
SCHUR FUNCTIONS

Editorial comments. The Schur functions sλ are a
special basis for the algebra of symmetric functions Λ.
They are also intimately connected with representations
of the symmetric and general linear groups. In what
follows we will give two alternative definitions of these
functions, show how they are related to other symmetric
function bases, explicitly describe their connection with
representation theory, and state some of their proper-
ties. Three of the standard references for this material
are [3, 6, 8, 9].

Definitions. Let x = {x1, . . . , xl} be a set of vari-
ables and let Λ be the algebra of symmetric functions
in x. Bases for this algebra are indexed by partitions
λ = (λ1, . . . , λl), i.e., λ is a weakly decreasing sequence
of l nonnegative integers λi called parts. Associated with
any partition is an alternant which is the l×l determinant

aλ = det(xλji )

In particular for the partition δ = (l − 1, l − 2, . . . , 0) we
have Vandermonde’s determinant aδ =

∏
i<j(xi−xj). In

his thesis [11], Schur defined the functions which bear his
name as

sλ =
aλ+δ

aδ

where addition of partitions is component-wise. It is clear
from this equation that sλ is a symmetric homogeneous
polynomial of degree |λ| =

∑
i λi.

There is a more combinatorial definition of a Schur
function. A partition λ can be viewed as a Ferrers shape
obtained by placing dots or cells in l left-justified rows
with λi boxes in row i. One obtains a semistandard Young
Tableaux (SSYT), T , of shape λ by replacing each dot
by a positive integer so that rows weakly increase and
columns strictly increase. For example, if λ = (4, 2, 1)
then its shape and a possible tableau are

λ =
• • • •
• •
•

, T =
1 1 1 3
2 3
4

.

Each tableau determines a monomial xT =
∏
i∈T xi, e.g.,

in our example xT = x3
1x2x

2
3x4. Our second definition of

the Schur function is then

sλ =
∑
T

xT

where the sum is over all SSYT of shape λ with entries
between 1 and l.

Change of basis. The Schur functions can also be writ-
ten in terms of the other standard bases for Λ. A mono-
mial symmetric function mλ is the sum of all monomials
whose exponent sequence is some permutation of λ. Also
define the Kostka number [5] Kλµ as the number of SSYT
T of shape λ and content µ = (µ1, . . . , µl), i.e., T contains
µi entries equal to i for 1 ≤ i ≤ l. The combinatorial def-
inition of sλ immediately gives the following.

Theorem 1 (Young’s Rule)

sλ =
∑
µ

Kλµmµ.

Now consider the complete homogeneous symmetric
functions hλ = hλ1 · · ·hλl and the elementary symmet-
ric functions eλ = eλ1 · · · eλl where hλi (respectively, eλi)
is the sum of all (respectively, all square-free) monomials
of degree λi. Also let λ′ denote the partition conjugate
to λ whose parts are the column lengths of λ’s shape.
In the preceding example, λ′ = (3, 2, 1, 1). For the two
bases under consideration the sλ can be described as a
determinant.

Theorem 2 (Jacobi-Trudi Identity [2, 12] & dual)

sλ = det(hλi−i+j) and sλ′ = det(eλi−i+j).

Note that this theorem immediately implies

s(l) = hl and s(1l) = el

where (1l) is the partition with l parts all equal to 1.
These specializations also follow directly from the combi-
natorial definition of sλ.

Representations. The description of sλ in terms of
the power sum symmetric functions brings in the rep-
resentation theory of the symmetric group Sn. The ir-
reducible representations of Sn are indexed by partitions
λ such that |λ| = n. Given a conjugacy class of Sn cor-
responding to a partition µ let kµ denote its size and let
χλµ be the value of the λth irreducible character on the
class. Now consider the power sum symmetric function
pλ = pλ1 · · · pλl where pλi = xλi1 + · · ·+ xλil .

Theorem 3 If |λ| = n then

sλ =
1
n!

∑
|µ|=n

kµχ
λ
µpµ.

In other words, sλ is the cycle-indicator generating func-
tion (in the sense of Polyá-Redfield enumeration) for the
irreducible character of Sn corresponding to λ.

