Principal String 2-Group Bundles and M-Branes

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

CQSYMP16, Jena, 26.7.2016

Based on:
- arXiv:1602.03441 with Getachew Alemu Demessie
- arXiv:1604.01639 with Brano Jurčo and Martin Wolf
- work in progress with Lennart Schmidt
Future progress in string theory seems to depend on more mathematical input.

String-/M-theory as it used to be

- Every 10 years a “string revolution”
- Every 2-3 years one new big fashionable topic to work on

This changed: No more revolutions or really big fashionable topics.

My explanation

We need more input from maths, in particular category theory:

- 2-form gauge potential B-field: Gerbes or principal 2-bundles
- String Field Theory: L_∞-algebras or semistrict Lie ∞-algebras
- Double Field Theory: Courant algebroids and beyond or symplectic Lie 2-algebroids
- (2,0)-theory: parallel transport of string-like objects full non-abelian higher gauge theory
We will need to use some very simple notions of category theory, an esoteric subject noted for its difficulty and irrelevance.

G. Moore and N. Seiberg, 1989

What does categorification mean?
One of Jeff Harvey’s questions to identify the “generation PhD>1999” at Strings 2013.
Motivation: The Dynamics of Multiple M5-Branes

To understand M-theory, an effective description of M5-branes would be very useful.

D-branes

- D-branes interact via strings.
- Effective description: theory of endpoints
- Parallel transport of these: Gauge theory
- Study string theory via gauge theory

M5-branes

- M5-branes interact via M2-branes.
- Eff. description: theory of self-dual strings
- Parallel transport: Higher gauge theory
- Holy grail: (2,0)-theory (conjectured 1995)
What We Know
Multiple M5-branes are described by a $\mathcal{N} = (2, 0)$ superconformal field theory.

What we know:

- **String theory considerations:** conformal fixed point in 6d
 Witten, Strominger 1995

- **Field content:** $\mathcal{N} = (2, 0)$ supermultiplet in 6d:
 - a self-dual 3-form field strength
 - five (Goldstone) scalars
 - fermionic partners

- A theory of essentially tensionless light strings

- Supergravity **decouples**, so study string dynamics separately

- Observables: *Wilson surfaces*, i.e. parallel transport of strings

- **No Lagrangian description** known

- As important as $\mathcal{N} = 4$ super Yang-Mills for string theory

- Huge interest in string theory: AGT, AdS$_7$-CFT$_6$, S-duality, ...

- Mathematics: *Geom. Langlands, Khovanov Homology, ...*
Parallel transport of particles in representation of gauge group G:

- holonomy functor $\text{hol} : \text{path} \gamma \mapsto \text{hol}(\gamma) \in G$
- $\text{hol}(\gamma) = P \exp(\int_\gamma A)$, P: path ordering, trivial for $U(1)$.

Parallel transport of strings with gauge group $U(1)$:

- map $\text{hol} : \text{surface} \sigma \mapsto \text{hol}(\sigma) \in U(1)$
- $\text{hol}(\sigma) = \exp(\int_\sigma B)$, B: connective structure on gerbe.

Nonabelian case:

- much more involved!
- no straightforward definition of surface ordering
Naïve No-Go Theorem
Naively, there is no non-abelian parallel transport of strings.

Imagine parallel transport of string with gauge degrees in $\text{Lie}(G)$:

\[
g_1 \downarrow \downarrow g_1' \quad \downarrow \downarrow g_2' \quad \downarrow \downarrow g_2
\]

Consistency of parallel transport requires:

\[
(g_1'g_2')(g_1g_2) = (g_1'g_1)(g_2'g_2)
\]

This renders group G abelian.
Eckmann and Hilton, 1962

Physicists 80’ies and 90’ies

Way out: 2-categories, Higher Gauge Theory.

Two operations \circ and \otimes satisfying Interchange Law:

\[
(g_1' \otimes g_2') \circ (g_1 \otimes g_2) = (g_1' \circ g_1) \otimes (g_2' \circ g_2).
\]
Standard objection beyond the previous no-go theorem:
- theory at conformal fixed points \Rightarrow no dimensionful parameter
- fixed points are isolated \Rightarrow no dimensionless parameter
- “No parameters \Rightarrow no classical limit \Rightarrow no Lagrangian.”

