Mathematics. — Concerning the homotopy groups of the components of the mapping space Y^{S^p} . By SZE-TSEN HU. (Communicated by Prof. L. E. J. BROUWER.)

(Communicated at the meeting of October 26, 1946.)

1. Introduction.

Let Y be a connected compact absolute neighbourhood retract, [8, p. 58]. Let us denote by G^p the mapping space Y^{S^p} , which consists of the totality of the mappings of a p-sphere S^p into Y. Let $x_0 \in S^p$, $y_0 \in Y$ be given points, and denote by F^p the closed subset of G^p , which consists of the totality of the mappings $f \in G^p$ with $f(x_0) = y_0$. Let $\pi^p(Y)$ denote the p-th homotopy group of Y with x_0, y_0 as base points. Let F^p_{α} be the component of F^p which consists of the totality of the representatives of the element $a \in \pi^p(Y)$. Since Y is arcwise connected, each component of G^p contains at least one component of F^p . Let G^p_{α} be the component of G^p which contains F^p_{α} .

The fundamental group of the component G_0^p was first studied by M. ABE, [1]; the higher homotopy groups of G_0^p were determined by the author in terms of those of Y, [6, § 10], during the early months of 1946. At that 'time, practically nothing was known concerning the homotopy properties of the component G_{α}^p , $\alpha \neq 0$. Most recently, it appears the work of G. W. WHITEHEAD, [10], in which an example has been given to show that G_0^p and G_{α}^p are in general of the different homotopy types if $\alpha \neq 0$. In the present note, two isomorphisms will be given in § 2 regarding the structures of the homotopy groups of the component G_{α}^p , which indicate the close relation between WHITEHEAD products, [11], and the homotopy groups of G_{α}^p . They have been used to determine the homotopy groups of G_{α}^p in terms of those of Y for a certain number of special cases, of which the most interesting one is $Y=S^2$.

2. General theorems.

For each pair of elements $a \in \pi^p(Y)$, $\beta \in \pi^q(Y)$, let us denote by $[\alpha, \beta] \in \pi^{p+q-1}(Y)$ the WHITEHEAD product of α and β , [11]. For q > 1 and a given $\alpha \in \pi^p(Y)$, the transformation $\beta \rightarrow [\alpha, \beta]$ is a homomorphism of $\pi^q(Y)$ into $\pi^{p+q-1}(Y)$, denoted by ϱ_{α} . Let K^q_{α} and J^{p+q-1}_{α} denote the kernel and the image of ϱ_{α} respectively. Choose $a \in F^p_{\alpha}$ as the base point for all the homotopy groups of F^p_{α} and G^p_{α} . There is a natural homomorphism $\mu: \pi^q(F^p_{\alpha}) \rightarrow \pi^q(G^p_{\alpha})$ induced by the injection mapping

 $F_{\alpha}^{p} \rightarrow G_{\alpha}^{p}$. Let P_{α}^{q} be the image of $\pi^{q} (F_{\alpha}^{p})$ under μ . For the higher homotopy groups of G_{α}^{p} , the following theorem is a direct consequence of the theorems of G. W. WHITEHEAD, [10, (2.4) and (3.2)].

Theorem 2.1. For each q > 1 and $a \in \pi^p(Y)$, we have

(2.11)
$$\pi^q (\mathbf{G}^p_{\alpha}) / P^q_{\alpha} \approx K^q_{\alpha},$$

(2.12) $\pi^{p+q}(Y)/J^{p+q}_{\alpha} \approx P^{q}_{\alpha}.$

According to S. EILENBERG, [2], the fundamental group $\pi^1(Y)$ is a group of operators for the group $\pi^p(Y)$ with the unit element of $\pi^1(Y)$ as unit operator. Let Q^1_{α} denote the subgroup of $\pi^1(Y)$, wich consists of the totality of the elements $\omega \in \pi^1(Y)$ such that $\omega(\alpha) = \alpha$. For the fundamental group $\pi^1(G^p_{\alpha})$, we shall prove the following theorem.

