sknB+sknAA,

which is an equivalent formulation of the claim.

Now as cn is injective and L is part of a weak factorization system, Corollary 3.26
implies that the left vertical map in the cocartesian square is in L. Hence also the
right vertical map is in L, which by Lemma 3.13 (v) is closed under pushouts. Next
using that pushouts commute with colimits by Remark 2.42 (ii) again, we see that

sk−1B+sk−1AA
ι0−→ colim

n≥0
(sknB+sknAA)

∼−→ (colim
n≥0

sknB)+
(colim
n≥0

sknA)A = B+AA,

lies in L, because L is closed under sequential colimits by Lemma 3.13 (iii). But this
map is isomorphic to c, which completes the proof that cof sSet ⊂ L.

(ii) Let f ∈ sSet(C,D). Then applying Proposition 3.25 to the natural bijection induced
by the internal homomorphisms given in Proposition 2.54, statement (i) implies the
equivalence

f ∈ fib sSet

⇐⇒ f ∈ RLP (∆0 ×B +∆0×A ∆1 × A (di×id)∪(id×c)−→ ∆1 ×B), ∀A
c

�−→ B, i = 0, 1

⇐⇒
(
sSet(∆1, C)

((di)∗,f∗)−→ sSet(∆0, C)×sSet(∆0,D) sSet(∆1, D)

)
∈ RLP (cof sSet)

⇐⇒ ((di)∗, f∗) ∈ RLP ({∂∆n ↪−→ ∆n; n ≥ 0}), ∀i = 0, 1

⇐⇒ f ∈ RLP ({∆0 ×∆n +∆0×∂∆n ∆1 × ∂∆n −→ ∆1 ×∆n; n ≥ 0, i = 0, 1}).
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2

Theorem 3.30
For c ∈ sSet(A,B) and c′ ∈ sSet(A′, B′), consider the map

c t c′ := (c× id) ∪ (id ∪ c′) : A×B′ +A×A′ B × A′ −→ B ×B′.

(i) If c, c′ ∈ cof sSet, then c t c′ ∈ cof sSet.

(ii) If moreover c ∈ LLP (fib sSet) or c′ ∈ LLP (fib sSet), then also ctc′ ∈ LLP (fib sSet).

Proof.

(i) As colimits and hence pushouts are computed dimensionwise in sSet, it suffices to
check that c, c′ ∈ Mono(Set) implies c′′ ∈ Mono(Set). This is Corollary 3.26 applied
to the weak factorization system (Mono,Epi) on Set.

(ii) First note that by applying Proposition 3.25 to the natural bijections

sSet(A, sSet(B,C)) = sSet(A×B,C) = sSet(B, sSet(A,C)), (3.1)

constructed in Proposition 2.54 and using the Definition 3.27 of a fibration, we get
equivalences

c t c′ ∈ LLP (fib sSet) ∀ c ∈ cof sSet, c′ ∈ LLP (fib sSet)
⇐⇒ c t c′ ∈ LLP (f) ∀ c ∈ cof sSet, c′ ∈ LLP (fib sSet), f ∈ fib sSet
⇐⇒ (c∗, f∗) ∈ RLP (c′) ∀ c ∈ cof sSet, c′ ∈ LLP (fib sSet), f ∈ fib sSet
⇐⇒ (c∗, f∗) ∈ fib sSet ∀ c ∈ cof sSet, f ∈ fib sSet
⇐⇒ (c∗, f∗) ∈ RLP (di t c′′) ∀ c, c′′ ∈ cof sSet, f ∈ fib sSet, i = 0, 1

⇐⇒ f ∈ RLP ((di t c′′) t c) ∀ c, c′′ ∈ cof sSet, f ∈ fib sSet, i = 0, 1.

Once we have shown that (dit c′′)t c ∼= dit (c′′t c), the last statement is equivalent
to

f ∈ RLP (di t (c′′ t c)) ∀ c, c′′ ∈ cof sSet, f ∈ fib sSet, i = 0, 1,

which is true by Definition 3.27 of a fibration and since c′′ t c ∈ cof sSet by (i).

So it remains to prove that (dit c′′)t c ∼= dit (c′′t c). We consider the commutative
diagram

∆0 ×B′′ ×B ∆0 ×B′′ × Aoo ∆0 ×B′′ × A

∆0 × A′′ ×B

OO

��

∆0 × A′′ × Aoo

OO

��

// ∆0 ×B′′ × A

��
∆1 × A′′ ×B ∆1 × A′′ × Aoo // ∆1 ×B′′ × A,
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• Taking colimits vertically and using that (-×X) by Proposition 2.54 as a left
adjoint preserves colimits we obtain the diagram

(∆0×B′′+∆0×A′′∆
1×A′′)×B ←− (∆0×A′′+∆0×A′′∆

1×A′′)×A −→ (∆1×B′′)×A,

whose colimit is the domain of (di t c′′) t c.
• Similarly taking colimits horizontally yields the diagram

∆0×(B′′×B)← ∆0×(A′′×B+A′′×AB
′′×A) −→ ∆1×(A′′×B+A′′×AB

′′×A),

whose colimit is the domain of di t (c′′ t c).
As in the proof of Theorem 3.29, we see that both colimits coincide and thus
(di t c′′) t c ∼= di t (c′′ t c) as desired.

2

Corollary 3.31
For c ∈ sSet(A,B) and f ∈ sSet(C,D), consider the map

(c∗, f∗) : sSet(B,C) −→ sSet(A,C)×sSet(A,D) sSet(B,D).

Then the following holds.

(i) If c ∈ cof sSet and f ∈ fib sSet, then (c∗, f∗) ∈ fib sSet.

(ii) If moreover c ∈ LLP (fib sSet) or f ∈ RLP (cof sSet), then (c∗, f∗) ∈ RLP (cof sSet).

Proof. By Proposition 3.25 (i) applied to (3.1) assertion (i) is equivalent to Theorem 3.30
(ii). The first case of (ii) is equivalent to Theorem 3.30 (ii) and the second one to Theorem
3.30 (i).

2

Corollary 3.32

fib sSet ⊃ RLP (cof sSet), LLP (fib sSet) ⊂ cof sSet.

Proof. As ∆0
di

�−→ ∆1 is injective and hence a cofibration by Definition 3.27, for every

cofibration C
c

�−→ D also the map di t c is a cofibration by Theorem 3.30. In other
words di t c ∈ cof sSet = LLP (RLP (cof sSet)) by Theorem 3.29 (i) or equivalently
fib sSet ⊃ RLP (cof sSet) or LLP (fib sSet) ⊂ cof sSet.

2

Proposition 3.33
For every g ∈ sSet(X, Y ) the following holds.

(i) g strong deformation retraction and fibration ⇐⇒ g ∈ RLP (cof sSet).
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3.7. Towards the standard model structure on simplicial sets

(ii) g strong deformation section ⇒ g ∈ LLP (fib sSet).

The other implication holds, if moreover X, Y −_ ∗.

Proof.

(i) Suppose X
g
−_ Y is a fibration and a strong deformation retraction, i.e. there is

an s ∈ sSet(Y,X) with gs = idY and idX '
h
sg with gh = gπX . To every lifting

problem on the left, we get a commutative square on the right

A
��

c
��

u // X

g
_��

B

∃d
77

v
// Y,

∆0 ×B +∆0×A ∆1 × A

d0tc
��

(sv)∪(h(id×u)) // X

g
_��

∆1 ×B

∃h′
44

vπB
// Y.

Indeed the upper horizontal map is well-defined, because

gh(id× u)d0 = gπX(id, u) = gu = sv.

Moreover the right square commutes, because

g(sv) = v, gh(id× u) = gπX(id× u) = guπA = vcπA = vπY (id× c).

As c is a cofibration, by Definition 3.27 of a fibration, there is a diagonal h′ and
d := h′d1 solves the original lifting problem:

gd = gh′d1 = vπY d
1 = v,

dc = h′d1c = h′(id× c)d1 = h(id× u)d1 = hd1u = u.

Vice versa for every g ∈ sSet(X, Y ) ∩RLP (cof sSet) there are liftings

∅
��

��

// X

g
_��

Y

∃s
99

Y,

∂∆1 ×X
��

��

id∪(sg) // X

g
_��

∆1 ×X

∃h
77

gπX
// Y,

proving that gs = idY and idC '
h
sg with gh = gπX = πY (id × g). So g is a strong

deformation retraction. Moreover g ∈ fib sSet by Theorem 3.30.

(ii) Suppose X
g−→ Y is a strong deformation section, i.e. there is an r ∈ sSet(Y,X)

with rg = idX and idY '
h
gr with h(id × g) = gπY . Then in particular g is a

monomorphism by Remark 2.32 and hence a cofibration by Definition 3.27. Then
like in (i), to every lifting problem on the left, we get a commutative square on the
right

X
��

g

��

u // C

f
_��

Y

∃d
77

v
// D,

∆0 × Y +∆0×X ∆1 ×X
d0tg

��

(ur)∪(uπX) // C

f
_��

∆1 × Y

∃h′
44

vh
// D.
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Then (ur) ∪ (uπX) is well-defined, because

uπXd
0 = u = urg.

Moreover the square commutes, because

f(ur) = vgr = vhd0, f(uπX) = vgπX = vh(id× g).

As g is a cofibration, by Definition 3.27 of a fibration, there is a diagonal h′ and
d := h′d1 solves the original lifting problem:

fd = fh′d1 = vhd1 = v,

dg = h′d1g = h′(id× g)d1 = uπXd
1 = u.

The other implication is completely dual to (i).

2

Remark 3.34
By Proposition 3.33 and Remark 3.28 we have

RLP (cof sSet) ⊂ fib sSet ∩ wsSet.

The hardest part in the construction of the model structure is to see that this is infact an
equality. As a consequence we will also get the equality LLP (fib sSet) = cof sSet∩wsSet,
which will conclude the proof that sSet is a model category.

For checking that a given map is a fibration, the following characterization is often the
most convenient one.

Proposition 3.35

fib sSet = RLP{Λn
k :=

⋃
0≤i≤n,
i 6=k

di∆n−1 ↪−→ ∆n; 0 ≤ k ≤ n}.

Proof. First note, that Λn
k = BAnk , where Ank ≤ I(n) is the ordered simplicial subcomplex

with same vertices and simplices

S(Ank) = {s ∈ SI(n); i /∈ s for some i 6= k}.

Moreover given an ordered simplicial complex X ∈ Simpo with an ordered subcomplex

U
c

↪−→ X, we define the ordered subcomplex

U(i) := (diI(0)×X) ∪ (I(1)× U) ≤ I(1)×X, i = 0, 1.

Then we have

Bdi tBc : ∆0 ×X +∆0×BU ∆1 ×BX = BU(i) ↪−→ B(I(1)×X) = ∆1 ×BX.
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Indeed as Bdi tBc is injective by Theorem 3.30 the left object is isomorphic to its image
in ∆1 ×BX, which is exactly BU(i) by construction.

Moreover by definition of the product complex the simplices of U(i) are the nonempty
subsets

t := {(0, x1), ..., (0, xj), (1, xj+1), ..., (1, xm)} ⊂ I(1)×X, 0 ≤ j ≤ m,

such that

• in the case i = 0, we have πX(t) ∈ S(X) and πX(t) ∈ S(U), whenever j < m.

• in the case i = 1, we have πX(t) ∈ S(X) and πX(t) ∈ S(U), whenever j > 0.

Next we define commutative diagrams of ordered simplicial complexes

Ank� _

��

id

&&
� � s| // Ank(i)� _

��

r| // // Ank� _

��
I(n)

id

88
� � s // I(1)× I(n) r // // I(n).

• For 0 ≤ k < n, we let i = 1 and define s and r by

s(x) := (1, x), r(a, x) :=

{
min{x, k}, a = 0,
y, a = 1.

To see that r(Ank(1)) ⊂ Ank , note that

– for j < m, we have r(t) ⊂ πX(t) ∪ {k} ∈ S(Ank), since πX(t) ∈ S(Ank).

– for j = m, we have r(t) ⊂ k and hence n /∈ r(t) ∈ S(Ank).

• Similarly, for 0 < k ≤ n, we let i = 0 and define s and r by

s(x) := (0, x), r(a, x) :=

{
x, a = 0,
max{x, k}, a = 1.

To see that r(Ank(0)) ⊂ Ank , note that

– for j > 0, we have r(t) ⊂ πX(t) ∪ {k} ∈ S(Ank), since πX(t) ∈ S(Ank).

– for j = 0, we have r(t) ⊂ {k, ..., n} and hence 0 /∈ r(t) ∈ S(Ank).

Applying the nerve of the diagram yields (Λn
k ↪−→ ∆n) ∈ LLP (fib sSet), for all 0 ≤ k ≤ n,

as the latter is closed under retracts by Lemma 3.13. Equivalently we have

RLP ({Λn
k ↪−→ ∆n; 0 ≤ k ≤ n}) ⊃ RLP (fib sSet).

81



Chapter 3. Abstract homotopy theory

For the other inclusion consider the inclusion U := ∂I(n)
c

↪−→ I(n). Then every simplex
in S(I(1)× I(n)) not contained in S(U(1)) is of the form

tk := {(0, 0), ..., (0, k − 1), (1, k), ...(1, n)}, t′k := tk ∪ {(0, k)}, 0 < k ≤ n.

Defining ∂I(n) ≤ U(1, k) ≤ I(1)× I(n) as the intermediate subcomplex with

S(U(1, k)) := S(U(1)) ∪ {t1, t′1, ..., tk, t′k}, 0 ≤ k ≤ n,

we get isomorphisms of ordered simplicial complexes

aj : An+1
k

∼−→ U(1, k − 1) ∩ t′k, j 7−→
{

(0, j), j < k,
(1, j), j ≥ k.

