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Prof. L. E. J. BROUWER.)

(Communicated at the meeting of October 26, 1946.)

1. Introduction.

Let Y be a connected compact absolute neighbourhood retract, [8,
p. 58]. Let us denote by G” the mapping space Y5”, which consists of
the totality of the mappings of a p-sphere S? into Y. Let x,€SP, yoe Y
be given points, and denote by F? the closed subset of G?, which
consists of the totality of the mappings fe G? with f(x;) =1y, Let
a? (Y) denote the p-th homotopy group of Y with xy, y, as base points.

Let F? be the component of FP which consists of the totality of the
representatives of the element a € #? (Y). Since Y is arcwise connected,

each component of G” contains at least one component of F?, Let G&
be the component of GP which contains F&.
The fundamental group of the component G§ was first studied by

M. ABE, [1]; the higher homotopy groups of G§ were determined by
the author in terms of those of Y, [6, § 10], during the early months
of 1946. At that time, practically nothing was known concerning the

homotopy properties of the component GZ, a7 0. Most recently, it
appears the work of G. W. WHITEHEAD, [10], in which an example

has been given to show that G and G% are in general of the different
homotopy types if a #0. In the present note, two isomorphisms will
be given in § 2 regarding the structures of the homotopy groups of the

component G%, which indicate the close relation between WHITEHEAD
products, [11], and the homotopy groups of G%. They have been used

to determine the homotopy groups of G% in terms of those of Y for a
certain number of special cases, of which the most interesting one is

¥ =5,

2. General theorems.

For each pair of elements ae€n?(Y), Ben?(Y), let us denote by
[a, f] € =Pt9—1(Y) the WHITEHEAD product of a and B, [11]. For ¢ > 1
and a given a€ nP (Y), the transformation S — [a, 8] is a homomorphism

of 77(Y) into #P*9-1 (Y), denoted by g.. Let KZ and JZ*?~' denote the
kernel and the image of g« respectively. Choose a € F% as the base
point for all the homotopy groups of F% and G~. There is a natural
homomorphism u: 79 (F%)—> 79 (GE) induced by the injection mapping
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F? — GI. Let P! be the image of n%(F%) under u. For the higher
homotopy groups of G%, the following theorem is a direct consequence
of the theorems of G. W. WHITEHEAD, [10, (2.4) and (3.2)].

Theorem 2.1. For each q > 1 and a€n?(Y), we have
(2.11) 2? (G)/P? = K4,
(2.12) 2PT(Y) ]I =~ Pl

According to S. EILENBERG, [2], the fundamental group #'(Y) is a
group of operators for the group =f (Y) with the unit element of ='(Y)
as unit operator. Let Q. denote the subgroup of =!'(Y), wich consists
of the totality of the elements w € n'(Y) such that w (@) = a. For the
fundamental group #! (G%), we shall prove the following theorem.

Theorem 2. 2. For each a€aP(Y) we have
(2. 21) a' (GE)/Px = Qa,
(2.22) 2" (Y)JE! = P..

[Proof] Let r denote the projection of G% into Y, defined by = (f)=F(x,)
for each fe G%. Then 7 is a fibre mapping, [10, (2. 1)], and z(F%)=y,.
7 induces a homomorphism of =!'(G%) into #! (Y) still denoted by .

Let I denote the closed interval (0, 1) of real numbers. Let & € n' (G%) ke
represented by a mapping ¢: I— G5 such that ¢ (0)=a =0 (1). Let
w=1@®, then v (0)=y, =1 (l). v represents an element w € ' (Y), and
w=1& @ defines a homotopy f;:S?— Y by means of the relation
@ (t) =f: for each tel. Since f—a=F and f;(x) = v (£) for each t€ I,
it follows that w (@)= a. Hence w € Qa. Conversely, suppose we Q. be
anarbitrary element, represented by a mapping y: = Y with ¢ (0)=y,=w(1)
From the Covering Homotopy Theorem, [7], it follows that there exists
a mapping @:I— G5 such that td=w and @ (0)=a. @ defines a
homotopy f;:S?—> Y by the relation ¢ (f) =f; for each te I Since
fo=a and fi(x;) =w (t), fi represents the element w (a)€ #? (Y). Hence
fi € F%, for we€ Q. From the arcwise connectedness, it follows that
there exists a homotopy @::I—> G5, 0<<t<<1, such that ¢, = @
&:(0)=a, ¢:(1)e F%, and @, (1)=a. Let w;=1¢;; then y;:/—>Y
0<<{t< 1, is a homotopy such that yo=1v and vy; (0) =y, =1w; (1) for
each tel. Hence vy, is also a representative of w. @, represents an
element £ € #' (G%) and & = w. Hence, we have proved that the image
of 7! (G%) under the homomorphism 7 is Q.