Theorem 2. 2. For each $a \in \pi^p(Y)$ we have

(2.21)
$$\pi^1 (G^p_\alpha)/P^1_\alpha \approx Q^1_\alpha,$$

(2.22) $\pi^{p+1}(Y)/J^{p+1}_{\alpha} \approx P^1_{\alpha}.$

[Proof] Let τ denote the projection of G^p_{α} into Y, defined by $\tau(f) = f(x_0)$ for each $f \in G^p_{\alpha}$. Then τ is a fibre mapping, [10, (2, 1)], and $\tau(F^p_{\alpha}) = y_0$. τ induces a homomorphism of $\pi^1(G^p_{\alpha})$ into $\pi^1(Y)$ still denoted by τ .

Let I denote the closed interval (0, 1) of real numbers. Let $\xi \in \pi^1(G^p_{\alpha})$ be represented by a mapping $\phi: I \rightarrow G^p_{\alpha}$ such that $\phi(0) = a = \phi(1)$. Let $\psi = \tau \phi$, then $\psi(0) = y_0 = \psi(1)$. ψ represents an element $\omega \in \pi^1(Y)$, and $\omega = \tau \xi$. ϕ defines a homotopy $f_t: S^p \to Y$ by means of the relation $\phi(t) = f_t$ for each $t \in I$. Since $f_0 = a = f_1$ and $f_t(x_0) = \psi(t)$ for each $t \in I$. it follows that $\omega(\alpha) = \alpha$. Hence $\omega \in Q_{\alpha}^{1}$. Conversely, suppose $\omega \in Q_{\alpha}^{1}$ be an arbitrary element, represented by a mapping $\psi: I \rightarrow Y$ with $\psi(0) = \psi_0 = \psi(1)$ From the Covering Homotopy Theorem, [7], it follows that there exists a mapping $\phi: I \to G^p_{\alpha}$ such that $\tau \phi = \psi$ and $\phi(0) = a$. ϕ defines a homotopy $f_t: S^p \to Y$ by the relation $\phi(t) = f_t$ for each $t \in I$. Since $f_0 = a$ and $f_t(x_0) = \psi(t)$, f_1 represents the element $\omega(a) \in \pi^p(Y)$. Hence $f_1 \in F^p_{\alpha}$, for $\omega \in Q^1_{\alpha}$. From the arcwise connectedness, it follows that there exists a homotopy $\phi_t: I \to G^p_{\alpha}$, $0 \leq t \leq 1$, such that $\phi_0 = \phi$ $\phi_t(0) = a, \phi_t(1) \in F^p_{\alpha}$, and $\phi_1(1) = a$. Let $\psi_t = \tau \phi_t$; then $\psi_t: I \to Y$ $0 \leq t \leq 1$, is a homotopy such that $\psi_0 = \psi$ and $\psi_t(0) = y_0 = \psi_t(1)$ for each $t \in I$. Hence ψ_1 is also a representative of ω . ϕ_1 represents an element $\xi \in \pi^1(G^p_{\alpha})$ and $\tau \xi = \omega$. Hence, we have proved that the image of $\pi^1(G^p_{\alpha})$ under the homomorphism τ is Q^1_{α} .

It is trivial that P_{α}^{1} is contained in the kernel of τ . Conversely, suppose $\xi \in \pi^{1}(G_{\alpha}^{p})$ be an arbitrary element of the kernel of τ , represented by a mapping $\phi: S^{1} \to G_{\alpha}^{p}$ with $\phi(z_{0}) = a, z_{0}$ being a given point of S^{1} . Then

the mapping $\psi = \tau \phi$ represents the unit element of $\pi^1(Y)$; hence there exists a homotopy $\psi_t : S^1 \to Y$, $0 \leq t \leq 1$, such that $\psi_0 = \psi$, $\psi_1(S^1) = y_0$, and $\psi_t(z_0) = y_0$ for each $0 \leq t \leq 1$. From the Covering Homotopy Theorem, it follows that there exists a homotopy $\phi_t : S^1 \to G_{\alpha}^p$ such that $\phi_0 = \phi$, $\tau \phi_t = \psi_t$ and $\phi_t(z_0) = a$ for each $0 \leq t \leq 1$. Since $\phi(S^1) \subset F_{\alpha}^p$, we obtain $\xi \in P_{\alpha}^1$. Hence (2. 21) follows.