Answers:
- Same arguments for M2-brane
 - Schwarz, 2004
- There, integer parameters arose from orbifold R^8/Z_k
 - BLG, ABJM, 2008
- Same should happen for M5-branes
- Even if no Lagrangian, BPS-states may exist classically
- Even if not, study quantum features of related theories.
We want to categorify gauge theory

Need: suitable descriptions/definitions

Equivalent options:
1. finite descriptions via Wilson lines \Rightarrow Parallel transport functor
2. infinitesimal description via connections \Rightarrow Atiyah Algebroid
1. Wilson Lines and Parallel Transport Functors
A straightforward way to describe gauge theory is in terms of parallel transport functors.

Encode gauge theory in parallel transport functor
Mackaay, Picken, 2000

- Every manifold comes with path groupoid $\mathcal{P}M = (PM \rightrightarrows M)$

- Gauge group gives rise to delooping groupoid $BG = (G \rightrightarrows *)$

- parallel transport functor $hol : \mathcal{P}M \to BG$:
 - assigns to each path a group element
 - composition of paths: multiplication of group elements

- Readily categorifies: Baez, Schreiber 2004
 - use path 2-groupoid with homotopies between paths
 - use delooping of categorified group

- Problem: Need to differentiate to get to cocycles
Recall: NQ-Manifolds

NQ-manifolds, known from BRST quantization, provide very useful language.

N-manifolds, NQ-manifold

- **N-graded manifold** with coordinates of degree 0, 1, 2, ...

\[M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots \]

Manifold \hspace{1cm} **Linear spaces**

- **Morphisms** \(\phi : M \rightarrow N \) are maps \(\phi^* : C^\infty(N) \rightarrow C^\infty(M) \)
- **NQ-manifold**: vector field \(Q \) of degree 1, \(Q^2 = 0 \)
- **Physicists**: think ghost numbers, BRST charge, SFT

Examples:

- **Tangent algebroid** \(T[1]M, \ C^\infty(T[1]M) \cong \Omega^\bullet(M), \ Q = d \)
- **Lie algebra** \(g[1] \), coordinates \(\xi^a \) of degree 1:

\[
Q = -\frac{1}{2} f^{c}_{ab} \xi^a \xi^b \frac{\partial}{\partial \xi^c}
\]

Condition \(Q^2 = 0 \) is equivalent to **Jacobi identity** for \(f^{c}_{ab} \)
2. Atiyah Algebroid Sequence

A straightforward way to describe gauge theory is in terms of parallel transport functors.

(Flat) connection: splitting of Atiyah algebroid sequence

\[0 \rightarrow P \times_G \text{Lie}(G) \rightarrow TP/G \rightarrow TM \rightarrow 0 \]

Atiyah, 1957

Related approach: Kotov, Strobl, Schreiber, ...

- **Gauge potential** from morphism of \(N \)-manifolds:
 \[a : T[1]M \rightarrow g[1] \rightarrow A^a_{\mu} dx^\mu := a^*(\xi^a) \]

- **Curvature**: failure of \(a \) to be morphism of \(NQ \)-manifold:
 \[F^a := (d \circ a^* - a^* \circ Q)(\xi^a) = dA^a + \frac{1}{2} f^a_{bc} A^b \wedge A^c \]

- **Infinitesimal gauge transformations**: flat homotopies
- Readily categorifies, but **integration an issue**
L_{∞}-Algebras, Lie 2-Algebras

NQ-manifolds provide an easy definition of L_{∞}-algebras.

Lie n-algebroid or n-term L_{∞}-algebroid:

\[M_0 \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots \leftarrow M_n \leftarrow * \leftarrow * \leftarrow \ldots \]

Lie n-algebra, n-term L_{∞}-algebra or Lie n-algebra:

\[* \leftarrow M_1 \leftarrow M_2 \leftarrow \ldots \leftarrow M_n \leftarrow * \leftarrow * \leftarrow \ldots \]

Example: Lie 2-algebra as 2-term L_{∞}-algebra

- **NQ-manifold:** $* \leftarrow W[1] \leftarrow V[2] \leftarrow * \leftarrow \ldots$, coords. w^a, v^i
- **Homological vector field:**

\[
Q = -m_i^a v^i \frac{\partial}{\partial w^a} - \frac{1}{2} m_{ab}^c w^a w^b \frac{\partial}{\partial w^c} - m_{ai}^j w^a v^i \frac{\partial}{\partial v^j} - \frac{1}{3!} m_{abc}^i w^a w^b w^c \frac{\partial}{\partial v^i}
\]