So U(1, k) is obtained by glueing I(t′k)
∼= I(n) to U(1, k − 1) along Ank . In other words

there is a cocartesian square

Λn
k� _

��

Bak // BU(1, k − 1)

��
∆n // BU(1, k).

It follows that

(d1 tBc) : BU(1) = BU(1, 0) ↪−→ ... ↪−→ BU(1, n) = B(I(1)× I(n))

is contained in LLP (RLP ({Λn
k :=

⋃
0≤i≤n,
i 6=k

di∆n−1 ↪−→ ∆n; 0 ≤ k ≤ n}), which by Lemma

3.13 is closed under pushouts and composition.
By similar arguments we see that it also contains d0 t Bc, which by using (ii) proves

that
RLP ({Λn

k ↪−→ ∆n; 0 ≤ k ≤ n}) ⊂ RLP (fib sSet).

2

3.8 Absolute weak equivalences

For the key step in the construction of the model structure we will need another class of
morphisms, which behave very well under many operations. Infact it will turn out that
absolute weak equivalences are precisely the weak equivalences. However we will not know
this until the construction of the model structure, for which the two notions are needed
for.
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Definition 3.36
An absolute weak equivalence is an a ∈ sSet(A,B), such that for every commutative
square as on the left, there is a diagonal in the induced right one

A

a
��

u // X

f
_��

B v
// Y,

A

a′:=d1

��

u // X

f
_��

M(a) = B +A (∆1 × A)

∃d∪h

44

v∪(fuπA)
// Y.

In other words, there is a diagonal d ∈ sSet(B,X) in the square

A

a
��

u // X

f
_��

B

'
h

∃d

99

v
// Y,

such that the lower triangle strictly commutes and the upper triangle commutes up to a
simplicial homotopy u '

h
da satisfying fh = fuπA.

Proposition 3.37
Every absolute weak equivalence is a weak equivalence.

Proof. Let a ∈ sSet(A,B) be an absolute weak equivalence and T
t−_ ∗.

• For every u ∈ sSet(A, T ), the left square below commutes. So by definition there is
a diagonal in the right square

A

a
��

u // T

t
_��

B v
// ∗,

A

a′

��

u // T

t
_��

M(a)

d∪h
88

v∪(fuπA)
// ∗.

It follows that u '
h
da, which proves surjectivity

a∗ = (- ◦ a) : π0sSet(B, T ) −� π0sSet(A, T ).

• For all v0, v1 ∈ sSet(B, T ) with v1a '
h
v0a, we let h′ ∈ sSet(A, sSet(∆1, T )) be the

map corresponding to h under the natural bijection of Proposition 2.54

sSet(∆1 × A, T ) = sSet(A, sSet(∆1, T )).

Then the left square below commutes. So by definition there is a diagonal in the
right square

A

a

��

h′ // sSet(∆1, T )

_��
B

v:=(v0,v1)
// T × T = sSet(∂∆1, T )

A

a′

��

h′ // sSet(∆1, T )

_��
M(a)

k′∪H
66

v∪(fuπA)
// sSet(∂∆1, T ).

It follows that v1 '
k
v0, where k ∈ sSet(∆1 ×B, T ) is the map corresponding to k′.
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2

The subsequent proposition shows that the class of absolute weak equivalences satisfies
some weakened 2-of-3 property.

Proposition 3.38

For two maps of simplicial sets A
a−→ B

b−→ C the following implications hold.

(i) a, ba absolute weak equivalences ⇒ b absolute weak equivalence.

(ii) a, b absolute weak equivalences ⇒ ba absolute weak equivalence.

Proof.

(i) For every commutative diagram as on the left, there is a diagonal in the right square,
as ba is an absolute weak equivalence by assumption.

A

ba
%%

a // B

b
��

u // X

f
_��

C v
// Y.

A

(ba)′

��

u // X

f
_��

M(ba)

∃d∪h
77

v∪(fuπA)
// Y.

In particular we have dba '
h
ua. Like in the proof of Proposition 3.37 (ii) we construct

a simplicial homotopy db '
k
u. To that aim consider the commutative square

A

a

��

h′ // sSet(∆1, X)

(ε∗,f∗)
_��

B
V :=((db,u),s0v)

// sSet(∂∆1, X)×sSet(∂∆1,Y ) sSet(∆1, Y ),

where the right vertical map is a fibration by Corollary 3.31 and the map h′ corre-
sponds to the homotopy h under the natural bijection of Proposition 2.54. So using
that also a is an absolute weak equivalence we obtain a diagonal in the square

A

a′

��

h′ // sSet(∆1, X)

(ε∗,f∗)
_��

M(a)

k′∪H
33

V ∪(fuπA)
// sSet(∂∆1, X)×sSet(∂∆1,Y ) sSet(∆1, Y ),

and we define k as the simplicial homotopy corresponding to k′. By construction
d ∪ k defines a diagonal in the square

B

b′

��

u // X

f
_��

M(b)

d∪k
<<

v
// Y,

which finishes the proof, that b is an absolute weak equivalence.
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3.8. Absolute weak equivalences

(ii) For every commutative square as on the left, there are diagonals in the middle and
on the right

A

a
��

u // X

f

_��

B

b
��
C v

// Y

A

a′

��

u // X

f
_��

M(a)

∃d∪h
88

(vb)∪(fuπA)
// Y

B

b′

��

d // X

f
_��

M(b)

∃d′∪h′
88

v∪(fuπA)
// Y.

In particular we have ud
h
a '
h′(id×a)

d′ba and like in the proof for transitivity of the

simplicial homotopy relation of Proposition 3.46, we obtain a composite simplicial
homotopy u '

k
db′a defining a diagonal in the square

A

(ab)′

��

u // X

f
_��

M(ba)

d∪k
77

v
// Y.

2

Proposition 3.39
Absolute weak equivalences are stable under pushouts along cofibrations.

Proof. Given a commutative square as on the left

A

a
��

// c // C

ιC
��

u // X

f
_��

B // B +A C v∪w
// Y,

where a is an absolute weak equivalence, we have to prove that also ιC is an absolute weak
equivalence. So given a commutative square as on the right, we use that a is an absolute
weak equivalence to obtain a diagonal in the commutative square

A

a′

��

uc // X

f
_��

M(a)

∃d∪h
88

v∪(fucπA)
// Y.

By construction of h we get a well-defined map (uc) ∪ h rendering the diagram below
commutative

M(c)

d1tc
��

(uc)∪h // X

f
_��

∆1 × C

∃k
77

wπC
// Y.

85



Chapter 3. Abstract homotopy theory

As c is a cofibration, we have d1 t c ∈ LLP (fib sSet) by Theorem 3.30 (ii). Hence there is
a diagonal k as depicted. As the first two small squares below are cocartesian by definition

A

a

��

c // C

ιC

��

d1
// ∆1 × C

��
B

ιB // B +A C
(ιC)′ //M(ιC),

A

a

��

d1
// ∆1 × A

��

id×c // ∆1 × C

��
B a′ //M(a)

ιB+(id×c) //M(ιC),

so is their composite, which coincides with the composite of the other two squares. As
also the third small square is cocartesian, the same holds for the fourth small square. So
by construction D := (d ∪ h) ∪ k defines a diagonal in the diagram below

C

(ιC)′

��

u // X

f
_��

M(ιC)

D

55

(v∪w)∪(fuπB+AC)
// Y,

which concludes the proof that ιC is an absolute weak equivalence.
2

From the following technically complicated Lemma we will derive more useful properties
of absolute weak equivalences.

Lemma 3.40
Given a commutative diagram

A

a
��

// c // B

b
��

A′ // c
′
// B′,

where a and b are absolute weak equivalences.
Then for every commutative square as on the left and every diagonal d ∪ h, there is is

a diagonal d′′ ∪ h′′ rendering the right diagram commutative

B

b

��

u // X

f

_��
B′ v

// Y,

A

a′

��

c // B

b′

��

u // X

f

_��

44

M(a)

d∪h

C:=c′+(id×c)
//M(b)

∃d′′∪h′′

::

v∪(fuπB)
// Y,

Proof. As b is an absolute weak equivalence, there is a diagonal in

B

b′

��

u // X

f
_��

M(b)

∃d′∪h′
88

v∪(fuπB)
// Y.
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3.8. Absolute weak equivalences

However this does not guarantee that (d′ ∪ h′) ◦ C = d ∪ h. The strategy is to construct
a deformation d′′ ∪ h′′ of d′ ∪ h′ restricting to d ∪ h along C. The construction of d′′ ∪ h′′
is quite technical and requires to apply the lifting property 5 more times. For i = 0, 1 we
define the maps

ιi := ε t di : Ui := ∂∆1 ×∆1 +∂∆1×∆0 ∆1 ×∆0 ↪−→ ∆1 ×∆1,

which for i = 0 e.g. corresponds to the inclusion

(0, 1) (1, 1) (0, 1) // (1, 1)

� � // “solid”

(0, 0)

OO

// (1, 0)

OO

(0, 0)

OO

// (1, 0).

OO
(3.2)

In particular ιi maps Ui isomorphically onto the simplicial subset

(d1∆0 ×∆1) ∪ (d0∆0 ×∆1) ∪ (∆1 × di∆1) ∼= ∆1 ∪∆1 ∪∆1. (3.3)

Recall that by Theorem 3.30 (ii) we have ιi ∈ LLP (fib sSet).

1) In the commutative diagram

U1 × A
ι1×id

��

h∪(h′(id×c))∪(ucπA) // X

f
_��

∆1 ×∆1 × A

∃H

55

vc′aπA=fucπA

// Y,

the upper horizontal map is defined using the description (3.3). Since ιi ∈ LLP (fib sSet),
we also have ιi × idA ∈ LLP (fib sSet) by Theorem 3.30 applied to the cofibration
∅�−→ A. So there is a diagonal H as depicted.

To clarify the situation we will introduce another representation for the lifting prob-
lem. Using the picture (3.2) we may represent the left vertical map of the diagram
by the picture

A A A
A // A

� � // A

A

A

OO

A
// A

A

OO

A

A

OO

A
// A.

A

OO

Moreover we may represent the upper horizontal map by the left diagram below and
the lifting property translates as there is an extension H represented by the right
diagram

da d′bc = d′c′a da k:= // d′c′a

� � // ∃H

uc

h

OO

ucπA
// uc

h′(id×c)

OO

uc

h

OO

ucπA
// uc,

h′(id×c)

OO
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2) Next we use that a is an absolute weak equivalence for the commutative square

A

a

��

k // sSet(∆1, X)

(ε∗,f∗)
_��

A′
((d,d′c′),s0vc′)

// sSet(∂∆1, X)×sSet(∂∆1,Y ) sSet(∆1, Y )

to get a diagonal k′∪K in the corresponding square (use Remark 3.24 for Proposition
2.54)

∂∆1 ×M(a) +∂∆1×A ∆1 × A
a

��

(d∪(d′c′))∪k // X

f
_��

∆1 ×M(a)

k′∪K

22

πM(a)

//M(a)
(vc′)∪(fkπA)

// Y.

Translating into our notation the left vertical map corresponds to the picture

A′ A′ A′ A′ // A′

� � // A

A

A

OO

A
// A

A

OO

A

A

OO

A
// A,

A

OO

and the lifting property can be described by the existence of an extension

d d′c′ d ∃k′ // d′c′

� � // ∃K

da

daπA

OO

k
// d′c′a

d′c′aπA

OO

da

daπA

OO

k
// d′c′a.

d′c′aπA

OO

3) Using that c′ is a cofibration and the Definition 3.27 of a fibration there is a diagonal
in the commutative square

∆0 ×B′ +∆0×A′ ∆
1 × A′

d1tc′
��

d′∪k′ // X

f
_��

∆1 ×B′

∃k′′
44

vπB′
// Y.

Again the left vertical map is represented by

A′ A′ // B′ � � // B′ B′ // B′,

and the lifting property by

d k′ // d′ � � // d′′ := k′′d1 ∃k′′ // d′.
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4) Using that c is a cofibration, so is the following map by Theorem 3.30 again

B
B // B B

B // B

A � � // B

B

B

OO

A
// B

B

OO

B

B

OO

B
// B,

B

OO

and thus there is an extension

d′′b
k′′(id×b) // d′b d′′b

k′′(id×b) // d′b

K � � // ∃L

d′′b

d′′bπB

OO

k
// d′b

d′bπB

OO

d′′b

d′′bπB

OO

`:=
// d′b.

dbπB

OO

Here it should be noted that the left map is well-defined, because by construction

• k′′(id× b)(id× c) = k′′(id× c′)(id× a) = k′(id× a) = K(id× d0),

• d′′bπB(id× c) = d′′bcπA = d′′c′aπA = daπA = K(d1 × id),

• d′bπB(id× c) = d′bcπA = d′c′aπA = K(d0 × id).

5) Finally, using that c is a cofibration again, so is the following map by Theorem 3.30
again

B
B // B B

B // B

A � � // B

B

A

OO

B
// B

B

OO

B

B

OO

B
// B,

B

OO

and thus there is an extension

d′′b
` // d′b d′′b

` // d′b

H � � // ∃M

u

d′′bπB

OO

uπB
// u

h′

OO

u

h′′:=

OO

uπB
// u.

h′

OO

Again the left map is well-defined, because by construction we have

• `(id× c) = k = H(id× d0),

• uπB(id× c) = H(id× d1),

• h′(id× c) = J(d0 × id).

