Primitive Data Types

By Arthur H. J. Sale*

This tutorial paper is addressed primarily to practising programmers, and only secondarily to langnage

designers, compiler writers and machine designers. It has two purposes:

* To bring some of the concepls of primitive (indivisible) data-types to the attention of the
industry-atlarge showing how our understanding of the fundamental processes and objects of
programming is gradually improving, with some insights of my own, and

* To emphasize that programmers ought to think in terms of well-structured concepts, and that when
and if one of the less attractive and archaic computing languages has to be used, then it is better to
transiate thoughts into the concrete forms required leaving plenty of traces of the original
intentions. In other words, do not write in a language; think and then code into it.

Keywords and Phrases: data-types, typing, programming methodology

CR Categories: 4.20, 4.9, 5.24

“The goal of science is order. Science is constructed
from facts just as a house is constructed from stones, but
an accunmlation of facts is no more a science than a pile
of stomes is @ house.”

Henri Poincare

1. THE CONCEPT OF DATA-TYPE

The concept of fype is familiar to mathematicians,
programmers and the man-in-the-street, albeit in a
somewhat fuzzy way. A type is a concept which defines a
collection of objects (possibly infinite in number) that
exhibits a set of important common properties, and has a
set of standard manipulations defined upon it.

Simple examples from everyday life are:

* iree: properties of size, leaves, trunk, etc; defined
manipulations of growth, planting, cutting down,
furnishing shade, etc.

* chair: obiect for placing on horizontal surface and
interposing between surface and human posterior;
defined manipulations of sitting, rising.

These are rather complex sets of objects (complicated
types) and would require much work to fully represent in a
computer. A mathematician’s ideas are somewhat simpler;

* function: there are a lot of functions possible,
defined as a mapping from some parameter values to
a target value.

* set: primary manipulations are insertion and removal
from a set and testing for presence.

* number: of some kind, with defined arithmetic
operations of the usual sort.

Some of these are still rather complex, but we can begin

to see some familiar things, as for example when a
mathematician writes: e

Let f be a real function of two real variables, or

let F be an integer in the range 1 to 100.

In these iwe examples things are happening: (i) the
particular data-type is defined (as for example the set of
integer numbers in the range 1 to 100) as a particular case
of some more general set, and (2) a name is associated with
the type (in the above case { is a variable name which can
have the desired values).

All programmers are familiar with some examples of
data-types, for example in the FORTRAN declarations:

INTEGER 1, J, COUNT

REAL X, Y, DELTAX, MAXMUM

LOGICAL ERRFLG

which declare the lisied names to be of one of the standard
types INTEGER, REAL or LOGICAL of FORTRAN. Such
standard types are best thought of as pre-defined types of a
language: types whose utility is sv great, and whose forms
are so standardized that the particular language provides
them as a regular feature. In FORTRAN the predefined
types are of course INTEGER (integral numeric values),
REAL (approximations to urbitrary numeric values},
DOUBLE PRECISION (as for REAL but mere precise),
COMPLEX (approximations to mathematician’s “complex”
values), and LOGICAL (TRUE or FALSE). There are only
these types and the programmer can have no others, {New
ANS FORTRAN will add a character type.}

Nevertheless, programmers need to be able .o define
objects which are different from this restricted set; some
simpler, some more complex. FORTRAN for example does
permit some more complex objects: remember the array or
veclor!

INTEGER TABLE (132), TEMP (10}
and indeed the array is one of the simpler and more
common data-objects that can be defined by a programmer.

It is useful to make a distinction between objects which
are only altered in toto {for example assigning a new value
to an integer destroys all of the old value) and those which
are modified in part (as in changing one element of an

“array). I shall in future call objects of the first kind

data-types of the language, problem, machine or whatever,
and objects of the second kind dafe-structures of the
language, problem, machine, etc. It must be pointed out
that this naming convention is not universal, though it
accords well with most usage. Further, the boundary
between the two things may change between languages: for
example arrays in FORTRAN are clearly datastructures,
whereas in some other languages they partake of the nature
of full data-types (for example APL).

Concentrating for the moment on data-types, we can

assume that they have the following properties:

* g data-type determines the class of values that may be
assumed by a variable or expression,

* the type of variable or expression is determined by
the programmer, and should be determinable by a
translator, without any explicit knowledge of the
sequence of values the variable or expression takes on
in execution,

* associated with a type is a set of operators (which
expect operands of fixed types and deliver resuits of

* Department of Information Science, University of Tasmania. Manuseript received Srd November 1976, revised version 24ih March 1977

The Australian Computer Journal, Vol, 9, No. 2, July 1877

63

Primnitive Data Tvpes

fixed type),

* the propetties of the type and its associated operators
are determined by a set of axioms (read rules if you
prefer), and

* type information is used in programming to (1)
prevent meaningless constructions or allow of their
detection, (2) delay or ignore implementation
problems of representation, and (3) eventually to
determine appropriate implementation on a
computer.