- **Structure constants:** higher products μ_i on $W \leftarrow V[1]$

\[
\mu_1(\tau_i) = m_i^a \tau_a, \quad \mu_2(\tau_a, \tau_b) = m_{ab}^c \tau_c, \quad \ldots, \quad \mu_3(\tau_a, \tau_b, \tau_c) = m_{abc}^i \tau_i
\]

- **$Q^2 = 0$: Higher or homotopy Jacobi identity, e.g.**

\[
\mu_2(w_1, \mu_2(w_2, w_3)) + \text{cycl.} = \mu_1(\mu_3(w_1, w_2, w_3))
\]
Higher gauge theory with Lie 2-algebra:

- **Lie 2-algebra**: $\ast \leftarrow W[1] \leftarrow V[2] \leftarrow \ast \leftarrow \ldots$, coords. w^a, v^i

- **Gauge potentials** $T[1]M \rightarrow (W[1] \leftarrow V[2])$:

 $$A^a_{\mu} dx^\mu := a^*(w^a) \quad \text{and} \quad B^i_{\mu\nu} dx^\mu \wedge dx^\nu = a^*(v^i)$$

- **Curvature**: failure of a to be morphism of NQ-manifold:

 $$\mathcal{F} := dA + \frac{1}{2} \mu_2(A, A) + \mu_1(B)$$

 $$\mathcal{H} := dB + \mu_2(A, B) + \frac{1}{3!} \mu_3(A, A, A)$$

- **Gauge transformations** from flat homotopies ...
The most interesting higher gauge theories for us live in 6 and 4 dimensions.

- **“Fake curvature”**: \(\mathcal{F} = dA + \frac{1}{2} \mu_2(A, A) - \mu_1(B) = 0 \)
 Vanishing makes parallel transport reparam. invariant.
- **3-form curvature**: \(\mathcal{H} = dB + \mu_2(A, B) + \frac{1}{3!} \mu_3(A, A, A) \)

Gauge part of (2,0) theory

If (2,0) theory on \(\mathbb{R}^{1,5} \) is a higher gauge theory, then gauge part is:

\[
\mathcal{H} = \ast \mathcal{H}, \quad \mathcal{F} = 0.
\]

Non-Abelian Self-Dual Strings

BPS equation for (2,0) theory on \(\mathbb{R}^4 \) (\(\sim \) monopoles in 4d SYM)

\[
\mathcal{H} = \ast (d\Phi + \mu_2(A, \Phi)) , \quad \mathcal{F} = 0.
\]
The Global Picture:

Principal 2-Bundles and Finite Gauge Transformations

Three steps:

1. Categorified notion of group, describing the symmetries
2. Categorified notion of principal bundle
3. Endow these bundles with categorified connections
Categorification provides some guidelines in the construction of higher objects.

Category theory: excellent tool for deformations/generalizations.

Notions used: categorification, internalization and enrichment.

Idea: Mathematical objects are stuff, structures, structure eqns.

Translate as follows:

- stuff (sets) becomes categories
- structures (functions) become functors
- structure equations become structure isomorphisms
1. Categorified Groups
Categorifying a group, we arrive at the notion of a 2-group.

Group:
- **Stuff:** Underlying set G, unit 1
- **Structure:** Multiplication, inverse
- **Structure equations:** associativity, $g^{-1}g = 1$, $1g = g1 = g$

2-Group:
- **Stuff:** A category C, unit object 1
- **Structure:** Multiplication bifunctor \otimes, inverse functor inv
- **Structure isomorphisms:**
 - $a_{x,y,z} : (x \otimes y) \otimes z \Rightarrow x \otimes (y \otimes z)$
 - $l_x : x \otimes 1 \Rightarrow x$, $r_x : 1 \otimes x \Rightarrow x$
 - $\text{inv}(x) \otimes x \Rightarrow 1 \Leftarrow x \otimes \text{inv}(x)$