By construction d′′ ∪ h′′ has the desired property.
2

The next two properties are essential for showing that a certain natural map between
two functors targetting to sSet is an absolute weak equivalence.
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Theorem 3.41 (i) For every commutative diagram of simplicial sets

Y

y
��

Xoo
coo

x
��

g // Z

z
��

Y ′ X ′ooc′oo g′ // Z ′

if x, y, z are absolute weak equivalences, then taking the colimit horizontally induces
an absolute weak equivalence

y +x z : Y +X Z −→ Y +X′ Z
′.

(ii) For every map of sequences of cofibrations of simplicial sets

X0

x0

��

// c0 // X1

x1

��

// c1 // ...

X ′0 //
c′0 // X ′1 //

c′1 // ...

if xn is an absolute weak equivalence, for all n ≥ 0, then taking the colimit horizon-
tally induces an absolute weak equivalence

x := colim
n≥0

xn : X := colim
n≥0

Xn −→ colim
n≥0

X ′n =: X ′.

Proof.

(i) For every commutative square as on the left, there is a diagonal DZ on the right,
since z is an absolute weak equivalence

Y +X Z

y+xz
��

t∪u // C

f
_��

Y ′ +X′ Z
′

v∪w
// D,

X

x′

��

g // Z

z′

��

u // C

f
_��

M(x)
G:=g′+(id×g)

//M(z)

∃DZ

88

w∪(fuπZ)
// D.

Setting DX := DZG, we also get a diagonal for the outer square on the right. By
Lemma 3.40 we also obtain a diagonal DY in the diagram

X

x′

��

c // Y
y′

��

u // C

f

_��

44

M(x)

DX

c′+(id×c)
//M(y)

∃DY

99

v∪(fuπY )
// D,

So by construction DY ∪DZ defines a diagonal for the square

Y +X Z

(y+xz)′

��

t∪u // C

f
_��

M(y +x z)

DY ∪DZ

44

(v∪w)∪(f(t∪u)πY +XZ)
// D,

which proves that y +x z is an absolute weak equivalence.
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3.8. Absolute weak equivalences

(ii) For every commutative square as on the left, there is a diagonal D0 on the right,
since x0 is an absolute weak equivalence

X

x
��

u // C

f
_��

X ′ v
// D,

X0

x′0
��

uι0 // C

f
_��

M(x0)

∃D0

55

(vι0)∪(fuι0πX0
)
// D.

By induction on n ≥ 0, Lemma 3.40 provides a diagonal Dn+1 in the diagram

Xn

x′n

��

cn // Xn+1

x′n+1

��

uιn+1 // C

f

_��

22

M(xn)

Dn

c′n+(id×cn)
//M(xn+1)

∃Dn+1

55

(vιn+1)∪(fuιn+1πXn+1
)
// D,

Then by construction colim n≥0Dn defines a diagonal in the diagram

X

x′

��

u // C

f
_��

M(x)

colim nDn

44

v∪(fuπX)
// D,

proving that x is an absolute weak equivalence.

2

Proposition 3.42
The class wasSet of absolute weak equivalences has the following properties.

(i) wasSet is closed under pushouts along cofibrations.

(ii) wasSet is closed under arbitrary coproducts.

Absolute weak equivalences are stable under pushouts along cofibrations.

Proof.

(i) Given a sequence of maps C
c
←−� A a−→ B, where a is an absolute weak equivalence.

Then applying Theorem 3.41 (i) to the commutative diagram

C Aoocoo A

a
��

C Aoo
coo a // B

yields that also C
ιC−→ B +A C is an absolute weak equivalence.
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(ii) Given a family of absolute weak equivalences (Ai
ai−→ Bi)i∈I indexed by some set

I ∈ Set. Setting

a :=
∐
i∈I

ai : A :=
∐
i

Ai −→
∐
i

Bi =: B,

and using that coproducts commute pushouts, we get a natural isomorphism∐
iAi∐

i a
′
i

��

A

a′

��∐
iM(ai)

∼ //M(a).

So for every commutative square as on the left, there are diagonals in the middle
square, which glue to a diagonal in the right square

A

a
��

u // C

f
_��

B v
// D

Ai

a′i
��

uιi // C

f
_��

M(ai)

∃Di

66

(vιi)∪(fuιiπAi
)
// D

A

a
��

u // C

f
_��

M(a)

D:=
∐

iDi

66

(vιi)∪(fuιiπAi
)
// D

2

Proposition 3.43
Let wasSet denote the class of absolute weak equivalences. Then

LLP (fib sSet) = cof sSet ∩ wasSet.

Proof. Let c ∈ sSet(A,B)∩LLP (fib sSet). Then for every fibration f ∈ sSet(C,D) there
is a diagonal in the left square, providing a diagonal in the right square

A
��

c
��

u // C

f
_��

B

∃d
99

v
// D,

A

c′

��

u // C

f
_��

M(c)

d∪(uπA)

88

v∪(fuπX)
// D,

proving that c is an absolute weak equivalence. Moreover c ∈ cof sSet by Corollary 3.32,
so we get the inclusion

LLP (fib sSet) ⊂ cof sSet ∩ wasSet. (3.4)

Vice versa suppose X
c

�−→ Y is an absolute weak equivalence. As (LLP (fib sSet), fib sSet)
is a weak factorization system, we may factor c as X

c′−→ X ′
f
−_ Y , where c′ ∈

LLP (fib sSet) and f ∈ fib sSet. Proposition 3.38 implies that f is an absolute weak
equivalence, because c′ is one by (3.4) and fc′ = c is one by assumption. Solving the
lifting problem

X ′

f
��

X ′

f
_��

Y

'
h

∃s

88

Y
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proves that f is a strong deformation retraction and hence f ∈ RLP (cof sSet) by Propo-
sition 3.33. So we can also find a diagonal in

X
��

c
��

c′ // X ′

f
��

Y

∃d
>>

Y,

which shows that c is a retract of c′ and hence c ∈ LLP (fib sSet), because the latter is
closed under retracts by Lemma 3.13.

2

If we knew that every absolute weak equivalence was a weak equivalence Proposition
3.43 would comparably easily imply that sSet is a model category with the three classes
of maps.

Corollary 3.44

For X
f−→ Y

g−→ Z the following implication holds.

f, gf ∈ LLP (fib sSet), g ∈ cof sSet ⇒ g ∈ LLP (fib sSet).

Proof. By Proposition 3.43 the maps f and gf are absolute weak equivalences, hence
g is an absolute weak equivalence by Propostion 3.38. So g ∈ cof sSet ∩ wasSet =
LLP (fib sSet) by using Proposition 3.43 again.

2

Combined with Proposition 3.43 the subsequent lemma will be used later to show
that the endofunctor of barycentric subdivision on the category sSet preserves anodyne
extensions.

Lemma 3.45
Let C,D ∈ Cat be small categories with a terminal object. Then:

(i) The nerve of every functor 0
f−→ C is an anodyne extension.

(ii) The nerve of every functor C
f−→ D is an absolute weak equivalence.

Proof.

(i) Let 0
g−→ C be the functor sending 0 to the terminal object ∗ ∈ C. Moreover let

C
r−→ 0 be the unique functor sending every object to 0. Then rg = id0 and by the

universal property of the terminal object there are unique C-morphisms

x
ηx−→ ∗ = gr(x), x ∈ C.

In other words the functors r and g form an adjunction

0(r(x), y) = C(x, g(y)).
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So Proposition 2.89 implies that Bg and Br form a simplicial homotopy equivalence.
As 0 consists of a single object and morphism, it follows that Bg is infact a strong
deformation section and thus Bg ∈ LLP (fib sSet) by Proposition 3.43. This proves
the assertion, for f = g.

If f 6= g we define the functor

h : 1 −→ C, 0 7−→ f(0), 1 7−→ ∗,

sending the map 0 −→ 1 to the unique map ηf(0). Taking nerves we get a commu-
tative diagram

∆0

d1

��

B0

Bd1

��

Bf

��
∆1 B(1) Bh // BC.

∆0

d0

OO

B0

Bd0

OO

Bg

MM

Since f 6= g, the map Bh is injective and hence a cofibration by Definition 3.27. So
Bg, d0 ∈ LLP (fib sSet) implies Bh ∈ LLP (fib sSet) by Corollary 3.44. Moreover
d1, Bh ∈ LLP (fib sSet) implies Bf ∈ LLP (fib sSet) by Lemma 3.13.

(ii) Choose an arbitrary functor 0
g−→ C, e.g. the functor g constructed in the proof of

(i). Then the functors g and fg satisfy the hypothesis in (i) and so Bg,Bf ◦ Bg ∈
LLP (fib sSet) ⊂ wasSet by Propostion 3.43. So the 2-of-3 property for absolute
weak equivalences proven in Proposition 3.38 implies that also Bf is an absolute
weak equivalence.

2

3.9 Maps with fibrant codomain

In general simplicial homotopy does not define an equivalence relation on the set of ho-
momorphisms between two simplicial sets. But it does once the target simplicial set is
fibrant, as the following proposition demonstrates.

Proposition 3.46

Let Y
t−_ T and e, f, g ∈ sSet(X, Y ) with s = te = tf = tg.

(i) f '
fπX

f ,

(ii) f '
h
g, th = sπX ⇒ g '

h′
f, sh′ = sπX ,

(iii) e '
h
f '

k
g, sh = sk = sπX ⇒ e '̀ g, s` = sπX .
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In particular simplicial homotopy “'” defines an equivalence relation on sSet(X, Y ), if
Y −_ ∗.

Proof. (i) holds by construction, because fπXd
i = f , for i = 0, 1. For the rest of the proof

we will again use the anodyne extension

ιi := ε t di : Ui := ∂∆1 ×∆1 +∂∆1×∆0 ∆1 ×∆0 ↪−→ ∆1 ×∆1

and the description

ιi : Ui
∼−→ (d1∆0 ×∆1) ∪ (d0∆0 ×∆1) ∪ (∆1 × di∆1) ∼= ∆1 ∪∆1 ∪∆1

like in the proof of Lemma 3.40.
Under the hypothesis of (ii) there is a solution for the lifting problem

Ui ×X
ι0×id

��

(gπX)∪h∪(gπX) // Y

t
_��

∆1 ×∆1 ×X

∃H

55

sπX
// T,

which in the notation of Lemma 3.40 corresponds to the picture

g
gπX // g g

gπX // g

� � // ∃H

g

gπX

OO

f

h

OO

g

gπX

OO

h′:=
// f,

h

OO

Applying Theorem 3.30 for the cofibration ∅�−→ X implies that ι0 × id ∈ LLP (fib sSet)
and hence there is a diagonal H. By construction we get a simplicial homotopy g '

h′
f .

Similarly for e '
h
f '

k
g there is a diagonal in the commutative square

Ui ×X
ι0×id

��

h∪(gπX)∪k // Y

t
_��

∆1 ×∆1 ×X

∃H

44

sπX
// T.

which in the notation of Lemma 3.40 corresponds to the picture

f
k // g f

k // g

� � // ∃H

e

h

OO

g

gπX

OO

e

h

OO

`:=
// g,

gπX

OO

and by construction e '̀ g.
2

Transitivity and symmetric of the simplicial homotopy relation is not the only property
that holds, when the target is fibrant.
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Proposition 3.47

For X
f
−_ Y −_ ∗ the following are equivalent.

(i) f is a weak equivalence.

(ii) f is a homotopy equivalence.

(iii) f is a strong deformation retraction.

Proof. We begin by assuming (i), i.e. f is a weak equivalence.

• Since Y −_ ∗, the map π0sSet(X, Y ) −� sSet(Y, Y ) is surjective. So there is a

Y
g−→ X with idX '

h
gf .

• Since X −_ ∗, the map π0sSet(X,X) ↪−→ sSet(Y,X) is injective. So f '
fh
fgf

implies idY '
k
fg.

This proves, that f is a homotopy equivalence.
Next we assume (ii), i.e. that there is a map Y

g−→ X and simplicial homotopies
idX '

h
gf and idY '

k
fg. Using that ∅�−→ Y is a cofibration there is a solution for the

lifting problem

∆0 × Y
d0×id

��

g // X

f
_��

∆1 × Y

∃k′
;;

k
// Y.

Setting s := k′d1 we get

fs = fk′d1 = kd1 = idY , idX '
h
gf, sf '

k′(id×f)
gf.

So by Proposition 3.46 there is a simplicial homotopy idX '
h′
sf . Using that ∅�−→ X is a

cofibration there is a solution for the lifting problem

U0 ×X
ι0×id

��

h′∪(sfh′)∪(sfπX) // X

f
_��

∆1 ×∆1 ×X

∃H

55

fπX(id×h′)
// Y,

which in the notation of Lemma 3.40 corresponds to the picture

sf
sfπX // sf sf

sfπX // sf

� � // ∃H

idX

h′

OO

sf

sfh′

OO

idY

h′

OO

h′′:=
// sf.

sfh′

OO
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By construction we have

idY '
h′′
sf, fh′ = fH(id× d1) = fπX(id× (h′d1)) = fπX ,

so f is a strong deformation retraction.
Finally every simplicial homotopy equivalence is a weak equivalence by Remark 3.28,

which shows that (iii) implies (i).
2

If we knew the preceding proposition for arbitrary fibrations (without assuming that
the codomain is fibrant), this would immediately give the desired model structure on
sSet. Indeed it yields the following characterization for anodyne extensions with fibrant
codomain, which we (for general codomains) could only verify (yet) for absolute weak
equivalences instead of weak equivalences in Proposition 3.33. The key idea in the veri-
fication of the model structure on sSet is to find a well-behaved method of replacing a
map by one having a fibrant codomain.