In locking at some simple data-types we shall therefore
be concerned to determine the class of values associated
with the type, how they are manipulated (the defined
operations), how they may be implemenied, and what
happens when the boundary assumptions of the axioms are
violated. We start with wnordered types and enumerated
types; the very simplest of the primitive data types.

2. NOTATION

In what follows, I shall adopt a flexible notatien to
describe declarations of type and programming examples,
rather than sticking to stultifying restrictions of FORTRAN
or other languages. This corresponds to no actual
programming language (though it could easily be
implemented). PASCAL is the nearest equivalent. Examples
in this language are printed in lower case; to simplify your
understanding the reserved words (those with fixed
meanings) are in boldface to distinguish them from
programmer-chosen names.

You will notice later that declarations are turned
end-forend as compared with FORTRAN and Algal
(though similarly to COBOL or PL/I). There is no hidden
significance to this except that it reads a lot more logically,
especially with the more complex declarations we shall look
at.

I shall need the occasional example in a widely available
computing language (FORTRAN, PL/I, PASCAL) and such
examples may be easily spotied; they are in upper-case. I
shall not however restrict myself to FORTRAN's ridiculous
six-character names, so as not to compromise readability.

3. UNORDERED DATA-TYPES

For our first foray into data-types et us look at sets of
values which have no inherent ordering relation between
them {we may force one to exist, but that is another story).
A very simple example is afforded by the FORTRAN type
LOGICAL: a logical expression can take on one of the two
vaiues false or true, and these alone. No order can be
discerned between false and true; one is not ‘bigger’ than
the other, and thus we have here a good example of a
two-valued unordered data-type. No doubt with this ciue
you can think of many other types of this kind. To
continue our discussion, I introduce a notation to describe
such types which looks as follows:

declare type logical as unordered (false, true);
or to take another example:

declare type sex as unordered (male, female).

Note that fixed-meaning words are in boldface to
distinguish them from chosen names only for your
cenventence in making sense of the statement.

But unordered types with more values can also exist; any
familiarity with tax forms will enable you to think of:

declare type maritalstatus as unordered (single, married,

divorced, separated, widowed);
or from other fields;

64

declare type primarycolor as unordered (red, blue,

yellow);

declare type gender as unordered (masculine, feminine,

neuter).

In fact, if you come to think of it, unordered types are
probably one of the most commen things encountered in
filling in forms! Notice how above we have given a name to
the type (to take an example: gender) and that it will be
conceptually possible to be able to declare variables of that
type, perhaps by writing sormething like:

declare variables nounform, verbform of gender

Note too that such variables may only take on the values
of masculine, feminine ot neuter (whatever such values may
be); not numbers, not anything else, just masculine,
Jeminine ot neuter . . .

So much for the associated values; what about the
associated operations?

Well, the most obvious operations are those of
assighment o1 replacement: to be able 1o transfer a value
into a variable. The sort of effect we want can be described
something like this:

declare type colour as unordered (red, green, yelliow,

blue);

declare variables light, illumination of colour;

llght =green;
illumination:=light;

In the above we assigned a (constant) value to the
variable fight and later we transferred the value held by it
inte the variable dlumination. No errors are possible in
these operations provided the value to be assigned is of the
correct type (here colour).

The next operation that may be useful is the test for
equality of two values. We might want fo be able io write
things like:

if {light=red) then watchfordrunks;

if {light notequalto illumination) then sunriseprocedure;
Again, quite straightforward. Extend the idea somewhat ta
permit testing of values in a selection;

with light select from

case red: executeastop;

case yellow: stowdown;

case green: keepenthroughintersection;
else: exerciseextremecaution

And the remaining useful thing we can do with unordered
types is to sequence through all possible type values (of
course in any arbitrary order). A possible use wouid be:
for i:=all colour do
spotiight;:=off;

presuming that we have a set of four spotlights:
spotlight,eq, spotlight, een, etc. each of some type {on,
off).
You will notice that in principle all the above
manipulations can be checked by the programmer at
program writing time, and by the compiler at translation
time (if a suitable compiler exists) to check perfectly that
nothing could go wreng with unordered data-type
computations. Since all we can do with unordered
data-types is to generate correct values and shuffle them
around, no type-handling errors are possible! Delightful! In
practice though, very few languages are that good, and the
programmer has to do more work than he ought by
working out some nitty-gritty details, and opening the door
wide to slips and mistakes . . .