It is trivial that P; is contained in the kernel of z. Conversely, suppose
£ € n' (GL) be an arbitrary element of the kernel of 7, represented by a
mapping @:S! = G5 with @ (zy) = a, z, being a given point of S'. Then
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the mapping w — 7 @ represents the unit element of n'(Y); hence there
exists a homotopy w¢:S'= Y, 0<{¢<< 1, such that yo=vy, y,(S")=y,.
and y¢(z) =y, tor each 0<{¢#<{ 1. From the Covering Homotopy Theorem,
it follows that there exists a homotopy @®;:S'—> G5 such that ¢, =,
1Pr=vy; and @:(z;)=a for each 0<¢<<1. Since $(S') € F%, we obtain
£ € Pl. Hence (2. 21) follows.

The isomorphism (2.22) can be proved as (2.12). Q. E. D.

For the use of the sequel, we mention the results of the author,
[6, §10], and M. ABE, [1], for the component G5.

(2.3) If q>1,a9(GY) is isomorphic with the direct sum of nP*(Y)
and =9(Y).

(2.4) If Y is (p+1)-simple, [2], #' (GYh) is isomorphic with the direct
product of n**'(Y) and n' (Y).

Theorem 2.5. If a+ f =0, then the components G% and G% are
homeomorphic.

[Proof] Let 8:SP— SP be a homeomorphism of SP which reverses
orientation and has x, as a fixed point. Then, a homeomorphism h of

G% onto G4 is given by h(f) =f6 for each fe G=. Q. E. D.

3. Spaces with continuous multiplication.

Theorem 3.1. If Y admits a continuous multiplication with a two-

sided identity e (e.g., if Y is a topological group), then G§ and G% are
of the same homotopy type for each a€ nP(Y).

[Proof] According to G. W. WHITEHEAD, [10, p. 464], it remains
to prove that there exists a mapping 4:Y — G% such that v 1 is the
identity, where t denotes the projection of G% onto Y defined by
7 (f) = £ (x,) for each fe G%. For each y € Y, let 4,y € G} be the constant

mapping of S? into y. Hence 1, is a mapping of Y into G{ such that
7 1y is the identity. From the arcwise connectedness of Y, it follows that

there exists a mapping P G» such that @(x,)=e. Define 1: Y= G’ by
ly(x)=(x) %y (x), (yeY, xeS).

Since Ae=3%€ G5 and Y is arcwise connected, it follows that (Y) € G&.
Further, 7 (1y)—e.y—y; hence 71 is the identity. The proof has been
completed. Q. E. D.

Corollary 3.2. If Y=S", (r=1,3,7), then for each ae€a?(S7)
and each q =1 we have

27 (G = 7"t (S") + a7 ().
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4, The sphere S".

In the present paragraph, let Y be the r-sphere S”. Since the cases
r=1, 3, 7 have been solved in (3.2) and the case r = 2 will be treated
in § 5, we may suppose that r> 3.

If p<r or p=r—+2, then the space GP is connected and our
proplem reduces to (2.3) and (2.4). It remains to investigate the case

p=rand pFr+2.

Theorem 4.1. For each a€ n?(S"), we have

(4.11)  27(GE =" (S"), (@< r—1);

(4.12) 2GR =AM (ST

(4.13) 2™ (GE) has a subgroup PE*™' = aP*™ (87);
(4.14)  a"TH(GE) = aPTTTH(SN) P

[Proof] These are immediate consequences of the general theorems
(2.1), (2.2), and the facts #"*2(S")=0 and =9 (S") =0 if g <r.

Lemma 4.2. If r is any positive even integer and a, f are arbitrary
elements of =" (S") both different from zero, then [a, f] € 2277}(S7) is
also different from zero.

[Proof] Suppose, [a,]=0. Then by a corollary of G. W.
WHITEHEAD, (10, p. 467), there exists a mapping f:S"X 8" — S of
the type (a, ). It follows from a theorem of H. HoPF, [5, p. 431],
that there exists an element of a?7t!(S"t!) with HOPF invariant a b,
where a and b are the degrees of a and f. Since r- 1 is odd, it
follows that ab=—0. Hence, at least one of the elements a, # must
be zero. Q. E. D.

Following ALLEXANDROFF—HOPF, we shall denote by &, =® the
infinite cyclic group, and by &, the finite cyclic group of the order m.

Theorem 4.3. If r is even and ae€a’ (S") is different from zero,
then Ki=0 and J."'=@.

[Proof] This is a consequence of Lemma 4. 2.
Theorem 4.4. If r is odd, then
(4.41) K. =@ for each aen"(S");

(4.42) JF' =6, if 22" (S™") has no element with Hopf invariant
1 and a is of odd degree, and Ji'~' =0 otherwise.

[Proof] If a27*1(S7+!) has an element of HOPF invariant 1, then by
Theorem (3.12) of G. W. WHITEHEAD, [10], we have [a, /] =0 for

each a, fen’(S87); hence Ki=® and JA"' =0. If a2+ (S7+) has no
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element with HOPF invariant 1, then [a, 8] =0 if and only if at least
one of the elements a, f is of even degree. If a is of even degree, then
[a, 8] =0 for each B€ =" (S7); hence Ke =@ and J2"'=0. If a is of
odd degree, then K consists of the elements of even degree; hence
Ki=6, J:''=@, Q. E. D.