Corollary 3.48
The following implications are valid.

(i) If c ∈ cof sSet ∩ wsSet has a fibrant codomain, then c ∈ LLP (fib sSet).

(ii) if f ∈ fib sSet has a fibrant codomain, then f ∈ RLP (cof sSet ∩ wsSet).

Proof.

(i) The proof is similar to that of Proposition 3.43. Using that (LLP (fib sSet), fib sSet)
is a weak factorization system, we may factor c as X

c′

�−→ X ′
f
−_ Y , where c′ ∈

LLP (fib sSet) and f ∈ fib sSet. Then f ∈ wsSet by the 2-of-3 axiom, because
fc′ = c ∈ wsSet by assumption and c′ ∈ wasSet ⊂ wsSet by Proposition 3.43 and
Proposition 3.37. So f is a strong deformation retraction by Proposition 3.47 and
hence f ∈ RLP (cof sSet) by Proposition 3.33. Again we can find a diagonal in

X
��

c
��

c′ // X ′

f
��

Y

∃d
>>

Y,

which shows that c is a retract of c′ and hence c ∈ LLP (fib sSet), because the latter
is closed under retracts by Lemma 3.13.

(ii) Given a lifting problem

A
��

c '
��

u // X

f
_��

B

∃d
99

v // Y � ,2∗,
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we may factor B −→ ∗ as B
c′−→ B′ −_ ∗ with c′ ∈ LLP (fib sSet). So there is a

diagonal in the square

B

c′
��

v // Y

_��
B′

∃v′
>>

// ∗.
Moreover c′c ∈ cof sSet ∩ wsSet and hence c′c ∈ LLP (fib sSet) by (i), because
B′ −_ ∗. So we can find a diagonal in the square

A

c′c
��

u // X

f
_��

B′

∃d′
>>

v′ // Y.

Then d := d′c′ solves the first lifting problem, because by construction

fd = fd′c′ = v′c′ = v, dc = d′c′c = u.

2

We also need the following “fibrerd version” of the dual of Proposition 3.47.

Proposition 3.49
Given a t-fibered homotopy equivalence

X

tc � �%

// c // Y

t>y�
T

meaning that there is a map Y
d−→ X satisfying

tcd = t, idX '
h
dc, tch = tcπX , idY '

k
cd, tk = tπY .

Then c is a strong deformation section.

Proof. Ignoring the fact that in general we have T 6= ∗, the arguments of the proof are
exactly the same as the proof of the implication (ii) ⇒ (iii) in Proposition 3.47. First
there is a solution for the lifting problem

∆0 × Y +∆0×X ∆1 ×X

d0tc
��

d∪k // X

tc
_��

∆1 × Y

∃k′
66

tπY
// T.

Setting r := k′d1 we get

rc = k′d1c = k′(id× c)d1 = kd1 = idX , idY '
h
cd, cr '

ck′
cd.
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Using the hypothesis on h and k Proposition 3.46 yields a homotopy

idY '
h′
cd, th′ = tπY .

Moreover there is a diagonal H in

U0 × Y +U0×X ∆1 ×∆1 ×X
ι0tc
��

(h′∪(h′(id×(cr)))∪crπY )∪(πY (id×h′)(id×id×c)) // Y

t
_��

∆1 ×∆1 × Y

∃H

11

tπY
// T

corresponding to the picture

cr
crπX // cr cr

crπY // cr

� � // ∃H

idY

h′

OO

cr

crh′

OO

idY

h′

OO

h′′:=
// cr.

crh′

OO

By construction we have

idX '
h′′
cr, h′′(id× c) = cπX ,

meaning that c is a strong deformation section.
2

3.10 Verifying the model structure on simplicial

sets using Kan’s functor Ex∞

As mentioned before, for the key step in the construction of the model structure on sSet,
we need a well-behaved functorial fibrant replacement X

'−→ Q(X) −_ ∗, for X ∈ sSet.
One example of such a functor is Kan’s functor Ex∞, which is closely related to barycentric
subdivision.

Definition 3.50
The barycentric subdivision sdBX of a simplicial set X ∈ sSet is defined as

sdBX := colim
m∈∆/X

BsdBI(m),

where BsdBI(n) is the nerve of the barycentric subdivision of the simplicial complex I(n).

Remark 3.51
Using Yoneda’s Lemma 2.11, we get an adjunction

sSet(sdBX, Y ) = sSet(X,ExY ),

where ExY := sSet(sdB∆•, Y ).
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As the following proposition shows, this extends the notion of the barycentric subdivi-
sion for simplicial complexes of Definition 1.13.

Proposition 3.52
There is a natural isomorphism

fC := colim
m∈∆/BC

BsdB(εm) : sdBBC = colim
m∈∆/BC

BsdBI(m)
∼−→ B(sdBC), C ∈ Simpo.

Proof. Suppose first, that n := ]C <∞. Then C = s1 ∪ ...∪ sm with si ∈ S(C) maximal.
We will prove that fC is an isomorphism by induction on m ≥ 1.

• For m = 1 there is a (unique) isomorphism g : I(n)
∼−→ C. In particular g ∈ ∆/BC

forms a final object, so

ιg : BsdBI(n)
∼−→ colim

m∈∆/BC
BsdB(εm) = sdBBC.

As also fCιg = BsdB(g) is an isomorphism, it follows that fC is an isomorphism.

• For m > 1 define the ordered subcomplex C ′ := s1 ∪ ... ∪ sm−1 ≤ C. Then there is
are canonical cartesian squares of ordered simplicial complexes

C ′ ∩ sm� _

��

� � // sm� _

��
C ′ �
� // C

sdBC
′ ∩ sm� _

��

� � // sdBsm� _

��
sdBC

′ � � // sdBC.

As the nerve functor Simpo
B−→ sSet preserves limits, we get induced cartesian

squares of simplicial sets

B(C ′ ∩ sm)� _

��

� � // Bsm� _

��
BC ′ �

� // BC.

BsdB(C ′ ∩ sm)� _

��

� � // BsdBsm� _

��
BsdBC

′ � � // BsdBC.

Using C = C ′∪ sm and hence sdBC = sdBC
′∪ sdBsm, we get BC = BC ′∪Bsm and

BsdBC = BsdBC
′ ∪ BsdBsm. It follows that the two squares are also cocartesian.

Using that sSet sdB−→ sSet is a left adjoint by Remark 3.51, it commutes with colimits
by Corollary 2.47, so also sdB applied to the left square is a pushout square. By the
induction hypothesis for C ′ = s1∪...∪sm−1 and C ′∩sm = (s1∩sm)∪...∪(sm−1∩sm),
the vertical maps in the diagram

sdBBC
′

fC′ o
��

sdBB(C ′ ∩ sm)oo

fC′∩sm o
��

// sdBBsm

fsm o
��

BsdBC
′ BsdB(C ′ ∩ sm)oo // BsdBsm

are isomorphisms. So taking the colimit horizontally yields the isomorphism fC :
sdBBC

∼−→ BsdBC.
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For ]C =∞ there is a comutative square

colim
F≤C,
finite

sdBBF

o
��

colim F fF
∼

// colim
F≤C,
finite

BsdBF

o
��

sdBBC
fC // BsdBC,

where the vertical maps are isomorphisms, because sdB and B commute with the filtered
colimit, which is just a union in this case. As the square commutes, fC must be an
isomorphism.

2

Corollary 3.53
The natural homeomorphism of Theorem 1.17

hC : |sdBC|
∼−→ |C|, C ∈ Simpo

extends to a natural homeomorphism

|sdBC|
hC
∼

// |C|

colim
m∈∆/C

|BsdBI(n)|
colim hI(m)

∼
// colim
m∈∆/C

|BI(n)|,

o

OO

where the isomorphism on the right is induced by the canonical one from the co-Yoneda
Lemma 2.51.

Having developed the language of category, it is easy to see that the barycentric subdi-
vision functor on the category of simplicial complexes factors over the category of partially
ordered sets:

Remark 3.54
Every partially ordered set (P,≤) induces an ordered simplicial complex T (P ) with vertices
P and simplices

ST (P ) = {s ⊂ P ; 0 < ]s <∞, “≤” restricts to a total order on s}.

Then by construction, we have

(i) BP = Cat(-, P ) = Simp(-, T (P )) = BT (P ),

(ii) sdBX = TS(X), for all X ∈ Simp.

In particular we have

sdBX := colim
m∈∆/X

BsdBI(n) = colim
m∈∆/X

BSI(n),

where BSI(n) is the nerve of the partially ordered set of simplices in I(n).
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Using that partially ordered sets can be considered as categories, for which we can
more easily construct homotopy equivalences by using Proposition 2.89, the preceding
characterization of the subdivision functor is quite useful for actual proofs.

Proposition 3.55
The following holds.

(i) sdBcof sSet ⊂ cof sSet, Ex(RLP (cof sSet)) ⊂ RLP (cof sSet),

(ii) Ex(fib sSet) ⊂ fib sSet.

Proof.

(i) There are equivalences

sdBc ∈ cof sSet, ∀ c ∈ cof sSet
⇐⇒ sdBc ∈ LLP (f), ∀ c ∈ cof sSet, f ∈ RLP (cof sSet)
⇐⇒ Exf ∈ RLP (c), ∀ c ∈ cof sSet, f ∈ RLP (cof sSet)

⇐⇒ Exf ∈ RLP (∂∆n ε
↪−→ ∆n), ∀ f ∈ RLP (cof sSet), n ≥ 0

⇐⇒ sdB(∂∆n ε
↪−→ ∆n) ∈ LLP (f), ∀ f ∈ RLP (cof sSet), n ≥ 0

⇐⇒ sdB(∂∆n ε
↪−→ ∆n) ∈ cof sSet, ∀ n ≥ 0,

where the first equivalence holds, because (cof sSet, RLP (cof sSet)) is a weak fac-
torization system by Theorem 3.29 and hence cof sSet = LLP (RLP (cof sSet)). The
second equivalence follows from Remark 3.24 applied to the adjunction (sdB,Ex) of
Remark 3.51. The thirs equivalence holds, because

RLP (cof sSet) = RLP{∂∆n ε
↪−→ ∆n; n ≥ 0}

by Theorem 3.29 again. The last two equivalences are similar.

For checking the last assertion, by using the commutative diagram

sdB∂∆n

sdBε

��

sdBB∂I(n)

sdBε
��

f∂I(n)

∼
// BsdB∂I(n)

BsdB(ε)

��
sdB∆n sdBBI(n)

fI(n)

∼
// BsdBI(n)

it suffices to verify that the right vertical map is injective. But this is true since
∂I(n) ↪−→ I(n) and hence sdBI(n) ↪−→ sdBI(n) is injective.

(ii) By Theorem 3.29 we have

fib sSet = RLP{∆0 ×∆n +∆0×∂∆n ∆1 × ∂∆n ditε−→ ∆1 ×∆n; n ≥ 0, i = 0, 1}.

So by the same arguments as in (i), it suffices to check that

sdB(di t ε) ∈ LLP (fib sSet), ∀ n ≥ 0, i = 0, 1.

However this is much more difficult than the case in (i) and will be obtained in
several steps.
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a) First we prove that sdBBI(m
j

↪−→ n) ∈ LLP (fib sSet), for every injection

m
j

↪−→ n. Using Proposition 3.52 and Remark 3.54 we have a natural isomor-
phism

sdBBI(m)
∼−→ BsdBI(m) = BTSI(m) = BSI(m), m ≥ 0,

and the partially ordered set SI(m) considered as a category has a terminal
object m. So Lemma 3.45 implies that sdBBI(j) ∈ wasSet. Since sdBBI(j) ∈
cof sSet by (i), Proposition 3.43 implies that sdBBI(j) ∈ LLP (fib sSet).

b) Next we prove that sdBB(I(0) × C
di×id−→ I(1) × C) ∈ LLP (fib sSet), where

i = 0, 1 and C is an ordered simplicial complex with n := ]C < ∞. Then
C = s1 ∪ ...∪ sm with si ∈ S(C) maximal. We prove that di× id is an absolute
weak equivalence by induction on m ≥ 1.

• For m = 1 there is an isomorphism g : I(n)
∼−→ C, so we may assume

C = I(n). We only prove the case i = 0 and proceed similarly as in the
proof of Proposition 3.35 by constructing intermediate subcomplexes

I(0)× I(n) = U0 ↪−→ U1 ↪−→ ... ↪−→ Un = I(1)× I(n).

More precisely we define

Uk+1 := Uk ∪ tk, tk = {(0, 0), ..., (0, k), (1, k), ..., (1, n)}, 1 ≤ k ≤ n.

Then Uk ∩ tk = t′k = {(0, 0), ..., (0, k − 1), (1, k), ..., (1, n)} ∼= I(n) and we
get a cartesian square as on the left

I(n)

dk

��

// Uk

��
I(n+ 1) // Uk+1,

BI(n)

dk

��

// BUk

=:jk+1

��
BI(n+ 1) // BUk+1.