The Ausiratian Computer Journal, Vol, 9, No. 2, July 1977

Primitive Data Types

If we now look al how we might store information of
this type in a computer, the first thing to remember is that
we have to store the information in a pattern of bits, and
further, most computers give us cells (words) of fixed
numbers of bits to work with. Only the first constraint is
really important here for if each computer werd has n bits
and there are m values in an unordered type, then provided

2nzm

then we can choose any distinct word-patterns to represent
the values of our unordered type. To take an example, the
type logical exists in many languages and machines, and
requires representation of two values: rue and false. |
know of at least one instance in each of the following cases
where the language designers chose the implemented
patterns of true and false to be:

true | false
0000. 00 1000. .00
1111..11 0000, .00
0000, 01 0000. .00

The choice is obviously arbitrary in the absence of
further information. In actuality, the above cases were
influenced by minot and peculiar properties of the
particular computer’s instruction manipulations. It is
interesting however to impose an exira constraint to. see its
consequences: how can we represent these values using the
least number of bits? ’

For m values we are going to need j = [logom] bits, so
that 21-1 <Um < 2. (Please read the notation [x] as ‘the
ceiling of x* and understand it to mean the integer at least
equal to or greater than x.) This guarantees that we have
enough variations available to represent all values, and yet
we cannot dispense with one more bit, as we would not
have enough. If m=2/ then we must simply assign the
values to all the patterns, if m <2’ then we have some
spares and it is appropriate (though not essential} to choose
our represented values in some logically compact way. To
take a concrete example, the type colour we worked with
above has m =4, so that =2 and an appropriate value
representation would be:

red = 00

green = 0l

yeliow = 10

blue = il
while for type gender m = 3, j = 2, and the following is
possible:

masculine = 00

feminine = 0}

neuter = 10

11 is not used.

4. LOGICAL TYPE

Although in the previous section | introduced unordered
data types through type logical as it exists in FORTRAN or
Algol, this is a slightly misleading example. Logical values
do have all the properties of unordered types, but they also
have a few more: the logical operations and, or and not
(and possibly more) are pre-defined for logical expressions.

This brings up an important peoint: no classification I or
anyone else can device can possibly cover ail representable
objects or values. All we can do is 1o point to the important
classes of objects, and decide which properties of the things
we want to represent should be embedded in a type. Type
logical is of course very important: it warrants the special
treatment it gets.

The Australian Computer Journgl, Vol. 9, No. 2, July 1977

To re-iterate the points made before might bring the
discussion into focus: logical type is an unordered data-type
of two values; it is predefined and has operators predefined
especially for it; and the constants of the type are denoted
by the character sequences “true” and “faise”.

5. ENUMERATIVE DATA-TYPES

The next simplest data-type is the enumerative type:
again a finite set of values (usually small), but here it is
appropriate to recognise a linear ordering in the set of
values. In a modification of the notation [used earlier, I
shall omit the word unordered in favour of ordered and let
the ordering relation be specified by the order in which the
values appear enumerated in the list. In other words, if we
read the sign *< as meaning ‘comes before’ then in the type
declarations:

declare type floorlevel as ordered (basement, ground,

mezzaning, top);
then we have the relations:

basement < ground << mezzanine < top.

Other examples are:

declare type cardrank as ordered (two, three, four, five,

six, seven, eight, nine, ten, Jack, Queen, King, Ace);

declare type romannumeral as ordered (I, V, X, L. C, D,

M)

The manipulations of enumerative types are the same as
for unordered types with two additions made possible by
the existence of a defined order between the values: testing
the ordering relation, and moving up and down the order.
The first is ecasily shown by the following program
fragment:

declare variable actualcard of cardrank;

if (actvalcard < Jack) then . . . ;
while the second required us 1o define a manipulating
instruction or two. Suppose that we have two such
manipulations possible.

succ(x)

pred{x)
which give a value which is the successor or predecessor
respectively of the value of x in the type sequence to which
x belongs. You can see the use of this in:

if (uctvalcard notequal Ace) then winningcard:=succ

{actualcard):

This example also points out a potential disaster: what is
suce {Ace)? or pred (two)? and what will happen if the
uawary programmer sets up a statement that causes either
of these to be taken?

Of course the only appropriate answer is that such
operations are meaningless, and programs that attempt to
perform them are incorrect. Since however the occurrence
of such a disaster cannot always be detected by inspection
of the source text, then some error-handling must oceur
during execution-time: while the program is running. For
example the piece of program that specifies how suce(x) is
to be found must have incorporated in it ‘a test for x being
at the limit, and cause termination of the program or some
precautionary message if it is. Alas, for few languages make
any such provision, and if like FORTRAN or PL/I they do
not even recognise such types all responsibility is thrown
back on the programmer {who is generally quite unreliable
in this regard).

The c¢onventional way to implement enumerative
data-types is also the most compuct. The listed values are
mapped. onto the integers 0, 1, 2, ... or in actuality onto

65

Primitive Data Types

the bit-patterns which correspond to these in the computer.
In this way the ordering property of integers is used to
preserve the order of the list, Of course, once again, at least
flogom] bits are necessary to represent a set of m values.

Example:

two 0000 ten 1000

three 0001 Jack 1001

four 0010 Queen 1010

five 0011 King 1011

six 0100 Ace 1100

seven 0101

eight OL10

nine 0111

You may also be tempted to assign instead the values 2,

3, 4,...to rwo, three, four, etc. (it may seem more

‘natural’ to you in this case), bui note that the value of Ace
must still be greater than any othet (and should not be 1).
Or to take another case the type romannumeral could be
represented by O to 6, or by the integers 1, 5, 10, 50, 100,
500 and 1000. The choice is arbitrary in the absence of
further constraints provided that the ordering is preserved.