Example: **Strict 2-Group** $G \ltimes H \Rightarrow G$,
- a, l, r all trivial, $\text{inv}(x) \otimes x = 1 = x \otimes \text{inv}(x)$
- $\text{id}(g) = (g, 1_H)$, $(g_1, h_1) \otimes (g_2, h_2) = (g_1g_2, h_1(g_1 \triangleright h_2))$, etc.
Čech groupoid of surjective submersion $Y \to M$, e.g. $Y = \bigsqcup_a U_a$:

$$\check{C}(U) : \bigsqcup_{a,b} U_{ab} \Rightarrow \bigsqcup_a U_a , \quad U_{ab} \circ U_{bc} = U_{ac} .$$

Principal G-bundle

Transition functions are nothing but a functor $g : \check{C}(U) \to (G \rightrightarrows *)$

$$\bigsqcup U_{ab} \xrightarrow{g_{ab}} G$$

Equivalence relations: natural isomorphisms.

Principal 2-bundle, structure Lie 2-group G

Definition is clear: 2-functor $\check{C}(U) \to (G \rightrightarrows *)$.

Questions: Which notion of 2-category and which G?
There is a differentiation procedure of quasi-groupoids due to Ševera.

Recall: Connection on principal G-bundle: $\text{Lie}(G)$-valued 1-forms

We therefore need a way of differentiating Lie 2-groups.

Lie functor as suggested by Ševera, 2006

- Functors: supermanifolds to certain principal G-bundles
 \[X \mapsto \text{descent data subordinate to } X \times \mathbb{R}^{0|1} \rightarrow X \]
- Moduli: $\text{Lie}(G)$ as an n-term complex of vector spaces
- Carries $\text{Hom}(\mathbb{R}^{0|1}, \mathbb{R}^{0|1})$-action $\rightarrow L_\infty$-algebra structure
Ševera: want moduli of functor

\[X \mapsto \text{descent data subordinate to } X \times \mathbb{R}^{0|1} \to X \]

For a Lie group \(G \):

\[g : X \times \mathbb{R}^{0|2} \to G \ , \quad g(\theta_0, \theta_1, x)g(\theta_1, \theta_2, x) = g(\theta_0, \theta_2, x) . \]

This implies

\[g(0, \theta, x) = g(\theta, 0, x)^{-1} \quad \text{and} \quad g(\theta_0, \theta_1, x) = g(\theta_0, 0, x)(g(\theta_1, 0, x))^{-1} \]

and we have a trivializing coboundary:

\[g(\theta_0, 0, x) = 1 + \alpha \theta_0 , \quad \alpha \in \text{Lie}(G)[1] . \]

We readily compute

\[g(\theta_0, \theta_1) = 1 + \alpha(\theta_0 - \theta_1) + \frac{1}{2}[\alpha, \alpha]\theta_0 \theta_1 . \]

With \(Qg(\theta_0, \theta_1, x) := \frac{d}{d\varepsilon} g(\theta_0 + \varepsilon, \theta_1 + \varepsilon, x) \), we obtain the \(NQ \)-manifold description of \(\text{Lie}(G) \):

\[Q\alpha = -\frac{1}{2}[\alpha, \alpha] . \]
The differentiation method can be extended to read off finite gauge transformations.

- We have: Lie algebra element in terms of descent data g
- Perform a coboundary transformation to \tilde{g}
- Trivialize \tilde{g}, establish relation between moduli of g, \tilde{g}, e.g.

$$\tilde{\alpha} = p^{-1} \alpha p + p^{-1} Q p, \quad p \in C^\infty(X, G)$$

- Replacing Q by de Rham differential on patches yields finite gauge transformations B Jurco, CS, M Wolf, 1403.7185
- Can read off global patching of gauge potential forms.
- More elegant approach in B Jurco, CS, M Wolf, 1604.01639

Again: Everything readily categorifies.
We readily define Deligne cohomology for semistrict Lie 2-group bundles.