Hence also the right square is cartesian and by definition of Uk+1 also
cocartesian. The right square stays cocartesian after applying the left ad-
joint functor sdB. Since sdBd

k ∈ LLP (fib sSet) by b), Lemma 3.13 implies
that also (BUk −→ BUk+1) ∈ LLP (fib sSet) and thus sdB(di × id) =
sdBjn ◦ ... ◦ sdBj1 ∈ LLP (fib sSet).
• For m > 1 we consider the ordered subcomplex C ′ := s1 ∪ ... ∪ sm−1 ≤ C

again. Like in the proof of Proposition 3.52 we get a commutative diagram

sdBB(I(0)× C ′)
sdBB(di×id)

��

sdBB(I(0)× (C ′ ∩ sm))oooo

sdBB(di×id)
��

// // B(I(1)× sm)

sdBB(di×id)
��

sdBB(I(1)× C ′) B(I(1)× (C ′ ∩ sm))oooo // // B(I(1)× sm),

in which the vertical maps are absolute weak equivalences by the induction
hypothesis. As all the horizontal maps are cofibrations by (i), Theorem 3.41
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(i) implies that the horizontal colimit sdBB(I(0)×C)
sdBB(di×id−→ B(I(1)×C)

also is an absolute weak equivalence. As it is injective and thus a cofibra-
tion, Proposition 3.43 implies that is in LLP (fib sSet).

c) Now in the commutative diagram

sdB(∆0 × ∂∆n)

sdB(id×ε)
��

sdB(di×id) // sdB(∆1 × ∂∆n)

��
sdB(id×ε)

��

sdB(∆0 ×∆n)

sdB(di×id) //

// sdB(∆0 ×∆n +∆0×∂∆n ∆1 × ∂∆n)

ditε

++
sdB(∆1 ×∆n)

every map is injective by Theorem 3.30 and (i). Using the isomorphisms

∆m×∂∆n = B(I(m)×∂I(n)), ∆m×∆n = B(I(m)× I(n)), m = 0, 1,

we have shown that the upper horizontal map and the lower curved map is
in LLP (fib sSet). As the square is cocartesian, Lemma 3.13 implies that the
lower horizontal map is in LLP (fib sSet). So Corollary 3.44 implies that ditε ∈
LLP (fib sSet).

2

For our purposes much more important than the map h is the following map a.

Proposition 3.56
The natural so-called last vertex map of partially ordered sets

V : SI(m) −� m, s 7−→ max s, m ≥ 0

induces a natural surjective absolute weak equivalence

sdBX
aX
'

// // X

colim
m∈∆/X

BsdBI(n) colim
m∈∆/X

BSI(n)
colim mBV

∼
// colim
m∈∆/X

B(n).

o

OO

Again the isomorphism on the right is induced by the canonical one from the co-Yoneda
Lemma 2.51.

Proof. The map V is a retraction, an order-preserving section is given by

W : m −→ SI(m), k 7−→ k.

It follows that also BV is a retraction and thus an epimorphism. As epimorphisms are
stable under colimits, it follows that aX is an epimorphism.
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It remains to prove that aX is an absolute weak equivalence, which is a lenghty induction
using our theory of absolute weak equivalence established in section 3.8. First we assume
X = BC, where C is an ordered simplicial complex with n := ]C < ∞. Then C =
s1 ∪ ...∪ sm with si ∈ S(C) maximal. We prove that aBC is an absolute weak equivalence
by induction on m ≥ 1.

• For m = 1 there is an isomorphism g : I(n)
∼−→ C. Using Remark 3.54 we get a

commutative diagram

BSI(n)

BV
��

BsdBI(n) sdBBI(n)∼
fI(n)oo

aBI(n)

��

sdBB(g)

∼
// sdBBC

aBC

��
B(n) BI(n)

B(g)

∼
// BC,

so it suffices to prove that the left vertical map is an absolute weak equivalence.
But considering the partially ordered sets SI(n) and n as categories, the objects
n ∈ SI(n) and n ∈ n are terminal. So Lemma 3.45 implies that BV is an anodyne
extension.

• For m > 1 we consider the ordered subcomplex C ′ := s1∪ ...∪sm−1 ≤ C again. Like
in the proof of Proposition 3.52 we get a commutative diagram

sdBBC
′

aBC′

��

sdBB(C ′ ∩ sm)oooo

aB(C′∩sm)

��

// // Bsm

aBsm

��
BC ′ B(C ′ ∩ sm)oooo // // Bsm,

in which the vertical maps are absolute weak equivalences by the induction hypoth-
esis. Moreover taking the colimit horizontally yields the map sdBBC

aBC−→ BC. As
all the horizontal maps are injective and hence cofibrations, Theorem 3.41 (i) im-
plies that also aBC is an absolute weak equivalence. This concludes the proof for the
induction step.

Now let X ∈ sSet be an arbitrary simplicial set. By induction on n ≥ 0 we will show that

sdBsknX
asknX−→ sknX is an absolute weak equivalence.

• For n = 0 the simplicial set sk0X is a set of points. As sdBBI(0)
∼−→ BsdBI(0) =

BI(0) it follows that sdBsk0X
ask0X−→ sk0X is an isomorphism.

• For n > 0, recall that by Proposition 2.76 we have cocartesian squares

X̃nB∂I(n) = X̃n × ∂∆n
� _

��

// skn−1X

��
X̃nBI(n) = X̃n ×∆n // sknX.

105



Chapter 3. Abstract homotopy theory

Using that sdB is a left adjoint and therefore commutes with pushouts and coprod-
uct, taking colimits horizontally in the commutative diagram

X̃nsdBBI(n)

X̃naBI(n)
��

X̃nsdBB∂I(n)oooo

X̃naB∂I(n)
��

// sdBskn−1X

askn−1X

��
X̃nBI(n) X̃nB∂I(n)oooo // skn−1X

yields the map sdBsknX
asknX−→ sknX. Using that absolute weak equivalences are

closed under arbitrary coproducts by Proposition 3.42, the left two vertical maps
are absolute weak equivalences, because ∂I(n) ≤ I(n) are finite simplicial complexes.
It follows that also asknX is an absolute weak equivalence by Theorem 3.41, which
proves the induction step.

Finally we apply Theorem 3.41 to the map of sequences

sdBsk0X

ask0X

��

// // sk1X

ask1X

��

// // sk2X

ask2X

��

// // ...

sk0X // // sk1X // // sk2X // // ...

to see that also sdBX
aX−→ X is an absolute weak equivalence.

2

Infact we are more interested in the functor Ex right adjoint to sdB. An colimit over its
iteration will provide the desired fibrant replacement functor Ex∞, which was introduced
by Daniel Kan during his foundational studies of simplicial sets.

Definition 3.57
For every X ∈ sSet, we define

Ex∞X := colim (X
bX−→ ExX

bExX−→ Ex2X
bEx2X−→ ...),

where X
bX−→ ExX is the map corresponding to sdB

aX−→ X under the adjunction 3.51.

Proposition 3.58
For every X ∈ sSet, we have Ex∞X −_ ∗.

Proof. Using the description of Proposition 3.35

fib sSet = RLP{Λn
k :=

⋃
0≤i≤n,
i 6=k

di∆n−1 ↪−→ ∆n; 0 ≤ k ≤ n}

we need to prove that there is a solution for every lifting problem

Λn
k� _

��

u // Ex∞X

��
∆n

∃d
;;

// ∗.
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As Λn
k is a finite simplicial set, Proposition 3.22 implies that u factors as

Λn
k

v−→ ExmX
ιm−→ Ex∞X,

for some m ≥ 1. So setting Y := ExmX it suffices to construct a map d in every diagram

Λn
k� _

��

v // ExY
bExY // Ex2Y

��
∆n

∃d

33

// ∗

By applying Remark 3.24 twice and using that Ex∗ = sSet(sdB∆•, ∗) = ∗, we can equiv-
alently solve one of the lifting problems below

sdBΛn
k� _

��

v′ // Y
bY // ExY

��
sdB∆n

∃d

33

// ∗

sd2
BΛn

k� _

��

sdBaΛn
k // sdBΛn

k
v′ // Y

��
sd2

B∆n

∃d
77

∃d′

33

// ∗

Recall that in the proof of Proposition 3.35 we introduced the ordered subcomplex Ank ≤
I(n), which after applying the nerve functor yields the simplicial subset Λn

k ≤ ∆n. Now
by construction of a and f there is a commutative square

BSI(n)

BV
��

BTSI(n)

BV
��

BsdBI(n) sdBBI(n)
fI(n)

∼
oo

aBI(n)

��

sdB∆n

a∆n

��
B(n) BI(n) BI(n) ∆n.

So by naturality of a and f the map TSI(n)
V−→ I(n) restricts to a map TSI(Ank)

V−→ Ank
and there are natural isomorphisms

sdB∆n

fI(n) o
��

sdBΛn
k

? _oo

fAn
k
o
��

aΛn
k // Λn

k

BTSI(n) BTS(Ank)? _oo BV // B(Ank).

So applying sdB and using f again it suffices to solve the lifting problem of simplicial
complexes (the map d need and will not be order-preserving!)

TS(Ank)� _

��

V // Ank

TSI(n).

∃d

;;

But this is possible by setting

d : TSI(n) −→ Ank , s 7−→
{

max s, s ∈ S(Ank),
{k}, s /∈ S(Ank).
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Indeed for s := {s0 ( ... ( sm} ∈ STSI(n), let j be maximal with sj /∈ S(Ank). Then
there is an 0 ≤ i ≤ n, i 6= k with i /∈ sj and hence

i /∈ {max s0, ...,max sj, {k}} ⊃ d(s) ∈ S(Ank).

2

Finally by using all the good properties of the functor Ex∞ we can prove the difficult
inclusion fib sSet ⊂ RLP (cof sSet ∩ wsSet) in the construction of the model structure.

Proposition 3.59
For every fibration f : X −_ Y the following holds.

(i) Ex∞f ∈ fib sSet.

(ii) X
(bX ,f)−→ ExX ×ExY Y is a strong deformation section.

(iii) (X
(ιX ,f)−→ Ex∞X ×Ex∞Y Y ) ∈ LLP (fib sSet).

(iv) f ∈ RLP (cof sSet ∩ wsSet).

Proof.

(i) Using Theorem 3.29 we need to solve every lifting problem

∆0 ×∆n +∆0×∂∆n ∆1 × ∂∆n

ditε
��

u // ExmX

Exmf

��
∆1 ×∆n

∃d
44

v
// ExmY,

for i = 0, 1 and m = ∞. As the two simplicial sets on the left are finite and hence
ω-compact by Proposition 3.22, the map u and v factor over ExmX and ExmY
respectively, for some m <∞. So we may assume that m <∞. But then there is a
solution d, because Exmf is a fibration by m-fold application of Proposition 3.55.

(ii) Using that the natural map a epimorphic by Proposition 3.56, it follows that

bX : X ∼= sSet(∆•, X)
(a∆• )∗

↪−→ sSet(sdB∆•, X) = ExX

is injective and hence a cofibration by Definition 3.27. It follows that also the map

c := (bX , f) : X ↪−→ ExX×ExY =: X ′

is injective, because πY (bX , f) = bX . So in the commutative diagram

sdBX
��

sdBc
��

aX // X

��

((

c

��

sdBX
′

aX′ 00

// sdBX
′ +sdBX X

aX′∪c ''
X ′,
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the maps c and sdBc are cofibrations by Definition 3.27 and Proposition 3.55 re-
spectively. As aX and aX′ are absolute weak equivalences by Proposition 3.56, also
aX′ ∪ c is an absolute weak equivalence by the 2-of-3 property for absolute weak
equivalences proven in Proposition 3.38.

Now the commutative diagram on the left induces a commutative square in the
middle, for which there is a diagonal and homotopies h, k as depicted below

X

c

��

X

(bX ,f)

��
X ′

(πExX ,πY )

=
// ExX ×ExY Y

sdBX
′ +sdBX X

aX′∪c

��

π′ExX∪id
// X

f

_��
X ′

'
h∪k

∃d

88

πY
// Y,

where π′ExX is the map corresponding to πExX under the adjunction bijection

sSet(sdBX ′, X) = sSet(X ′,ExX)

of Remark 3.51. Defining k′ ∈ sSet(∆1, X ′,ExX) as the map similarly corresponding
to

sdB(∆1 ×X ′)
(a∆1 ,sdB(πX′ ))−→ ∆1 × sdBX

′ k−→ X,

we can define k′′ := (k′, πY ) : ∆1 ×X ′ −→ ExX ×ExY Y = X ′ and get

idX '
h
dc, fh = fπX , idX′ '

k′′
cd, fdk′′ = πY k

′′ = πY .

As f is a fibration and hence also Exf by Proposition 3.55, so is also the left vertical
map in the cartesian square

ExX ×ExY Y

πY
��

πExX // ExX

Exf
_��

Y
bY // ExY.

because fib sSet is stable under pullbacks by the dual of Lemma 3.13. In particular
the map

X
c=(bX ,f)−→ X ′ = ExX ×ExY Y

πY−_ ∗
is a πY -fibrered homotopy equivalence and hence (bX , f) ∈ LLP (fib sSet) by Propo-
sition 3.49.

(iii) For m ≥ 0 the lower horizontal map is a fibration by m-fold appliation of Proposition
3.55

ExmX ×ExmY Y

πExmX

��

πY // Y

��
ExmX

Exmf � ,2ExmY.

As fib sSet is stable under pullbacks by the dual of Lemma 3.13, it follows that also
the upper horizontal map is a fibration. So applying (ii) yields that the left vertical

109



Chapter 3. Abstract homotopy theory

map in the commutative square below is a strong deformation retraction and hence
in LLP (fib sSet) by Proposition 3.33

ExmX ×ExmY Y

(b,πY )

��

bExmX×id // Exm+1Y ×Exm+1Y Y

Ex(ExmX ×ExmY Y )×ExY Y
(Ex(πExmX),Ex(πY ))×id // (Exm+1X ×Exm+1Y ExY )×ExY Y.

(πExm+1X ,πY )

OO

• As Ex is a right adjoint and therefore commutes with limits, the map (Ex(πExmX),Ex(πY ))
and hence the lower horizontal map is an isomorphism.