Again, the common languages have not yet appropriate
mechanisms to handle such types, and we must resort to
some work to implement them,

6. CIRCULARLY ORDERED DATA-TYPES

In 2 common variation on the theme of ordering, a
circularly ordered data-type can . be encountered.
Superficially this resembies a simple (tinearly) ordered data
type discussed in the previous section, but in addition the
ordering relation is also defined between the first and last
elements of the list. A good example is afforded by the
days of the week:

declare type weekday as circulasly ordered (Monday,

Tuesday, Wednesday, Thursday, Friday, Saturday,

Sunday);
which defines the ordering relations:

Monday < Tuesday < Wednesday < Thursday << Friday

< Saturday < Sunday < Monday

You can see from this description that if we define the
suce(x) and pred(x) operators on this type, then

succ(Sunday) is Monday, and
pred{(Monday) is Sunday,
50 no type errors are possible! On the other hand it is no
longer possible to ask for conditions which test the ordering
relation between members of the set which are not
neighbours: it is a meaningless guestion to ask if Tuesday
comes before Sunday . ..

Some confusion exists between linear and circular
orderings in the literature at present, and the difference is
not often made. However the implications of the difference
in the suce and pred operators is important as will transpire
later.

Implementation of circularly ordered types is usually the
same as for linearly ordered types: the integers O to (m—1}
are used, and either an explicit test in the swee and pred
operator coding or a computation module m is used to
keep the values in that range.

7. PRAGMATICS

If you have a compiler for PASCAL available to you,
much of what 1 have said so far is available to you, albeit in
a form which is not quite as regular or comprehensive as [
have been discussing.

If not, then you are in the common situation of most

66

people and the entire responsibility of typing rests with
you, the programmer, and not with the compiler or the
system. In these circumstances, it is best to think in terms
of the data-types I have been talking about, bui to (i)
modify your coding habits to reflect your better awareness
of what you do, and (ii) leave clear commentary trails to
explain how the language influences what you have to code.
In most cases the small finite types are best mapped onto
an integer type, though logical can be used if there are only
two values in the type.
To illustrate what can be done, the following examples
show
* a PASCAL program fragment (Fig. 1),
* how the macro-facility (DEFINE) in Bumroughs
B6700 Algol can be used to construct partial types
(Fig. 2) and
* a possible way to construct and document the ideas
of type FORTRAN and PL/1 (Fig. 3).

PROGRAM STAGELIGHTING;

TYPE
COLOUR = (RED, GREEN, BLUE, WHITE);
SWITCH = (ON, OFF);

VAR
WHICHSPOT @ INTEGER;
SPOTSWITCH : ARRAY [1..1#] OF SWITCH;
FLOCDSWITCH: SWITCH;
FLOGDCOLOUR: COLOUR;

BEGIN

FLOODCOLOUR : =RED;

FLOODSWITCH: =ON;

FOR WHICHSPOT:=1 TO 1 DO BEGIN
SPOTSWITCH[WHICHSPOT] : =OFF;

END;

END.
Figure 1: An incomplete PASCAL program.

8. CHARACTERS
One particular example of a simple data-type is very

important; important enough to warrant special
examination. This example is that of characrers such as
by, e AsBie s 6.7 s ¢ etc. Since most

communication with computers at the present state of the
art is by the written word (worse: the typed word)
characters loom large in this communication process.
Historically, character sets were relatively restricted things:
one set of the alphabetic characters, the decimal digits and
a handful of others. That makes 26+10+11 {say) therefore
requiring {log, 47] = 6 bits per character, and indeed most
early computers had six-bit characters. The situation
persists, and these arc still to be seen, together with
printers, etc. with only one case of alphabetic characters
(usually upper-case). Truly programmers must be the most
proficient people in the world in reading block capitals!
The trend nowadays is slowly towards bigger and more
useful character sets and seven- and eight-bit codes are
becoming commonplace, especially for data communication
traffic.

The Australian Computer Journgl, Vol. 9, No. 2, July 1977

Primitive Data Types

% DEFINE (IN MACRQOS) A TYPE -COLOUR-
% = _— -

DEFINE

COLOUR = INTEGER#,

RED = B,

GREEN = 14,

YELLOW = 24,

BLUE = 34;
. s

% VARIABLES OF TYPE COLOUR
9

COLOUR LIGHT, ILLUMINATION;

LIGHT :=RED;

Figure 2: Macro-definitions in Burroughs B6700 Algol.