The isomorphism (2.22) can be proved as (2.12). Q. E. D.

For the use of the sequel, we mention the results of the author, [6, § 10], and M. ABE, [1], for the component G_0^p .

- (2.3) If q > 1, $\pi^q (G_0^p)$ is isomorphic with the direct sum of $\pi^{p+q}(Y)$ and $\pi^q(Y)$.
- (2.4) If Y is (p+1)-simple, [2], $\pi^1(G_0^p)$ is isomorphic with the direct product of $\pi^{p+1}(Y)$ and $\pi^1(Y)$.

Theorem 2.5. If $\alpha + \beta = 0$, then the components G^{p}_{α} and G^{p}_{β} are homeomorphic.

[Proof] Let $\theta: S^p \to S^p$ be a homeomorphism of S^p which reverses orientation and has x_0 as a fixed point. Then, a homeomorphism h of G^p_{α} onto G^p_{β} is given by $h(f) = f \theta$ for each $f \in G^p_{\alpha}$. Q. E. D.

3. Spaces with continuous multiplication.

Theorem 3.1. If Y admits a continuous multiplication with a twosided identity e (e.g., if Y is a topological group), then G_0^p and G_{α}^p are of the same homotopy type for each $\alpha \in \pi^p(Y)$.

[Proof] According to G. W. WHITEHEAD, [10, p. 464], it remains to prove that there exists a mapping $\lambda: Y \to G^p_{\alpha}$ such that $\tau \lambda$ is the identity, where τ denotes the projection of G^p_{α} onto Y defined by $\tau(f) = f(x_0)$ for each $f \in G^p_{\alpha}$. For each $y \in Y$, let $\lambda_0 y \in G^p_0$ be the constant mapping of S^p into y. Hence λ_0 is a mapping of Y into G^p_0 such that $\tau \lambda_0$ is the identity. From the arcwise connectedness of Y, it follows that there exists a mapping $\phi \in G^p_{\alpha}$ such that $\phi(x_0) = e$. Define $\lambda: Y \to G^p$ by

$$\lambda y(x) = \Phi(x) \cdot \lambda_0 y(x), \quad (y \in Y, x \in S^p).$$

Since $\lambda e = \phi \in G_a^p$ and Y is arcwise connected, it follows that $\lambda(Y) \subset G_{\alpha}^p$. Further, $\tau(\lambda y) = e \cdot y = y$; hence $\tau \lambda$ is the identity. The proof has been completed. Q. E. D.

Corollary 3.2. If $Y = S^r$, (r = 1, 3, 7), then for each $a \in \pi^p(S^r)$ and each $q \ge 1$ we have

$$\pi^{q} (G^{p}_{\alpha}) \approx \pi^{p+q} (S^{r}) + \pi^{q} (S^{r}).$$

4. The sphere S^r .

In the present paragraph, let Y be the r-sphere S^r. Since the cases r = 1, 3, 7 have been solved in (3.2) and the case r = 2 will be treated in § 5, we may suppose that r > 3.

If p < r or p = r + 2, then the space G^p is connected and our proplem reduces to (2.3) and (2.4). It remains to investigate the case $p \ge r$ and $p \ne r + 2$.

Theorem 4.1. For each $a \in \pi^p(S^r)$, we have

- (4.11) $\pi^q (G^p_{\alpha}) \approx \pi^{p+q} (S^r), \quad (q < r-1);$
- (4.12) $\pi^{r-1}(G^p_{\alpha}) \approx \pi^{p+r-1}(S^r)/J^{p+r-1}_{\alpha};$
- (4.13) $\pi^{r+1}(G^p_{\alpha})$ has a subgroup $P^{p+r+1}_{\alpha} \approx \pi^{p+r+1}(S^r)$;
- (4.14) $\pi^{r+2}(G^p_{\alpha}) \approx \pi^{p+r+2}(S^r)/J^{p+r+2}_{\alpha}$

[**Proof**] These are immediate consequences of the general theorems (2.1), (2.2), and the facts $\pi^{r+2}(S^r) = 0$ and $\pi^q(S^r) = 0$ if q < r.