Example: principal G-bundle with G semistrict Lie 2-group:

Cocycle data: $(m_{ab}, n_{abc}, A_a, \Lambda_{ab}, B_a)$. Cocycle relations:

\[n_{abc} : m_{ab} \otimes m_{bc} \Rightarrow m_{ac} \]
\[n_{acd} \circ (n_{abc} \otimes \text{id}_{m_{cd}}) \circ a_{m_{ab},m_{bc},m_{cd}}^{-1} = n_{abd} \circ (\text{id}_{m_{ab}} \otimes n_{bcd}) \]
\[dA_a + A_a \otimes A_a = s(B_a) = 0 \]
\[\Lambda_{ab} : A_b \otimes m_{ab} \Rightarrow m_{ab} \otimes A_a - dm_{ab} \]
\[\Lambda_{cb} \circ (\text{id}_{A_b} \otimes n_{bac}) \circ a_{A_b,m_{ba},m_{ac}} = \]
\[= (n_{bac} \otimes \text{id}_{A_c} - dn_{bac}) \circ \left[a_{m_{ba},m_{ac},A_c}^{-1} - \text{id}_{d(m_{ba} \otimes m_{ac})} \right] \circ \]
\[\circ (\text{id}_{m_{ba}} \otimes \Lambda_{ca} - \text{id}_{dm_{ba} \otimes m_{ac}}) \circ (a_{m_{ba},A_c,m_{ac}} - \text{id}_{dm_{ba} \otimes m_{ac}}) \circ (\Lambda_{ab} \otimes \text{id}_{m_{ac}}) \]
\[B_b \otimes \text{id}_{m_{ab}} = \mu(A_b, A_b, m_{ab}) + \left[\text{id}_{m_{ab}} \otimes B_a + \mu(m_{ab}, A_a, A_a) \right] \circ \]
\[\circ \left[-d\Lambda_{ab} - \Lambda_{ab} \otimes \text{id}_{A_a} - \mu(A_b, m_{ab}, A_a) \right] \circ \]
\[\circ \left[-\text{id}_{s(d\Lambda_{ab})} - \text{id}_{A_b} \otimes (\Lambda_{ab} + \text{id}_{dm_{ab}}) \right] \]

B Jurco, CS, M Wolf, 1403.7185

We can now start to calculate and look for applications.
Applications to M-theory
An Application: $\mathcal{N} = (2, 0)$ Theory from Twistors

Given a higher gauge group, one can readily construct a corresponding $(2,0)$-theory.

Theorem [Ward, 1977]

\[
\mathbb{CP}^3 \times \mathbb{C}^4 \quad \text{Holomorphic princ. bundles}^* \quad \text{over} \quad \mathbb{CP}^3
\]

\[\text{in 1:1 correspondence (mod gauge) with} \]

Solutions to the 4d instanton equations

Idea: Put 2-bundles over twistor space for self-dual 3-forms in 6d

Theorem [CS & Wolf, 2012]

\[
\mathbb{CP}^3 \times \mathbb{C}^{6|16} \quad \text{Holomorphic princ. 2-bundles}^* \quad \text{over} \quad Q^{6|4}
\]

\[\text{in 1:1 correspondence (mod gauge) with} \]

Solutions to $\mathcal{N} = (2, 0)$ SCFT equations

\Rightarrow Reduced search for $(2, 0)$-theory to search for gauge structure.
In principle, we found a \((2, 0)\)-theory.

We’ve generalized all this to \(\infty\)-groupoid bundles.

But: How do we know we’re not talking about the empty set?

Popular claim: principal 2-bundles reduce to abelian gerbes.

Problem: Find explicit, truly non-abelian configurations

Input from M-theory: BPS \(\Rightarrow\) self-dual strings in 4d

Mathematics of gauge theory started with instanton sols.
Dirac Monopole:
- Extend Hopf fibration $S^1 \hookrightarrow S^3 \rightarrow S^2$ to $\mathbb{R}^3 \backslash \{0\}$
- $u(1)$-gauge potential A, solves $F_A = dA = \ast d\Phi$ for $\Phi \sim \frac{1}{2r}$

’t Hooft-Polyakov monopole:
- Note: $S^3 \cong SU(2)$
- Hopf fibration can be trivialized in $SU(2) \times \mathbb{R}^3 \rightarrow \mathbb{R}^3$
- Obvious bundle map $S^3 \rightarrow S^2$ to $S^3 \times S^2 \rightarrow S^2$
- Interesting and non-singular monopole solution $F_A = \ast dA\Phi$

Abelian self-dual string:
- Tautological gerbe G over S^3 with DD-class 1 ($H = \text{vol}_{S^3}$)
- solves $H := dB = \ast d\Phi$ over $\mathbb{R}^4 \backslash \{0\}$ for $\Phi \sim \frac{1}{2r^2}$

Truly non-Abelian self-dual string:
- G is a 2-group model for the string group
- Can trivialize G in trivial gerbe $G \times S^3$
- Should yield very interesting and physically relevant solution
- Connective structure: work in progress with L. Schmidt
Summary:

✓ Clear physical and mathematical motivation to study HGT
✓ straightforward definition of higher gauge theory
✓ Can make cocycles etc. explicit to calculate with them
✓ Twistor constructions of (2,0) theory
✓ Relevant higher gauge group identified

Soon to come:

▷ Examples of 2-bundles with connections
▷ Link to higher quantization
▷ Localization for higher gauge theories
A very interesting case: The string group.