• The right vertical map is an isomorphism, because the two small squares

(Exm+1X ×Exm+1Y ExY )×ExY Y

��

// Exm+1X ×Exm+1Y ExY

πExY

��

// Exm+1X

Exm+1f
��

Y
bY // ExY

bExmY ◦...◦bExY // Exm+1Y

are cartesian and hence also the outer square is cartesian.

It follows that the upper horizontal map is in LLP (fib sSet) and by Lemma 3.13
the same holds for the map

(ι0, f) : X
ι0−→ colim (X

(bX ,f)−→ ExX ×ExY Y
bExX×id−→ ...)

∼−→ Ex∞X ×Ex∞Y Y.

Here the last map is an isomorphism, because filtered colimits commute with finite
limits and hence pullbacks by Proposition 2.48.

(iv) In the commutative diagram

X

(ι0,f)
��

X

f
_��

Ex∞X ×Ex∞Y Y

∃d
66

πEx∞X

��

πY // Y

ι0
��

Ex∞X
Ex∞f � ,2Ex∞Y � ,2∗

the left vertical map is in LLP (fib sSet). So there is a diagonal d, which proves
that f is a retract of πY . The lower left horizontal map is a fibration by (i), while
the lower right horizontal map is a fibration by Proposition 3.58. So Corollary 3.48
implies that Ex∞f ∈ RLP (cof sSet ∩ wSet). It follows that also πY and its retract
f is in RLP (cof sSet ∩ wSet), which is stable under pullbacks and retracts by the
dual of Lemma 3.13.

2

Remark 3.60
By the structure of the proof of Proposition 3.59 (iv), we see that one can prove the

inclusion fib sSet ⊂ RLP (cof sSet ∩ wsSet) by using any natural transformation X
ηX−→

Q(X) instead of X
ι0−→ Ex∞X having the following properties.
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(i) Q(X) −_ ∗, for all X ∈ sSet,

(ii) Q(fib sSet) ⊂ fib sSet,

(iii) (X
(ηX ,f)−→ Q(X)×Q(Y ) Y ) ∈ LLP (fib sSet).

By using different techniques one can show that also the unit X
ηX−→ S|X| of the adjunction

T op(|X|, Y ) = sSet(X,S(Y )) has all these properties.

After having shown the difficult inclusion fib sSet ⊂ RLP (cof sSet∩wsSet) in Propo-
sition 3.59 (iv), it is now comparably easy to deduce the model structure:

Theorem 3.61
The category sSet is a model category with weak equivalences, fibrations and cofibrations
defined as in Definition 3.27.

Proof. For every T −_ ∗ Remark 3.6 implies that the inverse image WT of Mor(Setop)×

under the functor

sSet −→ π0sSet
π0sSet(-,T )−→ Setop

satisfies the 2-of-3 axiom. Hence the same holds for the class

wsSet =
⋂
T−_∗

WT .

Recall that by Theorem 3.29 there are two weak factorization systems

(cof sSet, RLP (cof sSet)), (LLP (fib sSet), fib sSet),

and it remains to prove that

RLP (cof sSet) = fib sSet ∩ wsSet, LLP (fib sSet) = cof sSet ∩ wsSet.

• We begin with the second equality. By Proposition 3.59 we have

fib sSet ⊂ RLP (cof sSet ∩ wsSet).

Combining this with Proposition 3.43 and Proposition 3.37 yields

LLP (fib sSet) = cof sSet ∩ wasSet ⊂ cof sSet ∩ wsSet
⊂ LLP (RLP (cof sSet ∩ wsSet) ⊂ LLP (fib sSet),

so all these classes are equal.

• For the first equality note that in Remark 3.34 we have already checked that

RLP (cof sSet) ⊂ fib sSet ∩ wsSet. (3.5)

So let f ∈ fib sSet ∩ wsSet. As (cof sSet, RLP (cof sSet)) is a weak factoriza-

tion system, the map f can be factored as X
c

�−→ Z
g−→ Y , where c ∈ cof sSet
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and g ∈ RLP (cof sSet). As f = gc and g are weak equivalences by assump-
tion and (3.5) respectively, also c is a weak equivalence by the 2-of-3 property.
So c ∈ cof sSet ∩ wsSet = LLP (fib sSet) by (i) and hence there is a diagonal d in
the commutative square

X
��

c
��

X

f
_��

Z

∃d
;;

g // Y.

In particular f is a retract of g and thus also f ∈ RLP (cof sSet), as this class of
maps is closed under retracts by the dual of Lemma 3.13.

2

3.11 Homotopies in model categories

The construction of the homotopy category of a model category is obtained by using the
terms of abstract homotopies and homotopy equivalences.

Definition 3.62
Let C be a model category, ∅ an initial and ∗ a terminal object in C.

(i) A cylinder object for X ∈ C is an object I ·X ∈ C together with morphisms

X +X
��

i=i0∪i1
��

idX∪idX=:∇

''
I ·X '

// X.

Every object has a cylinder object given by any factorization of the fold map ∇
provided by the model structrue on C.

(ii) Two morphisms f, g ∈ C(X, Y ) are called left homotopic via h, short f h' g, if

there is a map h ∈ C(I ·X, Y ), for some cylinder object X + X
i

�−→ I ·X '−→ X,
giving rise to a commutative diagram

X +X
f∪g

ww

��
i
��

∇

''
Y I ·X

h
oo

'
// X.

(iii) Dually a path object for Y ∈ C is an object Y I ∈ C together with morphisms

Y

∆ ''

' // Y I

p
_��

Y × Y.

Every object has a path object given by any factorization of the diagonal map ∆
provided by the model structrue on C.
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(iv) Two morphisms f, g ∈ C(X, Y ) are called right homotopic via h, short f 'h g, if

there is a map h ∈ C(X, Y I) for some path object Y
'−→ Y I

p
−_ Y × Y , giving rise

to a commutative diagram

Y

∆ ''

' // Y I

p
_��

X
hoo

(f,g)ww
Y × Y.

Example 3.63
In the model category sSet the following holds.

(i) For every X ∈ sSet there is a canonical cylinder object, given by

X +X = ∂∆1 ×X
��

i=d0∪d1

��

idX∪idX=:∇

))
∆1 ×X '

πX
// X.

Indeed i is injective and hence a cofibration, while πX is a strong deformation re-
traction and thus a weak equivalence.

(ii) For every Y ∈ sSet with Y −_ ∗ there is a canonical path object, given by

Y = sSet(∆0, Y )

∆ ++

s0
'

// sSet(∆1, Y )

p:=(d0,d1)
_��

sSet(∂∆1, Y ) = Y × Y.

Indeed p = (d0 ∪ d1)∗ is a fibration by Corollary 3.31, since Y −_ ∗, while s0 is a
strong deformation section and thus a weak equivalence.

In contrast to the simplicial theory developed before, the term of homotopies is now
slightly more relaxed, meaning that the cylinder/path objects may vary. This freedom
allows the proof of the following Lemma, which we know does not hold in this generality
for the term “simplicial homotopy”.

Lemma 3.64
Let ∅�−→ X with a cylinder object

X +X
i0∪i1
�−→ I ·X rX−→ X.

Then the following holds.

(i) ij : X
ιj−→ X +X�−→ I ·X is a trivial cofibration, for j = 0, 1.
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(ii) X +X
i1∪i0
�−→ I ·X '−→ X is a cylinder object for X.

To distinguish it from I · X we denote it by I ′ · X = I · X and call it inverse
cylinder object.

(iii) Let X +X
i0∪i0
�−→ J ·X rX−→ X be another cylinder object for X.

Then there is a composed cylinder object X +X
(ι0◦i0)∪(ι1◦i1)−→ (I ∗ J) ·X rX∪rX−→ X

defined by the pushout square

X

i1
��

X

i1
��

i0 // I ·X
ιI
�� rX

��

X
i0 // J ·X

rX 00

ιJ // (I ∗ J) ·X
rX∪rX

%%
X.

(iv) Left homotopy is an equivalence relation on C(X, Y ) for every Y ∈ C.

Dual assertions hold for path objects and right homotopies.

Proof.

(i) We have a pushout diagram

∅

��

// X

ι0
��

X
ι1 // X +X.

Because X is cofibrant and cofibrations are preserved by pushouts by Lemma 3.13,
ι0, ι1 is a cofibration. As compositions preserve cofibrations i0, i1 are cofibrations,
too.

For j = 0, 1 the map ij is a weak equivalence, because of the 2-of-3 axiom for weak
equivalences.

X +X // // I ·X
'
��

X

ιj

OO
ij

66

idX

'
// X.

(ii) This is by symmetry of the axiom for cylinder objects.

(iii) By (i) the morphism X
i0−→ I ·X s a trivial cofibration. Since trivial cofibrations are

stable under pushouts, the morphism J ·X ιJ−→ (I ∗J)·X is also a trivial cofibration.

It follows from the 2-of-3 axiom, that (I ∗ J) · X rX∪rX−→ X is a weak equivalence,

because J ·X rX−→ X is a weak equivalence.
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We have

X +X
i0+i1
�−→ (J ·X) + (I ·X)

ιJ∪ιI
�−→ X,

where the first morphism is a cofibration, because i0 and i1 are cofibrations by (i)
and cofibrations are stable under coproducts. The second morphism is a cofibration,
because we have a pushout diagram

X +X
��

i0∪i1
��

i1+i0 // (I ·X) + (J ·X)

ιI∪ιJ
��

J(X)
ιJ // (I ∗ J) ·X,

where the left vertical morphism is a cofibration by definition and hence the right
vertical morphism is a cofibration, because cofibrations are stable under pushouts.

(iv) Let f ∈ C(X, Y ). Let rX : I · X '−→ X be the canonical map. Then there is the
constant homotopy f frX' f .

X +X
∇

''

��

��

f∪f

""
I ·X rX // X

f // Y.

Now let f, g ∈ C(X, Y ) with f h' g, for some h ∈ C(I · X, Y ). Then I · X with
ij = i1−j, for j = 0, 1, is also a cylinder object and the same morphism h′ = h
defines an inverse homotopy gh′' f with respect to its inverse cylinder object.

Finally if e, f, g ∈ C(X, Y ) with ek' f h' g, where h ∈ C(I · X, Y ) and k ∈
C(J · X, Y ). Then there is a canonical composition of homotopies h ∗ k, such
that eh∗k' g with respect to the cylinder object (I ∗ J) ·X of (iii). More precisely
h ∗ k is defined as the natural pushout morphism in the diagram

X
��
i1'
��

X
��

i1 '
��

// i0 // I ·X
��
ι1'
�� h

��

X // i0
'
// J ·X

k 00

// ι0
'
// (I ∗ J) ·X

h∗k

%%
Y.

Note that the outer paths commute, since by hypothesis hi1 = f = ki0.

2

It was crucial in the construction of the model structure on simplicial sets, that we have
a “Pushout-Product” property as given Theorem 3.30. It enabled us to deform homotopies
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in the desired way. Unfortunately we do not have a similar property in an arbitrary model
category. Instead deformations of homotopies and other construction of higher homotopies
are established by the interplay of cylinder and path objects. This will be demonstrated
in the following proposition.

Proposition 3.65

Let ∅�−→ X
f,g−→ Y and Y

'−→ Y I
p
−_ Y × Y be a fixed path object.

If f, g are left homotopic, then f, g are right homotopic w.r.t. Y I .

Proof. Let ij : X
ιj
↪−→ X + X�−→ I · X denote the inclusions for j = 0, 1. Since X is

cofibrant, i0 is a trivial cofibration. Consider the diagram

X
��
'i0
��

f // Y ' // Y I

p
_��

I ·X
(can,id)

//

∃K

22

X × (I ·X)
f×h

// Y × Y.

The upper right composition is equal to ∆◦f , the lower left one is (f×h)◦(idX×i0)◦∆ =
(f×f)◦∆ = ∆◦f . Hence the square commutes and the diagonal exists. Because h◦i1 = g
we obtain a right homotopy

Y

∆ ''

' // Y I

p
_��

X
K◦i1oo

(f,g)ww
Y × Y.

2

Corollary 3.66
Let f, g ∈ C(X, Y ), where X is cofibrant and Y is fibrant. Then the following is equivalent:

(i) f, g are left homotopic,

(ii) f, g are left homotopic w.r.t. a fixed cylinder I ·X,

(iii) f, g are right homotopic,

(iv) f, g are right homotopic w.r.t. a fixed path object Y I .

Lemma 3.67

Let C be a model category and consider morphisms A a // X
f //
g
// Y b // B .

(i) f h' g ⇒ bf bh' bg.
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(ii) f h' g ⇒ faha' ga, for some ha, if Y is fibrant or for ha = h(I · a) if we
have a map I · a rending the following diagram commutative

A+ A

a+a
��

// i // I · A
∃I·a
��

' // A

a
��

X +X // i // I ·X ' // X.

(iii) f 'h g ⇒ fa 'ha ga.

(iv) f 'h g ⇒ bf 'hb bg, for some hb, if X is cofibrant or for hb = bIh if we have

a map Y I bI−→ BI rendering the following diagram commutative

Y

b
��

' // Y I

∃bI
��

p � ,2Y × Y
b×b
��

B ' // BI p � ,2B ×B

Proof.

(i) By assumption there is a cylinder I ·X and an h, such that f h' g. Then bf bh' bg
is a left homotopy:

X +X
idX∪idX=∇

ww

��

��

f∪g

''

(bf)∪(bg)

##
X I ·X'oo h // Y b // B.

(ii) Consider a homotopy

X +X
idX∪idX=∇

ww

��

��

f∪g

''
X I ·X'

rXoo h // Y.