room for variation. (Is 9 << A or Z<C0? Does A to Z form a
compact group?) and several perplexing problems (Isa <A
or vice versa? We'd like them to be the same for alphabetic
ordering reasons ... Where does the space fit in the
sequence?). Suffice it to say that none of these are
problems ‘that you will have to worry about much. The
character set used internally in a particular computer {or in
its communications with other machines) is usually
standardized and not under your control. The effort of
changing it into your own variety is seldom worth the
effort.
Character sets may therefore be regarded as a predefined
ordered data-type, something like:
declare type character as otdeted (nul, . . ., . . .,
space, exclamation, doublequote, ...,,
ZETO, ONE, tWO, . .., ...,
AR E DByl ses v ce
., erase);

9. THE ALMOST-INFINITE TYPES
We have progressed from looking at collections of values
which are defined by a programmer listing the values,

G i e —
C FOLLOWING VARIABLES ARE OF A TYPE —ROMANNUMERAL-
G S = i S st e =

INTEGER ROMAMNCHAR , NEXTROMANCHAR
Gl e o ettt e e

C THESE ARE THE CONSTANTS OF TYPE -ROMANNUMERAL~

c O

INTEGER 1,V,X,L,C,D,M

DATA I,V,X,L,C,D,M /1,5,14,58,147,588, LEBE/

/R PL/T EXAMPLE ®/

/% CONSTANTS OF A TYPE -FLOORLEVEL- */

DECLARE BASEMENT BINARY FIXED INITIAL £;
GROUND BINARY FIXED INITIAL 1;
MEZZANINE BINARY FIXED INITIAL 2Z;
FIRST BINARY FIXED INITIAL 3;

/¥ VARIABLES OF TYPE -FLOORLEVEL- */

DECLARE DESIREDFLOOR,LIFTPLACE,ENTRYPORT BINARY FIXED;

Figure 3: FORTRAN and PL/1 substitutes for type declarations.

What kind of data-type is a character set? To start with
we know that most people associate an ordering relation
with the alphabet from A to Z, and there is a strong
ordering of the digits from 0 to 9 (not 12345678901).
Consequently there is strong pressure to regard a character
set as an ordered type to preserve these relations: 1 know of
no character set of computer-age vintage that does not
preserve them, at least as used internally in the computer.
Having said this however we have still left considerable

The Australian Computer Journal, Vol. 9, No. 2, July 1977

through some pre-defined types to type character. All these
have the characteristic that the possible values have a very
small finite cardinality: from 2 for type logical to 256 for
an EBCDIC character set. The next step is to move on to
those common types which are conceptually infinite in
values, though in practice a computer can only represent a
finite subset of the values. I am referring, of course, to the
varieties of number.

Some of the properties of numbers are held in common,

67

Primitive Data Types

and can be discussed here. First, and perhaps most obvious,
is that the arithmetic operators plus, minus, multiply and
divide are defined for all numbers that are in common use.
These operators produce a resull from two values which is
of the same type as the values. We also want all the axioms
of number manipulations to hold for all operations on
computer numbers, and unless there is a common violation
of these rules, I shall not comment further on them. A
second property is that of ordering: the values of the type
are regarded as strictly ordered, and it is meaningful to ask
for any ordering relation between two values to be tested.
Consequently any of the things that are sensible with
enumeratively ordered types are sensible with numbezs. The
only possible exception comes with the number-types
which are conceptually infinitely subdividable, such as type
real.

10. THE NATURAL NUMBERS AND INTEGERS

It is an amazing fact that almost no high-level languages
have seen fit to distinguish between the two number types
of denumerably infinite values: nagtural mumbers {or
unsigned integers) and infegers. Machine designers have long
distinguished, and way back in the mists of antiquity
(before FORTRAN) computers had special facilities for
dealing with words as unsigned numbers, as against those
with signs. Indeed, FORTRAN itself bears many hallmarks
to show that its INTEGER type was constrained by the
facilities on the [BM704 for handling natural numbers. To
take a more modern example; the rash of two’s
complement 16-bit mini-computers is a direct result of not
wishing to have to provide separate instructions for natural
and signed numbers, The PDP-11 range concedes the point
with a separate set of branch tests . . .

Why the fuss? Well, in actuality most of the applications
we casually use integers for are counting operations, or
matching operations. The natural numbers:

04l 2: 3 S
are directly intended for counting and matching in
one-for-one correspondences. This is of course why
machine addresses are so often mapped onto natural
numbers. In such applications a negative value has no sense,
and in line with our maxim of knowing what we are doing
and making it explicit, we ought to recognize that we deal
with natural numbers at least as often as (if not more often
than) with genuine signed integers. And if so, a good
computing language ought to permit you to make the fact
explicit. Examples that occur to me from recent experience
are variables that select a bit in a computer word, or a disk
sector in a code-file, or that determine the maximum
number of applications of an interative algorithm, or that
rank a record in an ordered collection.

About signed integers there is little that need be said;
most programmers are thoroughly familiar with the concept
and the behaviour of the type. The signed integers are
infinitely extended (in concept anyway) either side of zero:

...... —5—4,-3,-2,-1 0+ #2483, 44,45,
and the common representations usually give a range which
is approxitmately equal either side of zero.