Lemma 4.2. If r is any positive even integer and α , β are arbitrary elements of $\pi^r(S^r)$ both different from zero, then $[\alpha, \beta] \in \pi^{2r-1}(S^r)$ is also different from zero.

[Proof] Suppose, $[a, \beta] = 0$. Then by a corollary of G. W. WHITEHEAD, (10, p. 467), there exists a mapping $f: S^r \times S^r \to S^r$ of the type (a, β) . It follows from a theorem of H. HOPF, [5, p. 431], that there exists an element of $\pi^{2r+1}(S^{r+1})$ with HOPF invariant ab, where a and b are the degrees of a and β . Since r+1 is odd, it follows that ab = 0. Hence, at least one of the elements a, β must be zero. Q. E. D.

Following ALLEXANDROFF—HOPF, we shall denote by $\mathfrak{G}_0 = \mathfrak{G}$ the infinite cyclic group, and by \mathfrak{G}_m the finite cyclic group of the order m.

Theorem 4.3. If r is even and $a \in \pi^r(S^r)$ is different from zero, then $K_{\alpha}^r = 0$ and $\int_{\alpha}^{2^r-1} = \emptyset$.

[Proof] This is a consequence of Lemma 4.2.

Theorem 4.4. If r is odd, then

- (4.41) $K'_{\alpha} = \bigcirc$ for each $\alpha \in \pi^{r}(S^{r})$;
- (4.42) $J_{\alpha}^{2r-1} = \mathfrak{G}_2$ if $\pi^{2r+1}(S^{r+1})$ has no element with Hopf invariant 1 and a is of odd degree, and $J_{\alpha}^{2r-1} = 0$ otherwise.

[Proof] If $\pi^{2r+1}(S^{r+1})$ has an element of HOPF invariant 1, then by Theorem (3.12) of G. W. WHITEHEAD, [10], we have $[\alpha, \beta] = 0$ for each α , $\beta \in \pi^r(S^r)$; hence $K_{\alpha}^r = \textcircled{G}$ and $J_{\alpha}^{2r-1} = 0$. If $\pi^{2r+1}(S^{r+1})$ has no

element with HOPF invariant 1, then $[\alpha, \beta] = 0$ if and only if at least one of the elements α , β is of even degree. If α is of even degree, then $[\alpha, \beta] = 0$ for each $\beta \in \pi^r(S^r)$; hence $K_{\alpha}^r = \emptyset$ and $J_{\alpha}^{2r-1} = 0$. If α is of odd degree, then K_{α}^r consists of the elements of even degree; hence $K_{\alpha}^r = \emptyset$, $J_{\alpha}^{2r-1} = \emptyset_2$. Q. E. D.

H. FREUDENTHAL, [4], announced without proof the existence of the elements of $\pi^{2r+1}(S^{r+1})$ with HOPF invariant 1 for every odd r. See also G. W. WHITEHAED, [9].

From (4.3) and (4.4), the following two theorems can be deduced easily.

Theorem 4.5. If r is even, then for each $a \in \pi^r(S^r)$ different from zero, we have

(4.51) $\pi^{r-1}(G'_{\alpha}) \approx \pi^{2r-1}(S')/J^{2r-1}_{\alpha}, J^{2r-1}_{\alpha} \approx \mathfrak{G};$ (4.52) $\pi^{r}(G'_{\alpha}) \approx \pi^{2r}(S')/J^{2r}_{\alpha}.$

Theorem 4.6. If r is odd, then for each $a \in \pi^r(S^r)$, we have

(4.61) $\pi^{r-1}(G_{\alpha}^{r}) \approx \pi^{2r-1}(S^{r})/J_{\alpha}^{2r-1}$, where $J_{\alpha}^{2r-1} = 0$ or \mathfrak{G}_{2} as described in (4.42); (4.62) $\pi^{r}(G_{\alpha}^{r})/P_{\alpha}^{r} \approx \mathfrak{G}$.

5. The sphere S^2 .

Throughout this paragraph, let Y be the 2-sphere S^2 , and let $\iota \in \pi^2(S^2)$ denote the element represented by the identity of S^2 .

Lemma 5.1. The generator γ of the group $\pi^3(S^2)$ can be so chosen that $[\iota, \iota] = 2 \gamma$.