Then rX can be factored as on the left and we find a diagonal in the right

I ·X
$$
'

c $$

rX
'

// X

I ·X ′.

'
r′X

7 7A I ·X
��

c '
��

h // Y

_��
I ·X ′

h′
<<

// ∗.

By construction we have f h′' g, because X + X
'
�−→ I · X

'
�−→ I · X ′ is another

cylinder object for X. Furthermore we find a diagonal

A+ A
��

��

a+a // X +X // // I ·X ′

' r′X_��
I · A

I·a
44

// A a // X.
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Then ha = h(I · a) is the desired homotopy

A+ A
��

��

idA∪idA=∇

ww

a+a // X +X
��

��

f∪g

''
A I · A'oo I·a // I ·X ′ h′ // Y.

The last two statements are dual.
2

3.12 The homotopy category of a model category

As the title suggests, the goal of this section is the construction of the derived category
of an arbitrary model category. Before we do that let us record the following abstract
Whitehead Theorem, which partly has strong similarity to Proposition 3.33 in the con-
text of simplicial sets. It is an abstract version of the classical Whitehead Theorem for
topological spaces, stating that each map between CW-complexes inducing isomorphisms
on homotopy groups is infact a homotopy equivalence.

Interestingly in the abstract setting of an arbitrary model category its proof is much
easier than the other implication that every homotopy equivalence is a weak equivalence,
which in the context of topological spaces or simplicial sets is trivial. The proof of the
latter will be given in the subsequent section.

Theorem 3.68 (Abstract Whitehead Theorem)
Let C be a model category.

(i) Let f : Z
'−_ Y with Y cofibrant and I · Z is a fixed cylinder object for Z.

Then f is a strong deformation retraction with respect to I · Z.

(ii) Let c : X
'
�−→ Z with X fibrant and ZI is a fixed cylinder object for Z.

Then c is a strong deformation section with respect to ZI .

(iii) Every weak equivalence between bifibrant objects is a homotopy equivalence.

Proof.

(i) Using that fib C ∩ wC = RLP (cof C) the proof is the same as Proposition 3.33 in
the context of simplicial sets. Because f is a trivial fibration and Y is cofibrant, we
can find a section s for f and an h, such that the following diagrams commute

∅
��

��

// Z

f'
_��

Y

∃s
99

Y,

Z + Z

∇

  

��

��

(sf)∪idZ // Z

f'
_��

I · Z

∃h
77

'
��

// Y.

Z

f

77
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Hence fs = idY and sf h' idZ with fh being trivial, meaning that the lower two
triangles commute. This means f is a strong deformation retraction.

(ii) This is dual to (i).

(iii) Let X, Y ∈ C bifibrant and a : X
'−→ Y a weak equivalence. Then a has a factor-

ization
X %%

c
%%

a
'

// Y

Z,
f

'
3 5>

where f is a trivial fibration and c is a cofibration. By the 2-of-3 axiom c is trivial,
too. Since X is cofibrant, Y fibrant and fibrations and cofibrations are closed under
composition Z is bifibrant. By (i) and (ii) we find a section s for f with sf h' idZ ,
for some left homotopy h, and a retraction r for c with cr 'k idZ for some right
homotopy k. Using Lemma 3.67, we see that crs 'ks s. Define b := rs. By Corollary
3.66 there is a k′, such that crsk′' s and again by the preceding Lemma we get
ab = fcrsfk′' fs = idY . Similarly we find a h′ such that ba = rsfch′c' rc = idX .
Thus a and b define a homotopy equivalence.

2

The homotopy category of a model category will be constructed via the quotient cate-
gory of the subcategory of objects ∅�−→ X −_ ∗. For this purpose we need the notion of
a bifibrant replacement of an object.

Definition 3.69
Let C be a model category and X ∈ C.

(i) A fibrant replacement of X is an object F (X) in a factorization

X
'−→ F (X) −_ ∗.

For f ∈ C(X, Y ) and a chosen fibrant replacement F (Y ) of Y , we let F (X) and
F (f) be given by a factorization

X
��

'
��

f // Y

'
��

F (X)
F (f) � ,2F (Y ) � ,2∗.

(ii) A cofibrant replacement of X is an object C(X) in a factorization

∅�−→ C(X)
'−→ X.
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For c ∈ C(X, Y ) and a chosen cofibrant replacement C(X) of X, we let C(Y ) and
C(c) be given by a factorization

∅ // C(X)

'
��

//C(c) // C(Y )

'
_��

X c // Y.

(iii) A bifibrant replacement of X is a cofibrant replacement CF (X) of a fibrant
replacement F (X) of X.

Lemma 3.70
Let C be a model category, f0, f1 ∈ C(X, Y ) with liftings

∅
��

��

// // C(Y )

' qY
_��

C(X)

C(fi)
66

'
qX

� ,2X
fi
// Y.

i = 0, 1.

If Y is fibrant, then f0 'h f1 implies C(f0)k' C(f1), for some right homotopy k.

Proof. By Lemma 3.67 f0 'h f1 implies qYC(f0) = f0qX 'hqX f1qX = qYC(f1), and thus
qYC(f0)`' qYC(f1) by the dual of Proposition 3.65, since Y is fibrant. This homotopy
can be lifted as

C(X) + CF (X)
��

i0∪i1
��

C(f0)∪C(f1) // CY

qY'
_��

I · C(X)

k

44

`
// Y.

2

Theorem 3.71
Let C be a model category.

Then C has a homotopy category Ho(C), whose objects are the same as C and

Ho(C)(X, Y ) := C(CF (X), CF (Y ))/ ', for all X, Y ∈ C,

for chosen bifibrant replacements CF (X) of X and CF (Y ) of Y .

Proof. For every X ∈ C, there is a bifibrant replacement, given by factorizations

X
��
'
��

∅ // // CF (X) ' � ,2F (X)

_��∗,
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where we chose F (X) = X, if X is fibrant, and CF (X) = F (X), if X and hence F (X) is
cofibrant.

Let X, Y ∈ C and f ∈ C(X, Y ). Then the lifting property induces a morphism CF (f) ∈
C(CF (X), CF (Y )) between some chosen bifibrant replacements of X and Y :

X
��

'
��

f // Y // ' // F (Y )

_��
F (X)

F (f)
66

� ,2∗.

∅
��

��

// // CF (Y )

'
_��

CF (X)

CF (f)
44

'
� ,2F (X)

F (f)
// F (Y ).

We have to check that CF (f) is well-defined up to homotopy. Suppose f0, f1 ∈ C(F (X), F (Y ))
are two liftings of f , meaning that the left squares commute. Then there exists a homotopy
h as in the right square

X
��

'
��

f // Y
��
'
��

F (X)
f0 //

f1

// F (Y )

X
��

'
��

f // Y // ' // F (Y ) ' // F (Y )I

(p0,p1)
_��

F (X)
(f0,f1)

//

h

33

F (Y )× F (Y ).

It follows that f0 'h f1 and thus C(f0)k' C(f1) by the preceding Lemma, since F (Y )
is fibrant. Similarly one proves that the lifting CF (f) of the map F (f) is unique up to
homotopy.

It follows that Ho(C) is a well-defined category with the composition induced by the

composition in C. Moreover the assignment f 7−→ CF (f) defines a functor C γ−→ Ho(C).
Furthermore, if f ∈ C(X, Y ) is a weak equivalence, then CF (f) is a homotopy equivalence
by the Whitehead Theorem and so γ(f) is an isomorphism.

To check the universal property let C G−→ D be a functor, which sends weak equivalences
to isomorphisms. Suppose f, g ∈ C(X, Y ) with X and Y bifibrant and f h' g, where

X +X
i0∪i1
�−→ I ·X rX−→ X is a cylinder object. Since rX is a weak equivalence G(rX) is an

isomorphism, so G(rX)G(i0) = G(idX) = G(rX)G(i1) implies G(i0) = G(i1). Hence

G(f) = G(hi0) = G(h)G(i0) = G(h)G(i1) = G(hi1) = G(g),

proving that G factors as C γ−→ Ho(C) G′−→ D. By definition of Ho(C) the functor G′

is uniquely determined on objects. Since γ is full on bifibrant objects, G′ is uniquely
determined on the full subcategory of Ho(C) of objects, which are bifibrant in C. But for
every other object in Ho(C) there is a formal isomorphism to an object in this category,
proving that G′ is uniquely determined on Ho(C).

2

3.13 Characterization of weak equivalences

The goal of this section is to prove that in every model category the weak equivalences are
exactly those morphisms, which become isomorphisms in the homotopy category. This is
a often very useful characterization of weak equivalences.
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Lemma 3.72
Let C be a model category and f0, f1 ∈ C(X, Y ) with fibrant Y .

Then f0 'h f1 implies γ(f0) = γ(f1).

Proof. By construction of the homotopy category Ho(C) we have to check that the bifi-

brant replacements of f0 and f1 are homotopic. As Y is fibrant, we have Y
idY−→ Y = F (Y ).

It follows that the maps f0 and f1 can be lifted to fibrant replacments f̃0 and f̃1 as in the
square on the left, and the homotopy h can be lifted to a homotopy h̃ as on the right.

X
��
'iX
��

fi // Y

_��
F (X)

f̃i

<<

// ∗,

X
��
'iX
��

h // Y I

(p0,p1)
_��

F (X)

h̃

::

(f̃0,f̃1)

// Y × Y.

Now Lemma 3.70 implies that C(f̃0) is homotopic to C(f̃1) and thus

γ(f0) = γ(f̃0iX) = γ(f̃0)γ(iX) = γ(f̃1)γ(iX) = γ(f̃1iX) = γ(f1).

2

Lemma 3.73
Let C be a model category. Let a, b : X −→ Y with ah' b, for some h ∈ C(I ·X, Y ).

Then h′ ∗ hH' arX , where h′ ∗ h is the composed homotopy of h with its inverse h′,
obtained as the pushout morphism in the diagram

X
��
i0'
��

X
��

i1 '
��

// i1 // I ·X
��
ι1'
�� h

��

X // i0
'
// I ·X

h 00

// ι0
'
// I ′ ·X

h′∗h

##
Y.

The homotopy H is meant as a commutative diagram

(I ′ ·X) +(X+X) (I ′ ·X)
��
c
��

r′X∪r
′
X

vv

(h′∗h)∪ar′X

((
X X̃

f

'
�lr H // Y,

where r′X : I ′ ·X '−→ X is the canonical map and r′X∪r′X = fc is an arbitrary factorization
of the given type.
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Proof. We choose a path object for Y as depicted in the left diagram and find a diagonal
in the right square

Y

∆=(idY ,idY ) ##

// sY
'
// Y I

(p0,p1)
_��

Y × Y,

X
��
'i0
��

a // Y
sY // Y I

(p0,p1)
_��

I ·X

k

55

(arX ,h)
// Y × Y.

Let k = k′ be the inverse homotopy and define a morphism

k̄ = k ∪ k′ : I ·X ′ = I ·X +X I ·X −→ Y I ,

which fits in the diagram

X +X

i0∪i1
��

a∪a // Y
sY // Y I

(p0,p1)
��

I ′ ·X

k̄

22

(ar′X ,h
′∗h)

// Y × Y.

Now as c is a cofibration and p1 a trivial fibration we get a diagonal in the square

(I ′ ·X) +(X+X) (I ′ ·X)
��

c
��

k̄∪(sY ar
′
X)

// Y I

p0'
_��

X̃

K

44

f
// X a

// Y.

Then H = p1K has the desired property, because by construction

Hc = p1Kc = p1(k̄ ∪ (sY ar
′
X)) = (p1k̄) ∪ (p1sY ar

′
X) = (h′ ∗ h) ∪ (ar′X).

2

The subsequent proposition has strong similarity to the simplicial analog Proposition
3.47.

Proposition 3.74 (Quillen)

Let C be a model category and X
f
−_ Y , where X, Y are bifibrant.

Then the following is equivalent.

(i) f is a weak equivalence.

(ii) f is a strong deformation retraction.

(iii) γ(f) is an isomorphism in Ho(C).
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Proof. The implication (i) ⇒ (ii) was proven in the abstract Whitehead Theorem 3.68.

Vice versa let tf h' idX and choose a path object Y
sY−→ Y I

(p0,p1)
−_ Y × Y . Next choose a

factorization

X
  

sX

'

  

(∆,sY f) // (X ×X)Y×Y Y
I ,

XI
((p0,p1),fI)

0 4< X

∆

((

(∆,sY f)

''

f // Y sY

  
(X ×X)×Y×Y Y I

��

// Y I

(p0,p1)
_��

X ×X
f×f

// Y × Y.

Since fibrations are stable under pullbacks and composition we have a fibration

XI
((p0,p1),fI)
−_ (X ×X)×Y×Y Y I −_ X ×X

and thus X
sX
�−→ XI

(p0,p1)
−_ X ×X is a path object for X. Moreover we find a diagonal

X
��

i1 '
��

sX // XI

((p0,p1),fI)
_��

I ·X

H

44

((h,rX),sY frX)
// (X ×X)×Y×Y Y I ,

because the square commutes, since

(f × f)(h, rX)i1 = (fhi1, frXi1) = (frXi1, frXi1) = (f, f) = ∆f = (p0, p1)sY frXi1.

Let k = Hi0 : X −→ XI . Then by construction

p0k = p0Hi0 = hi0 = tf, p1k = p1Hi0 = p1rX = idX , f Ik = f IHi0 = sY frXi0 = sY f.