The standard operations on natural numbers and integers
are all the ordering tests (= = << > 2}, plus (+), minus
{—), multiply (x), and the division operators. Division poses
a bit of a quandary, because it is undefined for division by
zero (inevitably a run-time error), and because division of a
natural number by another, or an integer by another,
produces two results instead of the usual one result: a

68

quotient and a remainder. This faces designers of high-level
languages with a dilemmma: whether 1o stick with the usnal
infix operator notation of conventional mathematics, or to
develop a special notation for division. Almost without
exception, language designers opt for the first alternative
and provide two division operators, one of which gives the
quotient result, and the other the remainder result. For
example, here are the solutions of two language designers:

B6700 ALGOL | ANSI FORTRAN
Q:=DD DIV DR: Q=DD/DR
R:=DD MOD DR: R =MOD(DD.DR}

We are not yet out of the division wood yet, for the
question of what is the remainder when one of the
operands is negative finds different machine designers
taking different views. Altogether an unappetizing mess,
and this even in one of the commonest types!

Given all the above operators, and from what we know
about representations, it is reasonable to assume that if a
programmer writes code involving integer or natural
numbers, then the representations and arithmetic are
exactly analogous to the conceptual properties of the types
provided that division by zero does not occur, and provided
that no result is computed that is unrepresentable. If either
of these actions occur, I at least expect that the
programmer be notified of the fact {(and possibly the
computation terminated as it has become meaningless).
Alas, foolish me! There are any number of exceedingly
mysterious errors that compilers and machines will allow to
happen without warning or notice. While this attitude
might have been allowable when hardware was very
expensive, it is almost unforgivable in the present situation.
The fact that integer overflow is seldom signalled to the
operating system (and thence the programmer) is partly a
fault of machine designers who have not resolved the
confliet between natural numbers and integers, and partly
the fault of programmers who have for Jong taken
advantage of minute knowledge of arithmetic to write
esoteric assembly code routines. Despite this, 1 must
maintain that a good represeniation of natural numbers or
integers should obey the following properties, as well as the
rules of correct arithmetic:

* An attempt to divide by zero should raise an error
event, and be notified to the programmer. This is
usually true.

* A result which is out of the representable range,
whether for integers or natural numbers (as
appropriate) should raise an error event and be
notified to the programmer. This almost never
happens.

* If the representation has a —0 as well as a +0, then
from the high-level language programmer’s view the
two ought to be indistinguishable. One’s complement
machines are the biggest offenders.

* The results of a division should satisfy the foliowing
axioms:

sign(remainder) = sign{dividend)
dividend = (quotient x divisor} + remainder
0 < jremainder| < |divisorl

11. THE REAL NUMBERS AND BEYOND

The organization of real numbers is probably of great
interest only 1o a subset of programmers; those dealing with
scientific or engineering problems. And yet the issues are of

The Australian Computer Journal, Vol. 9, No. 2, July 1977

Primitive Data Types

interest to all, for in representing real numbers our
computers are attempting to represent values which are not
even denumerably infinite (as are integers) but are more
infinite still! Consequently the representation of real
numbers must not only be restricted in range like the
integers, but also an infinite number of slightly different
mathematically real numbers has to be represented by a
single computer REAL (or floating-point} number. As a
consequence a number of mathematical laws which held for
numbers cease to be true in computer arithmetic; for
example
(atb)+c) and (at(btc))

are mot equivalent in computer REAL arithmetic: the two
results may be different (perhaps only in some low bits, but
different nonetheless).

1 cannot afford the time to go into the details of what
constitutes a good real number representation apart from
saying that any unrepresentable result should raise an event
and be notified to the high-level programmer, whether it be
overflow or underflow. For various reasons which I do not
agree with, some systems signal overflow but not underflow

. If anyone wants to read further on the desirable
properties of REAL arithmetic and representation see
Knuth (1969} anéd the excellent critique of the CDC6600
by Wirth (1972). I hasten to add that there are an awful {ot
of computer architeciures quite as bad as that of the
CDC6600; 1 hope machine designers have started to listen.

The last few sections have skipped a very large number
of issues, such as why we have floating-point number
representation of real numbers at all; why we don’t have a
representation for the rational numbers (fractions), and so
on. Let me finish off by pointing out that in FORTRAN at
least we have two further pre-defined types to go:
DOUBLE PRECISION and COMPLEX. DOUBLE
PRECISION is of course simply a rmore precise kind of
REAL; it usually includes the REAL values as a subset.
COMPLEX is a type which holds a pair of REAL values,
called (confusingly) the real and imaginary parts of the
complex number. The ad-hoc nature of FORTRAN
prevents us seeing this in a consistent framework where we
might have complex-integers as well as complex-reals and
complex-doubles, and only the one variety crops up.