Now consider the complex general linear group GLl.
A representation ρ : GLl → GLm is polynomial if for
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every X ∈ GLl the entries of ρ(X) are polynomials in the
entries of X. The polynomial representations of GLl are
indexed by the partitions λ with l nonnegative parts. Let
χ be the character of a polynomial representation ρ and
let X have eigenvalues x1, . . . , xl. Then χ is a polynomial
function of the xi (because this is true for diagonal X
which are dense in GLl) and is symmetric (because χ is
a class function). In fact more is true.

Theorem 4 The irreducible polynomial characters of
GLl are precisely the sλ for λ with l nonnegative parts.

Properties. We can use the connection with represen-
tations of Sn to construct an isomorphism of algebras.
Let Rn denote the vector space of all class functions on
Sn and let R =

∑
n≥0R

n. The irreducible characters
form a basis for R and endow it with a multiplication by
induction of the tensor product. Frobenius’ characteristic
map [1] is ch : R→ Λ defined on χ ∈ Rn by

ch(χ) =
1
n!

∑
|µ|=n

kµχµpµ

where χµ is the value of χ on the class corresponding to
µ.

Theorem 5 The map ch : R → Λ is an isomorphism of
algebras.

In fact there are natural inner products on R and Λ that
make ch an isometry.

A number of identities involving Schur functions have
interesting bijective proofs using the combinatorial defini-
tion. Among the most famous are the following in which
we assume we also have a set of variables y = {y1, . . . , yl}.

Theorem 6 (Cauchy Identity & dual)

∑
λ

sλ(x)sλ(y) =
l∏

i,j=1

1
1− xiyj

and ∑
λ

sλ(x)sλ′(y) =
l∏

i,j=1

(1 + xiyj).

Knuth [4] has given algorithmic bijections between ma-
trices and SSYT that prove these identities. It is a
generalization of a map of Schensted [10] for standard
Young tableaux, i.e., SSYT where the entries are precisely
1, . . . , |λ|.

We can also describe the structure constants for the
algebra Λ in the basis sλ combinatorially. If µ ⊆ λ as
Ferrers shapes, then we have a skew shape λ/µ consisting
of all dots or cells that are in λ but not in µ. Skew SSYT
are defined in the obvious way. The reverse row word for a

SSYT T is πT obtained by reading the entries in each row
from right to left, starting with the top row and working
down. For our example tableau πT = 3111324. Also a
sequence of positive integers π = w1 . . . wn is a lattice
permutation or ballot sequence if in every prefix w1 . . . wk
the number of i’s is at least as big as the number of i+1’s
for all i ≥ 1.

Theorem 7 (Littlewood-Richardson Rule [7]) If

sλsµ =
∑
ν

cνλµsν

then

cνλµ = number of SSYT T of shape ν/λ and content µ
such that πT a ballot sequence.

Via the characteristic map, the Littlewood-Richardson
coefficients cνλµ can also be viewed as giving the multi-
plicities of the character product χλχµ when decomposed
into irreducibles. Equivalently one can consider the de-
composition of the inner tensor product of two irreducible
polynomial representations of GLl.

In conclusion we should mention that there are many
generalizations of Schur functions, one of the most no-
table being the Hall-Littlewood functions. See Macdon-
ald’s book [8] for more information about them.
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[5] KOSTKA, C., ‘Über den Zusammenhang zwischen
einigen Formen von symmetrischen Funktionen’,
Crelle’s J. 93 (1882), 89–123.

[6] LITTLEWOOD, D.E., The Theory of Group Char-
acters, Oxford University Press, 1950.

2



[7] LITTLEWOOD, D.E. and RICHARDSON, A.R.,
‘Group characters and algebra’, Philos. Trans. Roy.
Soc. London Ser. A 233 (1934), 99–142.

[8] MACDONALD, I.G., Symmetric functions and Hall
polynomials, 2nd edition, Oxford University Press,
1995.

[9] SAGAN, B.E., The symmetric group: represen-
tations, combinatorial algorithms, and symmetric
functions, Wadsworth & Brooks/ Cole, 1991.

[10] SCHENSTED, C., ‘Longest increasing and decreas-
ing subsequences’, Canad. J. Math. 13 (1961), 179–
191.
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