In particular tf 'k idX . Now suppose we have a lifting problem as on the left, then we
find a diagonal as on the right

A
��

c
��

u // X

f
��

B

d

77

v
// Y,

A
��

c

��

ku // XI

(p0,fI)
��

B

D

66

(tv,sY v)
// X ×Y Y I .

It follows that d = p1D solves the left problem, because

dc = p1Dc = p1ku = u, fd = fp1D = p1f
ID = p1sY v = v.

Hence f has the right lifting property with respect to all cofibration, meaning that it is a
trivial fibration and thus in particular a weak equivalence.
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To see that (ii) implies (iii), it suffices to note, that for any homotopy equivalence f
with homotopy inverse t, the morphism γ(f) is an isomorphism with inverse γ(t). The
other implication is similar to the proof of the implication (ii)⇒ (iii) in Proposition 3.47.
However the deformation of the homotopy is slightly more difficult, because we have to
work with path objects.

Supposing γ(f) is an isomorphism, then f is a homotopy equivalence with homotopy
inverse g, i.e. we have a left homotopy fgh' idY , for some h ∈ C(I ·Y, Y ). By the homotopy
lifting property of f , there is a diagonal

Y
��

i0 '
��

g // X

f
_��

I · Y

h̃

<<

h // Y.

Note that i0 is a cofibration by Lemma 3.64 (i), because Y is cofibrant. For t = h̃i1 we have
by construction ft = fh̃i1 = hi1 = idY and g h̃' t. By Lemma 3.67 (ii) tf is homotopic to
gf , since X is fibrant. But gf is homotopic to idX , so by composition we get a homotopy
idX k' tf with k ∈ C(I ′′ ·X,X). We compose it with the homotopy tfk′, i.e.

X
��
i0'
��

X
��

i1 '
��

// i1 // I ′′ ·X
��
ι1'
�� tfk

��

X // i0
'
// I ′′ ·X

k 00

// ι0
'
// I ′ ·X

tfk′∗k
##
Y.

We get two induced diagrams, where the right one comes from the homotopy fk′∗fkH' frX
we get from the preceding Lemma.

X

f
��

I ′ ·X

tfk′∗k
77

fk′∗fk
// Y

(I ′ ·X) +(X+X) (I ′ ·X)
��
c
��

rX∪rX

uu

(fk′∗fk)∪frX

))X X̃'
�lr

H
// Y.

From the right diagram we get a diagonal K in the diagram

I ′ ·Xnnι0

ww
��

'

��

tfk′∗k // X

f

_��

(I ′ ·X) +(X+X) (I ′ ·X)
''

c 00 X̃

K

<<

H
// Y.

It follows, that h = Kcι1 is the desired homotopy tf h' idX fibred over f , because

hιj = Kcι1ιj = Kcι0ιj = (tfk′ ∗ k)ιj =

{
ki0 = idX , j = 0,
tfki0 = tf, j = 1,
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and furthermore we have fh = fKcι1 = Hcι1 = frX by construction.
2

Using Proposition 3.74 we can deduce the following two useful corollaries characterizing
weak equivalences.

Corollary 3.75
Let C be a model category and X

g−→ Y , where X, Y are bifibrant.
Then the following is equivalent.

(i) g is a weak equivalence.

(ii) g is a homotopy equivalence.

(iii) γ(g) is an isomorphism in Ho(C).

Proof. By the Whitehead Theorem (i) implies (ii). Furthermore (ii) implies (iii) by con-
struction of the homotopy category in Theorem 3.71. Finally suppose (iii) holds. We can

factor g as X
c

�−→ Z
f
−_ Y , where c is a weak equivalence. Thus by the implications

we have shown γ(c) is an isomorphism in Ho(C). It follows that γ(f) = γ(g)γ(c)−1 is
an isomorphism and hence f is a weak equivalence by the preceding Proposition. Hence
g = fc is a weak equivalence, proving (i).

2

Corollary 3.76
Let C be a model category and X

g−→ Y . Then the following is equivalent.

(i) g is a weak equivalence.

(ii) γ(g) is an isomorphism in Ho(C).

Proof. A bifibrant replacement of g induces a commutative diagram

X

'
��

g // Y

'
��

F (X)
F (g) // F (Y )

CF (X)

'

OO

CF (g)// CF (Y ).

'

OO

Using the preceding Corollary and the 2-of-3 axiom for weak equivalences resp. for mor-
phisms in C being mapped to isomorphisms in Ho(C) by γ, the following holds.

g is a weak equivalence ⇐⇒ F (g) is a weak equivalence
⇐⇒ CF (g) is a weak equivalence ⇐⇒ γCF (g) is an isomorphism
⇐⇒ γF (g) is an isomorphism ⇐⇒ γ(g) is an isomorphism.

2
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3.14. Derived functors and the comparison of model categories

3.14 Derived functors and the comparison of model

categories

Like in the context of chain complexes, we are able to define left and right derived functors
for functors on a model category.

Definition 3.77
Let C be a model category, D an arbitrary category and C G−→ D.

(i) The left derived functor LG is defined as the right Kan extension of G along

C γ−→ Ho(C), it it exists. That is a functor Ho(C) LG−→ D with a natural transforma-
tion LG ◦ γ ε−→ G, such that LG is a terminal object in the comma category

γ∗/G, γ∗ := (- ◦ γ) : CAT(Ho(C),D)
-◦γ−→ CAT(C,D).

(ii) The right derived functor RG is defined as the left Kan extension of G

along C γ−→ Ho(C), if it exists. That is a functor Ho(C) RG−→ D with a natural

transformation G
η−→ RG ◦ γ, such that RG is an initial object in the comma

category G/γ∗.

A useful tool in many applications is the following Lemma by Ken Brown.

Lemma 3.78 (K. Brown)
In every model category C the following holds.

(i) Every weak equivalence w : X
'−→ Y between cofibrant X, Y ∈ C can be factored as

X %%
'

%%

w
'

// Y
��

'ooZ,

'
3 5>

meaning that Y
'
�−→ Z

'−_ Y is the identity on Y .

(ii) Every weak equivalence w : X
'−→ Y between fibrant X, Y ∈ C can be factored as

X %%
'

%%

w
'

// Y

Z,'

oS[
'

3 5>

meaning that X
'
�−→ Z

'−_ X is the identity on X.

Proof. Since X and Y are cofibrant and cofibrations are stable under pushouts, we have

X�−→ X +Y ←−�Y . Take a factorization X +Y �−→ Z
'−_ Y and let X�−→ X +Y �−→ Z
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be the composition. This is a trivial cofibration by the 2-of-3 axiom. Moreover Y �−→
X + Y �−→ Z is a section for Z

'−_ Y and so is also a trivial cofibration.
Statement (ii) is dual to (i).

2

Theorem 3.79
Let C be a model category and G ∈ CAT(C,D).

(i) Suppose G maps trivial cofibrations between cofibrants to isomorphisms.

Then G exists and is given by

εG : LG(X) = GC(X) −→ G(X), ∅�−→ C(X)
'−→ X.

(ii) Suppose G maps trivial fibrations between fibrants to isomorphisms.

Then RG exists and is given by

ηG : G(X) −→ GF (X) = RG(X), X
'−→ F (X) −_ ∗.

Proof. Let ∅�−→ C(X)
'−_ X be a chosen cofibrant replacement, for every X ∈ C, where

we set C(X)
idX−→ X, if X ∈ C is already cofibrant. Dually to as was seen in the proof of

Theorem 3.71 any two liftings f0, f1 ∈ C(C(X), C(Y )) of a morphism f ∈ C(X, Y ) are
left homotopic via some homotopy

C(X) + C(X)

i0∪i1
��

f0∪f1 // C(Y )

'
_��

I · C(X)

h

33

rC(X)

// C(X) '
� ,2X

f
// Y,

where C(X) + C(X)
i0∪i1
�−→ I · C(X)

'−_ C(X) is a cylinder object for C(X). Since C(X)

is cofibrant so is ∅�−→ C(X)
i0
�−→ I · C(X) by Lemma 3.64 (i). By K. Brown’s Lemma G

maps weak equivalences between cofibrant objects to isomorphisms and thus G(rC(X)) is
an isomorphism. Hence

G(rC(X))G(i0) = G(rC(X)i1) = G(idC(X)) = G(rC(X)i1) = G(rC(X))G(i1)

implies G(i0) = G(i1) and thus

G(a) = G(hi0) = G(h)G(i0) = G(h)G(i1) = G(hi1) = G(b).

In particular we get a well-defined functor C GC−→ D. Since f ∈ C(X, Y ) is a weak
equivalence, if and only if a lifting F (f) ∈ C(F (X), F (Y )) is one by the 2-of-3 ax-
iom, the functor GC maps weak equivalences to isomorphisms and we get a unique

factorization GC : C γ−→ Ho(C) LG−→ D by the universal property of the homotopy

category Ho(C). By construction pX : C(X)
'−_ X defines a natural transformation
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εG = G(p) : γ∗L(G) = GC −→ G. We have to check the universal property of right Kan

extensions, meaning that for all natural γ∗G′
f−→ G there is a natural f ′ rendering the

diagram below commutative

γ∗G′

γ∗(f ′)
��

f // G G′

∃!f ′
��

γ∗LG

εG

<<

LG.

For X ∈ C consider the commutative diagram

γ∗(G′)(C(X))

fC(X)

��

γ∗G′(pX)

∼
// γ∗(G′)(X)

fX
��

γ∗LG(X) = GC(X)
εG // G(X),

where the upper horizontal morphism is an isomorphism, since γ maps weak equivalences
to isomorphisms. It follows that f ′ = G′(fC)G′(p)−1 is the unique morphism we are looking
for. Statement (ii) is dual to (i).

2

We will also introduce the notion of total derived functors between model categories,
providing the most important tool for comparing different model categories and their
homotopy categories.

Definition 3.80
Let C and D be model categories and C G−→ D.

(i) The total left derived functor of G is defined as LG = L(γG).

(ii) The total right derived functor of G is defined as RG = R(γG).

Theorem 3.81 (Quillen’s adjoint functor theorem)
An adjunction between model categories C and D

C(E(X), Y ) = D(X,G(Y )),

subject to the following (by Remark 3.24 equivalent) hypotheses.

• E preserves trivial cofibrations between cofibrants and cofibrations.

• G preserves trivial fibrations between fibrants and fibrations.

Then the following holds.

(i) The total derived funtors of E and G exist and induce an adjunction

Ho(C)(LE(X), Y ) = Ho(D)(X,RG(Y )).

129



Chapter 3. Abstract homotopy theory

(ii) (LE,RG) form an equivalence of categories, if and only if

a) X
ηX−→ GE(X) −→ GFE(X) is a weak equivalence, for all cofibrant X ∈ D,

b) ECG(Y ) −→ EG(Y )
εY−→ Y is a weak equivalence, for all fibrant Y ∈ C.

Proof. The existence of LE and RG follows from Theorem 3.79 and its dual. Let F resp.
C denote a chosen fibrant resp. cofibrant replacement in the particular model category.
Let X ∈ D and Y ∈ C. We have a chain of natural bijections

Ho(C)(LE(X), Y ) = Ho(C)(γEC(X), Y ) = C(CFEC(X), CF (Y ))/ ∼
= C(EC(X), F (Y ))/ ∼= D(C(X), GF (Y ))/ ∼
= D(CF (X), CFGF (Y ))/ ∼= Ho(D)(X, γGF (Y ))/ ∼= Ho(D)(X,RG(Y )),

where the first one is by definition and the second one by construction of the homotopy
category in Theorem 3.71. The third one is induced by composition with the (co-)fibrant
replacement morphisms using Corollary 3.66 and Lemma 3.67. The middle one is induced
by the adjunction and the arguments for the rest are dual to those given before.

By construction of the adjunction between the homotopy categories we see that its unit
resp. counit is an isomorphism, if and only if the conditions a) and b) hold.

2

Remark 3.82
By Brown’s Lemma the hypotheses of Theorem 3.81 are satisfied, if one of the following
equivalent conditions holds:

• E preserves cofibrations and trivial cofibrations.

• G preserves fibrations and trivial fibrations.

In applications it is often more convieniant to check these conditions.

Definition 3.83
Let C and D be model categories.

(i) A Quillen adjunction between C and D is an adjunction

C(E(X), Y ) = D(X,G(Y ))

subject to the following (by Remark 3.24 equivalent) hypotheses.

• E preserves trivial cofibrations and cofibrations.

• G preserves trivial fibrations and fibrations.

(ii) A Quillen equivalence is a Quillen adjunction inducing an equivalence between
the homotopy categories.
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Example 3.84
Using the geometric realization and singular nerve adjunction of Proposition 2.28

T op(|X|, Y ) = sSet(X,S(Y ))

one can also construct a model structure on the category of topological spaces, induced
by the model structure on simplicial sets. More precisely for a map of topological spaces
f ∈ T op(X, Y ) we define

• f is a weak equivalence, if S(f) is a weak equivalence,

• f is a fibration, if S(f) is a fibration,

• f is a cofibraiton, if f ∈ LLP (fib T op ∩ wT op).

Then by Theorem 3.81 and the subsequent Remark the total derived functors exist and
form an adjunction

Ho(T op)(L|X|, Y ) = Ho(X,RS(Y )).

One can moreover prove that also |-| preserves fibrations, which is quite unusual for a
left adjoint in a Quillen adjunction and therefore not so easy. It follows that the Quillen
adjunction is infact a Quillen equivalence.

Moreover one can prove that a continuous map f is a weak equivalence if and only if

π0f : π0X
∼−→ π0Y, πnf : πn(X, x)

∼−→ πn(Y, f(x)), x ∈ X, n > 0.
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