12. SUBSETS AND SUBRANGES

If you have been attentively following the discussion
of numbers discussed you will have realized that there often
exists a subset relation between different types of numbers:
all numbers of the one kind are included in the second
kind. This hierarchy for the conceptual number systems is
shown in Fig. 4. This leads to the knotty problems of
coercions, and of whether an integer ought to be permitted
to appear inside a real expression {for example). The
present view is that automatic coercions, or in other words
default type-changes, ought to be permitted only if the
value to be coerced is of a subset type of the type it is
being coerced into. Programmers, please note. If a language
you use has automatic coercions in the reverse direction
(for example in FORTRAN from REAL to INTEGER
across an assignment), it is well-structured programming
practice to always make the type transfer explicit, so as to
at least document that you were aware of the restriction on
values, For example

WHOLEDOLLARS=IFIX(HOURLYRATE*HOURS}

The sitvation is bedevilled by yet more quirks of our
computers; for example on the Burroughs B6700 and some

The Australian Computer Journgl, Vol. 8, No, 2, july 1977

other computers the conceptual subset relations shown in
the figure are true: all natural numbers are exactly
representable in the integer range, which in turn are exactly
representable in the real range. However in the IBM370
range, to take one example, neither of these subset relations
is strictly true. In its 32-bit words there are some natural
numbers which cannot be representied as signed integers,
and some integers which cannot be exactly represented as
real values.

The question of subsetting however brings up another
impostant concept: that of a subrgnge. A subrange is
considered by some (for example in the language PASCAL)
as a new type with some, but not all, properties of its
parent rangetype. It consists of all representable values
between two specified limits, and the concept is applicable
to all linearty ordered types:

declare subrange types

bargainfloors as subrange of floorlevel (basement to
mezzanine);

age as subrange of integer (0 to 150);

digitchars as subrange of char (“0” to “97);
normalizevalue as subrange of real (—1.0 to +1.0);

COMPLEX
REAL
INTEGER

NATURAL NUMBER

Figure 4: The subset relations of common numbers.

Having a language which permits this sort of declaration
allows the programmer to notify and therefore document
his intention of restricting the range of values to be taken
by a variable to a smalier set of values of the type. The
advantages of this facility are threefold, and I shall discuss
them in order of importance:

Firstly, such a compiler may be able to economize on
storage for the variables concemed if it can determine the
size of the subrange. For example the age subrange defined
above will fit into a single 8-bit byte of a PDP-11 or an
IBM 370, instead of a larger integer word. This is a simple
space gain and must be matched against the complexity of
packing and unpacking the variable.

Secondly, the compiler may generate cliecking code to
determine at critical points whether the values of the
subrange variables are in fact within the declared range,
possibly under the control of a compiler option. Or it may
be able te find some usages at compile-time that are
incompatible with the subrange declaration, as in

declare variable ageofsarnuel of age;

agéofsamue1:=—1; % conceived but not yet born

69

Primitive Data Types

While the above is a plausible usage, it is not in accord
with the declaration, and one or the other needs to be
altered. You will realize that compilers that can aid in this
task may make a powerful contribution towards debugging,
especially if there is a hardware assist for bounds checking
at run-tirme.

And thirdly, a subrange of some types can make them
more finite, and therefore usable for ditferent purposes. As
we saw earlier, all enumerated types had a rather small
number of members (usually less than 256 for example)
and consequently constructing jump tables or using them as
array indices posed no problems. However integers are
almost-infinite, and fitted very awkwardly into such
contexts. Taking a subrange of integer will therefore bring
the almost-infinite set of values down to a manageable and
finite set, as for example in the definition of the subzange
gge. This is not true of real numbers, for which any
subrange should conceptually still have an infinite set of
values. This conflict of purpose shows up faitly clearly in
the language PASCAL, which attempted 1o introduce
subranges in the manner outlined here with partial success.

There is the same message here for programmers using
mote prosaic languages: again, think in terms of
well-structured data-types and in subranges, and document
your thoughts as far as possible in standard coding and in
commentary. In addition, if you have a macro-facility,
consider using it to incotporate subrange-checking code
into your program at critical points of assignment. A
macro-facility is an extremely powerful toal for extending a
language, though not as good as a proper compiler for the
extended language. Here for example is a way of carrying
out a check using the Burroughs Algol DEFINE facility:

DEFINE CHECKAGE(VAL)

CHECKINTEGERBQUNDS(VAL, 0, 150)

% A CHECK PROCEDURE

% ABOVE REPLACED BY (VAL) WHEN DEBUG
% COMPLETE
#:

AGEOFSAMUEL:=CHECK AGE(AGEOFSAMUEL + 1);
% BIRTHDAY

13. SELF-ASSESSMENT EXERCISES .

Once upan a time, [would have called these problems,
but now the trendy phrase is seif-assessment quiz. Joking
apart, it is quite possible to read a paper, nod your head
wisely, and absorb none of it. To help you retain some of
the ideas I have tried to put into the paper, and to give you
the opportunity to see if you have really understood what
was being said, here are a few problems to tackle. They are
alt fairly easy, and mostly permit different answers.
Consequently sample solutions are not provided; if their
absence worries you I suggest you discuss them with a
colleague. The problems are coded according to the section
of the paper they refer to.