[Proof] Let γ^* be an arbitrary generator of $\pi^3(S^2)$; then we have $[\iota, \iota] = \delta m \gamma^*$, where $\delta = \pm 1$ and m > 0. Let D be the subgroup of $\pi^3(S^2)$ generated by $[\iota, \iota]$, then we have $\pi^3(S^2)/D$ is isomorphic with \mathfrak{G}_m . On the other hand, let E denote the Einhängung operation of H. FREUDENTHAL, [3]; then E is a homomorphism of $\pi^3(S^2)$ onto $\pi^4(S^2)$. By a result of G. W. WHITEHEAD, [10, p. 470], the kernel of E is the subgroup D; hence $\pi^3(S^2)/D$ is isomorphic with \mathfrak{G}_2 . Then it follows that m = 2. Choosing $\gamma = \delta \gamma^*$ as new generator of $\pi^3(S^2)$, we have $[\iota, \iota] = 2\gamma$. Q. E. D.

Lemma 5.2. $[\gamma, \iota] = 0$.

[**Proof**] This is contained in the second example of G. W. WHITEHEAD, [10, p. 474].

Theorem 5.3. If $Y = S^2$ and $a \in \pi^2(S^2)$ is different from zero, then

- (5.31) $\pi^1(G_{\alpha}^2) = \mathfrak{G}_{2m}$, where m > 0 is determined by $a = \pm m\iota$;
- (5. 32) $\pi^{2} (G_{\alpha}^{2}) = \mathfrak{G}_{2};$ (5. 33) $\pi^{3} (G_{\alpha}^{2}) = \mathfrak{G};$ (5. 34) $\pi^{4} (G_{\alpha}^{2})/P_{\alpha}^{4} \approx \mathfrak{G}_{2}, \quad P_{\alpha}^{4} \approx \pi^{6} (S^{2});$ (5. 35) $\pi^{5} (G_{\alpha}^{2}) \approx \pi^{7} (S^{2})/I_{\alpha}^{7}.$

[Proof] (5.31) Since $Q_{\alpha}^{1} \subset \pi^{1}(S^{2}) = 0$, it follows from (2.2) that $\pi^{1}(G_{\alpha}^{2}) \approx \pi^{3}(S^{2})/J_{\alpha}^{3}$. Since $a = \pm m\iota$, we have $[a, \iota] = \pm 2 m\gamma$; therefore, J_{α}^{3} is the subgroup of $\pi^{3}(S^{2})$ generated by $2m\gamma$. Hence $\pi^{3}(S^{2})/J_{\alpha}^{3} \approx \mathfrak{G}_{2m}$. (5.32) $K_{\alpha}^{2}=0$, by (5.1); $J_{\alpha}^{4}=0$, by (5.2). Then, by (2.1), $\pi^{2}(G_{\alpha}^{2}) \approx \pi^{4}(S^{2}) \approx \mathfrak{G}_{2}$. (5.33) Since $J_{\alpha}^{4}=0$, we get $K_{\alpha}^{3}=\pi^{3}(S^{2})$; since $\pi^{5}(S^{2})=0$, we get $P_{\alpha}^{3}=0$. Hence $\pi^{3}(G_{\alpha}^{2}) \approx \pi^{3}(S^{2}) \approx \mathfrak{G}_{3}$. (5.34) Since $\pi^{5}(S^{2})=0$, we have $K_{\alpha}^{4}=\pi^{4}(S^{2})$ and $J_{\alpha}^{6}=0$. Then (5.34) follows from (2.1). (5.35) follows from $K_{\alpha}^{5} \subset \pi^{5}(S^{2})=0$. Q. E. D.

It would be worthwhile to mention here that $\pi^1(G_0^2) = \emptyset$, $\pi^2(G_0^2) = \emptyset + \emptyset_2$, $\pi^3(G_0^2) = \emptyset$,

 $\pi^4 (G_0^2) \approx \pi^6 (S^2) + (\mathfrak{G}_2), \quad \pi^5 (G_0^2) \approx \pi^7 (S^2).$

(5.31) yields the complete solution of the classification of the homotopy types of the components of G^2 as stated in the

Theorem 5.4. If $Y = S^2$, the two different components G_{α}^2 , G_{β}^2 of G^2 are of the same homotopy type, if and only if α and β are negative to each other.