- Monopole/instanton solutions: gauge group from \textit{spin group}
 \[\text{Spin}(3) \cong SU(2), \text{Spin}(4) \cong SU(2) \times SU(2) \]

- Higher analogue of the spin group: \textit{String group}

 Stolz, Teichner, Witten, ...

- Def. via \textit{Whitehead tower} (iteratively delete homotopy groups)

 \[\ldots \rightarrow \text{String}(n) \rightarrow \text{Spin}(n) \rightarrow \text{Spin}(n) \rightarrow \text{SO}(n) \rightarrow \text{O}(n) \]

- Definition only \textit{up to homotopy}, as a group: \(\infty\)-dimensional

- 2-group models:

 - \(\infty\)-dimensional strict 2-group \(\text{Baez et al., Nikolaus et al.} \)

 - finite-dimensional quasi 2-group \(\text{Schommer-Pries} \)

- Higher gauge theory 1602.03441, G A Demessie and CS

- Conjecture: Gauge 2-group for M5-branes is \(\text{String}(E_8) \)
The 't Hooft-Polyakov Monopole is a non-singular solution with charge 1.

Recall 't Hooft-Polyakov monopole \((e_i\) generate \(\mathfrak{su}(2), \xi = \nu |x|)\):

\[
\Phi = \frac{e_i x^i}{|x|^2} (\xi \coth(\xi) - 1) , \quad A = \varepsilon_{ijk} \frac{e_i x^j}{|x|^2} \left(1 - \frac{\xi}{\sinh(\xi)} \right) \, dx^k
\]

- At \(S^2_\infty\): \(\Phi \sim g(\theta) e_3 g(\theta)^{-1}\).
 \(g(\theta): S^2_\infty \to SU(2)/U(1)\): winding 1
- Charge \(q = 1\) with
 \[
 2\pi q = \frac{1}{2} \int_{S^2_\infty} \frac{\text{tr} \, (F^\dagger \Phi)}{||\Phi||} \quad \text{with} \quad ||\Phi|| := \sqrt{\frac{1}{2} \text{tr} \, (\Phi^\dagger \Phi)}
 \]
- Higgs field non-singular:
Elementary Solutions: A Non-Abelian Self-Dual String

We can write down a non-abelian self-dual string with winding number 1.

Self-Dual String (Lie 2-algebra $\mathfrak{su}(2) \times \mathfrak{su}(2) \xleftarrow{\mu_1} \mathbb{R}^4$, $\xi = v|x|^2$):

$$\Phi = \frac{e_{\mu}x^\mu}{|x|^3} f(\xi) , \quad B_{\mu\nu} = \varepsilon_{\mu\nu\kappa\lambda} \frac{e_{\kappa}x^{\lambda}}{|x|^3} g(\xi) , \quad A_{\mu} = \varepsilon_{\mu\nu\kappa\lambda} D(e_{\nu}, e_{\kappa}) \frac{x^{\lambda}}{|x|^2} h(\xi)$$

- Solves indeed $H = \star \nabla \Phi$ for right $f(\xi), g(\xi), h(\xi)$
- At S^3_∞: $\Phi \sim g(\theta) \triangleright e_4$. $g(\theta): S^3_\infty \rightarrow \text{SU}(2)$ has winding 1.
- Charge $q = 1$:

$$(2\pi)^3 q = \frac{1}{2} \int_{S^3_\infty} \frac{(H, \Phi)}{||\Phi||} \quad \text{with} \quad ||\Phi|| := \sqrt{\frac{1}{2}(\Phi, \Phi)},$$

- Higgs field non-singular:
Principal String 2-Group Bundles and M-Branes

Christian Sämann

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

CQSYMP16, Jena, 26.7.2016