H. FREUDENTHAL, [4], announced without proof the existence of the
elements of #27+!(S7*!) with HOPF invariant 1 for every odd r. See
also G. W. WHITEHAED, [9].

From (4.3) and (4.4), the following two theorems can be deduced
easily.

Theorem 4. 5. If r is even, then for each a€ =" (S7) different from
zero, we have

(4.51) a (G =S T =G
(4.52) " (G)=="(S")]<".

Theorem 4.6. If r is odd, then for each a€ =" (S7), we have

(4.61) =" (G =a""(S)JF ", where "' =0 or &, as described
in (4.42);

(4.62) 2" (GI)|Pi=@®.

5. The sphere S2

Throughout this paragraph, let Y be the 2-sphere S?, and let
1 € 7% (S?) denote the element represented by the identity of S2

Lemma 5.1. The generator y of the group =*(S?) can be so
chosen that [t,(] =27.

[Proof] Let y* be an arbitrary generator of =3(S?; then we have
[,t]=06my*, where d ==1 and m > 0. Let D be the subgroup of
73 (S?) generated by [, ], then we have #3(S?)/D is isomorphic with
®n. On the other hand, let E denote the Einhdngung operation of
H. FREUDENTHAL, [3]; then E is a homomorphism of #3(S?) onto n*(S?).
By a result of G. W. WHITEHEAD, [10, p. 470], the kernel of E is the
subgroup D; hence #=*(S?)/D is isomorphic with &;. Then it follows
that m = 2. Choosing y =4 " as new generator of =*(S?, we have

[Li=27%. Q. E. D,

Lemma 5.2. [y, =0.

[Proof] Thisis contained in the second example of G. W. WHITEHEAD,
[10, p. 474].
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Theorem 5.3. If Y==S5? and a € =?(S? is different from zero, then
(5.31) ' (GZ)=®,m, where m >0 is determined by a = + mu;
(5.32) a2(G2) =G,;

(5.33) 3 (GH)=@;

(5.34) a*(G2)|Pi=®, Pi=a5(S);

(5.35) a5(GZ)=a’ (S)/]1.

[Proof] (5.31) Since Qi cC #'(S3) =0, it follows from (2.2) that
7! (G2) = 7% (S?)/]:. Since a = + m¢, we have [a,¢] == 2my; therefore,
]2 is the subgroup of =3(S?) generated by 2my. Hence #*(S?)/Jz = ®,pm.

(5.32) KZ2=0, by (5.1); Ji=0, by (5. 2). Then, by (2. 1),

22 (Gl = n* (§?) =~ ®,.

(5.33) Since Ja=0, we get Ki==n3(S?; since n5(S?)=0, we get
P}=0. Hence #* (G%) =~ a*(S?) = ®.

(5.34) Since #°(S) =0, we have Ki==*(S?) and Ji=0.

Then (5. 34) follows from (2. 1).

(5. 35) follows from K. C #5(S) =0. Q. E. D.

It would be worthwhile to mention here that

A (GY)=6, 22 (GY=6+G, 23(G)=®6,

2t (Go) = a8 (S) + G, = (Go) = a7 (S?).

(5. 31) yields the complete solution of the classification of the homotopy
types of the components of G? as stated in the

Theorem 5.4. If Y =352 the two different components GZ, G3 of
G? are of the same homotopy type, if and only if a and f are negative
to each other.

[Proof] If a4 3=0, then GZ and G3 are of the same homotopy
type by (2.5). Conversely, if G: and G3 are of the same homotopy
type, then by (5.31), the absolute values of the degrees of @ and B are
equal. Hence a 4 =0, for they are supposed to different. Q. E. D.

The following two theorems can be proved by the similar methods
as used in the proof of (5. 3).

Theorem 5.5. If Y—=S? and ae€ a3 (S? be arbitrary element then
we have
5.51) a!(Ga) =06,;

5.52) 2 (Gy)=G;

5.53) #*(Gi)|Pi=®;

5.54) n*(G.) has a subgroup Pi =’ (S?;
(5.55) a5 (G2) = =8 (S?)/]s.

(
(
(
(
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Theorem 5.6. If Y =S? and a€n*(S? be arbitrary element, then
we have

(5.61) a'(GY=0;

5.62) =*(GY/Pi=@;

(5.63) =a*(G:) has a subgroup P ~ n®(S?):
(5.64) =% (Gi)==°(S?)/]a.

For Y=_S82 G’ is connected; hence our problem has been solved
in (2.3) and (2.4). For p>5, I know no more than the general
theorems in § 2.

6. Aspherical spaces.

Y is said to be aspherical, if 77 (Y)=0 for each p > 1. Then Y is
p-simple for each p > 1.

Since GP, p> 1, is connected, we deduce from (2.3) and (2. 4) the
following theorem.

Theorem 6.1. If Y is aspherical and p>1, then GP is also
aspherical and =' (GP) = = (Y).
From (2.1), (2.2) and the 2-symplicity, we deduce the following

Theorem 6.2. If Y is aspherical and a€='(Y), then G is also
aspherical and a' (G:) = a! (Y).
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