[Proof] If $\alpha + \beta = 0$, then G_{α}^2 and G_{β}^2 are of the same homotopy type by (2.5). Conversely, if G_{α}^2 and G_{β}^2 are of the same homotopy type, then by (5.31), the absolute values of the degrees of α and β are equal. Hence $\alpha + \beta = 0$, for they are supposed to different. Q. E. D.

The following two theorems can be proved by the similar methods as used in the proof of (5.3).

Theorem 5.5. If $Y = S^2$ and $a \in \pi^3(S^2)$ be arbitrary element then we have

- (5.51) $\pi^1(G_{\alpha}^3) = \mathfrak{G}_2;$
- (5.52) $\pi^2(G^3_{\alpha}) = @;$
- (5.53) $\pi^3 (G_{\alpha}^3)/P_{\alpha}^3 \approx \Im;$
- (5.54) $\pi^4(G^3_{\alpha})$ has a subgroup $P^4_{\alpha} \approx \pi^7(S^2)$;
- (5.55) $\pi^5 (G_{\alpha}^3) \approx \pi^8 (S^2) / J_{\alpha}^8$.

Theorem 5.6. If $Y = S^2$ and $a \in \pi^4(S^2)$ be arbitrary element, then we have

(5. 61) $\pi^{1}(G_{\alpha}^{4}) = 0;$ (5. 62) $\pi^{2}(G_{\alpha}^{4})/P_{\alpha}^{2} \approx \emptyset;$ (5. 63) $\pi^{4}(G_{\alpha}^{4})$ has a subgroup $P_{\alpha}^{4} \approx \pi^{8}(S^{2}):$ (5. 64) $\pi^{5}(G_{\alpha}^{4}) \approx \pi^{9}(S^{2})/J_{\alpha}^{9}.$

For $Y = S^2$, G^5 is connected; hence our problem has been solved in (2.3) and (2.4). For p > 5, I know no more than the general theorems in § 2.

6. Aspherical spaces.

Y is said to be aspherical, if $\pi^p(Y) = 0$ for each p > 1. Then Y is p-simple for each p > 1.

Since G^p , p > 1, is connected, we deduce from (2.3) and (2.4) the following theorem.

Theorem 6.1. If Y is aspherical and p > 1, then G^p is also aspherical and $\pi^1(G^p) \approx \pi^1(Y)$.

From (2.1), (2.2) and the 2-symplicity, we deduce the following

Theorem 6.2. If Y is aspherical and $a \in \pi^1(Y)$, then G^1_{α} is also aspherical and $\pi^1(G^1_{\alpha}) \approx \pi^1(Y)$.

BIBLIOGRAPHY.

- ABE, M. Ueber die stetigen Abbildungen der n-Sphäre in einer metrischen Raum, Jap. Jour. of Math., 16, 169—176 (1940).
- 2. EILENBERG, S., On the relation between the fundamental group of a space and higher homotopy groups, Fund. Math., 32, 167-175 (1939).
- FREUDENTHAL, H., Ueber die Klassen der Sphärenabbildungen I, Compositio Math., 5, 299–314 (1937).
- Meue Erweiterungs und Ueberführungssätze, Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, 42, 139–140 (1939).
- HOPF, H., Ueber die Abbildungen von Sphären auf Sphären niedrigerer Dimension, Fund. Math., 25, 427–440 (1935).
- 6. HU, S. T., On spherical mappings in a metric space, Annals of Math., (1947).
- 7. HUREWICZ-STEENROD, Homotopy relations in fibre spaces, Proc. Nat. Acad. Sci. U.S.A., 27, 60-64 (1941).
- 8. LEFSCHETZ, S., Topics in topology, Annals of Math. Studies, no. 10 (1942).
- 9. WHITEHEAD, G. W., On the homotopy groups of spheres and rotation groups, Annals of Math., 43, 634-640 (1942).
- 10. _____, On products in homotopy groups, Annals of Math., 47, 460-475 (1946).
- WHITEHEAD, J. H. C., On adding relations to homotopy groups, Annals of Math., 42, 409-428 (1941).