3.1 Find a form of some kind, and document how many
responses on it are unordered data-types. Write some
definition for the types of these responses.

3.2 Two definitions of type sex follow. Should a high-evel
language programmer who can define such types be
able to detect any differences between the two
definitions or not?

(i) declare type sex as unordered (male,female);

7

(ii) declare type sex as unordered (femnale,male);
5.1 If you were to set up a data-type to hold values which
are the chesspiece names: (pawn, knight, bishop, rook,
queen, Kking), would you choose an unordered
data-type or an ordered data-type? Why?
5.2 A tax computation program uses different methods
according as to whether a taxpayer’s assessable income
is less than $5000, from $5001 to $6000, from $6001
to $8000, from $8001 to $i2000, from $12001 to
$20000, and more than $20000. The programmer
wishes to create an ordered type which he cap use in
defiring values of a variable incomerange in his
program. (1) Write a definition of the type, and (2)
create some appropriate declarations and comments in
case he writes the program in a language of your choice
{FORTRAN, PL/1, COBOL, etc.).
6.1 Think of anather circularly ordered type and write a
definition for it.
8.1 For EBCDIC and ASCII character ¢odes (and that of
your computer, if it is different) determine
(1) the relative ordering of a-z, A-Z, and 0-9 within
each code, and

(2) where the character space appears in each order.
What effect does space have upon alphabetic
ordering in
(a) atelephone directory, and (b} a dictionary?

8.2 An early code devised for teleprinters {and still used in
such systems) uses a five-bit code. Since 25 = 32, this is
not enough to even represent the alphabet and the
digits! So, a swuatagem is emploved: two of the
codewords are reserved to have special meanings. One
when transmitted informs the receiver to interpret all
following characters as being from one set of printable
and other characters, and can only be reversed by
sending the other one which forces a different
interpretation on the other codewords. You may be
familiar with this concept in the shiftkey of a
typewriter. This allows a total of (32 — 2) x 2 =60
transmittable meanings. What disadvantages can be
forecast for this apparently goad scheme for getting a
quart out of a pint pot?

10.1If you know the machipe-instruction set of your
computer, ask yourself if there are instructions which
treat machine-objects as natural numbers instead of
signed integers. What are they? Are the natural number
values wholly included in the integer values?

10.2Take the last program you wrote and see how niany
usages of integers were in reality counting operations
using naturaf numbers.

10.3Does your computer or compiler do anything about
integer overflow? If not, why not? Have you
complained (you are the consumer)?

12.1Take the last program you wrote and see how many
usages of numbers could have been thought of as
subrange objects, or enumerative data-types.

14. ACKNOWLEDGEMENT

The preceding tutorial paper is heavily based on the
wotk of C.A.R. Hoare on data-types, and covers some of
the initial parts of the section by him in the first reference.
This work also covers structuring techniques for creating
new types (discriminated unions, powersets, etc.) which are
not discussed in this paper.

The programming language PASCAL embodies a number
of these ideas, though it does not go as far as 1 suggest in

The Australian Computer Journal, Vol. 9, No. 2, July 1977

Primitive Data Types

the paper. Being designed with better concepts of
data-typing than older languages, it is clearly superior in
conceptualizing type, and is well worth study by interested
readers regardless of its other features. The best-known
implementation is PASCAL-6000 for CDC 6000-series and
Cyber-range computers.

Unfortunately, most programmers at present working in
the industry are constrained by other forces to use less
sympathetic languages. This tutorial is an appeal to these
programmers to modify their thought-habits (at least) so as
to embody better-structured data-typing into these more
restrictive forms. Even in PASCAL, programmers should
not write i a language; rather think and then code into it.

15. SUGGESTIONS FOR FURTHER READING

DAHL, O.-]., DITKSTRA, EW. & HOARE, C.AR. {1972):
“Structured programming”, Acedemic Press, (Especially Hoare’s
section on data structuring,)

HOARE, C.A.R. (1969); “An axiomatic basis for computer
programming”, Comm. ACM 12, pp. 576-581.

JENSEN, K. & WIRTH, N. (1974): “PASCAL User Manual and
Report”, Springer-Veriag, Lecture Notes in Computer Science
18. (Describes PASCAL and the defining report.}

KNUTH, D.E. (1969): “The Art of Computer Programming,
Yglluﬂ% 2: Seminumerical Algerithms™, Addison-Wesiey, pp.

WIRTH, N. (1976): “Algorithms + Data Structures = Programs™,
Prentice-Fall, (Takes up where this article leaves off in discussing
more complex structures from Wirth’s viewpoint.)

WIRTH, N. {1972} “On ‘PASCAL’. Code Generation, and the
CDC6000 Computer™, Stanford University Report
STAN-CS-72-257,

